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Abstract

Intercomponent Time Dynamics

for Multivariate Functional Data

Multivariate functional data often present theoretical and practical compli-

cations which are not found in their univariate functional counterparts. One of

these is a situation where the component functions of multivariate functional

data are subject to mutual time warping. That is, the component processes ex-

hibit a similar shape but are subject to systematic phase variation across their

time domains. This dissertation addresses this previously unconsidered mode

of warping with the introduction of multivariate time warping models which

rely on either time-shifting or nonlinear time-distortion frameworks.

In the first chapter, we introduce a shift-warping model for multivariate time

relations. This model is motivated by the Zürich longitudinal growth dataset, in

which the growth trajectories for multiple body parts were observed from birth

to adulthood for a sample of children. The proposed method differs from ex-

isting registration methods for functional data in a fundamental way. Namely,

instead of focusing on the traditional approach towarping, where one aims to re-

cover individual-specific registration, this technique focuses on shift registration

across the components of a multivariate functional data vector on a population-

wide level. After applying the method to the Zürich data, we find that there

exists an archetypal ordering of pubertal growth spurts across modalities: on

average, legs tend to experience peak growth velocity approximately a half a

year before standing height and arms, which themselves tend to precede the

growth spurt of the spine by half a year. Our proposed estimates for these shifts

are identifiable, enjoy parametric rates of convergence, and often have intuitive

physical interpretations, all in contrast to traditional curve-specific registration
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approaches. Finite sample properties of these estimators were also investigated

in simulation studies.

The second chapter of this dissertation introduces the Latent TransportModel

for multivariate functional data. This model widens the class of possible cross-

component warps from simple shifts to flexible and nonlinear transport func-

tions. The proposed approach combines a random amplitude factor for each

component with population based registration across the components of a mul-

tivariate functional data vector. It also includes a latent population function,

which corresponds to a commonunderlying trajectory aswell as a subject-specific

warping component. This model allows for meaningful interpretation and is

well suited to represent functional vector data. We also propose estimators for

all components of the model, which not only lead to a novel representation for

multivariate functional data, but can also be used in downstream analyses like

Fréchet regression. Rates of convergence are established when curves are fully

observed or observed with measurement error. The usefulness of the model,

interpretations, and practical aspects are illustrated in simulations and with ap-

plication to multivariate human growth curves as well as multivariate environ-

mental pollution data.
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Chapter 1

Multivariate Functional
Shift-Warping Models

1.1 Introduction
Multivariate functional data are often encountered in biological or chemical pro-

cesses that are continuously measured for a group of subjects or observational

units. Suchprocesses arise inmany longitudinal studies, especially in the biomed-

ical sciences, the scopes of which range from human growth to time courses of

protein levels during metabolic processes (Park & Ahn, 2017; Dubin & Müller,

2005). With the increasing ubiquity of multivariate functional data, the study of

how to treat such data has recently become a very active field, particularly in the

context of clustering (Brunel & Park, 2014; Jacques & Preda, 2014; Park & Ahn,

2017), functional regression (Chiou, 2012; Chiou et al., 2016), and in terms of gen-

eral modeling of functional data (Claeskens et al., 2014). Common approaches

for analyzing multivariate functional data have focused on dimension reduction

via multivariate functional principal components (MFPCA) (Zhou et al., 2008;

Chiou et al., 2014; Happ & Greven, 2018) or decomposition into component-

specific processes and their interactions (Chiou et al., 2016).
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In applications such as growth curves, if we view multivariate longitudinal

data as generated by an underlying p-dimensional smooth stochastic process, the

component curves of the functional vector may exhibit mutual time warping. If

left unchecked, such vector component warping may distort principal compo-

nents and inflate data variance, while if handled properly, it may yield intuitive

physical interpretations and a more parsimonious representation of the data.

As far as we know, the idea of explicitly modeling time relations between com-

ponent processes has not yet been considered for multivariate functional data,

which allows one to take advantage of repeated observations of a multivariate

process for a cohort of subjects.

Typically, for each subject in longitudinal studies one has measurements on

a grid of time points, where recordings are possibly contaminated with mea-

surement error. Often these measurements are multivariate, notably in growth

studies, which prompts consideration of functional methods which are geared

towards repeatedly sampled multivariate functional data. The Zürich Longitu-

dinal Growth Study motivated us to model such multivariate functional data by

allowing the components to bemutually time-shifted against each other, as some

components of growth may systematically precede others.

The idea of warping across components is most pragmatic when the compo-

nent processes of multivariate functional data exhibit similarity in their shapes.

In the case of growth studies, each body part’s component process follows the

same general pattern: a period of rapid development during infancy which then

slows to a roughly constant rate of growthuntil puberty, atwhich time the growth

velocity peaks (i.e., the pubertal growth spurt) before decreasing to zero as the

subject reaches adulthood (Gasser et al., 1984c). The multivariate aspect of these

growth curves allows us to compare the growth processes of different parts of

the body. For example, it may be that legs undergo their growth spurt earlier in

2



life than arms do. It is an interesting biological question to search for a common

process that ordinates the timings of growth spurts across body parts. Another

situation where this phenomenon arises is in the above-mentioned recordings of

protein levels during metabolic processes. Certain biological functions are asso-

ciated with peaks and valleys of certain protein levels and their relative timings

expose the order of the underlying enzymatic mechanisms at work.

Data from the Zürich Longitudinal Growth Studywere previously used to in-

vestigate the timing of growth spurts across body parts using a phase-clustering

model (Park &Ahn, 2017). Our study uses the same data but instead emphasizes

the investigation of phase variations in the component growth velocity curves to

establish time relations. In particular, we investigate mutual time warping in the

derivatives across the components of the multivariate functional processes dur-

ing a growth spurt window, as derivatives are more informative about human

growth than the growth curves themselves. Specifically, we assume a model

which uses relative time shifts between component processes to establish their

pairwise time relations. Information about the relative shifts between pairs of

components may then be combined to inform the full system of relative timings

across body parts. We emphasize that our approach, while motivated by growth

data, is by no means limited to this application and can also be implemented for

multivariate functional data which has neither a well-defined time origin nor

an endpoint, as in the case of blood protein time courses (e.g., Dubin & Müller

(2005)).

1.2 A Shift-Warping Model for Multivariate
Time Relations

To illustrate the idea of mutual component warping, consider the growth veloc-

ities for a handful of representative children in the Zürich Longitudinal Study

3



(Fig. 1.1), which will be revisited in its entirety in Section 1.5. We consider pu-

bertal growth, i.e. growth curves are evaluated in the interval I = [9, 18] ranging

from 9 to 18 years. Each child has four growth velocity curves, each correspond-

ing to a different body part. The peaks represent the moment of maximal rate

of growth and can be used as a crude measure of the timing of pubertal growth

spurt for that modality. For ease of viewingwemark these locations in timewith

vertical lines in Figure 1.1.

A key observation is to recognize that regardless of when the child under-

went puberty, the ordering of the spurts is consistent: legs undergo their growth

spurts first, then arm length and standing height roughly together, followed

by sitting height. This pattern in pubertal spurts was briefly discussed in the

descriptive growth studies of Sheehy et al. (1999) and suggests that there is a

population-wide mutual component warping occurring across the four modal-

ities. Note also that the time differences between modalities are relatively con-

sistent across children, despite individual differences in the age of the pubertal

onset. This is worth highlighting for two reasons: (1) it motivates the estimation

of a fixed population-wide set of shift parameters, and (2) it shows that cross-

component registrationmakes sense even in the presence of subject-specific time

warping, which is the usualmode ofwarping considered in univariate functional

data. For a recent overviewof traditionalwarpingmethods, we refer less familiar

readers to Marron et al. (2015) and Wang et al. (2016).

To register these curves across components, wepropose a shift-warpingmodel,

which provides a simple and interpretable method for cross-component align-

ment of growth data. From amethodological point of view, our approach builds

on basic ideas in the literature on parametric and semi-parametric modeling of

growth and related phenomena. In applied work on human growth, empirical

studies often utilize parametric models (Milani, 2000).

4



Figure 1.1: Three children’s growth velocities for standing height (black, solid),
sitting height (red, dashed), leg length (green, dot-dashed), and arm length
(blue, dotted). Peak velocity positions are marked with vertical lines and can
be used as rough markers of pubertal onset for each modality.
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One of themost popular classes ofmodels has been proposed by Preece & Baines

(1978); for a recent application, see, e.g. Banik et al. (2017). All of these models

make use of shift parameters θij to capture the main differences in individual

timings. For p-dimensional multivariate functional data, {Xi1(t), . . . , Xip(t)}T , i =

1, . . . , n, which we consider here on a domain I that covers the pubertal period,

an extension of the existing models to the multivariate case is as follows.

For some function G and some additional parameter vectors ξij one posits

that, with time shifts θij , the growth curve for the jth component of the ith subject

has the form

Xij(t) = G(ξij , t− θij), j = 1, . . . , p, i = 1, . . . , n, t ∈ I, (1.1)

where previously only cases with p = 1 have been considered. As fully paramet-

ric specifications were found to lack accuracy, various semi-parametric exten-

sions have been proposed for the one-dimensional case. For example, for stand-

ing height, in the case p = 1, Kneip & Gasser (1995) assumed a shape-invariant

model with G(ξij , t − θij) = ξij;2f{ξij;1(t − θij)} + ξij;3 for real-valued parameters

ξij;1, ξij;2, ξij;3, and an unknown real-valued function f which is estimated from

the data. The k-mean alignment introduced by Sangalli et al. (2010) may be seen

as a generalization of this framework, where it is assumed that the population

can be decomposed into K disjoint clusters, and individual functions belonging

to each cluster can be approximately described by a shape-invariant model with

respect to a cluster-specific template function fg, g ∈ {1, . . . , K}.

In the following we assume that growth data follow a multivariate and flex-

ible version of models of type (1.1), under the natural assumption that the shift

parameters θij can be decomposed in the form θij = θi+θj , where θi is specific for

the individual, while θj is specific for the component. Then (1.1) may be rewrit-
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ten in the form

Xij(t) = G(ξij , t− θi − θj) ≡ G∗(ξ∗ij , t− θj), where ξ∗ij = (ξij , θi). (1.2)

Motivating our alignment procedure is that, for a given individual i, the com-

ponent functions Xi1(t), . . . , Xip(t) can be made more similar when removing the

different shift parameters θ1, . . . , θp. The most favorable situation arises if shifts

constitute the only important difference between components such that ξij ≡ ξi
is independent of j = 1, . . . , p. Then with Zi(s) := G∗(ξ∗i , s) we arrive at

Xij(t) = Zi(t− θj), j = 1, . . . , p, i = 1, . . . , n, t ∈ I, (1.3)

so that E
∫
I{Xij(t+ θj)−Xil(t+ θl)}2dt = E

∫
I{Zi(t)− Zi(t)}

2dt = 0 for all

j, l ∈ {1, . . . , p}. To apply this argumentmay require some pre-processing in order

to eliminate scale differences between the different components (see Section 1.5).

In the context of growth curves, subject-specific alignment based on non-

parametric monotonic warping functions hi : I → I has been studied exten-

sively (Gasser et al., 1990; Kneip & Gasser, 1995; Gervini & Gasser, 2004; Tang

& Müller, 2008). Higher dimensional problems of subject-specific registration

have been considered through the lens of elastic shape analysis (Srivastava et al.,

2010; Srivastava & Klassen, 2016), or reduced to the problem of aligning a uni-

variate curve generated from the component curves (Ramsay et al., 2014). It can

be seen from (1.2) and (1.3) that in our context such functions hi do not play any

role andmay simply be part of the parameter set ξi. We therefore emphasize that

in the non-traditional warping framework presented here, the pertinent issues

are fundamentally different from those considered in the subject-specific warp-

ing framework discussed in the cited articles. In short, that it bypasses dealing

with individual warping functions is a strength of our method and allows us

to side-step the identifiability problems associated with subject-specific regis-

tration. It is especially noteworthy that we obtain a √n-rate of convergence for

7



the estimated time shifts to their targets under mild regularity conditions (see

Section 1.7). Such fast convergence rates cannot be obtained in traditional warp-

ing approaches, since these focus on individual warps rather than component-

specificwarping and therefore require identification of n time alignments, where

n is the sample size, whereas in our approach there are only p components that

need to be considered, where p is the fixed dimension of the multivariate pro-

cess. Of course, in some circumstances the model in (1.3) may just serve as a

convenient approximation of a more nuanced warping relation between compo-

nents. We discuss the potential for continuous analogues of cross-component

shift-warping techniques in the Concluding Remarks.

A further distinction between cross-component warping as proposed here

and the common subject-specific approach is that the latter traditionally views

the presence of individual warping functions as a nuisance characteristic of the

data to be accounted for in order to correctly analyze underlying functional fea-

tures of interest; for example, curves will be registered first before conducting a

functional principal component analysis (FPCA). In contrast, we argue that in-

vestigation of cross-component warping and the shift parameters θ1, . . . , θp pro-

vide insight into intercomponent relationships and, when applicable, are an es-

sential aspect of multivariate functional data that is of genuine interest rather

than a nuisance.

1.3 Bivariate Cross-Component Registration
1.3.1 Pairwise-Shift Estimation
We introduce here the main idea of registering different component times across

modalities, which we call Cross-Component Registration (XCR). As explained in

the previous section, XCR differs in key aspects from traditional warping, which

is also known as curve registration or alignment (Ramsay & Silverman, 2005;

8



Kneip & Gasser, 1992; Silverman, 1995), as it aims at a situation where the com-

ponent curves of a multivariate functional process are time-shifted versions of

one another. A major difference is that instead of estimating n individual warp-

ing functions, which align curves across subjects and the determination of which

is the goal of traditional curve warping methods, our new approach targets a p-

vector of shift parameters for the case of p-dimensional functional data. These

component-wise shifts are then applied uniformly across all subjects tomutually

align the component curves.

In the following, we write (X1, . . . , Xp)
T to represent the generic underlying

multivariate process and {Xi1(t), . . . , Xip(t)}T , i = 1, . . . , n, for a sample of real-

izations of the functional vector. One may assume a priori smoothness of curves

or may preprocess the data with a smoothing method if the curves are subject

to measurement error. In this subsection we consider the case of multivariate

functional data with just p = 2 component curves to introduce the main ideas,

and will then discuss the extension to p > 2. To fix the idea, consider a sample of

bivariate functional processes, writing {Xi1(t), Xi2(t)}ni=1 for the observed i.i.d. re-

alizations of the bivariate process (X1, X2), and assume that the domain of both

component processes is a compact interval T = [0, T ]. As a criterion for align-

ment and to determine the optimal shift, we aim to minimize the L2-distance

between functions on a subinterval I ⊂ T ; see the discussion below. Using a

simple shift-warp family under the L2-norm allows for a straightforward and

clear interpretation of the relationship between two components and has been

used previously in the context of shape-invariant modeling (Härdle & Marron,

1990; Kneip & Gasser, 1995; Silverman, 1995).

Specifically, we aim for the optimal value of the parameter τ , the pairwise

cross-component (XC) shift as the minimizer of

Λ(τ) = E

∫
I
{X1(t)−X2(t− τ)}2dt, (1.4)

9



with associated sample version

Ln(τ) =
1

n

n∑
i=1

∫
I
{Xi1(t)−Xi2(t− τ)}2dt (1.5)

and sample-based shift parameter estimate

τ̂ = argmin
τ

Ln(τ), (1.6)

targeting τ0 = argminτ Λ(τ).

Integrating over a subinterval I rather than the whole interval is a device

that is necessary in order to ensure that both the shifted and unshifted curves are

defined on the domain of integration. If we did not specify a suitable subinterval

I ⊂ [0, T ] that stays away fromboth 0 and T , shifting a curve forward or backward

may result in a subinterval of integration in which one of the curves is defined

while the other is not, making it impossible to compute their L2-distance. To be

precise, we partition the data domain T into three disjoint intervals T = R1 ∪I ∪

R2, where I = [r1, r2] is the subinterval of integration and R1 = [0, r1) and R2 =

(r2, T ] are the remaining intervals on the boundary. Note that this partitioning

implies that the magnitude of pairwise shift estimates cannot exceed the length

of the relevant remainder interval, depending on the direction of the shift. This

subtlety suggests that the choice of subinterval of integration I is not trivial and

should be done carefully and data-adaptively.

1.3.2 Subinterval Selection
We propose the following guidelines for subinterval selection: I should be cho-

sen to (1) include the critical features of the sample curves, and (2) avoid censor-

ing estimates of pairwise shifts. For example, in our application to the Zürich

data, we choose I to range from the earliest age of pubertal onset to the age of

adulthood. Doing so ensures the inclusion of the main pubertal growth spurt

peaks which are the structural features to be aligned across components (Gasser

10



&Kneip, 1995). Unreasonable estimatesmay occur if the subinterval is too small,

as an inappropriately narrowwindowmay discard the features to be aligned for

a subset of individuals.

The problem of subinterval selection was discussed previously in Kneip &

Gasser (1995) and we follow their convention to seek an “overlapping interval"

across all individuals, described as follows. Individual intervals Ji are chosen

such that information about structural landmarks for the ith individual are con-

tained entirely in Ji. Then the overlapping interval J is defined as J = ∪iJi and

guarantees that all individuals’ structural features are included. One can then

either simply use this overlapping interval as the subinterval of integration, i.e.,

let I = J , or choose I such that J ⊂ I and I has some relevant physical meaning.

An example for the latter case is demonstrated in the data application of Section

1.5.

In the more general setting with more than two components, we will en-

counter several pairwise time shifts between sets of component curves. To distin-

guish between these, we write τjk to denote the relative time shift which moves

component k to component j. Note that the sample and population time shifts

are symmetric in the sense that τjk = −τkj . The problem of estimating general

cross-component shift parameters θ1, . . . , θp can be solved after the estimation of

all the pairwise shift parameters τjk for 1 ≤ j < k ≤ p, as discussed in the follow-

ing section.

1.4 General Cross-Component Registration
Wenowextend themethodology for bivariate cross-component registration (XCR)

to the case of p-dimensional multivariate functional processes, aiming to align

more than two component functions. Assume we observe p-variate functional

data {Xi1(t), . . . , Xip(t)}T for i = 1, . . . , n, nowwith p > 2. We search for a vector of

11



global XC shifts, θ = (θ1, . . . , θp), such that when each modality Xj(t), j = 1, . . . , p,

is shifted by θj , all p curves are aligned. Here it is useful to introduce the idea

of an underlying latent process, which may be seen as the Zi component in model

(1.3).

To fix the idea, consider only a single observation of simulated multivariate

functional data where the components of the multivariate process are just time-

shifted replicates. Figure 1.2 illustrates an example for p = 4. A simple approach

would be to align the component curves by fixing one component curve and

shifting the others via bivariate XCR to align themwith the selected component.

However, a major problem with this approach is that the resulting XC shifts de-

pend on the choice of the fixed component.

These problems can be overcome by assuming that each curve is a shifted

version of an unobserved andunshifted latent component, visualized as the solid

curve in Figure 1.2. The observed components are then time-shiftedwith respect

to this latent component and the shifts are subject to the constraint
∑p

j=1 θj = 0,

so that there is no net XC shift from the latent component curve. This assumption

is necessary for the identifiability of the shift estimates.

A key observation is that there is a linear relationship between pairwise XC

shifts, τjk, and the global XC shifts, θj and θk. Specifically, the pairwise shifts can

be expressed as the difference of two global shifts as shown in Eq. 1.7. Thus, after

estimating bivariate XC shifts τjk between component functions, we can infer the

global XC vector θ, and importantly, the linear map between the two is invariant

with respect to the choice of the latent process.
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Figure 1.2: Observed components (dashed, left) and latent curve (solid, right)
defined by identifiability constraint.
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More explicitly, the linear map L is given by:

τjk = θj − θk, j, k = 1, . . . , p, j < k (1.7)

with constraint
∑p

j=1 θj = 0, so that

τ ∗ = L(θ) = Aθ, (1.8)

where τ ∗ = (τT , 0)T = (τ12, τ13, . . . , τ(p−1)p, 0)T is the pairwise shift parameter vec-

tor stacked with 0, θ = (θ1, . . . , θp)
T is the global shift vector of each component

function with respect to the latent process, and A is the matrix of the linear

map which corresponds to the contrasts in (1.8). Note that A is of dimension

(p(p− 1)/2)× p, and is always of full column rank. Explicitly, we write

A =



1 −1 0 0 0 . . . 0 0

1 0 −1 0 0 . . . 0 0

1 0 0 −1 0 . . . 0 0

... ... ... ... ... . . . ... ...

1 0 0 0 0 . . . 0 −1

0 1 −1 0 0 . . . 0 0

... ... ... ... ... . . . ... ...

0 0 0 0 0 . . . 1 −1

1 1 1 1 1 . . . 1 1



.

To implement this approach, we must first estimate the stacked vector of bi-

variate XC shifts, τ̂ ∗ = (τ̂T , 0)T = (τ̂12, τ̂13, . . . , τ̂(p−1)p, 0)T , leading to the model

τ̂ ∗ = Aθ + ε, (1.9)

where ε is a vector of random noise with mean 0 and finite variance. Once the

pairwise shifts τ̂jk are obtained, global shifts θ can be estimated as

θ̂ = (ATA)−1AT τ̂ ∗ (1.10)

14



by ordinary least squares. The p component curves will then be aligned (to the

latent curve) once they are time-shifted with their respective estimated global

XC shifts, θ̂, i.e., Xij(t+ θ̂j) for j = 1, . . . , p.

1.5 Application to the Zürich Longitudinal
Growth Study

From 1954 to 1978, a longitudinal study on human growth and development was

conducted at the University Children’s Hospital in Zürich. Modalities of growth

thatwere longitudinallymeasured on a dense regular time grid include standing

height, sitting height, arm length, and leg length, so that the resulting data can

be naturally viewed as multivariate functional data (Gasser et al., 1984a, 1989).

The raw trajectories of the p = 4 component processes for the children mea-

sured are displayed in Figure 1.3, which also indicates the measurement grid.

Component curves are initially observed on the domain T = [0, 20], which can

be artificially extended to the right by assuming measurements stay constant in

adulthood, since almost all subjects reach full maturation before age 20. We are

especially interested in the timing of pubertal growth spurts, which occur for

all individuals between ages 9 and 18 typically. We are using this time window

as the subinterval of integration, I, in accordance with the guidelines of Section

1.3. A common way to study growth velocities is to examine the derivatives of

the growth curves instead of the curves themselves (Gasser et al., 1984c). The

growth velocities have a peak during puberty, with the apex representing the

instant when an individual’s growth rate is at its maximum. Previous analysis

of human growth curves indicates that there is a difference in the ways that boys

and girls undergo puberty (Gasser et al., 1984c; Eiben et al., 2005). For example,

it is widely known that girls begin puberty at younger ages than boys do on aver-

age. Accordingly, for the subsequent analysis we separate boys and girls and for
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brevity display only the results for boys. We estimate the growth velocities, i.e.,

the derivatives of the growth trajectories, via local weighted linear smoothing

using the package fdapace (Carroll et al., 2020a).

Because different body parts have different physical sizes, their velocities are

also on different scales. We eliminate the majority of this amplitude variation

by dividing each function by the total area under the curve, resulting in “relative

velocities" for eachmodality. Relative velocities have been previously used in the

growth curve literature (see, e.g. Sheehy et al. (1999)) and allow for the compar-

ison of modalities which are on dissimilar scales. Figure 1.4 shows the rescaled

derivative estimates for the four growth processes that we consider. After this

pre-processing, we now havemultivariate functional data with component func-

tions such as those shown for the individuals in Figure 1.1. When we apply the

proposed shift model to the growth velocities of the four growth modalities of

the Zürich data, we obtain the following estimated global XC shifts (Table 1.1):

Component Modality Estimate

θ1 Height -0.0875

θ2 Sitting Height -0.5850

θ3 Leg Length 0.5825

θ4 Arm Length 0.0900

Table 1.1: Estimated global XC shifts for Zürich boys. These estimates imply the
following ordering of growth spurts: (1) leg, (2) height, (3) arm, (4) sitting height.
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Figure 1.3: Raw growth trajectories for all Zürich boys.
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Figure 1.4: Scaled growth velocity curves for Zürich boys.
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One can interpret these shift parameters in a pairwise manner. For example,

legs tend to undergo their growth spurts roughly half a year before arms do

(τ̂34 = θ̂3 − θ̂4 ≈ 0.5) and sitting height trails roughly half a year behind standing

height (τ̂21 = θ̂2 − θ̂1 ≈ −0.5). Our shift estimates and their implied order of

growth spurts is consistent with what is known about human growth patterns,

as discussed in the descriptive longitudinal studies of Cameron et al. (1982) and

Sheehy et al. (1999).

We next investigate some individuals before and after component alignment

for a demonstration of how XC alignment affects the curves. Figure 1.5 (top)

shows three individuals who are representative of the “average" ordering of

growth spurts acrossmodalities, whereas Figure 1.5 (bottom) displays thosewho

generally went through pubertal spurts for whom the different body parts were

already in sync before alignment. Individuals like those shown in Figure 1.5

(bottom) for whom alignment moved component curves further away from each

other were very rare, and it was common for most individuals to have reduced

L2-distance between the component curves after alignment.

To illustrate this further, we use the total cross-component L2-distance (XD)

for an individual as a function of θ,

XDi(θ) =
∑
j<k

∫
I
{Xij(t+ θj)−Xik(t+ θk)}2dt, (1.11)

noting that under a perfect model fit we would have Xij(t + θj) = Zi(t) for all

j = 1, . . . , p, and XDi(θ) =
∑

j<k

∫
I{Zi(t) − Zi(t)}

2dt = 0. Figure 1.6 displays the

distribution of the difference in total cross-component L2-distance before and af-

ter shifting, i.e., XDi(0)−XDi(θ̂). Here it is noteworthy that implementing com-

ponent alignment reduced total L2-distance in the sample by about 40%.
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Figure 1.5: Well-aligned (top) and poorly aligned individuals (bottom) after com-
ponent alignment. Growth modalities are standing height (black, solid), sitting
height (red, dashed), leg length (green, dot-dashed), and arm length (blue, dot-
ted).
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Figure 1.6: Kernel density estimate of the decrease in total L2-distance after per-
forming XCR. The dashed line indicates no change.

1.6 Simulation Study
We demonstrate here the superior fit of curves aligned by cross-component reg-

istration prior to analysis through FPCA. We use the same base curve Z(t) =

20− .5t+ 30e−
(t−25)2

72 on t ∈ T = [0, 50] as the underlying process dictating the com-

mon shape of the component curves and set θ = (−5,−2.5, 2.5, 5) and I = [10, 40].

We contaminate the curves with functional noise, measurement error, and noisy

shift parameters by generating contaminated component curves

Xij(tk) = Z(tk − θj + ηij) + ζij sin(
πtk
5

) + eijk, (1.12)

where ηij iid∼ N (0, σ2
η), ζij

iid∼ N (0, σ2
ζ ), eijk

iid∼ N (0, 1), and k indexes the points on the

data grid spanning T by increments of 0.5. Here the noise on the time domain

is introduced through ηij , while noise on the functional domain is controlled

through ζij and eijk, which correspond to a random amplitude sine wave and

minor additive measurement error, respectively. The base multivariate process
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is depicted in Figure 1.7.

One can consider each of the component curves as a single noisy warped re-

alization of the underlying latent curve Z. We may try to estimate the latent

curve by viewing all the component processes for all subjects as a noisy sample

of Z and then analyzing them through an established method such as FPCA.We

expect that failing to account for the component warping will inflate variances

and result in a suboptimal fit, since the cross-component warpingmasks the fea-

tures of Z, and this is indeed what the following simulations show. A sample of

N = 100 curves were fit via FPCA using the first two eigenfunctions, both with

andwithout incorporating XCR.When incorporating XCR, curveswere first gen-

erated and used to estimate XC shifts, whereupon components were shifted ac-

cording to these estimates, followed by an FPCA step applied to the thus aligned

curves. The first two eigenfunctionswere used to fit the sample of aligned curves,

and after this fitting step the curves were shifted back to their original domains

through the estimated shifts. To quantify the advantage of incorporating XCR,

we obtained the integratedmean squared error for both approaches. The benefit

of including XCR for various noise scenarios was measured through the percent

decrease in integrated mean squared error for the sample.

This process was performed B = 1000 times under low, medium, and high

functional noise settings (σ2
ζ = 25, 64, 100), while letting the noise on the time do-

main start low and increase until it was on the same scale as the shifts themselves.

Table 1.2 shows the average percent decreases across replications for various set-

tings. The improvements in fit are relatively consistent across functional noise

levels. It is noteworthy to observe that once the noise on the domain becomes

comparable to that of the shifts themselves (i.e. σ2
η > 0.5), the advantage of XCR

starts to decrease. It conforms with expectations that when the within-subject

time ordering is highly noise-contaminated, the benefits of performing XCR are
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Figure 1.7: Base 4-dimensional process.

lost. At such high shift noise levels there would be little incentive to perform

XCR, as exploratory data inspection would not likely indicate the presence of

any systematic cross-component warping.

A visual comparison of performance for the two approaches can be seen for

an example set of curves in Figure 1.8. Unmodified FPCA is ill-suited to account

for sources of horizontal variation, like shift warping, as its eigenfunctions and

their scores are geared towards representing vertical variation. In the presence

of this horizontal variation, the estimated FPC scores then tend to over- or un-

derestimate the actual amplitude variation, especially near the peaks, as seen in

the left side of Figure 1.8. By accounting for component warping with XCR how-

ever, the burden of modeling time domain variation is lifted from FPCA, which

can then focus on amplitude variability without the confounding phase noise.

We also evaluated the performance of the proposed approach at several levels

of noise, using the same base shape and shifts, displayed in Table 1.3. Estimates

remain unbiased through all noise settings we consider, indicating that the XCR
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method can handle shape and amplitude variations in the main signal, the pres-

ence of nuisance peaks, and sizeable measurement error. For a visualization of

simulated processes, see Figure 1.9.

Noise Level σ2
η = 0.1 σ2

η = 0.25 σ2
η = 0.5 σ2

η = 1 σ2
η = 2

σ2
ζ = 25 48.38 50.92 51.39 44.11 16.17

σ2
ζ = 64 48.17 50.81 51.46 43.75 16.64

σ2
ζ = 100 48.06 50.72 51.37 43.87 16.42

Table 1.2: Average percent decrease in IMSE after implementing XCR at various
levels of contamination on the time (σ2

η) and functional (σ2
ζ ) domains.

Figure 1.8: Differences in fitwhen using just naive FPCA (dashed, left) and FPCA
and XCR together (dot-dashed, right), when σ2

η = 0.25, σ2
ζ = 25. Solid lines repre-

sent the original data.
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Noise Level σ2
e = 0 σ2

e = 9 σ2
e = 25 σ2

e = 64 σ2
e = 100 component

σ2
ζ = 0

0.0000 0.0010 0.0025 0.0036 0.0061 θ1

0.0000 0.0010 0.0038 0.0045 0.0066 θ2

0.0000 0.0012 0.0030 0.0040 0.0064 θ3

0.0000 0.0016 0.0026 0.0035 0.0060 θ4

σ2
ζ = 9

0.0004 0.0015 0.0034 0.0068 0.0051 θ1

0.0005 0.0016 0.0043 0.0072 0.0082 θ2

0.0009 0.0019 0.0038 0.0112 0.0062 θ3

0.0008 0.0019 0.0039 0.0109 0.0088 θ4

σ2
ζ = 25

0.0033 0.0035 0.0079 0.0037 0.0068 θ1

0.0042 0.0057 0.0070 0.0044 0.0069 θ2

0.0038 0.0059 0.0063 0.0055 0.0072 θ3

0.0036 0.0065 0.0087 0.0052 0.0076 θ4

σ2
ζ = 64

0.0018 0.0032 0.0035 0.0049 0.0091 θ1

0.0029 0.0037 0.0042 0.0055 0.0093 θ2

0.0031 0.0031 0.0053 0.0056 0.0085 θ3

0.0028 0.0032 0.0037 0.0054 0.0089 θ4

σ2
ζ = 100

0.0056 0.0069 0.0049 0.0122 0.0098 θ1

0.0080 0.0071 0.0094 0.0130 0.0125 θ2

0.0092 0.0081 0.0083 0.0121 0.0108 θ3

0.0052 0.0063 0.0100 0.0106 0.0123 θ4

Table 1.3: MSEs of XC shift estimates under various noise settings. Estimates
remain unbiased throughout.
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Figure 1.9: Four randomly selected simulated processes with under noise setting
σ2
ζ = 25, σ2

e = 25. The subinterval of integration I = [10, 40] is marked by dashed
vertical lines.
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1.7 Theoretical Results
For bivariate Cross-Component Registration, a key finding is that the centered

process

Zn(τ) =
√
n{Ln(τ)− Λ(τ)}

converges weakly to a Gaussian limit process Z(τ), where Ln,Λ are as in (1.4),

(1.5). The details of this result are shown in Lemma 1 of the Technical Proofs. To

showweak convergence of the pairwise estimate τ̂ as defined in (1.6), we require

the following assumptions on Λ.

(P1) For any ε > 0, inf
τ :d(τ,τ0)>ε

Λ(τ) < Λ(τ0).

(P2) There exists η > 0, C > 0 and β > 1, such that, when d(τ, τ0) < η, we have

Λ(τ)− Λ(τ0) ≥ Cd(τ, τ0)β.

Assumption (P1) ensures that there exists awell-definedminimum, and assump-

tion (P2) describes the local curvature of Λ at the true minimum τ0. We also re-

quire the following assumptions for the observed random processes.

(A1) Xj(t) is continuously twice differentiable for j = 1, . . . , p,

(A2) E{
∫
I X

4
j (t)dt} <∞, for j = 1, . . . , p,

(A3) E{
∫
I X

′4
j (t)dt} <∞, for j = 1, . . . , p.

These assumptions are standard in the literature. They were, for example,

previously stipulated in Hall & Horowitz (2007) and enable us to obtain asymp-

totic covariance matrices for our estimates and to derive some crucial bounds.

Theorem 1. In the bivariate case, under assumptions (P1)-(P2), and (A1)-(A3), we have

τ̂ − τ0 = OP (n−1/2(β−1)).
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In particular, when β = 2, the sequence √n(τ̂ − τ0) is asymptotically normal with mean

zero and variance V = 4
∫
I E[{X1(t)−X2(t− τ0)}X ′2(t− τ0)]2dt/{Λ′′(τ0)}2, where

Λ(τ) = E
∫
I{X1(t)−X2(t− τ)}2dt.

Theproof is in Section 1.9 andutilizes results forM-estimators (Jain&Marcus,

1975; Van der Vaart &Wellner, 1996; van der Vaart, 1998). We note that when the

local geometry around the minimum has a quadratic curvature, i.e. when β = 2,

one obtains the parametric rate n1/2.

Our main result for general Cross-Component Registration concerns the rate

of convergence of the estimated global shift vector and its asymptotic distribu-

tion, as follows.

Theorem 2. In the general case, under assumptions (P1)-(P2) and (A1)-(A3)

θ̂ − θ0 = OP (n−1/2(β−1)).

In particular, when β = 2, the sequence √n(θ̂ − θ0) is asymptotically normal with mean

zero and covariance matrix

Σp =
1

p2
AT

 V −1
τ0 E

(
∇mτ0∇mT

τ0

)
V −1
τ0 0

0 0

A,
where mτ0 = {Ln(τ12), Ln(τ13), . . . , Ln(τ(p−1)p)}T and Vτ0 is the Hessian of Λ(τ ) =

E(mτ ) evaluated at τ0.

1.8 Discussion
Cross-component registration seeks to addressmutual component timewarping

that is often an issue for multivariate functional data arising from longitudinal

studies in the biosciences. This issue does not manifest itself for univariate func-

tional data. By focusing on time warping across components, and not on the

traditional time warping between individual subjects, we are able to estimate
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population-wide time shift parameters with fast parametric rates of convergence

and obtain a limit distribution under suitable assumptions.

This new cross-component timewarping approach leads to insights about the

relative timings of the component processes, which is of interest for the analy-

sis of growth data and also other multivariate longitudinal data. After cross-

component shift warps have been identified and incorporated into the model,

common methods such as functional principal component analysis for multi-

variate processes can be expected to lead to more meaningful outputs and the

resulting principal component scores can be used for subsequent downstream

analysis. The identification and estimation of the underlying latent process may

also lead to a more parsimonious representation and is of interest in itself.

There are limitations of the framework we have established here. While the

shift-warping model we develop in this chapter is appropriate for certain ap-

plications such as the Zürich Longitudinal Growth Study, the cross-component

warpingphenomenaneednot be restricted to shifts in general andmay emerge in

the form of non-linear distortions among components. Using the shift-warping

methodology in such a situation may or may not yield satisfactory results, de-

pending on the nature of the actual timewarping. If the warp has a simple struc-

ture, a shift parameter may be a sufficient and parsimonious way to discover and

approximate the component time relations, especially for practitioners who seek

clear and concise interpretations. However, the situation for more pronounced

or complicated warps is less auspicious. When the data at hand exhibit complex

component warping beyond shifts, a more flexible warping paradigm should be

adopted. The nonlinearity of such cross-component distortionsmay suggest that

such problems warrant an alternative metric to the L2-norm.

In spite of this, we argue that the limitations of a shift-warping model are not

necessarily tied to the general idea of cross-component registration which we
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have presented here. While in this chapter we have used a shift-warping model

to introduce the notion of cross-component registration, one can imagine more

flexible extensions. The study of nonlinear warping models in cross-component

registration is left for future research. Other potential directions of interest con-

cern alternative representations of the cross-component warping problem.

1.9 Technical Proofs
Lemma 1. Under assumptions (P1), (P2), and (A1)-(A3), it holds that

Zn(τ) Z(τ),

where  denotes weak convergence and Z(τ) is a Gaussian process with mean zero

and covariance G(τ1, τ2) =
∫
I
∫
I E
[
{X1(t)−X2(t− τ1)}2{X1(t)−X2(t− τ2)}2

]
dtds−

Λ(τ1)Λ(τ2).

Proof of Lemma 1.

In the followingwe consider compact intervals T and I such that I ⊂ T where

the functions are observed on T and I is the subinterval on which we take L2-

distance of shifted curves. We also use C to represent a generic constant. We first

establish a Central Limit Theorem for Zn(τ) =
√
n{Ln(τ)−Λ(τ)} by applying Jain

& Marcus (1975), so the proof reduces to verifying the following conditions:

(i.) E [f{Zn(τ)}] = 0 for all continuous linear functionals f .

(ii.) supτ E{Zn(τ)} <∞.

(iii.) There exists a non-negative random variable M with finite variance such

that

|Zn(τ1, ω)− Zn(τ2, ω)| ≤M |τ1 − τ2|.

(iv.) On the compact interval T ,
∫
T

√
logN(T , ε)dε <∞, whereN(T , ε) is the cov-

ering number of T .
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Verifying these conditions,

(i.) follows as E [f{Zn(τ)}] = f [E{Zn(τ)}] = f(0) = 0.

(ii.) Since Zn(τ) is centered,

E{Zn(τ)} = Var
[∫
I
{Xi1(t)−Xi2(t− τ)}2dt

]
≤ E

([∫
I
{Xi1(t)−Xi2(t− τ)}2dt

]2)
.

We examine the argument inside the square in more detail:∫
I
{Xi1(t)−Xi2(t− τ)}2dt ≤

[
{
∫
I
X2
i1(t)dt}1/2 + {

∫
I
X2
i2(t− τ)dt}1/2

]2

= (Ui + Vi)
2, so

E{Z2
n(τ)} = E{(Ui + Vi)

4} ≤ C{E(U4
i ) + E(V 4

i )}.

This is finite since

E(U4
i ) ≤

∫
I
E{X4

i1(t)}dt ≤ E

[
{
∫
I
X2
i1(t)dt}2

]
<∞,

The same argument applies for E(V 4
i ). Then,

sup
τ
E{Zn(τ)} ≤ sup

τ
C

(∫
I
E sup

t
{X4

i1(t)}dt+

∫
I
E sup

t
{X4

i2(t− τ)}dt
)
<∞,

where the right hand terms are finite under (A2).

(iii.) Consider differences of the Zn with different arguments τ . Defining

Di(τ) :=

∫
I
{Xi1(t)−Xi2(t− τ)}2 − E

[
{Xi1(t)−Xi2(t− τ)}2

]
dt

and applying the mean value theorem,

|Zn(τ1, ω)− Zn(τ2, ω)| =

√
n

∣∣∣∣ 1n n∑
i=1

∫
I
{Xi1(t)−Xi2(t− τ1)}2dt− E

∫
I
{Xi1(t)−Xi2(t− τ1)}2dt

−

[
1

n

n∑
i=1

∫
I
{Xi1(t)−Xi2(t− τ2)}2dt− E

∫
I
{Xi1(t)−Xi2(t− τ2)}2dt

] ∣∣∣∣,
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|Zn(τ1, ω)− Zn(τ2, ω)| = 1√
n

∣∣∣∣ n∑
i=1

{Di(τ1)−Di(τ2)}
∣∣∣∣

≤ 1√
n

n∑
i=1

∣∣D′i(ξi)∣∣|τ1 − τ2| = |τ1 − τ2| Tn
with Tn =

1√
n

∑n
i=1

∣∣D′i(ξi)∣∣.
Now, due to the continuity of D and its derivatives in τ and t,

∂

∂ξi
Di(ξi) =

∫
I

∂

∂ξi

(
{Xi1(t)−Xi2(t− ξi)}2 − E

[
{Xi1(t)−Xi2(t− ξi)}2

])
dt

= 2

∫
I

(
E
[
{Xi1(t)−Xi2(t− ξi)}X ′i2(t− ξi)

]
− {Xi1(t)−Xi2(t− ξi)}X ′i2(t− ξi)

)
dt

= 2

∫
I
E[Bi(ξi, t)]−Bi(ξi, t)dt

where Bi(ξi, t) = {Xi1(t)−Xi2(t− ξi)}X ′i2(t− ξi).

Then,

1

4
E
[
{D′i(ξi)}2

]
= E

([∫
I
E{Bi(ξi, t)} −Bi(ξi, t)dt

]2)
=

∫
I

∫
I
Cov{Bi(ξi, u), Bi(ξi, v)}dudv ≤

∫
I
Var{Bi(ξi, t)}dt

Next, we bound this variance,

Var{Bi(ξi, t)} ≤ E{B2
i (ξi, t)} = E

[
{Xi1(t)−Xi2(t− ξi)}2{X ′i2(t− ξi)}2

]
≤
(
C
[
E{X4

i1(t)}+ E{X4
i2(t− ξi)}

]
E{X ′i2(t− ξi)}4

])1/2

so that

E(T 2
n) ≤ 4 sup

t

∫
I
Var{Bi(ξi, t)}dt

≤ 4

(
C
[
E{
∫
I
X4
i1(t)dt}+ E{

∫
I
X4
i2(t− ξi)dt}

]
E
[∫
I
{X ′i2(t− ξi)}4dt

])1/2

<∞
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since each of the terms in the last line are finite by the integral conditions

in (A2) and (A3).

(iv.) Is trivially satisfied.

With all 4 criterions checked, we apply the CLT of Jain & Marcus (1975) to Zn(τ)

and have the result.

Proof of Theorem 1. Our next result relies on Lemma 1 of Jain &Marcus (1975),

which implies that

Zn(τ) =
√
n{Ln(τ)− Λ(τ)} D→ Z(τ), whence

sup
τ
|
√
n{Ln(τ)− Λ(τ)}| = sup

τ
|Zn(τ)| p→ sup

τ
|Z(τ)| = Op(1), and therefore

sup
τ
|Ln(τ)− Λ(τ)| = oP (1) (1.1)

From (1.1) and Theorem 3.2.3 in Van der Vaart & Wellner (1996), we then have

τ̂ − τ0 = oP (1).

For the next part of the proof we consider the process Vn(τ) := Ln(τ)−Λ(τ). Then,

|Vn(τ, ω)− Vn(τ0, ω)| = |L(τ)− Λ(τ)− {L(τ0)− Λ(τ0)}|

= |L(τ)− L(τ0)− {Λ(τ)− Λ(τ0)}|

≤ 1

n

n∑
i=1

|Wi(τ)− EWi(τ)|

where Wi(τ) :=
∫
I{Xi1(t) − Xi2(t − τ)}2 − (Xi1(t) − Xi2(t − τ0))2dt. To control this

uniformly over small d(τ, τ0), we define the function g as g(τ) = Vn(τ) = Ln(τ) −

Λ(τ) and the function classMδ := g(τ)− g(τ0) : d(τ, τ0) < δ. An envelope function

forMδ isG(δ) = 2|T |δ andE(G2(δ)) = O(δ2). Define J(δ) =
∫ 1

0

√
1 + logN(ε, T , δ)dε

so J(δ) <∞. ThenTheorems 2.7.11 and 2.14.2 of VanderVaart andWellner (1996)

imply that for small enough δ,

E

(
sup

τ :d(τ,τ0)<δ

|
n∑
i=1

Wi(τ)− EWi(τ)|

)
≤ J(δ)E[{G2(δ)}1/2]√

n
= O(δn−1/2)
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which implies

E
(

sup
τ :d(τ,τ0)<δ

|Vn(τ)− Vn(τ0)|
)

= O(δn−1/2)

Finally, let rn = n
β

4(β−1) and

Sj,n = {τ : 2j−1 < rnd(τ, τ0)β/2 < 2j}.

Choose η > 0 to satisfy (P2) and also small enough that (P1) holds for all δ < η

and set η̃ := ηβ/2. For any integer L,

P{rnd(τ, τ0)β/2 > 2L} ≤ P{d(τ, τ0) ≥ η}+
∑
j>L

2j<rnη̃

P

(
sup
τ∈Sj,n

|Vn(τ)−Vn(τ0)| ≥ C
22(j−1)

r2
n

)
.

For each j in the sum on the right hand side we have d(τ, τ0) ≤
(

2j

rn

)2/β ≤ η, so this

sum is bounded by

∑
j>L

2j<rnη̃

22j(1−β)/β

r
2(1−β)/β
n

√
n
≤
∑
j>L

(
1

4(β−1)/β

)j
.

Since β > 1, the last series converges and therefore the original probability can

be made arbitrarily small by choosing a large enough L. This proves the desired

result that d(τ̂ , τ0) = OP (r
−2/β
n ) = OP (n−1/2(β−1)). Finally, asymptotic normality

follows from Theorem 5.23 of Van der Vaart & Wellner (1996), where the Lips-

chitz condition and bounded second moment have been shown already in parts

(ii.) and (iii.) of this proof.
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Proof of Theorem 2: For convergence of θ̂, we recall that θ̂ = (ATA)−1AT τ̂ ∗,

A =



1 −1 0 0 . . . 0 0

1 0 −1 0 . . . 0 0

1 0 0 −1 . . . 0 0

... ... ... ... . . . ... ...

1 0 0 0 . . . 0 −1

0 1 −1 0 . . . 0 0

0 1 0 −1 . . . 0 0

... ... ... ... . . . ... ...

0 0 0 0 . . . 1 −1

1 1 1 1 . . . 1 1



.

where the first p− 1 rows contain all pairwise contrasts of the first column with

the rest, the next p− 2 rows contain all pairwise contrasts of the second column

with the rest, and so on, until the second to last row contains the final pairwise

contrast. The last line contains all 1’s to represent the constraint that
∑p

j=1 θj = 0.

We observe thatATA = pIp, which can be verified with a simple matrix multipli-

cation. It then immediately follows that θ̂ = (ATA)−1AT τ̂ ∗ =
1

p
Aτ̂ ∗ = Bτ̂ ∗ and

since the linear mapping induced by the matrix B =
1

p
AT is continuous, we can

apply the continuous mapping theorem and observe that

θ̂ − θ0 = oP (1).

The proof for the rate of convergence follows the same arguments as those for τ̂ .

The asymptotic normality of θ̂ when β = 2 requires a closer examination. When

estimating τ̂ ∗, we are estimating several pairwise XC shifts at the same time. This

is done by minimizing several different L2 distances, which we stack in a vector,
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mτ0(X1, . . . , Xp), defined as:

mτ0 = mτ0(X1, . . . , Xp) =



1
n

∑n
i=1

∫
I{Xi1(t)−Xi2(t− τ12)}2dt

1
n

∑n
i=1

∫
I{Xi1(t)−Xi3(t− τ13)}2dt

...
1
n

∑n
i=1

∫
I{Xi1(t)−Xip(t− τ1p)}2dt

1
n

∑n
i=1

∫
I{Xi2(t)−Xi3(t− τ23)}2dt

...
1
n

∑n
i=1

∫
I{Xi2(t)−Xip(t− τ2p)}2dt

...
1
n

∑n
i=1

∫
I{Xi(p−1)(t)−Xip(t− τ(p−1)p)}2dt


By theorem 5.23 of Van der Vaart & Wellner (1996), then, we have

√
n(τ̂ − τ0) N (0,V )

whereV = V −1
τ0 E

(
∇mτ0∇mT

τ0

)
V −1
τ0 and∇mτ0 represents the gradient ofmτ eval-

uated at τ0, i.e.,

∇mτ0 =



2
n

∑n
i=1

∫
I{Xi1(t)−Xi2(t− τ12)}X ′i2(t− τ12)dt

2
n

∑n
i=1

∫
I{Xi1(t)−Xi3(t− τ13)}X ′i3(t− τ13)dt

...
2
n

∑n
i=1

∫
I{Xi1(t)−Xip(t− τ1p)}X ′ip(t− τ1p)dt

2
n

∑n
i=1

∫
I{Xi2(t)−Xi3(t− τ23)}X ′i3(t− τ23)dt

...
2
n

∑n
i=1

∫
I{Xi2(t)−Xip(t− τ2p)}X ′ip(t− τ2p)dt

...
2
n

∑n
i=1

∫
I{Xi(p−1)(t)−Xip(t− τ34)}X ′ip(t− τ(p−1)p)dt


and Vτ0 is the Hessian of Λ(τ) = E(mτ ) at τ0. Finally, we apply the linear trans-

formation θ̂ =
1

p
Aτ̂ ∗ to obtain the result:

√
n(θ̂ − θ0) N (0,Σp)
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where Σp =
1

p2
AT

 V −1
τ0 E

(
∇mτ0∇mT

τ0

)
V −1
τ0 0

0 0

A.
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Chapter 2

Latent Transport Models for
Multivariate Functional Data

2.1 Introduction
The increased prevalence of complicated and high-dimensional data in recent

years has brought along with it the need for improved statistical techniques to

guide practical data analyses. One such type of data with complex structure is

functional data, in which observations are functionsXi(t), i = 1, . . . , n,where the

index t (often representing time) ranges over some continuum T ⊂ R. Functional

data analysis (FDA) has found applicability in several fields of research (e.g. biol-

ogy, ecology, economics) and as such has spawned considerable methodological

work as a subfield of statistics (Ramsay& Silverman, 2005; Jane-Wang et al., 2016;

Ferraty & Vieu, 2006). In particular, the analysis of univariate functional data

has driven the majority of developments in this area and has been studied ex-

tensively in the contexts of classical statistical methods such as principal compo-

nents analysis (Kleffe, 1973), regression (Cardot et al., 1999; Yao et al., 2005), and

clustering (Jacques & Preda, 2014). In contrast, functional data which arises in a

multivariate setting (that is, data in which observations consist of a finite dimen-
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sional vector whose elements are functions) has been the focus of much fewer

studies, despite its pervasiveness and increased relevance in emerging fields.

Dimension reduction is a common approach to handle functional data with

several components, with many studies focusing on extending univariate func-

tional principal components analysis to the multivariate case (Chiou et al., 2014;

Happ & Greven, 2018). Alternative methods have considered decomposition

into marginal component processes and their interactions (Chiou et al., 2016).

Themajority ofmethodologicalwork has focused on traditional amplitude varia-

tion-basedmodels for dimension reduction, thoughphase variation-basedmeth-

ods formultivariate functional data have garnered attention in recent years. Brunel

& Park (2014) have proposed a method for estimating multivariate structural

means and Park & Ahn (2017) introduced a model for clustering multivariate

functional data in the presence of phase variation. Carroll et al. (2020b) combined

the notions of dimension reduction and phase variability through a multivari-

ate version of the shape-invariant model (Kneip & Gasser, 1995), in which com-

ponent processes share a common latent structure which is time-shifted across

components. However, the assumption of a rigid shift-warping framework im-

poses a major parametric constraint on the warping structure and often the class

of models described with simple shifts is not rich enough to apply to real-world

datasets. Our main contribution is a less-restrictive alternative, in which time

characterization of individual-specific temporal effects and component-specific

effects is achieved through a fully non-parametric deformation-based model.

A major motivation for this framework is the fact that in many contexts, the

component functions of a multivariate data vector may share a common struc-

ture which is subject to variation across modalities; the fundamental shape of

growth curves is similar but not identical in timing patterns across body parts,

for instance. This common latent structure can be seen as a crucial component of
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the data-generating mechanism for multivariate functional data. In conjunction

with this latent curve, a shared shape-basedmodel also requires characterization

of individual- and component-level variation. The idea of component-specific

time effects has been previously explored through a time-shifting model, albeit

only in a restrictive parametric framework which does not carry widespread ap-

plicability in practice (Carroll et al., 2020b). Allowing for more flexible and nu-

anced component effects would increase the viability of this approach and allow

for improved data fidelity when describing component-specific effects which in-

form the time-dynamics of a larger system at work. To this end, we introduce a

representation of multivariate functional data which uses tools from time warp-

ing (Marron et al., 2015) and optimal transport theory (Villani, 2003).

The organization of this chapter is as follows. Section 2 discusses existing

approaches to univariate curve registration and introduces the Latent Transport

Model for component-warped multivariate functional data. We derive estima-

tors of model components in Section 3 and illustrate the utility and performance

of our methodology through data analysis and simulation studies in Sections 4

and 5, respectively. Lastly, asymptotic results are established in Section 6.

2.2 CurveRegistration andTheLatent Transport
Model

2.2.1 The Univariate Curve Registration Problem
The classical univariate curve registration problem is characterized by the obser-

vation of a sample of curves Xi(t), i = 1, . . . , n, observed on an interval T which

are realizations of a fixed template ξ(t) subject to variation in their time domains.

This domain variation is characterized by themonotonic time-warping functions

hi(t) which act as random homeomorphisms of T .
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A classical model for this scenario can be written,

Xi(t) = (ξ ◦ hi)(t), for all t ∈ T , i = 1, . . . , n. (2.1)

The goal of curve registration is to estimate the distortions, hi, which are typi-

cally considered nuisance effects, in order to account for them before proceeding

with further analysis, e.g. estimation of ξ, functional principal component analy-

sis, etc. This problemwas first considered in the context of aligning spoken-word

data (Sakoe&Chiba, 1978)which used a version of the dynamic timewarping al-

gorithmwhichWang & Gasser (1997) later studied in a statistical context. A ma-

jor branch of time-warping techniques is based on the idea of aligning processes

to some reference curve which carries the main features in common across sub-

jects. This reference curve is referred to as a template function and is employed

by landmark-based registration methods (Kneip & Gasser, 1992, 1995), pairwise

curve alignment (Tang & Müller, 2008) or the Procrustes approach (Ramsay &

Li, 1998), among many others. For a comprehensive review and additional ref-

erences, we refer to Marron et al. (2015).

While the curve registration literature is varied and rich in methodology, no

singlemethod has prevailed as a silver bullet in all warping contexts. Indeed, the

debate over desirable properties of existing and future registration techniques

continues in search of a gold-standard. With this inmind, we emphasize that our

aim here is not to advocate for one alignment method over another, but rather

extend the ideas present in univariate registration to amultivariate model which

considers the presence of a composite warping function with fixed and random

effects, which characterize the distortion of a template function across vector

components as well as subjects. In practice, any suitable registration method

may be employed in the estimation of the proposed Latent Transport Model (see

Estimation).
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2.2.2 A Unified Model for Multivariate Time Dynamics
Let {Xj}pj=1 denote a generic set of random functions with each component pro-

cess Xj in L2(T ) for an interval T = [T1, T2], T1, T2 ∈ R. Suppose further that

each component is positive-valued, i.e. Xj(t) > 0 for all t ∈ T , j = 1, . . . , p; the

assumption of positivity is made to make estimation of model components more

straightforward. Without loss of generality we consider hereafter the unit do-

main case T = [0, 1] which can always be achieved by a simple shift and rescale

of the original domain. Our terminology takes inspiration from the case where

the domain is a time interval, though the general framework may be applied

even when T is some other continuum. In terms of notation, we reserve the use

of Greek letters for fixed, unknown population quantities, while Latin letters

represent random, individual-specific ones.

The Latent Transport Model (LTM) is motivated by the situation when the

functional forms of the component processes Xj , j ∈ {1, . . . , p} (or any subset

thereof) exhibit a structural similarity amongone another. This connection across

variables suggests that information in one component may be harnessed to im-

prove the modeling of another. Furthermore, information from all relevant com-

ponents may be combined to estimate and analyze the mutual structure shared

among them. Denoting a random sample from a p-dimensional stochastic pro-

cess by {Xi}ni=1, where Xi(t) = (Xi1(t), . . . , Xip(t))
T , we model this shared struc-

ture through a latent curve λ, which characterizes the component curves through

the relation

Xij(G
−1
ij (t)) = Aijλ(t), i = 1, . . . , n, j = 1, . . . , p, (2.2)

where λ is a fixed function, and the random amplitude factors A and random

time distortion functions G reflect differences in realized curves across compo-

nents and individuals. Without loss of generality we assume sup
t∈T
|λ(t)| = ||λ||∞ =

1 since it is always possible to rescale the latent curve without changing the
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model by defining new amplitude factors Ãij := Aij ||λ||∞ and scaled curve λ̃(t) =

λ(t)/||λ||∞.

The distortion functions G are elements of the convex space of all smooth,

strictly increasing functions with common endpoints, i.e.,W := {g : T → T | g ∈

C2(T ), g(T1) = T1, g(T2) = T2, g is a strictly increasing homeomorphism}. The

elements of this space represent random homeomorphisms of the time domain

and capture the presence of non-linear phase variation. We further assume that

these functions Gmay be decomposed into the mixed-effects form:

Gij(t) = (Ψj ◦Hi)(t), i = 1, . . . , n, j = 1, . . . , p, (2.3)

where the deterministic functions Ψ describe the component-based effects of

time distortion and the random functionsH describe the subject-level phase vari-

ation. In other words, this decomposition suggests that the mapping Ψj conveys

the internal time scale of the jth component, while Hi carries the internal time

scale of the ith subject. These mappings may be seen as transports from standard

clock time, id(t) ≡ t, to the system time of a given component or individual. As

such we refer to the collection of functions Ψ = {Ψj : j = 1, . . . , p} as component-

level transport functions and the collection of functions H = {Hi : i = 1, . . . , n} as

subject-level transport functions.

The random warping functions Hi obey some law on the convex space W

where EH−1
i is assumed to exist. We further assume that they are distributed

according to a law such that these functions induce no net distortion on aver-

age, i.e., EH−1
i (t) = t for t ∈ T . This assumption is sometimes referred to as

“standardizing" the registration procedure (Kneip & Ramsay, 2008). It is a mild

assumption, since were it the case that EH−1
i (t) = h−1

0 (t), with h−1
0 6= id, then a

standardized registration procedure is given by reparameterizing the warping

functions as H̃i = h−1
0 ◦ Hi so that EH̃−1

i (t) = E(H−1
i ◦ h0)(t) = t. Component

transport functions are also assumed to be standardized, but because they are
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deterministic and not random, the assumption becomes 1
p

∑p
j=1 Ψ−1

j (t) = t for

t ∈ T . Together these conditions imply E(1
p

∑p
j=1G

−1
ij (t)) = t so that there is no

net distortion from the latent curve λ across components or individuals.

Combining (2.1) and (2.2) yields the Latent Transport Model for multivariate

functional data:

Xij(t) = Aij (λ ◦Ψj ◦Hi) (t), i = 1, . . . , n, j = 1, . . . , p. (2.4)

In practice, it may be useful to pose the model in an equivalent form, defining

the component-warped versions of the latent curve as γj = λ ◦Ψj so that

Xij(t) = Aij (γj ◦Hi) (t), i = 1, . . . , n, j = 1, . . . , p. (2.5)

In this form, the curves γj(t) convey the “typical" time progression of the la-

tent curve according to the jth component’s system time, so we refer to this com-

position as the jth component tempo function. The component tempo functions can

be viewed as the synchronized processes for each component after accounting

for random subject-level time distortions. Figure 2.1 provides a schematic of the

data generating mechanism assumed by the LTM for a simulated dataset.

2.2.3 Cross-Component Transport Maps
Marginal Cross-Component Transports

To understand and quantify the relative timings between any pair of compo-

nents, j, k ∈ {1, . . . , p}, it is useful to define their cross-component transport Tjk,

which is the transport that, when applied to jth component, maps its tempo to

that of the kth component. Explicitly, we write,

Tjk = Ψ−1
j ◦Ψk, (2.6)

so that γj(Tjk) = λ◦Ψj ◦Ψ−1
j ◦Ψk = λ◦Ψk = γk. Because the component transports

Ψk can be represented as distribution functions and are closed under composi-
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Figure 2.1: Schematic of the Latent Transport Model, where λ denotes the latent
base curve (top-left), Ψ denotes component transports (bottom-left), γ denotes
component tempos (top-center), H denotes random subject-wise time distortion
functions (bottom-right), and X denotes the observed multivariate curve data
(top-right) resulting from the complete data generating mechanism.
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tion, the cross-component transport (XCT) may also be represented as a distri-

bution function and is interpreted similarly to an ordinary component tempo.

While the component tempo Ψk expresses the kth component’s timing patterns

in terms of clock time, the cross-component transport Tjk expresses the same

patterns relative to the tempo of the jth component.

For example, consider a pair of component processes, Component A and

Component B, for which Component A tends to lag behind the latent curve,

while the Component B precedes it. An example of this can be seen in the red

and orange curves, respectively, in Figure 2.1. The corresponding red transport,

ΨA, falls below the diagonal and conveys the lagged tempo, while the orange

transport, ΨB lies above the diagonal and expresses an accelerated system time.

The transport function TAB then sits above the diagonal and represents the time-

acceleration needed to bring the red tempo in line with the orange component.

Subject-Level Cross-Component Transports

While the marginal XCTs describe the general time relations between compo-

nents on a population level, wemay also be interested to see how an individual’s

component processes relate to one another. This perspective may be especially

useful when trying to understand intercomponent dynamics which are medi-

ated by covariate effects. Conceptually it is straightforward to extend the notion

of cross-component transports to individuals by searching for the warping func-

tion T
(i)
jk which brings the ith individual’s jth component in line with the kth. A

natural definition under the LTM is then

T
(i)
jk = G−1

ij ◦Gik, (2.7)

since this choice gives Xij ◦ T (i)
jk ∝ Aij(λ ◦ Gij ◦ G−1

ij ◦ Gik) ∝ (λ ◦ Gik) ∝ Xik.

In practice, this proportionality will become equality once random amplitude

factors are dealt with during estimation.
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The proposed cross-component transport acts as a flexible, non-linear tool for

representing intercomponent time dynamics and does not rely on an absolute

clock time. Statistics based on the XCTmodel can be used in downstream analy-

ses like hypothesis testing and regression. Several data illustrations are given in

the applications of Section 2.4

2.3 Model Estimation andCurveReconstruction
2.3.1 Pairwise Warping
Themodel estimation procedure proposed here relies on solving several univari-

ate warping problems of type (1). Any of the traditional methods described in

Section 2 may be used to solve these problems in practice. For the sake of de-

veloping convergence rates for our model, we illustrate the estimation using the

pairwise alignment method of Tang & Müller (2008) which provides an explicit

representation of warping functions and is briefly outlined using the notation

of the LTM as follows. Throughout our applications, the pairwise warping algo-

rithmwas implemented using the package fdapace (Carroll et al., 2020a). Similar

rates of convergence are anticipated if one adopts an alternative warping algo-

rithm.

Fix a component j and to simplify notation write Ui = Xij/||Xij ||∞ to denote

a curve normalized by its maximum. For any two curves Ui, Ui′ , i, i′ ∈ {1, . . . , n},

the pairwise warping function Vi′i : T → T is the homeomorphism of the time

domain which aligns Ui′ to Ui and defined by

Vi′i(t) = H−1
i′ (Hi(t)), for all t ∈ T . (2.8)

We assume that a linear spline representation may parametrize the approximate

warping functions. Let t` = `/(L+ 1), for ` = 1, . . . , L, denote L equidistant knots

over T with t0 = 0 and tL+1 = 1. For any function v, we define θ = [v(t1), . . . , v(t`)]
T
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so that the piecewise linear approximation of v can be written

v(t) = θTα(t), for all t ∈ T , (2.9)

where α(t) = [α1(t), . . . , αL+1(t)]T and α`(t) are linear basis functions defined as

α`(t) = α
(1)
` (t)−α(2)

`+1(t) with α(1)
` (t) =

t− t`−1

t` − t`−1
1[t`−1,t`) and α

(2)
` (t) =

t− t`
t` − t`−1

1[t`−1,t`),

for ` = 1, .., L+ 1. The parameter space Θ of the coefficient vector is

Θ = {θ ∈ RL+1 : 0 < θ1 < · · · < θL+1 = 1}

so that the monotonicity constraint is satisfied. Finally, we express the pairwise

warping function between subjects i and i′ as

Vi′i(·) = θTα(·), with θ ∈ Θ.

Then, the spline coefficient vector is estimated by solving theminimization prob-

lem,

θ̃Vi′i = argmin
θ∈Θ

Cη(θ, Ui, Ui′), (2.10)

where Cη(θ, Ui, Ui′) =

∫
T
d2
(
Ui′(θ

Tα(t)), Ui(t)
)
dt+ η

∫
T

(θTα(t)− t)2dt, (2.11)

where d is a distance well-suited for the type of alignment desired and η is a

regularization parameter which penalizes the magnitude of warping. In the

original pairwise warping framework of Tang & Müller (2008), the default dis-

tance was taken as d(f(t), g(t)) = (f − g)(t). With this choice of alignment criteria,

the penalty parameter plays an important role in avoiding excessive warping,

in particular the so-called “pinching effect," in which curves are squeezed to-

gether in an exaggerated fashion to minimize L2−distance, but are not actually

well-aligned (Marron et al., 2015). The choice of an appropriate alignment crite-

ria is specific to the data application in question; other potential choices include

the semi-norm dr(f(t), g(t)) =

∣∣∣∣ f(t)

||f ||r
− g(t)

||g||r

∣∣∣∣ , where || · ||r is the Lr−norm for
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proportional alignment (Marron et al., 2015). The semi-norm approach aims at

reducing the effect of amplitude variation across subjects; note that had we not

normalized our curves in the initial formulation of the problem, we could have

equivalently worked with the original curves and chosen the modified semi-

norm d∞(f(t), g(t)) =

∣∣∣∣ f(t)

||f ||∞
− g(t)

||g||∞

∣∣∣∣.
Once θ̃Vi′i is obtained, an estimate of the pairwise warping problem immedi-

ately follows as

Ṽi′i(t) = θ̃TVi′iα(t) for all t ∈ T . (2.12)

Since we assume E(H−1
i (t)) = t for all t ∈ T , we have the identity E[Vi′i(t)|Hi] =

E[H−1
i′ (Hi(t)) |Hi] = Hi(t), the empirical version of which leads to the estimate

H̃i(t) =
1

n

n∑
i′=1

Ṽi′i(t) for all t ∈ T . (2.13)

2.3.2 Component-wise Alignment
With the notation of pairwise warping established, we now turn our attention to

estimation ofmodel components. We claim that under the LTM, each component

j = 1, . . . , p, yields their own univariate warping problem for Hi. To see this,

consider for a fixed component j the sample of univariate curves, Sj := {Xij}ni=1.

By restricting our attention to Sj , we limit our scope to the estimation of a single

component tempo γj at a time. For each collection of curves Sj , there exists a

univariate warping problem based on the normalized curves X∗ij = Xij/||Xij ||∞.

Estimation of γj and Hi for the jth component is achieved through the model,

X∗ij(t) = (λ ◦Ψj ◦Hi)(t) (2.14)

which coincides with a warping framework of type (2.1) with ξ = λ ◦ Ψj , and

hi = Hi. ReplacingX byX∗ in (2.14) is necessary in order to eliminate the random

amplitude factors Aij . To see this, note that since the random functions Gij are

49



homeomorphisms, we have ||Xij ||∞ = Aij ||λ ◦Gij ||∞ = Aij . Thus the normalized

curves X∗ij(t) = (λ ◦Ψj ◦Hi)(t) do not depend on the amplitude factors Aij .

Applying an estimation method like pairwise warping for each of the sub-

collections S1, . . . , Sp, results in p estimates of the subject-level warping function,

H̃
(1)
i (t), . . . , H̃

(p)
i (t). In each of these registration procedures the penalty parame-

ter can either be taken as the default choice, η1j = 10−4 × {n−1
∑n

i=1

∫
T (Xij(t) −

X̄j(t))
2dt}, as per Tang & Müller (2008) or chosen by cross-validation. Taking

the mean of the resulting p warping functions gives an estimate for the subject-

specific warp,

Ĥi = p−1

p∑
j=1

H̃
(j)
i , i = 1, . . . , n. (2.15)

Under this definition, the associated overall penalty parameter is η1 := sup
1≤j≤p

η1j .

With an individual warping estimator in hand, a plug-in estimate of γj is ob-

tained by averaging the component-aligned curves,

γ̂j = n−1
n∑
i=1

(Xij ◦ Ĥ−1
i )/||Xij ||∞, for j = 1, . . . , p. (2.16)

2.3.3 Global Alignment and Latent Curve Estimation
A central idea in the estimation of the LTM is the fact that any univariate curve

Xij contains information about the latent curve, regardless of its component.

This motivates the adoption of a perspective in which we temporarily ignore

the multivariate structure of the data and expand our scope to the full collection

of curves, S = ∪pj=1Sj . For each individual i, select one of its component curves

at random as a representative. Call this representative curve Zi and denote its

normalized counterpart by Z∗i . Selecting one of the components at random en-

sures that we have P (Zi = Xij) = 1/p for all i = 1, . . . , n, j = 1, . . . , p. The collection

of curves {Zi, i = 1, . . . , n} can be thought of as realizations of λ subject to some

random distortion Di, where Di = Gij if the jth component curve is selected. De-

fine Iij as the event that the curve Zi comes from the collection of jth component
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curves, Sj . Conditional on the event Iij (which happens with probability 1/p for

all i = 1, . . . , n), it follows thatDi = Gij = Ψk ◦Hi. Then, on average there is no net

warping from the latent curve, as

E[D−1
i ] = E{E[D−1

i |Iij ]} =

p∑
j=1

E[H−1
i ◦Ψ−1

k ]P (Iij) = p−1

p∑
j=1

Ψ−1
j = id. (2.17)

This observation motivates the warping problem

Z∗i = λ ◦Di, for i = 1, . . . , n. (2.18)

The critical implication of this relation is that if we expand our scope to the full

collection S and apply a traditional method like pairwise warping to obtain D̂i

for all i = 1, . . . , n, the latent curve can be estimated by averaging the globally-

aligned curves,

λ̂ = n−1
n∑
i=1

(Zi ◦ D̂−1
i )/||Zi||∞ (2.19)

The estimators of the component transports are motivated by recalling that

γj = λ ◦Ψj for j = 1, . . . ., p.

Using a spline representation similar to (2.9), we write

Ψj(t) = θTα(t) (2.20)

and estimate the component warps by solving the penalizedminimization prob-

lem,

θ̃Ψj
= argmin

θ∈Θ
Cη2(θ; γ̂j , λ̂),

where Cη2(θ; γ̂j , λ̂) =

∫
T
d2
(
γ̂j , λ̂(θTα(t))

)
dt+ η2

∫
T

(θTα(t)− t)2dt.

(2.21)

Again the penalty parameter can be set to η2 = 10−4×{p−1
∑p

j=1

∫
T (γ̂j(t)−λ̂(t))2dt}

in line with Tang & Müller (2008) or tuned by cross-validation. Finally, we esti-

mate the component warps as

Ψ̂j(t) = θ̃TΨj
α(t). (2.22)
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Note that under the assumption of fully observed curves without measure-

ment error, the amplitude factorsAij = ||Xij ||∞ are known. Often in practice, this

is not realistic, and the factors must be estimated by, e.g., Âij = ||X̃ij ||∞ where X̃

denotes a smoothing estimate, as described in the following section.

2.3.4 Measurement Error
In practice, the functions Xij are often contaminated with measurement error

and available only on a discrete grid. In this situation, an initial step is to perform

smoothing on the discrete and noisy observations before applying the model

estimationmethod of Sections 3.2 and 3.3. Amodel for describing contamination

by measurement error is posed as follows.

Let {Xi, i = 1, . . . , n} be a random sample of a p-dimensional stochastic pro-

cess X in L2(T ) × · · · × L2(T ), where Xi(t) = (Xi1(t), . . . , Xip(t))
T . We assume

that these processes are observed for m equispaced points at the discrete times

ts, s = 1, . . . ,m. We write Yis = (Yi1s, . . . , Yips)
T to represent the ith subject’s obser-

vation at time ts subject to measurement errors, εis = (εi1s, . . . , εips)
T , which are

independent ofXi:

Yis = Xi(tis) + εis. (2.23)

The measurement errors, εijs, are assumed to be independent and identi-

cally distributed with mean zero and component-specific variances σ2
j < ∞ for

j = 1, . . . , p. We consider the case of dense component curves so that the record-

ing times ts can be viewed as a grid on the supports of each component. Estima-

tion of the smooth component curves, X̃ij , may be performed by any smoothing

technique, e.g. kernel methods, smoothing splines, or local polynomial fitting

via locally weighted least squares.

Example 1. Let K : R → R represent a non-negative kernel function. We

apply local linear smoothing with bandwidth b across each individual so that
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X̃ij(t) = β̂
(0)
ij where

(β̂
(0)
ij , β̂

(1)
ij ) = argmin

β
(0)
ij ,β

(1)
ij

m∑
s=1

K
(
ts − t
b

)
(Yijs − β(0)

ij − β
(1)
ij (t− ts))2, (2.24)

for all i = 1, . . . , n, j = 1, . . . , p. Bandwidth selection procedures may be data-

adaptive (see e.g., Rice & Silverman (1991)) but a subjective choice often suffices

in practice.

After smoothing is performed, estimation may be carried out by substituting

X̃ij for Xij and implementing the procedure described in Sections 3.2 and 3.3.

Once all model components are estimated, plug-in estimates of the composite

distortion functions and marginal and subject-level component transport func-

tions follow immediately:

Ĝij = Ψ̂j ◦ Ĥi, (2.25)

T̂jk = Ψ̂−1
j ◦ Ψ̂k, and (2.26)

T̂
(i)
jk = Ĝ−1

ij ◦ Ĝik, for i = 1, . . . , n, j, k = 1, . . . , p. (2.27)

Additionally, fitted curves based on the LTM can be obtained as

X̂ij(t) = Âij(λ̂ ◦ Ĝij)(t)

= Âij(λ̂ ◦ Ψ̂j ◦ Ĥi)(t),
(2.28)

for i = 1, . . . , n, j = 1, . . . , p. These fits can be viewed through the lens of dimen-

sion reduction as their calculation require only n + p + 1 estimated functions as

opposed to np curves in the original data. In Section 6, we derive asymptotic re-

sults for the proposed estimates in the cases of curves observedwith andwithout

measurement error.
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2.4 Data Applications
2.4.1 Zürich Growth Study
Our first application is a reexamination of the Zürich longitudinal growth study

from 1954-1978. The sitting heights, arm lengths, and leg lengths of a cohort of

children were measured on a dense time grid such that the resulting data can

be viewed as multivariate functional data. We focus on the timing of pubertal

growth spurts, which usually occur between ages 9 and 18. It is standard in

growth curve literature to examine the derivatives of the growth curves, i.e. the

growth velocities, instead of the curves themselves (Gasser et al., 1984b). The

growth velocities have a peak during puberty, with the crest location represent-

ing the agewhen an individual is growing fastest. The timings and curvatures of

these peaks are critical in informing growth patterns. We estimate these growth

velocities, displayed in Fig. 2.2, via local linear smoothing. It is known among

physicians and laypeople alike that there is a difference in the ways that boys

and girls undergo puberty. This distinction is clear from just a simple inspection

of the growth velocities in Figure 1, but researchers may want to further quan-

tify these differences. For example, medical practitioners may wish to evaluate

differences in the size of body parts between boys and girls at specific times or

quantify the differential between onsets of puberty for boys and girls. The pro-

posed representation provides a path forward to answer simple questions like

these as well as ones of a more complicated nature.

It is clear that girls start puberty earlier than boys do: girls’ system times ac-

celerate rapidly between the ages of 9 and 12, whereas boys typically must wait

until ages 12 or 13 to experience substantial deviation from clock time (repre-

sented by the black dashed line on the diagonal). Component tempos for boys

and girls are a simple way to summarize these differences (Fig. 2.2, dashed and

dotted lines, respectively), as they serve as the structural means of the timing

54



Figure 2.2: Growth velocities (in cm/year) during puberty for boys (blue) and
girls (red). Scaled component tempo functions are marked for boys and girls
with dashed and dotted lines, respectively.

functions.

Turning our attention to the joint time dynamics of the p = 3 modalities, we

restrict our analysis to the boys for the sake of brevity. A natural place to start

when comparing growth patterns is the component tempos, which are displayed

for eachmodality in the left panel of Fig. 2.3. The dynamics of joint development

can be seen through by examining the order of peaks across modalities. In this

case leg length is first, followed by arm length, while sitting height lags behind.

The tempos obtain similar slopes during puberty, though leg length has themost

gradual spurt and sitting height has the sharpest increase, This may reflect the

fact that its lagged onset results in a smaller window between the onset of its

growth spurt and the maturation date of 18 years. We note that it is of course

possible for an individual to experience some minor growth past the age of 18,

but in the Zürich study such cases were rare and so this complication was ig-

nored. The component transports displayed in Fig. 2.3 (right) further illustrate

the nature of each body parts tempo relative to the baseline latent system time.

Remarkably, the tempo of arm length is nearly identical to the latent curve. This

suggests that the arm can be used a representative modality which mirrors a
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Figure 2.3: Component tempos γ (left) and transportsΨ (right) for growthmodal-
ities. The dashed line represents the tempo and transport for the latent tempo,
λ.

child’s overall development.

The estimated cross-component transports, T̂jk, j, k ∈ {1, . . . , p} as per (2.26),

are depicted in Figure 2.4 and illustrate the intercomponent time dynamics for

the three growth modalities. An XCT map can be interpreted as the transport

required in order to accelerate or decelerate the tempo of component j to that

of component k. Taking the transport between sitting height and leg length, T̂23

as an example, we see that the XCT map falls above the identity, indicating that

sitting height’s tempo must be accelerated in order to synchronize with that of

leg length. This matches the interpretation that individuals tend to experience

growth spurts in leg lengths before sitting height, reflected in Fig. 2.3 and previ-

ous descriptive analyses of pubertal growth spurts (Sheehy et al., 1999).
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Figure 2.4: The cross-component transport matrix, which characterizes pairwise
time relations between components.
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Figure 2.5: The cross-component transport map T12 which expresses the sitting
height’s timing patterns relative to the leg length’s as a baseline. The peak of
pubertal growth rate for the leg occurs at approximately age 13.5, while the
maximum growth velocity for sitting height growth occurs at approximately
T12(13.5) ≈ 14.5 years old.
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Figure 2.6: The (a) dissimilarity matrix heatmap and (b) MDS-generated rep-
resentation of cross-component tempos for growth modalities. The tempos of
sitting height and leg length are least similar, while arm length lies in between.
MDS suggests the dominant variation among the tempos is one-dimensional and
mirrors the ordering of growth spurts across modalities.
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The magnitude of the XCT map’s deviation from the identity shows how dis-

similar the two components are. For example, sitting height and leg length are

the most distinct modalities of growth among those considered here, and their

XCT map exhibits the most pronounced departure from the identity. An intu-

itive interpretation of the map is that Tjk expresses the kth component’s timing

patterns relative to the jth component’s as a baseline. For example, when the leg

tempo is at time t = 13.5, the comparable time point for the sitting height tempo

is approximately at Tjk(13.5) ≈ 14.5 as illustrated in Fig. 2.5.

To quantify the differences in tempos across components as a scalar, one may

take the Wasserstein distance (Villani, 2003) between T̂jk(t) and id(t) ≡ t to cre-

ate a dissimilarity matrix for the component tempos. Fig. 2.6 illustrates the dis-

similarity matrix for the Zürich data and the results of performing multidimen-

sional scaling (MDS), which results in a configuration of the three components

in an abstract coordinate system. Remarkably, this representation shows that the

component tempos can be represented well by a single dimension of variation.

Additionally, their relative positions on this axis match the timing of the growth

spurts for the three modalities.

2.4.2 Air Pollutants in Sacramento, CA
The study of air pollutants has been a topic of interest for atmospheric scientists

and environmentalists alike for several decades. In particular, increased ground-

level ozone (O3) concentrations have been shown to have harmful effects on hu-

man health. Unlike many air pollutants, surface ozone is not directly emitted

by sources of air pollution (e.g. road traffic); it is formed as a result of interac-

tions between nitrogen oxides and volatile organic compounds in the presence

of sunlight (Abdul-Wahab, 2001). Because of this interaction, compounds such

as nitrogen dioxide are known and important precursors of increased ozone con-

centrations (Tu et al., 2007).
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Figure 2.7: 24-hour trajectories of NOx (left) and ozone (right), concentrations in
parts per billion (ppb) on a log scale.

61



The California Environmental Protection Agency has monitored hourly air

pollutant concentrations at several station locations since the 1980s. Herewe con-

sider the sample ofweekday trajectories of ozone (O3), and nitrogen oxides (NOx)

concentrations during the summer of 2005 in Sacramento (Fig. 2.7). Smooth tra-

jectorieswere obtained from rawdata using locally linearweighted least squares.

Gervini (2015) has previously investigated a similar dataset in the context of

warped functional regression, where the primary aimwas tomodel phase varia-

tion explicitly in order to relate the timing of peak concentrations of NOx to those

of O3.

The chemistry of the compounds as well as a visual inspection of the curves

suggests that we have two classes of pollutants. NOx concentrations tend to peak

around 8 a.m., reflecting standard morning commute hours and the impact of

traffic emissions on air quality. On the other hand, ozone levels peak around 2 to

3 p.m., indicating that the synthesis mechanism induces a lag of up to approxi-

mately 6 hours.

It is an interesting question to ask if meteorological factors might affect the

rate of ozone synthesis. Individual component transports combinedwith Fréchet

regression for distributions provide a natural framework to study this query (Pe-

tersen & Müller, 2019). Subject-specific transports from NOx concentrations to

ozone concentrations, T (i)
NOx→O3

, were calculated as per (2.27) for each day.

Global Fréchet regression was then applied through the model

m̂⊕(x) = argmin
T∈W

Mn(T, x)

withMn(T, x) = n−1
n∑
i=1

qind
2
W (Ti, T ),

(2.29)

wherem⊕ denotes the conditional Fréchetmean of the transport given the covari-

ate x, the wind speed recorded a given day. Here, dW denotes the 2−Wasserstein

distance (Villani, 2003) and the weights are defined as qin = 1 + (xi− x̄)(x− x̄)/ŝ2
x,
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as per (Petersen &Müller, 2019), where x̄ and ŝ2
x represent the sample mean and

variance of the observed wind speeds, respectively. The model was fit using the

R package frechet, observing that the transports can be represented as distribu-

tion functions (Chen et al., 2020).

Figure 2.8 displays the observed transports and the fits obtained from Fréchet

regression usingwindspeed as a predictor. The rainbow gradient corresponds to

windspeeds ranging from 3 to 10 knots and their associated fitted transports are

overlaid upon the original data. The regression fits suggest that days with lower

windspeeds correspond with transports which are further from the diagonal,

indicating an exaggerated lag between peak concentrations of NOx and ozone.

On the other hand, days with high wind speeds have fitted transports very near

the diagonal, which suggests that windier settings accelerate the synthesis pro-

cess. Intuitively this is a reasonable result in terms of the physical interpretation,

as more wind will result in a higher rate of collisions of the particles, and thus

quicker production of ozone after peakNOx emission. The FréchetR2
⊕ value was

0.44, which suggests thatwind speed explains a considerable amount of variation

in the observed transports.
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Figure 2.8: Fréchet regression of NOx-to-O3 cross-component transports onto
daily max windspeeds in knots. Windier days correspond to more linear trans-
port functions, which suggests O3 synthesis more closely follow NOx emission.
Less windy days are associated with more pronounced lags between the pollu-
tants.
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2.5 Simulation Study
In this sectionwe illustrate the latent transportmodel through a simulated p = 4−di-

mensional datasetwhich exhibits intercomponentwarping of a base latent curve.

Component curves are simulated on a grid T = [0, 1] traversed by increments of

0.05 as

Xij(ts) = Aij(λ ◦Ψj ◦Hi ◦Rij)(ts) + εijs, (2.30)

where the latent curve is defined as λ(t) = λ0(t)/||λ0||∞, for λ0(t) = 20 + 15t2 −

5 cos(4πt) + 3 sin(πt2), the random amplitudes are distributed as Aij iid∼ N (100, σ2
A),

the component distortion functions Ψj , j = 1, . . . , 4 are mixtures of Beta distri-

butions, and Hi are random distortions of the unit interval. Specifically, we set

Ψj(t) = ϑBt(aj , bj) + (1 − ϑ)t for j = 1, 2, where Bt denotes the regularized in-

complete Beta function and a = (2, 1)T , b = (2, 1/2)T , and ϑ = 0.5. Then we define

Ψ−1
j+2(t) = 2t−Ψ−1

j (t), j = 1, 2, so the net identitywarp constraint p−1
∑p

j=1 Ψ−1
j (t) =

t is satisfied. The sources of randomphase variation are introduced by the subject-

level warping functions defined by H−1
i (t) =

exp(twi)− 1

exp(wi)− 1
where wi iid∼ N (0, σ2

W )

and a random nuisance distortion function defined by R−1
ij (t) =

exp(tdij)− 1

exp(dij)− 1

where dij iid∼ N (0, σ2
D). Finally, measurement error is also added to contaminate

the raw observations through the random variables εijs iid∼ N (0, σ2
E). The levels

of noise varied such that σW = 0, .5, 1, σD = 0, .5, 1, and σE = 0, 1, 5, 10. Figure 2.1

displays an example of simulated data and component warping functions for the

case where σW = 0.5, σD = 0, and σE = 1.

The component warping functions were chosen to induce both distortions

which accelerate or delay the latent trajectory uniformly and more complicated

distortions which alternate between stretching and shrinking the time domain.

The former type can be considered a warping structure with a simpler effect, as

thewarping functions remain on either side of the diagonal. In some cases, these
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kinds of warps may be approximated adequately with simple shift parameters.

On the other hand, a component transport which oscillates back and forth across

the diagonal corresponds to a nuanced, non-rigid effect which needs added flex-

ibility beyond that of shift-warping. The latent transport model proposed here

provides this increased freedom, as we illustrate in this simulation. We also pro-

vide details on the finite sample performance of our methods on the fits of both

the latent curves and the realizations of the full process.

Pre-smoothing of curveswas performed using local linear regressionwith the

Epanechnikov kernel to handle the presence of measurement error. The number

of knots was set atK = 4, though we note that this hyperparameter did not dras-

tically change the quality of estimates in practice unless it was set at a blatantly

low value (K ≤ 2), which resulted in lack of fit, or raised excessively high (K ≥ 7),

which distorted the estimates of warping functions and resulted in prohibitively

high computation time.

Estimates were obtained from fitting the model on a sample of n = 50

4−dimensional processes at each noise level. This process was repeated for B =

250 Monte Carlo runs and the results are summarized in terms of four perfor-

mance measures. We calculated the integrated squared error for the estimated

latent curve, component warps, and fitted processes as

LISE =

∫ 1

0

{λ̂(t)− λ(t)}2dt, HMISE =
1

n

n∑
i=1

∫ 1

0

{Ĥi(t)−Hi(t)}2dt, and

XMISE =
1

np

p∑
j=1

n∑
i=1

∫ 1

0

{X̂ij(t)−Xij(t)}2dt, for j, k = 1, . . . , p.

(2.31)
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Figure 2.9: Estimated (dashed) vs. true (solid) component transport functions
(left) and cross-component transport functions (right) under the latent transport
model at the noise setting with σW = 0.5, σD = 0.5, and σE = 1.
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Tables 2.1 − 2.3 depict these quantities based on samples generated at each

noise level. For ease of reading, the quantities LISE and HMISE are magnified

by a factor of 102 as the actual values have several leading zeros. Table 2.1 shows

that estimation of the latent curve λ generally degrades with increased warping

and nuisance distortion levels in all cases. Interestingly the effect of these distor-

tions is comparable between levels where standard deviations are 0 and 0.5, the

latter corresponds to a typical degree of warping, but jumps when increased to

1, which reflects a severe amount of phase variation. Effects on the integrated

squared error for the latent curve are similar for both sources of distortion, σW
and σD. Increases in measurement error on the other hand do not seem to af-

fect the quality of the estimate of λmuch. A potential explanation for this is the

fact that the estimator of λ is an average, so additive measurement errors tend to

cancel each other out.

As for the estimates of the subject-specific warping functionsH, we see a sim-

ilar trend across both kinds of distortion (see Table 2.2). As σW increases, the

warping function targets have a greater likelihood to be more extreme warps,

which are harder to estimate by nature. In addition, the bias imposed by regu-

larization is greater for these extreme cases. As expected, greater nuisance dis-

tortion also degrades performance for similar reasons. Measurement error is

also associated with worse performance, which is in contrast to its effect on the

estimation of λ. Since the warping functions H are subject-specific, and not av-

eraged over the sample, they do not enjoy the robustness to measurement error

that the latent curve displays.

Finally, performancemeasures for the sample of fitted curves are displayed in

Table 2.3. Mean integrated squared errors for fitted curves Xij can be thought of

as a compositemeasure of the errors in estimates of the latent curve λ, component

transports Ψj , individual warps Hi, and amplitude factors Aij . Note that the
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amplitude factors are randomly scattered about 100 for each component, so the

scale of errors for fitted curves are much larger than that of the latent curve and

warping functions.

The sources of noise have a slightly different effect on XMISE as they do on

LISE and HMISE. Again, more variable warping and nuisance distortions result

in worse performance, however in the case of fitted curves, there is a difference

between warping and nuisance distortion. Increasing the level of warping dis-

tortion σW has less of an impact on XMISE than does increasing that of nuisance

σD. For example, in the case of no measurement error, increasing σD from 0 to

0.5 results in a roughly 175-fold increase in XMISE, while a similar change in σW
increases the error by a factor of 6.5. A similar pattern occurs over all levels of

measurement error. This observation suggests that increased nuisance distortion

degrades the estimation of the component transports Ψj , this trend was not seen

in the estimation of λ or H, and amplitude factors are invariant to distortion ef-

fects of all kinds. Measurement errors have a similar effect as they did onHMISE,

which again may be explained by the fact that fitted curves are subject-specific

and not marginalized.
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Table 2.1: Integrated squared error of the latent curve estimates under simulated
noise settings, magnified by factor of 100.

LISE × 102 Measurement Error

Warping Distortion Nuisance Distortion σE = 0 σE = 1 σE = 5 σE = 10

σW = 0

σD = 0.0 0.01 0.01 0.01 0.01

σD = 0.5 0.00 0.00 0.01 0.01

σD = 1.0 0.09 0.08 0.06 0.08

σW = 0.5

σD = 0.0 0.01 0.01 0.01 0.01

σD = 0.5 0.01 0.01 0.01 0.02

σD = 1.0 0.10 0.09 0.07 0.09

σW = 1

σD = 0.0 0.11 0.10 0.08 0.10

σD = 0.5 0.13 0.11 0.09 0.11

σD = 1.0 0.32 0.31 0.28 0.31
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Table 2.2: Mean integrated squared error (magnified by 102) of the subject-level
warping estimates Ĥi(t) under simulated noise settings.

HMISE × 102 Measurement Error

Warping Distortion Nuisance Distortion σE = 0 σE = 1 σE = 5 σE = 10

σW = 0

σD = 0.0 0.00 0.00 0.01 0.02

σD = 0.5 0.02 0.02 0.02 0.03

σD = 1.0 0.15 0.15 0.12 0.10

σW = 0.5

σD = 0.0 0.00 0.00 0.01 0.02

σD = 0.5 0.02 0.02 0.02 0.03

σD = 1.0 0.15 0.15 0.12 0.11

σW = 1

σD = 0.0 0.12 0.12 0.13 0.21

σD = 0.5 0.14 0.13 0.15 0.22

σD = 1.0 0.29 0.28 0.31 0.38
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Table 2.3: Mean integrated squared error of the fitted curve estimates X̂ij(t) un-
der simulated noise settings. Note the increase in scale of theXMISEwhen com-
pared to LISE and HMISE is due to the fact that curves are scaled up by the
amplitude factor which varies randomly around the value 100.

XMISE Measurement Error

Warping Distortion Nuisance Distortion σE = 0 σE = 1 σE = 5 σE = 10

σW = 0

σD = 0.0 0.04 0.50 13.09 57.19

σD = 0.5 6.97 7.35 20.05 63.65

σD = 1.0 80.98 81.50 92.78 140.97

σW = 0.5

σD = 0.0 0.26 0.74 13.32 57.37

σD = 0.5 7.11 7.54 20.14 63.81

σD = 1.0 80.75 81.84 93.75 143.37

σW = 1

σD = 0.0 17.35 19.22 34.28 91.97

σD = 0.5 25.48 25.20 42.68 98.38

σD = 1.0 104.60 102.80 120.65 181.99
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2.6 Theoretical Results
Our results focus on convergence of the components of the XCTmodel described

in (4) as the number of curves n and the number of observations per curve m

tend to infinity. In order to achieve asymptotic results, we require the following

assumptions on (L) the components of the Latent Transport Model and (S) the

smoothing methodology in the presence of discretely observed curves.

(L1) The latent curve λ(t) ∈ C2(T ) is a bounded function. For anynon-degenerate

interval T0 ⊂ T , 0 <
∫
T0 λ

′(t)2dt <∞.

(L2) For j = 1, . . . , p, sup
1≤i≤n

Aij = OP (1) and sup
1≤i≤n

A−1
ij = OP (1).

Assumption (L1) bounds the latent curves and its derivatives and ensures

there are no flat stretches. These conditions are made to avoid behavior which

would undermine the asymptotic results and uniqueness of the component esti-

mates. (L2) ensures that the ranges of the random processes are bounded away

from zero and infinity with high probability; this condition is needed for the

uniform convergence of the smoothing estimate.

(S0) The time points t1, . . . , tm, where the sequence m is assumed to depend on

the sample size n, m = m(n), correspond to a dense regular design with

smooth design density f with inf
t∈T

f(t) > 0 that generates the time points ac-

cording to ts = F−1( s−1
m−1), s = 1, . . . ,m,where F−1 denotes the quantile func-

tion associatedwith f . The second derivative f ′′ is bounded, sup
t∈T ◦
|f ′′(t)| <∞.

(S1) The kernel functionK is a probability density function with support [−1, 1].

It is also symmetric around zero and uniformly continuous on its support

with
∫ 1

−1
K2(u)du <∞.

(S2) For each j = 1, . . . , p, the sequences m = m(n) and b = b(n) satisfy

(1) 0 < b <∞, and (2) m→∞, b→ 0, and mb2(log b)−1 →∞ as n→∞.
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These assumptions guarantee the consistent estimation of n curves simultane-

ously, as shown in the following Proposition. We observe that (S2) is for exam-

ple satisfied if the bandwidth sequence is chosen such that b = b(n) ∼ m(n)−1/6.

We next establish the rate of convergence for the smoothed curves and also the

normalized versions to the true underlying processes.

Proposition 1. Under assumptions (S0−S2), if E||X(ν)(t)||2∞ <∞, ν = 0, 1, 2, we have

the uniform convergence

sup
t∈T
|X̃ij(t)−Xij(t)| = OP (m−1/3). (2.32)

The rate also extends to the standardized versions X∗ij = Xij/||Xij ||∞,

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣ = OP (m−1/3). (2.33)

The estimators of the latent curve and component transports involve aver-

ages of the smoothing estimates over the sample of curves as n→∞. The corre-

sponding rates of convergence will thus rely on the uniform summability of the

difference between the smoothed and true curves over n and we then have a uni-

form rate of τm = m−(1−δ)/3 for an arbitrarily small δ > 0 in lieu of the above rate

m−1/3; see Lemma 1 in the Technical Proofs. The proposed estimators also rely

on the mechanics of the pairwise warping methods, whose convergence proper-

ties have been established in a general form in Tang & Müller (2008) and Chen

&Müller (2020). Lemma 2, provided in the Technical Proofs section, states these

rates in the specific framework of the Latent Transport Model. We are now in a

position to state our main result, which establishes rates of convergence for the

estimators of the components of the Latent Transport Model as follows.
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Theorem 1. Under assumptions (L1), (L2), and (S0−S2), with τm = m−(1−δ)/3 for an

arbitrarily small δ > 0 and penalty parameters η1, η2 as in (2.11), (2.21), we have for all

i = 1, . . . , n, j = 1, . . . , p,

a. sup
t∈T
|Ĥi(t)−H(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 ),

b. sup
t∈T
|γ̂j(t)− γj(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 )

c. sup
t∈T
|λ̂(t)− λ(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 ),

d. sup
t∈T
|Ψ̂j(t)−Ψj(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2),

e. sup
t∈T
|Ĝij(t)−Gij(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2), and

f. |Âij − Aij | = OP (m−1/6).

The three terms in the rates correspond, in order, to (1) the parametric rate

achieved through the standard central limit theorem, (2) the smoothing ratewhich

is dependent on the number of observations per curvem, and (3) a rate due to the

well-known bias introduced by the penalty parameters used in the regulariza-

tion steps. Additionally, if we suppose thatm is bounded below by a multiple of

n3(1−δ)−1 , then the rates corresponding to the smoothing steps are bounded above

by n−1/2. If we take the penalty parameters to be η1 ∼ η2 = O(n−1), a n−1/2 rate of

convergence can be achieved for each of the estimators in Theorem 1 a.-e.Other-

wise, ifm ∼ n∆(1−δ)−1 , for any ∆ < 3, the convergence is limited by the smoothing

step and achieves the rate of n−∆/6. This line of reasoning gives the following

result for curves which are observed fully or on sufficiently dense designs.
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Corollary 1. Suppose the penalty parameters η1 ∼ η2 = O(n−1). If the random tra-

jectories are fully observed without error or the trajectories are recorded with at least a

multiple of m ∼ n∆(1−δ)−1 observations per curve, with ∆ > 3, then under the assump-

tions of Theorem 1, we have for all i = 1, . . . , n, j = 1, . . . , p,

a. sup
t∈T
|Ĥi(t)−H(t)| = OP (n−1/2),

b. sup
t∈T
|γ̂j(t)− γj(t)| = OP (n−1/2)

c. sup
t∈T
|λ̂(t)− λ(t)| = OP (n−1/2),

d. sup
t∈T
|Ψ̂j(t)−Ψj(t)| = OP (n−1/2),

e. sup
t∈T
|Ĝij(t)−Gij(t)| = OP (n−1/2), and

f. |Âij − Aij | = OP (n−1/2).

The asymptotic results for the cross-component transports then follow immedi-

ately from the rates established in Theorem 1.

Theorem 2. Under assumptions of Theorem 1 for i = 1, . . . , n, 1 ≤ j, k ≤ p,

a. sup
t∈T
|T̂jk(t)− Tjk(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2), and

b. sup
t∈T
|T̂ (i)
jk (t)− T (i)

jk (t)| = OP (n−1/2) +OP (τ
1/2
m ) +O(max(η1, η2)1/2).

A similar corollary for cross-component transports follows in the case of fully

observed curves or dense enough designs.

Corollary 2. Suppose the penalty parameters η1 ∼ η2 = O(n−1). If the random tra-

jectories are fully observed without error or are recorded with at least a multiple of m ∼

n∆(1−δ)−1 observations per curve, with ∆ > 3, then under the assumptions of Theorem 1,

we have for i = 1, . . . , n, 1 ≤ j, k ≤ p,

a. sup
t∈T
|T̂jk(t)− Tjk(t)| = OP (n−1/2), and

b. sup
t∈T
|T̂ (i)
jk (t)− T (i)

jk (t)| = OP (n−1/2).

Corollaries 1 and 2 suggest that, on dense enoughmeasurement schedules, para-

metric rates of convergence are achievable for the quantities described by the
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LTM. The collection of cross-component transports also exhibit the following al-

gebraic structure.

Remark 1. For any cycle of components indexed by the sequence,

π1 → π2 → π3 → · · · → πL → π1,

with arbitrary length L and π1, . . . , πL ∈ {1, . . . , p}, their respective cross-component

transports satisfy

Tπ1π2 ◦ Tπ2π3 ◦ · · · ◦ TπLπ1 = id.

This result ensures that the system of cross-component transport maps prevents

inconsistencies within itself. For example, if for three components A, B, and C,

the pairwise transports TAB and TBC suggest that Component A tends to pre-

cede Component B which itself tends to precede Component C, this implies that

the transport TAC must indicate that Component A tends to precede Component

C. Furthermore, mapping a component tempo through other components and

then back to itself will result in the original component tempo, unchanged. Next

we consider rates of convergence for the reconstructed curves as per Eq. (2.28),

putting all model components together.

Theorem 3. Under assumptions of Theorem 1 for i = 1, . . . , n, j = 1, . . . , p,

sup
t∈T
|X̂ij(t)−Xij(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2).

Again a parametric rate is achievable on dense enough designs.

Corollary 3. Suppose the penalty parameters η1 ∼ η2 = O(n−1). If the random tra-

jectories are fully observed without error or the trajectories are recorded with at least a

multiple of m ∼ n∆(1−δ)−1 observations per curve, with ∆ > 3, then under the assump-

tions of Theorem 1, we have for i = 1, . . . , n, j = 1, . . . , p,

sup
t∈T
|X̂ij(t)−Xij(t)| = OP (n−1/2).
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2.7 Concluding Remarks
In this chapter, we have introduced the Latent TransportModel (LTM) as ameans

of decomposing multivariate functional data and quantifying their intercompo-

nent time dynamics. The model provides a simple representation for multivari-

ate funcitonal data: information concerning their time dynamics is synthesized

and compressed into two fixed effect terms (the latent curve and a collection

of component-level warping functions) and two random effect terms (a random

amplitude vector and a collection of subject-level warping functions). This rep-

resentation requires the estimation of only one random warping function and

amplitude vector per subject, in addition to p+ 1 deterministic functions overall.

In some cases these components may be reduced even further. For example,

when subject-level warping is negligible or part of a pre-processing step, a spe-

cial case of the model arises in which time-dynamics are fully characterized by

the p+1 fixed effect curves and one random scalar per component. Alternatively,

if subject-level time warping is present but further dimension reduction is de-

sired, transformation of warps by the LQD transform (Petersen & Müller, 2016)

or others (see, e.g. Happ et al. (2019)) will permit a Karhunen-Loève expansion

in L2−space. Applying the LTM and truncating this expansion at an appropri-

ate number of eigenfunctions, say K0, creates a representation of multivariate

functional data using only p + K0 random scalars, as opposed to, for example, a

standard MFPCA representation which requires p×K0 variables.

The LTM serves both as an extension of existing univariate functional warp-

ingmethods, as well as a stepping stone for many new potential models for mul-

tivariate functional data analysis and registration. Future directions of note in-

clude implementing the LTM for alternative alignment algorithms besides pair-

wise warping, harnessing the flexibility of cross-component transport maps for

imputation of components in partially observed multivariate functional data, or
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relaxing structural assumptions to allow for more flexible functional relation-

ships between different latent curves for distinct subsets of components. Spa-

tiotemporal applications are also promising for the LTM, in which the vector

function components are indexed by location. In such a situation, component

warping functions may reveal time trends across geographic regions. In areas

like spatiotemporal data analysis where the number of vector components is

high, downstream application of dimension reduction techniques like multidi-

mensional scalingmayprove useful in comparing andunderstanding themutual

time dynamics across a large number of components.

2.8 Technical Proofs
2.8.1 Intermediate Lemmata
The following two Lemmata provide rates of convergence for the smoothing pro-

cedure and the pairwise warping estimates which are needed in the proofs of

Theorems 1 and 2.

Lemma 1. Under the conditions of Proposition 1, for any δ ∈ (0, 1) if b ∼ m−(1−δ)/6 for

all i = 1, . . . , n, and lim sup
n→∞

nm−δ/2 <∞, then for all j = 1, . . . , p,

1

n

n∑
i=1

sup
t∈T
|X̃ij(t)−Xij(t)| = OP (τm), (2.34)

1

n

n∑
i=1

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣ = OP (τm), (2.35)

where τm = m−(1−δ)/3.

Lemma 2. For all j = 1, . . . , p, Under assumptions (L1), (L2), and (S0-S2), with band-

width b(m) ∼ m−1/6 and η → 0, the spline coefficients of the warping functions θ̃(j)
Vi′i

satisfy

||θ̃(j)
Vi′i
− θ(j)

Vi′i
|| = OP (m−1/6) +O(η

1/2
1 ),
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and the corresponding estimates of the pairwise warping function Ṽ (j)
i′i in (2.12) satisfy

sup
t∈T
|Ṽ (j)
i′i (t)− V (j)

i′i (t)| = OP (m−1/6) +O(η
1/2
1 ).

2.8.2 Proofs of Theoretical Results
Throughout these proofswewriteC,C ′, C ′′ and so on to denote generic constants.

Proof of Prop. 1:

Let (Ω,F , P ) be the probability space on which the observed data

Yijs = Xij(ts) + εijs, i = 1, . . . , n, j = 1, . . . , p, s = 1, . . . ,m, are defined, where Ω

is the sample space, F is the σ-algebra of events, and P : F → [0, 1] is the prob-

ability measure. Because of the independence between (Aij , Hi), the sources of

amplitude and phase variation, and εijs, the measurement errors, the probability

space (Ω,F , P ) can be considered as a product space of two probability spaces,

(Ω1,F1, P1)where the amplitude factors, warping functions, and hence themulti-

variate processes, X, are defined, and (Ω2,F2, P2) where the measurement errors

are defined. Fixing an element ω1 ∈ Ω1 corresponds to a realization of the ampli-

tude factor A, the warping function H, and the multivariate process X. We note

that the errors {εijs}ms=1 are independent in (Ω2,F2, P2). Hence, wemay substitute

the index i in the subscripts of Aij , Hi, Xij , Yijs and εijs by ω1; specifically, we use

Aω1,j , Hω1 , Xω1,j , Yω1,js and εω1,js, respectively, in the equations that follow.

For any fixed ω1 ∈ Ω1, {εω1,js}ms=1 are i.i.d. realizations of εω1,j , with Yω1,j(ts) =

Xω1,j(ts) + εω1,js. To show the rates of convergence it will be useful to frame local

linear smoothing as a special case of local Fréchet regression so we can apply

Theorem 2 of Chen & Müller (2020).

To satisfy one of the assumptions of this theorem, we must restrict the range

of our curves to a bounded set. Assumption (L2) guarantees that for arbitrarily

small ρ > 0, there exist constants 0 < cρ < Cρ < ∞ and an event Qρ := {cρ <

sup
1≤j≤p

sup
1≤i≤n

Aij(t) < Cρ} such that P (Qρ) > 1 − ρ. When the event Qρ holds, the
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range of Xij(t) is the bounded set R∗ = [cρ, Cρ] for all j = 1, . . . , p. We may then

ignore the event QCρ which happens with arbitrarily small probability.

Next it is necessary to explicitly define the objective functions involved local

linear estimation. For any t ∈ T , the unobserved true process Xω1,j satisfies,

Xω1,j(t) = E(Yω1,j(t)|Xω1,j) = argmin
x∈R∗

M
(j)
ω1 (x, t),

M
(j)
ω1 (x, t) = EΩ2

[
(Yω1,j(t)− x)2|Xω1,j

]
.

(2.36)

Furthermore, the target of local linear estimation is,

βω1,j(t) = (β
(0)
ω1,j

(t), β
(1)
ω1,j

(t))T (2.37)

which minimizes

M̌
(j)
ω1,b

(βj , t) = EΩ2

[
(Yω1,j − Z(t)βj)

TW (Yω1,j − Z(t)βj)|Xω1,j

]
, (2.38)

where Z(t) =


1 t0 − t

1 t1 − t
...

1 tm − t

, W = diag(Kb(ts − t)) for s = 1, . . . ,m, Kb(·) = b−1K(·/b),

and X̌ω1,j(t) = β
(0)
ω1,j

(t). Finally, the local linear estimates can be expressed through

the empirical version,

β̂ω1,j = (β̂
(0)
ω1,j

, β̂
(1)
ω1,j

)T (2.39)

which minimizes

M̃
(j)
ω1,m(βω1,j , t) = (Yω1,j − Z(t)βω1,j)

TW (Yω1,j − Z(t)βω1,j). (2.40)

with the final smoothing estimate taken as X̃ω1,j(t) = β̂
(0)
ω1,j

.
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With these quantities defined, the proof reduces to verifying the following

conditions:

(i) The marginal density f is bounded away from zero on T and the second

derivative is bounded, sup
t∈T ◦
|f ′′(t)| <∞.

(ii) For all ω1 ∈ Ω1 and t ∈ T , the minimizers Xω1,j(t), βω1,j and β̂ω1,j exist and

are unique, the last PΩ2
-almost surely. In addition for any ε > 0,

inf
ω1∈Ω1,t∈T

inf
|Xω1,j(t)−x|>ε

(
M

(j)
ω1 (x, t)−M (j)

ω1 (Xω1,j(t), t)
)
> 0,

lim inf
b→0

inf
ω1∈Ω1,t∈T

inf
||βω1,j−βj ||>ε

(
M̌

(j)
ω1,b

(βj , t)− M̌ (j)
ω1,b

(βω1,j , t)
)
> 0.

(iii) There exist constants r1j , r2j > 0, C1j , C2j > 0, such that for j = 1, . . . , p,

inf
ω1∈Ω1,t∈T

inf
|Xω1,j(t)−x|<r1j

[
M

(j)
ω1 (x, t)−M (j)

ω1 (Xω1,j(t), t)− C1j |x−Xω1,j(t)|2
]
> 0,

lim inf
b→0

inf
ω1∈Ω1,t∈T

inf
||βω1,j−β||<r2j

[
M̌

(j)
ω1,b

(βj , t)− M̌ (j)
ω1,b

(Xω1,j(t), t)− C2j ||βj − βω1,j ||2
]
> 0.

(iv) Let Br(Xω1,j(t)) ⊂ RC be a ball of radius r centered at Xω1,j(t) and denote be

its covering number using balls of radius ε asN(rε, Br(Xω1,j(t)), || · ||∞). Then

sup
r>0

sup
ω1∈Ω1

∫ 1

0

sup
t∈T

√
1 + logN(rε, Br(Xω1,j(t)), || · ||∞)dε <∞.

First, (i) is satisfied by assumption (S0). Then for the remaining conditions,

without loss of generality, fix j and apply the same argument for each compo-

nent. Conditions (ii) and (iii) rely on the following observations and similar cal-

culations. Since M (j)
ω1 (x, t) and M̌

(j)
ω1,b

(x, t) are concave for all t ∈ T , M̃ (j)
ω1,m(x, t) ,

is PΩ2
-almost surely concave for all t ∈ T , their respective minimizers exist and

are unique. Then we verify that the minimum difference in objective functions

outside of an ε−neighborhood of the minimizer is positive.
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By independence of Xω1,j and εω1,j , we have

M
(j)
ω1 (x, t) = EΩ2

[(Yω1,j,b(t)− x)2|Xω1,j(t)]

= EΩ2
[(Xω1,j(t)− x+ εω1,j)

2|Xω1,j,b(t)]

= EΩ2
[(Xω1,j(t)− x)2|Xω1,j(t)] + EΩ2

[ε2
ω1,j |Xω1,j(t)]

= (Xω1,j(t)− x)2 + σ2
j ,

and

M
(j)
ω1 (Xω1,j(t), t) = EΩ2

[(Yω1,j(t)−Xω1,j(t))
2|Xω1,j(t)]

= EΩ2
[ε2
ω1,j |Xω1,j(t)] = σ2

j .

Together these imply

M
(j)
ω1 (x, t)−M (j)

ω1 (Xω1,j(t), t) = (Xω1,j(t)− x)2 (2.41)

and so condition (ii) is satisfied as

inf
ω1∈Ω1,t∈T

inf
|Xω1,j(t)−x|>ε

(Xω1,j(t)− x)2 > ε2 > 0.

Similarly, for the localized target, we have,

M̌
(j)
ω1,b

(βj , t) = EΩ2

[
(Yω1,j − Z(t)βj)

TW (Yω1,j − Z(t)βj)|Xω1,j

]
= EΩ2

[
m∑
s=1

K(
ts − t
b

)(Yω1,js − β0 − β1(t− ts))2|Xω1,j

]

= EΩ2

[
m∑
s=1

K(
ts − t
b

)(Xω1,js − β0 − β1(t− ts))2|Xω1,j

]

+ EΩ2

[
m∑
s=1

K(
ts − t
b

)ε2
ω1,js|Xω1,j

]

= (Xω1,j − Z(t)βj)
TW (Xω1,j − Z(t)βj) + σ2

j

m∑
s=1

K(
ts − t
b

),
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and

M̌
(j)
ω1,b

(βω1,j , t) = EΩ2

[
(Yω1,j − Z(t)βω1,j)

TW (Yω1,j − Z(t)βω1,j)|Xω1,j

]
= EΩ2

[
m∑
s=1

K(
ts − t
b

)(Xω1,js − β
(0)
ω1,j
− β(1)

ω1,j
(t− ts))2|Xω1,j

]

+ EΩ2

[
m∑
s=1

K(
ts − t
b

)ε2
ω1,js|Xω1,j

]

= (Xω1,j − Z(t)βω1,j)
TW (Xω1,j − Z(t)βω1,j) + σ2

j

m∑
s=1

K(
ts − t
b

).

Together these give

M̌
(j)
ω1,b

(β, t)− M̌ (j)
ω1,b

(βω1,j , t) = [Z(t)(βω1,j − βj)]TW [Z(t)(βω1,j − βj)] (2.42)

= ||W 1/2Z(t)(βω1,j − β)||2, (2.43)

and thus

lim inf
b→0

inf
ω1∈Ω1,t∈T

inf
||βω1,j−β||>ε

M̌
(j)
ω1,b

(β, t)− M̌ (j)
ω1,b

(βω1,j , t) =

lim inf
b→0

inf
ω1∈Ω1,t∈T

inf
||βω1,j−β||>ε

||W 1/2Z(t)(βω1,j − βj)||2 > lim inf
b→0

||W 1/2Z(t)||2ε2 > 0.

so condition (ii) is met. Equations (2.41) and (2.43) also imply that the inequality

in (iii) holds for C1j = 1, and C2j = ||W 1/2Z(t)||2.

Finally, condition (iv) is met since by Lemma 2.7.8 of Van der Vaart &Wellner

(1996), there exists some constant C > 0,

logN(rε, Br(Xω1,j(t)), || · ||∞) ≤ Cε−1

where C depends only on the bounded set of R on which Xω1,j takes values and

is thus uniform over ω1 ∈ Ω1. Then, for any r > 0, we may bound the integral by

sup
ω1∈Ω1

∫ 1

0

sup
t∈T

√
1 + logN(rε, Br(Xω1,j(t)), || · ||∞)dε

= sup
ω1∈Ω1

∫ 1

0

√
1 + Cε−1dε ≤ 1 + 2

√
C <∞,
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whence (iv) holds. This concludes the proof.

Proof of Prop. 2: The argument to extend the convergence result to the normal-

ized curves is outlined as follows. We have

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣ ≤ sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

X̃ij(t)

||Xij ||∞

∣∣∣∣+ sup
t∈T

∣∣∣∣ X̃ij(t)

||Xij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣
:= I + II.

The difference in sup-norms can be bounded using the reverse triangle inequal-

ity, ∣∣||X̃ij ||∞ − ||Xij ||∞
∣∣ ≤ ||X̃ij −Xij ||∞

= OP (m−1/3)

Note also that this implies the rate for the amplitude factors,

|Âij − Aij | =
∣∣||X̃ij ||∞ − ||Xij ||∞

∣∣ = OP
(
m−1/3

)
.

Then we bound I as follows, using the fact that A−1
ij = 1/||Xij(t)||∞ = OP (1),

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

X̃ij(t)

||Xij ||∞

∣∣∣∣ = sup
t∈T

∣∣∣∣(||Xij ||∞ − ||X̃ij ||∞)X̃ij(t)

||Xij ||∞||X̃ij ||∞

∣∣∣∣
≤
∣∣||Xij ||∞ − ||X̃ij ||∞

∣∣
||Xij ||∞

= OP
(
m−1/3

)
.

For II, we have

sup
t∈T

∣∣∣∣ X̃ij(t)

||Xij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣ ≤ ||X̃ij(t)−Xij(t)||∞

= OP
(
m−1/3

)
.

And finally,

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣ ≤ I + II

= OP
(
m−1/3

)
.
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Proof of Lemma 1: Under a similar notation used in the proof of Proposition 1,

where X̃ij is as per (2.40) and denotes the smoothing estimator and X̌ij is as per

(2.38) and denotes the local target of X̃ij , we bound the sup-norm between the

smoothed function and the true curve by

n−1
n∑
i=1

sup
t∈T
|Xij(t)− X̃ij(t)| ≤ n−1

n∑
i=1

sup
t∈T
|Xij(t)− X̌ij(t)|+n−1

n∑
i=1

sup
t∈T
|X̃ij(t)− X̌ij(t)|,

and turn our attention to each of these terms separately, the first corresponding

to the bias part and the latter to the stochastic part.

For the bias, observing that

sup
t∈T
|Xij(t)− X̌ij(t)| ≤ sup

1≤i≤n
sup
t∈T
|Xij(t)− X̌ij(t)|,

and we may immediately apply Theorem 2 of Chen & Müller (2020) to see that

sup
1≤i≤n

sup
t∈T
|Xij(t)− X̌ij(t)| = O(b2), (2.44)

and thus

n−1
n∑
i=1

sup
t∈T
|Xij(t)− X̌ij(t)| = sup

1≤i≤n
sup
t∈T
|Xij(t)− X̌ij(t)| = O(b2).

For the stochastic part, letting am = b
√
mwe observe that

lim sup
n→∞

P

(
n−1

n∑
i=1

sup
t∈T
|X̌ij(t)− X̃ij(t)| > C(amm

−δ/2)−1

)

≤ lim sup
n→∞

n∑
i=1

P

(
sup
t∈T
|X̌ij(t)− X̃ij(t)| > C(amm

−δ/2)−1

)
≤ lim sup

n→∞

n∑
i=1

sup
ω1∈Ω1

PΩ2

(
amm

−δ/2sup
t∈T
|X̌ij(t)− X̃ij(t)| > C

)
.

And so the stochastic term will converge at the rate a−1
m mδ/2 = b−1m(δ−1)/2 if we

show,

lim sup
n→∞

n∑
i=1

sup
ω1∈Ω1

PΩ2

(
amm

−δ/2sup
t∈T
|X̌ij(t)− X̃ij(t)| > C

)
→ 0, as C →∞. (2.45)
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Again following the argument in Chen & Müller (2020) with β1 = β2 = 2 results

in the following bound for any q ∈ N+,

lim sup
n→∞

n∑
i=1

sup
ω1∈Ω1

PΩ2

(
amm

−δ/2sup
t∈T
|X̌ij(t)− X̃ij(t)| > 2q

)
(2.46)

≤ 4C
∑
k>q

2−k lim sup
n→∞

m−δ/2 + 4C
∑
k>q

2−k lim sup
n→∞

nm−δ/2 (2.47)

thus the probability tends to 0 as q →∞ uniformly over ω1 ∈ Ω1 if lim sup
n→∞

nm−δ/2 <

∞, whence (2.45) follows. Then with b ∼ m−(1−δ)/6, we have b2 ∼ b−1m(δ−1)/2 ∼

m−(1−δ)/3 and we have shown (2.34). Lastly, (2.35) can be seen by following the

same reverse triangle inequality argument used in Proposition 2 in the context

of the rate found in Lemma 1.

Proof of Lemma 2: Without loss of generality, consider a fixed component j.

Define the unpenalized cost function

Cγj(θ,Hi′ , Hi) =

∫
T
d2
[
(γj ◦Hi′)[θ

Tα(t)], (γj ◦Hi)(t)
]
dt, j = 1, . . . , p,

where in our case d = d(f, g) = (f − g)(t). Then the arguments of Theorem 3 of

Chen & Müller (2020) imply that, for some positive constants C,C ′, C ′′ <∞,

||θ̃(j)
Vi′i
− θ(j)

Vi′i
|| ≤ Csup

θ∈Θ
|Cη(θ,H ′i, Hi)− Cγj(θ,H

′
i, Hi)|1/2

≤ C ′
[

sup
t∈T
|X̃ij(t)−Xij(t)|1/2 + sup

t∈T
|X̃i′j(t)−Xi′j(t)|1/2

]
+ C ′′η

1/2
1

= OP (m−1/6) +O(η
1/2
1 ).

Then since supt∈T |α`(t)| ≤ 1 for all ` = 1, . . . , L+ 1, it follows that

sup
t∈T
|Ṽ (j)
i′i (t)− V (j)

i′i (t)| = sup
t∈T
|(θ̃(j)

Vi′i
− θ(j)

Vi′i
)Tα(t)| ≤ ||θ̃(j)

Vi′i
− θ(j)

Vi′i
|| (2.48)

= OP (m−1/6) +O(η
1/2
1 ). (2.49)
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Proof of Theorem 1:

a. We seek a uniform rate of convergence of the individual distortion esti-

mates Ĥi. From the definition of Ĥi, we observe,

sup
t∈T
|Ĥi(t)−Hi(t)| = sup

t∈T
|p−1

p∑
j=1

(H̃
(j)
i (t)−Hi(t))|

≤ p−1

p∑
j=1

sup
t∈T
|H̃(j)

i (t)−Hi(t)|

≤ sup
1≤j≤p

sup
t∈T
|H̃(j)

i (t)−Hi(t)|.

Then for each j = 1, . . . , p,

sup
t∈T
|H̃(j)

i (t)−Hi(t)| ≤
1

n

n∑
i′=1

sup
t∈T
|Ṽ (j)
i′i (t)− V (j)

i′i (t)|+ sup
t∈T

∣∣∣∣∣ 1n
n∑

i′=1

V
(j)
i′i (t)−Hi(t)

∣∣∣∣∣ .
For the first term, an application of Lemmas 1 and 2 gives,

1

n

n∑
i′=1

sup
t∈T
|Ṽ (j)
i′i (t)− V (j)

i′i (t)| ≤ 1

n

n∑
i′=1

||θ̃(j)
i′i − θ

(j)
i′i ||

≤ C

[
sup
t∈T
|X̃ij(t)−Xij(t)|1/2 +

1

n

n∑
i′=1

sup
t∈T
|X̃i′j(t)−Xi′j(t)|1/2 + η

1/2
1

]
= OP (m−(1−δ)/6) +O(η

1/2
1 ).

For the second term, by Theorem 2.7.5 of Van der Vaart & Wellner (1996),

sup
t∈T

∣∣∣∣∣ 1n
n∑

i′=1

V
(j)
i′i (t)−Hi(t)

∣∣∣∣∣ = sup
t∈T

∣∣∣∣∣ 1n
n∑

i′=1

H−1
i′ (t)− t

∣∣∣∣∣
= sup

t∈T

∣∣∣∣∣ 1n
n∑

i′=1

H−1
i′ (t)− EH−1

i′ (t)

∣∣∣∣∣ = OP (n−1/2),

and therefore

sup
t∈T
|Ĥi(t)−Hi(t)| ≤ p sup

1≤j≤p
sup
t∈T
|H̃(j)

i (t)−Hi(t)|

= OP (n−1/2) +OP (m−(1−δ)/6) +O(η
1/2
1 ), i = 1, . . . , n.
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b. For all j = 1, . . . , p, we have

sup
t∈T
|γ̂j(t)− γj(t)| = sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

X̃ij ◦ Ĥ−1
i (t)

||X̃ij ||∞
− γ(t)

∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
X̃ij ◦ Ĥ−1

i (t)

||X̃ij ||∞
−
Xij ◦ Ĥ−1

i (t)

||Xij ||∞

]∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

Xij ◦ Ĥ−1
i (t)

||Xij ||∞
− γ(t)

∣∣∣∣∣ .
The first term relies on the uniform rate of the smoother,

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
X̃ij ◦ Ĥ−1

i (t)

||X̃ij ||∞
−
Xij ◦ Ĥ−1

i (t)

||Xij ||∞

]∣∣∣∣∣ ≤ 1

n

n∑
i=1

sup
t∈T

∣∣∣∣X̃ij ◦ Ĥ−1
i (t)

||X̃ij ||∞
−
Xij ◦ Ĥ−1

i (t)

||Xij ||∞

∣∣∣∣
=

1

n

n∑
i=1

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣
= OP (m−(1−δ)/3),

by Lemma 1.

The bounding argument for the second term is as follows and uses the Lips-

chitz continuity of λ and Ψj ,

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

Xij ◦ Ĥ−1
i (t)

||Xij ||∞
− γj(t)

∣∣∣∣∣ = sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
Aijλ ◦Ψj ◦Hi ◦ Ĥ−1

i (t)

Aij
− (λ ◦Ψj)(t)

]∣∣∣∣∣
= sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
(λ ◦Ψj)(Hi(t))− (λ ◦Ψj)(Ĥi(t))

]∣∣∣∣∣
≤ C

n

n∑
i=1

sup
t∈T
|Ĥi(t)−Hi(t)|

≤ C ′ sup
1≤j≤p

1

n

n∑
i=1

sup
t∈T
|H̃(j)

i (t)−Hi(t)|.

The rate of this last term follows by a similar argument used in part a. Specifi-
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cally, we observe that

1

n

n∑
i=1

sup
t∈T
|H̃(j)

i (t)−Hi(t)| ≤
1

n

n∑
i=1

[
1

n

n∑
i′=1

sup
t∈T
|Ṽ (j)
i′i (t)− V (j)

i′i (t)|

+ sup
t∈T

∣∣∣∣ 1n n∑
i′=1

V
(j)
i′i (t)−Hi(t)

∣∣∣∣]

=
1

n2

n∑
i=1

n∑
i′=1

||θ̃(j)
i′i − θ

(j)
i′i ||+ sup

t∈T

∣∣∣∣∣ 1n
n∑

i′=1

H−1
i′ (t)− t

∣∣∣∣∣
≤ C

1

n

n∑
i=1

sup
t∈T
|Xij(t)− X̃ij(t)|1/2

+ C
1

n

n∑
i′=1

sup
t∈T
|Xi′j(t)− X̃i′j(t)|1/2 + Cη

1/2
1

+ sup
t∈T

∣∣∣∣∣ 1n
n∑

i′=1

H−1
i′ (t)− t

∣∣∣∣∣
= OP (n−1/2) +OP (m−(1−δ)/6) +O(η

1/2
1 ),

where the final rates come from Lemma 1 and Theorem 2.7.5 of Van der Vaart &

Wellner (1996). Then altogether,

sup
t∈T
|γ̂j(t)− γj(t)| = OP (m−(1−δ)/3) +OP (n−1/2) +OP (m−(1−δ)/6) +O(η

1/2
1 )

= OP (n−1/2) +OP (m−(1−δ)/6) +O(η
1/2
1 ).

c. The argument for the latent curve mirrors the proof of part b., as we have

sup
t∈T
|λ̂(t)− λ(t)| = 1

n

n∑
i=1

∣∣∣∣Z̃i ◦ D̂−1
i (t)

||Z̃i||∞
− λ(t)

∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
Z̃i ◦ D̂−1

i (t)

||Z̃i||∞
−
Zi ◦ D̂−1

i (t)

||Zi||∞

]∣∣∣∣∣+ sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

Zi ◦ D̂−1
i (t)

||Zi||∞
− λ(t)

∣∣∣∣∣ .
Defining 1ij as the indicator that event Iij occurs (that is, the jth curve is selected

as the representative curve for the ith observation), the first term relies on the
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uniform rate of the smoother,

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
Z̃i ◦ D̂−1

i (t)

||Z̃i||∞
−
Zi ◦ D̂−1

i (t)

||Zi||∞

]∣∣∣∣∣ ≤ 1

n

n∑
i=1

sup
t∈T

∣∣∣∣Z̃i ◦ D̂−1
i (t)

||Z̃i||∞
−
Zi ◦ D̂−1

i (t)

||Zi||∞

∣∣∣∣
=

1

n

p∑
j=1

n∑
i=1

1ij

(
sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣)

≤ p

n
sup

1≤j≤p

n∑
i=1

sup
t∈T

∣∣∣∣ X̃ij(t)

||X̃ij ||∞
−

Xij(t)

||Xij ||∞

∣∣∣∣
= OP (m−(1−δ)/3),

where the rate is given by by Lemma 1 and the finiteness of p.

The second term is bounded as follows, using the Lipschitz continuity of λ

and applying Lemma 2 and the argument used in Theorem 1 part b. for the

uniform rate of D̂i,

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

Zi ◦ D̂−1
i (t)

||Xij ||∞
− λ(t)

∣∣∣∣∣ = sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
Aijλ ◦Di ◦ D̂−1

i (t)

Aij
− λ(t)

]∣∣∣∣∣
= sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

[
λ(Di(t))− λ(D̂i(t))

]∣∣∣∣∣
≤ sup

1≤j≤p

C

n

n∑
i=1

sup
t∈T
|D̂i(t)−Di(t)|

= OP (n−1/2) +OP (m−(1−δ)/6) +O(η
1/2
1 ).

Then altogether,

sup
t∈T
|λ̂(t)− λ(t)| = OP (m−(1−δ)/3) +OP (n−1/2) +OP (m−(1−δ)/6) +O(η

1/2
1 )

= OP (n−1/2) +OP (m−(1−δ)/6) +O(η
1/2
1 ).

d. Define the unpenalized objective function for the component warps

C ∗(θ; γj , λ) =

∫
T

(γj(t)− λ(θTα(t))2dt. (2.50)
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Then a similar argument to that used in Theorem 3 of Chen & Müller (2020)

bounds the discrepancy between estimated and true spline coefficients. Specifi-

cally, there exists a constant C0 > 0 such that

||θ̃Ψj
− θΨj

||2 ≤ C0

[
C ∗(θ̃Ψj

; γj , λ)− C ∗(θΨj
; γj , λ)− Cη2(θ̃Ψj

; γ̂j , λ̂) + Cη2(θΨj
; γ̂j , λ̂)

]
Then we note that

C ∗(θ̃Ψj
; γj , λ)−C ∗(θΨj

; γj , λ)− Cη2(θ̃Ψj
; γ̂j , λ̂) + Cη2(θΨj

; γ̂j , λ̂)

=

∫
T

(
(γj(t)− λ(θ̃TΨj

α(t)))2 − (γ̂j(t)− λ̂(θ̃TΨj
α(t)))2

)
dt

+

∫
T

(
(γj(t)− λ(θTΨj

α(t)))2 − (γ̂j(t)− λ̂(θTΨj
α(t)))2

)
dt

+ η2

(∫
T

(θ̃TΨj
α(t))− t)2 − (θTΨj

α(t))− t)2

)
dt

:= I + II + III,

where we let I, II, and III denote the three terms in the sum and bound each of

them separately, using C1, C2, ... to denote generic constants.

For I, we have

I =

∫
T

(
(γj(t)− λ(θ̃TΨj

α(t)))2 − (γ̂j(t)− λ̂(θ̃TΨj
α(t)))2

)
dt

=

∫
T

[ (
γj(t)− γ̂j(t) + λ̂(θ̃TΨj

α(t))− λ(θ̃TΨj
α(t))

)
×
(
γj(t) + γ̂j(t)− λ(θ̃TΨj

α(t))− λ̂(θ̃TΨj
α(t))

) ]
dt

≤
(∫
T

∣∣γj(t)− γ̂j(t) + λ̂(θ̃TΨj
α(t))− λ(θ̃TΨj

α(t))
∣∣2 dt)1/2

×
(∫
T

∣∣γj(t) + γ̂j(t)− λ(θ̃TΨj
α(t))− λ̂(θ̃TΨj

α(t))
∣∣2 dt)1/2

.
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The first term in the product is straightforward to bound:(∫
T

∣∣γj(t)− γ̂j(t) + λ̂(θ̃TΨj
α(t))− λ(θ̃TΨj

α(t))
∣∣2 dt)1/2

≤
(

2

∫
T
|γj(t)− γ̂j(t)|2 dt+ 2

∫
T

∣∣λ̂(θ̃TΨj
α(t))− λ(θ̃TΨj

α(t))
∣∣2 dt)1/2

≤
(
C1||γ̂j − γj ||2∞ + C2||λ̂− λ||2∞

)1/2

≤ C3

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
The bound for the second term involves the same terms in addition to distance

between estimated and true spline coefficients. The argument uses the fact that

γj(t) = λ(Ψj(t)) = λ(θTΨj
α(t)):

(∫
T

∣∣γj(t) + γ̂j(t)− λ(θ̃TΨj
α(t))− λ̂(θ̃TΨj

α(t))
∣∣2 dt)1/2

=

(∫
T

∣∣γ̂j(t)− γj(t) + λ(θ̃TΨj
α(t))− λ̂(θ̃TΨj

α(t)) + 2(γj(t)− λ(θ̃TΨj
α(t)))

∣∣2 dt)1/2

≤
(

2

∫
T

∣∣γ̂j(t)− γj(t) + λ(θ̃TΨj
α(t))− λ̂(θ̃TΨj

α(t))
∣∣2 dt

+ 8

∫
T
|λ(θTΨj

α(t))− λ(θ̃TΨj
α(t))|2dt

)1/2

From here it just remains to bound the second term, which relies on the Lipschitz

continuity of λ and the fact that and supt |α`(t)| ≤ 1 for all ` = 1, ..., L+ 1:∫
T
|λ(θTΨj

α(t))− λ(θ̃TΨj
α(t))|2 ≤ C4||θTΨj

α(t)− θ̃TΨj
α(t)||2∞

≤ C5||θΨj
− θ̃Ψj

||2.

Thus the second term in the product is bounded as:(∫
T

∣∣γj(t) + γ̂j(t)− λ(θ̃TΨj
α(t))− λ̂(θ̃TΨj

α(t))
∣∣2 dt)1/2

≤ C6

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞ + ||θ̃Ψj

− θΨj
||
)
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So altogether I is bounded by

I ≤ C3

[
||γ̂j − γj ||∞ + ||λ̂− λ||∞

]
× C6

[
||γ̂j − γj ||∞ + ||λ̂− λ||∞ + ||θΨj

− θ̃Ψj
||
]

≤ C7

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2

+ C8

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
× ||θ̃Ψj

− θΨj
||.

Next, II can be simplified, again by noting that γj(t) = λ(Ψj(t)) = λ(θTΨj
α(t)) so

that∫
T

(
(γj(t)− λ(θTΨj

α(t)))2 − (γ̂j(t)− λ̂(θTΨj
α(t)))2

)
dt =

∫
T

(
γ̂j(t)− λ̂(θTΨj

α(t))
)2
dt.

Then,

II =

∫
T

(
γ̂j(t)− λ(θTΨj

α(t)) + λ(θTΨj
α(t))− λ̂(θTΨj

α(t))
)2
dt

≤ 2

∫
T

(γ̂j(t)− γj(t))2 dt+ 2

∫
T

(
λ(θTΨj

α(t))− λ̂(θTΨj
α(t))

)2
dt

≤ C9||γ̂j − γj ||2∞ + C10||λ̂− λ||2∞

≤ C11

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2
.

Lastly III is bounded as follows:

η2

(∫
T

(θ̃TΨj
α(t))− t)2 − (θTΨj

α(t))− t)2

)
dt

≤ η2

(∫
T

(θ̃TΨj
α(t))− t)2 + (θTΨj

α(t))− t)2

)
dt

≤ 2η2

∫
T
t2dt

≤ 2η2|T |3/3.
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Then combining these bounds, we have

C ∗(θ̃Ψj
; γj , λ)−C ∗(θΨj

; γj , λ)− Cη2(θ̃Ψj
; γ̂j , λ̂) + Cη2(θΨj

; γ̂j , λ̂)

≤ I + II + III

≤ (C7 + C11)
(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2

+ C8

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
× ||θ̃Ψj

− θΨj
||+ 2η2|T |3/3

which implies

||θ̃Ψj
− θΨj

||2−C2
0C8

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
× ||θ̃Ψj

− θΨj
||

≤ C0

[
(C7 + C11)

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2
+ 2η2|T |3/3

]
.

By completing the square,∣∣∣∣||θ̃Ψj
− θΨj

||−C0C8

2

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

) ∣∣∣∣2
≤ C0

[
(C7 + C11)

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2
+ 2η2|T |/3

]
+
C2

0C
2
7

4

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2

≤ C12

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)2
+ 2C0η2|T |3/3,

and taking the square root, we have∣∣∣∣||θ̃Ψj
− θΨj

||−C∗
(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

) ∣∣∣∣
≤ C13

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
+ C14η

1/2
2 .

Then by Theorem 1b. and 1c., the right hand side is such that

C13

(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
+ C14η

1/2
2 = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2),

and so is the term,

C∗
(
||γ̂j − γj ||∞ + ||λ̂− λ||∞

)
= OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2),
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so we conclude that

||θ̃Ψj
− θΨj

|| = OP (n−1/2) +OP (τ
1/2
m ) +O(max(η1, η2)1/2).

Finally, since supt |α`(t)| ≤ 1 for all ` = 1, ..., L + 1, the result for the component

warps immediately follows, as:

sup
t∈T
|Ψ̂j(t)−Ψj(t)| = sup

t∈T
|(θ̃Ψj

(t)− θΨj
)Tα(t)|

≤ ||θ̃Ψj
− θΨj

||

= OP (n−1/2) +OP (τ
1/2
m ) +O(max(η1, η2)1/2).

e. For the overall warping functions Gij , we again break the difference into

two parts which we already know the rates for and use the Lipschitz continuity

of Ψj :

sup
t∈T
|Ĝij(t)−Gij(t)| = sup

t∈T
|(Ψ̂j ◦ Ĥi)(t)− (Ψj ◦ Ĥi)(t) + (Ψj ◦ Ĥi)(t)− (Ψj ◦Hi)(t)|

≤ sup
t∈T
|(Ψ̂j ◦ Ĥi)(t)− (Ψj ◦ Ĥi)(t)|+ sup

t∈T
|(Ψj ◦ Ĥi)(t)− (Ψj ◦Hi)(t)|

≤ sup
t∈T
|Ψ̂j(t)−Ψj(t)|+ Csup

t∈T
|Ĥi(t)−Hi(t)|

= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2)

where the rates follow from Theorem 1a. and 1d.

f. The amplitude factors’ convergence rate was shown in the proof of Propo-

sition 1.
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Proof of Theorem 2:

a. Consider bounding the maximum difference between the estimated XCT

and its target by

sup
t∈T
|T̂jk(t)− Tjk(t)| = sup

t∈T

∣∣(Ψ̂−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦Ψk)(t)
∣∣

≤ sup
t∈T

∣∣(Ψ̂−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦ Ψ̂k)(t)
∣∣

+ sup
t∈T

∣∣(Ψ−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦Ψk)(t)
∣∣

The rate of the first term can be obtained in a straightforward manner by observ-

ing,

sup
t∈T

∣∣(Ψ̂−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦ Ψ̂k)(t)
∣∣ = sup

t∈T

∣∣(Ψ̂−1
j ◦ Ψ̂k)(Ψ̂

−1
k (t))− (Ψ−1

j ◦ Ψ̂k)(Ψ̂
−1
k (t))

∣∣
= sup

t∈T

∣∣Ψ̂−1
j (t)−Ψ−1

j (t)
∣∣

= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2)

where the rates are given by the argument found in Theorem 1d.

For the second term, we use the Lipschitz continuity of Ψ−1
j to arrive at

sup
t∈T

∣∣(Ψ−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦Ψk)(t)
∣∣ ≤ Csup

t∈T

∣∣Ψ̂k(t)−Ψk(t)
∣∣

= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2)

again by Theorem 1d. Therefore, the cross-component transports’ rate of conver-

gence is

sup
t∈T
|T̂jk(t)− Tjk(t)| ≤ sup

t∈T

∣∣(Ψ̂−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦ Ψ̂k)(t)
∣∣

+ sup
t∈T

∣∣(Ψ−1
j ◦ Ψ̂k)(t)− (Ψ−1

j ◦Ψk)(t)
∣∣

= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2),

for all j, k = 1, . . . , p.
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b. The argument for the subject-specific cross-component transports follows

the same argument but instead involves the composition of Gij and Gik. Note

that since Ψj and Hi are Lipschitz continuous, then Gij = Ψj ◦Hi is as well. Then

we have,

sup
t∈T
|T̂ (i)
jk (t)− T (i)

jk (t)| = sup
t∈T

∣∣∣∣(Ĝ−1
ij ◦ Ĝik)(t)− (G−1

ij ◦ Ĝik)(t)

+ (G−1
ij ◦ Ĝik)(t)− (G−1

ij ◦Gik)(t)
∣∣∣∣

≤ sup
t∈T

∣∣(Ĝ−1
ij ◦ Ĝik)(t)− (G−1

ij ◦ Ĝik)(t)
∣∣

+ sup
t∈T

∣∣(G−1
ij ◦ Ĝik)(t)− (G−1

ij ◦Gik)(t)
∣∣

≤ sup
t∈T

∣∣Ĝ−1
ij (t)−Gij(t)

∣∣+ Csup
t∈T

∣∣Ĝik(t)−Gik(t)∣∣
= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2),

for all i = 1, . . . , n, j, k = 1, . . . , p, by Theorem 1e. This completes the proof.

Proof of Theorem 3:

The reconstructed curves depends on the rates of convergence for the Aij , λ,

and Gij terms, which are established in Theorem 1. We bound the sup-norm

between the estimated and true curves in terms of the quantities I and II as

follows,

sup
t∈T
|X̂ij(t)−Xij(t)| = sup

t∈T
|Âij(λ̂ ◦ Ĝij)(t)− Aij(λ ◦Gij)(t)|

≤ sup
t∈T
|Âij(λ̂ ◦ Ĝij)(t)− Âij(λ ◦Gij)(t)|

+ sup
t∈T
|Âij(λ ◦Gij)(t)− Aij(λ ◦Gij)(t)|

= Âijsup
t∈T
|(λ̂ ◦ Ĝij)(t)− (λ ◦Gij)(t)|+ sup

t∈T
|(Âij − Aij)(λ ◦Gij)(t)|

:= I + II.

Bounding I can be done using the familiar Lipschitz strategy used in the proofs
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of Theorems 1 and 2:

Âijsup
t∈T
|(λ̂ ◦ Ĝij)(t)− (λ ◦Gij)(t)| = Âijsup

t∈T

∣∣∣∣(λ̂ ◦ Ĝij)(t)− (λ ◦ Ĝij)(t)

+ (λ ◦ Ĝij)(t)− (λ ◦Gij)(t)
∣∣∣∣

≤ Âij

(
sup
t∈T
|(λ̂− λ)(t)|+ Csup

t∈T
|Ĝij(t)−Gij(t)|

)
The estimated amplitude factor can be dealt with by adding and subtracting the

true Aij and using the triangle inequality:

Âij

(
sup
t∈T
|(λ̂− λ)(t)|+ Csup

t∈T
|Ĝij(t)−Gij(t)|

)
≤ Aij

(
sup
t∈T
|(λ̂− λ)(t)|+ Csup

t∈T
|Ĝij(t)−Gij(t)|

)
+

|Âij − Aij |
(

sup
t∈T
|(λ̂− λ)(t)|+ Csup

t∈T
|Ĝij(t)−Gij(t)|

)
= OP (1)

[
OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2)

]
+

OP (m−1/6)
[
OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2)

]
= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2).

Then II follows by noting that Gij is a homeomorphism and ||λ||∞ = 1 by

assumption.

sup
t∈T
|(Âij − Aij)(λ ◦Gij)(t)| ≤ |Âij − Aij | sup

t∈T
|(λ ◦Gij)(t)|

= |Âij − Aij | = OP (m−1/6).

Combining these rates gives

sup
t∈T
|X̂ij(t)−Xij(t)| = OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2) +OP (m−1/6)

= OP (n−1/2) +OP (m−(1−δ)/6) +O(max(η1, η2)1/2)

which completes the proof.
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Proof of Corollaries 1-3: The arguments for all Corollaries 1-3 are identical so

here we show Corollary 1 and omit the others.

If η1 ∼ η2 = O(n−1) and m(n) = O(n∆(1−δ)−1

), with ∆ > 3, then

sup
t∈T
|Ĥi(t)−H(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 )

= OP (n−1/2) +OP (n−∆/6) +OP (n−1/2).

The result follows by observing that ∆/6 > 1/2 if ∆ > 3 and thus,

sup
t∈T
|Ĥi(t)−H(t)| = OP (n−1/2).

This same argument holds for the terms in Theorems 1b.-e., 2, and 3. For Theo-

rem 1f., the argument is very similar, as ∆(1− δ)−1/6 > ∆/6 > 1/2, so we have

|Âij − Aij | = OP (m−1/6)

= OP (n−∆(1−δ)−1/6)

= OP (n−1/2),

and the result follows.
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