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ABSTRACT OF THE DISSERTATION

Advancing Process-Based Nonstationary Analysis of Climate Extremes:
Modeling, Uncertainty Assessment and Multivariate Attribution

By

Elisa Ragno

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2018

Professor Amir AghaKouchak, Chair

Extreme weather events are inherent in climate variability and they can cause ecosystem

alterations, infrastructure damages, suspension of food supply chains, and loss of lives. To-

day’s highly populated and urbanized society is more vulnerable than ever to natural hazards

and their disruptive consequences. Projected population growth and changes in climate vari-

ability are expected to exacerbate the societal and economic impact of climatic extremes.

The scientific community, global organizations, and other stakeholders have all recognized

the urgency of improving our understanding of both natural and human-induced climate

variability.

The overarching goal of this thesis is to advance the current methods for nonstationary analy-

sis of climatic extremes and their attributions. Here we propose a methodological framework

for investigating hydroclimatic extremes over time and in response to a physical driver/co-

variate. The Process-based Nonstationary Extreme Value Analysis (ProNEVA) framework

is unique in that it allows for incorporating a physical component into traditional frequency

analysis techniques to account for observed or process-based changes in the variable of in-

terest. The model can be used for both stationary and nonstationary analyses of extremes

and includes a Graphical User Interface (GUI) for easier implementation.

xiv



We then shed light on the uncertainty inherent in the estimation of climatic extremes. We

propose a generalized approach for including uncertainty information in the recurrence in-

terval of extremes. The approach offers insights on how information about extremes should

be interpreted by planners and decision-makers under conditions of uncertainty.

Using the method developed in this thesis, we show how extreme precipitation is expected

to change in the future. We also highlight the importance of merging information from

observations and climate model simulations for risk assessment purposes.

Finally, we outline a methodological framework for attribution of changes in multiple ex-

tremes or multiple features of an extreme event. We show the potential of copula functions

for attribution of changes in both the magnitude and the dependence structure between char-

acteristics of a natural phenomenon or, more generally, between two dependent variables.
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Chapter 1

Introduction

Extreme weather events are inherent in the climate variability and communities around the

world must face and coexist with them. In 1953 a combination of high spring tides, storm

surge, wind, and very large waves in the North Sea caused extensive flooding in the U.K. and

Northern Europe. The Netherlands lost 1,800 people (MetOffice, 2013). In 2003 the heatwave

in Europe caused 15,000 deaths in France, Portugal, and Italy (Fink et al., 2004); the 2003

European summer was recorded as the hottest since 1500 AD (Stott et al., 2002; Black

et al., 2004; Schär et al., 2004). Similarly, deadly summer heatwaves have afflicted Indian

population since 2013 (Mazdiyasni et al., 2017). From 1997 to late 2009 the Millennium

Drought, or the “Big Dry” (Heberger, 2011), affected southern Australia (AghaKouchak

et al., 2014b; Heberger, 2011). Rainfall below average and consequent scarcity of surface

water resources impacted the country’s ecosystem and economy (Van Dijk et al., 2013). In

2005, Hurrican Katrina struck the Mississippi Deltaic Plain and caused about 1,570 deaths

and $ 40-50 billion in monetary losses in New Orleans (LA)(Day et al., 2007). During

the winter of 2013-2014, the U.K. was hit by an extreme storm surge, a series of intense

storms, and prolonged and persistent rainfall causing widespread flooding throughout the

country, damaging properties and threatening lives (Thorne, 2014). In 2012-2016, the state
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of California experienced a severe drought caused by lack of precipitation and extremely

high temperatures (AghaKouchak et al., 2014a; Swain, 2015; Funk et al., 2014). Consequent

low water levels in the reservoirs reduced the hydropower generation (Gleick, 2016; Tarroja

et al., 2016) and caused an over-exploitation of groundwater resources (Taylor et al., 2013;

Xiao et al., 2017).

The historical extreme events previously mentioned are only a few examples of natural haz-

ards that communities across the globe have experienced. Observations of historical extremes

and projections of future changes to natural hazards are critical for better preparation and

management of societal impacts. Therefore, a comprehensive understanding and charac-

terization of extremes is required to enhance societal resilience and to their impacts such

as ecosystem alterations, infrastructure damages, suspension of the food supply chain, and,

most importantly, loss of lives (IPCC, 2014b).

1.1 Climate Extremes

1.1.1 Defining Extreme Events

A univocal definition of extreme events does not exist. In general, extreme events refer to: (1)

events with small probability of occurrence (rare events) based on a probability density func-

tion estimated from observations; (2) events that lead to significant socioeconomic impacts

(i.e., events above a specific impact-related threshold) (Seneviratne et al., 2012). However, in

practice the two definitions often (but not necessarily) match, meaning that events causing

severe damages are also the ones with a small probability of occurrence (Seneviratne et al.,

2012). It is worth noting that, not all the extremes cause disruptions and, analogously, not

all the damages are caused by extreme events. For example, in February 2017, Oroville Dam

(Northern California) suffered from structural damages and 2,000 people leaving downstream
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were evacuated. Damages and the consequent state of emergency were caused by moderate

rainfall along with a combination of antecedent conditions, and even the age of the dam

might have played a role in the impact (Vahedifard et al., 2017a).

1.1.2 Evidence of a Changing Climate

Extremes are expected to exhibit a great deal of variability under natural forcings. However,

there is evidence that human activities (including anthropogenic emissions, urbanization,

deforestation) have altered the occurrence and impact of extreme events. The observed and

projected changes related to climate extremes pertain to both changes in their frequency

and severity (probability-based extremes) and to changes in the exposure and vulnerability

of the sites affected by them (impact-based extremes).

The projected increase in population residing in urban areas is predicted to exacerbate the

potential losses and damages caused by natural hazards (Gu et al., 2015). Pielke and Landsea

(1998) showed that the observed increase in the damages experienced as a consequence of

hurricanes along the US coasts disappears when the results are normalized considering the

coastal population growth and the improved living conditions. Similarly, the 2005 flood in

Mumbai would have caused 80% more losses and would have affected 20% more people if it

had occurred in 2015, independently of the effect of climate change (Bouwer et al., 2007).

If on one hand the exposure and vulnerability to natural hazards have increased, on the

other hand there is evidence of changes in the statistics of extreme events, e.g., heatwaves,

storms, droughts, surges, mainly because of the increase in greenhouse gas (GHG) emissions,

such as CO2, deriving from anthropogenic activities.

Over the past decades, we have observed increasing surface temperatures (e.g., Alexander

et al., 2006; Barnett et al., 1999; Villarini et al., 2010; Melillo et al., 2014; Diffenbaugh et al.,
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2015; Fischer and Knutti, 2015; Mazdiyasni and AghaKouchak, 2015), more intense rainfall

events (e.g., Alexander et al., 2006; Zhang et al., 2007; Villarini et al., 2010; Min et al.,

2011; Marvel and Bonfils, 2013; Westra et al., 2013; Cheng et al., 2014; Fischer and Knutti,

2016; Mallakpour and Villarini, 2017; Ragno et al., 2018), changes in river discharge (e.g.,

Villarini et al., 2009a,b; Hurkmans et al., 2009; Stahl et al., 2010), and sea level rise (e.g.,

Holgate, 2007; Haigh et al., 2010; Wahl et al., 2011; Vermeer and Rahmstorf, 2009; Cabanes

et al., 2001; Rignot et al., 2011; Vandenberg-Rodes et al., 2016; Moftakhari et al., 2017a). A

warming climate implies an intensification of the water cycle, i.e. an increase in the frequency

and intensity of tropical storms, floods, and droughts, due to the positive feedback between

temperature and water vapor (e.g Trenberth, 2011; Manabe and Wetherald, 1975; Marengo

and Espinoza, 2016; Huntington, 2006; Gloor et al., 2013; Held and Soden, 2006; Groisman

et al., 2004; Wu et al., 2013). In the following, a brief review of the literature on different

types of extremes is provided.

Heatwaves

European summer heatwaves, in particular multi-day heatwaves associated with warm night

temperature and high humidity, are projected to become more frequent (Schär et al., 2004;

Meehl and Tebaldi, 2004; Beniston, 2004; Clark et al., 2006), in accordance to observed

past trends (Tank et al., 2005; Della-Marta et al., 2007), and the geographical patterns

are consistent across models and health indicators (Fischer and Schär, 2010). Furthermore,

Cueto et al. (2010) showed that the duration and intensity of heatwaves in the city of Mexicali

(Mexico) increased during summer months, and more than doubled in number since 1970.

Besides, the same pattern is found in projections (Cueto et al., 2010).

Mazdiyasni and AghaKouchak (2015) found a significant increase in the co-occurrence of

drought and heatwaves across the United States, which enhances their impact on environment

and society. Other evidence of increase in extreme heatwaves can be found in the literature
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(e.g., Coumou and Rahmstorf, 2012; Peng et al., 2011; Frich et al., 2002; Khaliq et al., 2005;

Lau and Nath, 2012; Mazdiyasni et al., 2017).

Cyclones

Exceptional tropical cyclones have occurred since 2004, however, a formal detection of a

change is obstructed by the short length of records, large variability in the number and inten-

sity of storms and incomplete understanding of the driving forces (Coumou and Rahmstorf,

2012). Webster et al. (2005) observed an increase in number and proportion of hurricanes

reaching categories 4 and 5, in North Pacific, Indian, and Southwest Pacific Oceans, even

though the number of cyclones and cyclone days has decreased in the past decades, except

in North Atlantic.

Elsner et al. (2008) reported that the Atlantic tropical cyclones are getting stronger due to

the increase in the ocean temperature, while signals of changes over the rest of the tropics are

too weak to be observed. However, assuming a warmer sea, more energy will be available to

be converted into tropical cyclone wind (Elsner et al., 2008). Knutson et al. (2010) observed

that, even though it is not possible to attribute past changes in tropical cyclone activities

to the increase in GHG emission, future projections based on theory and high-resolution

dynamical models consistently indicate that a warming climate will increase the intensity

and frequency of tropical cyclones. However, the results show large variations across the

existing climate models (Knutson et al., 2010).

Droughts

Damberg and AghaKouchak (2014) investigated the amplitude and frequency of drought in

the Southern and Northern Hemisphere over the past 3 decades using satellite gauge-adjusted

precipitation observations. Areas in southwest United States, Amazon, the Horn of Africa,
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Northern India and the Mediterranean region showed a drying trend, while southwest Asia,

Central America, northern Australia, and parts of eastern Europe exhibited a wetting trend.

While there are regional drought trends in historical data, there seem to be little evidence

of a significant trend in droughts at a continental to global scale in historical observations

(Sheffield et al., 2012). However, several contradictory reports have been published based

on different indicators and data sets leading to different results (Trenberth et al., 2014). For

example, Dai (2013) concluded that the observed aridity since 1950 over land is consistent

with model predictions suggesting that in the next 30-90 years widespread droughts will

be expected. Sheffield and Wood (2008) estimated, in a warming climate, an increase in

long-term droughts, driven mainly by a lack of precipitation associated with increase in

evaporation. Overall, the projected increase in heating of the ocean and atmosphere from

anthropogenic activities is expected to intensify future droughts causing more socioeconomic

damages (Trenberth et al., 2014).

Heavy Precipitation

Groisman et al. (2005) investigated changes in heavy precipitations. They found that ex-

tratropiacal regions, including United States, have experienced an increase in extreme pre-

cipitation due to a GHG-enriched atmosphere (Groisman et al., 2005). Similarly, Allan and

Soden (2008) examined extreme precipitations in tropical regions. Using satellite observa-

tions, they found that heavy precipitation has increased during warm periods, and decreased

during cold periods. Their results were also confirmed with climate model simulations (Allan

and Soden, 2008).

Using fingerprint methods, Min et al. (2011) showed that the observed intensification of

heavy precipitation over the northern hemisphere is attributable to increases in GHG. Com-

parable results can be found in Westra et al. (2013), who investigated annual maximum

6



daily precipitation on a global scale during the 20th and early 21st century. They estimated

a rate of increase in annual maximum daily rainfall intensity between 5.9 and 7.7 % per

◦C of globally averaged near-surface atmospheric temperature (Westra et al., 2013). Westra

et al. (2013) attributed the observed changes not only to the increase in temperatures but

also to changes in atmospheric circulation. Donat et al. (2016) investigated changes in both

total and extreme precipitation on a global scale in dry and wet regions. They observed an

increase in extreme daily precipitation in both regions. They showed that changes in dry

regions are highly dependent on temperature changes.

However, precipitation patterns are complex, and opposite trends can be observed on both

a spatial and time scale. For example, Zheng et al. (2015) explored changes in seasonal

and annual precipitation in the greater Sydney using gauged observations. On an annual

temporal scale, he recorded an increase in precipitation extremes for storm duration less

then 2 hours, while a decrease in precipitation higher than 3 hours (except 12 hr). On

a seasonal scale, Zheng et al. (2015) observed an increase in summer extremes, while a

decrease in autumn and winter precipitation. Based on their results, Zheng et al. (2015)

argued possible opposing signals in summer and winter seasons. Wang and Zhou (2005)

analyzed extreme precipitation across China during 1961-2001. They observed increases in

extreme precipitation (mainly in summer) in the southwest, northwest, and east of China,

while decreases (mainly in spring and autumn) in the center, north and northeast of China.

Moreover, they showed that extreme precipitation over Yangtze River basin has increased

by 10-20 % every 10 years during summer (Wang and Zhou, 2005). In a recent study Swain

et al. (2018) showed that anthropogenic forcing is projected to increase in the frequency of

wet extremes in the 21st century. They also showed that while the mean precipitation is not

expected to change substantially in the future, there is a high chance of significant increases

in extreme dry-to-wet precipitation events (Swain et al., 2018).

It is important to highlight the fact that the confidence in studies related to precipitation
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changes depends on the density of the available gauge network (e.g., Groisman et al., 2005;

Westra et al., 2013). Good quality and quantity of observations are also beneficial for global

climate models. Donat et al. (2016) noted that model uncertainties are largest in regions

where the quality of observations is not good. Min et al. (2011) and Allan and Soden (2008)

have also noticed that climate models underestimate extreme precipitation magnitude in

response to increase in CO2.

1.2 Climate Extremes and Society

Urban and rural community development, economic prosperity, and human wealth and health

rely on proper management of quality and quantity of water resources, and, more generally,

on the resilience, coping, and adaptive capacity of settlements (Cardona et al., 2012). Flood

protection systems, for example, allow human settlement and economic prosperity in low

lying areas (Viglione et al., 2014; Di Baldassarre et al., 2013).

A comprehensive characterization of climate extremes has a fundamental societal importance

(Alexander, 2016), as demonstrated by the Weather and Climate Extremes Grand Challenge

of the the World Climate Research Programme (WCRP). WCRP organizes workshops and

conferences with the aim of improving the current knowledge on analysis and prediction of

Earth system variability and change. Research outputs are then implemented for practical

applications that will benefit society (WCRP, 2018). The WCRP Joint Scientific Committee

(JSC), together with sponsors, stakeholders, and a network of scientists, identifies a number

of Grand Challenges (GC) representing research areas to be improved. Weather and Climate

Extremes WCRP Grand Challenge focuses on enhancing our physical understanding and

prediction of extreme events in a changing climate which are supporting tools for decision

and policy makers, and stakeholders.
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A better characterization of climate extreme in a changing climate is in line with the main

objective of the United Nation 2030 Agenda for Sustainable Development, adopted by world

leaders in September 2015, (UN, 2015). Indeed, Goal 11, Make cities inclusive, safe, resilient

and sustainable, (UN, 2015), will greatly benefit from a more comprehensive knowledge of

climate extremes to guarantee basic services, good quality of life, and societal and economic

development, limiting the threat of natural hazard. One of the goals of this dissertation is

to contribute to the existing methodological frameworks for evaluating changes in extreme

events and their impacts.

1.3 Modeling a Changing Climate

The effects of human activities on freshwater systems, land use land cover change and on like-

lihood of extreme events threatening humans and ecosystems motivate predicting changes in

extremes beyond the range of observed variability (Wagener et al., 2010). Currently, climate

change and variability is investigated using physical-based models or statistical models.

Physical-based models are built on fundamental laws of nature (e.g., energy, mass and mo-

mentum conservation) solved in latitude-longitude-height grid (Flato et al., 2013). Models

such as the Atmosphere–Ocean General Circulation Model (AOGCM) attempt to reproduce

the dynamics between atmosphere, ocean, land, and sea ice, and are used in the Inter-

governmental Panel on Climate Change (IPCC) climate assessment studies (Taylor et al.,

2012). AOGCMs can be forced considering different scenarios of GHG and/or aerosol forc-

ing (Flato et al., 2013) to reproduce the observed or simulate the future climate. Models

known as Earth System Model (ESM) originate from AOGCM, but include biogeochemical

processes, i.e. the carbon cycle and its connections to the terrestrial and oceanic ecosystems

(Flato, 2011). They represent the most comprehensive models to simulate observed and

future climate, though still the simulations are subject to high uncertainties (Flato et al.,
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2013). Given their complexity, ESMs of Intermediate Complexity (IC) have been introduced

for case of studies in which courser spatial resolution and simplified processes are sufficient

(Flato et al., 2013). Regional Climate Models (RCM) are AOGCMs capable of describing

climate feedback mechanisms acting at the regional scale (high resolution, down to 10km

or less) and do not typically include interactive ocean and sea ice components (Flato et al.,

2013).

The ability of the physical-based models to reproduce historical observation is tested by

comparing historical model simulations against historical observations. Several studies have

shown reliability of climate models for providing valuable information about the future cli-

mate (Fischer and Knutti, 2016), but they also point out to significant limitations in their

real-life applications (e.g. Brands et al., 2013; Nasrollahi et al., 2015). The main advantage

of climate models is that they offer the opportunity of running different past and future

conditions/scenarios (e.g., pre-industrial, anthropogenic emissions, natural forcings) to un-

derstand the response of extreme events. Climate models, however, are based on our current

understanding of the dynamics of the natural system, which is partial. Consequently, their

outcomes can be biased (e.g., Tebaldi and Knutti, 2007; Mehran et al., 2014). Moreover,

climate models are sensitive to the initial state and hence, each run represents only one pos-

sible outcome the future climate can potentially follow (Flato et al., 2013). For this reason,

an ensemble of simulations is often considered. Furthermore, climate models are computa-

tionally demanding, especially at higher spatial and temporal resolutions.

An alternative option to physical-based models is represented by statistical models, which

investigate and project the effect of a changing climate on the variable of interest via co-

variates. The choice of the covariate is based on the observed correlation between pairs of

variables or on prior knowledge of the physical processes relating them. Several methods

have been proposed in the literature for studying changes in frequency and severity of ex-
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tremes across space and/or time (Katz et al., 2002; Sankarasubramanian and Lall, 2003;

Mailhot et al., 2007; Huard et al., 2009; Villarini et al., 2010; Vogel et al., 2011; Zhu et al.,

2012; Willems et al., 2012; Katz, 2013; Obeysekera and Salas, 2013; Salas and Obeysekera,

2014; Yilmaz and Perera, 2014; Mirhosseini et al., 2014; Volpi et al., 2015; Read and Vogel,

2015; Sadegh et al., 2015; Krishnaswamy et al., 2015; Mirhosseini et al., 2015; Mondal and

Mujumdar, 2015; Lima et al., 2016; Sarhadi and Soulis, 2017). For example, Lima et al.

(2018) employed a Poisson regression model to investigate the influence of temperature and

precipitation on the risk of fire in Brazilian Amazon, revealing that the effect of temperature

can be stronger that the effect of rainfall. Another example is the work by Rosner et al.

(2014), who introduced a methodology for flood risk assessment integrating the concepts of

under- and over-preparedness to decide whether to adopt a time dependent statistical model

or not. The advantage of statistical models resides in their computational efficiency, and

numerical simplicity compared to physical-based models. On the other hand, they highly

dependent on the length of record, and the type of statistical model used, the choice of distri-

bution function selected as representative of the observations, and on the observed empirical

relationship between the variables of interest, which may not be representative of the reality.

1.3.1 Stationary versus Nonstationary

Currently, infrastructure design and risk assessment procedures, frequency analysis of natural

hazards, and water resource management heavily rely on statistical models. Statistical model

rely on limted observations from natural processes and hence, it is likely that our observations

are not sufficient to fully understand the behavior of extreme events (Klemeš, 1974). Most

current operational design, risk assessment and frequency analysis models rely on stationary

stochastic models for estimating invariant characteristics of a climate variable from historical

observations (Koutsoyiannis and Montanari, 2015). In such models, inference for the future

relies on historical observations.
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Stationarity corresponds to an assumption defining the properties of a stochastic model

(here, statistics of the distribution and extremes do not not change over time). In contrast,

nonstationarity refers to a process in which the characteristics of the time series and extremes

change over time (Katz, 2010; Cheng et al., 2014).

After Milly et al. (2008) proclaimed the death of the stationarity assumption, asserting that

anthropogenic activities have compromised the natural system fluctuation within a given

envelope of variability, the debate around the validity of the stationary assumption has gained

a great deal of attention (Koutsoyiannis and Montanari, 2015). It has triggered a stimulating

discussion within the scientific community on whether or not new paradigms should be

adopted for infrastructure design, water management and risk assessment. Specifically, the

debate related to the assumption of stationarity versus nonstationarity gravitates mainly

around the following questions:

• Is nonstationarity a property of the natural system or a property of a numerical model?

• How do we select between a stationary and a nonstationary model?

• Can we test for nonstationarity given the available observations?

• If a nonstationary framework is adopted, what is its predictability power?

Nonstationarity as a property of a numerical model

Change in climate records is expected given that the Earth is in a constant state of change

(Montanari et al., 2013; Koutsoyiannis, 2005). Following an increased number of stud-

ies investigating nonstationarity in climate data, the World of Meteorological Organization

(WMO, 2012) has released a note in which it clearly states that “all natural systems are

nonstationary, unequivocally and unconditionally”. On the contrary, a numerical/statisti-

cal model can be either stationary or nonstationary, it is only a matter of mathematical

12



representation of the natural phenomena (Montanari and Koutsoyiannis, 2014). Given that

the natural system is nonstationary per se, the stationarity versus nonstationarity discus-

sion must shift on the choice of the numerical/statistical model for inferring the future from

observations.

Selecting between a stationary and a nonstationary model

Reviewing the debate about stationarity versus nonstationarity models, three main (and

opposing) perspectives can be identified in the literature about the choice of model:

1. Stationary models should be the rule. Invariant properties of the natural system can

be inferred from the past (Lins and Cohn, 2011; Montanari and Koutsoyiannis, 2014).

Stationary stochastic models are well understood, and they can include long term

persistence (LTP) (e.g., Cohn and Lins, 2005);

2. Stationary models should be the rule, and nonstationary models should only be adopted

when observed changes are caused by a well-understood physical process. The non-

stationary component will be defined as a deterministic component and hence, it will

reduce the overall uncertainties. Uncertainty reduction can only be accepted if the

physical information included in the statistical model improve our knowledge of the

natural system (e.g., Koutsoyiannis and Montanari, 2007, 2015; Matalas, 1997, 2012;

Montanari and Koutsoyiannis, 2014; Lins and Cohn, 2011; Serinaldi and Kilsby, 2015;

Stedinger and Griffis, 2011; Luke et al., 2017);

3. Nonstationary models should be the rule if there is evidence of change in the obser-

vations or model simulations (Cheng et al., 2014; Katz, 2010; Cooley, 2013). This

perspective does not require a full understanding of all the underlying processes. In

this viewpoint, regardless of the cause of change (e.g., anthropogenic activities, nat-
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ural variability), risk assessment and frequency analysis methods should account for

changes in statistics of extremes.

4. Nonstationary models should be the rule. Humans have altered the natural cycle and

“wait-and-see” (Milly et al., 2008) approach can no longer be used. New paradigms

which can help us predict beyond what we have observed are required (Milly et al.,

2008; Vogel et al., 2011; Wagener et al., 2010).

Testing for nonstationarity

Thus far, selection of a nonstationary model has been conditioned on the statistical signifi-

cance of change in observations based on hypothesis testing, for example, monotonic trend

test and change point detection (e.g., Villarini et al., 2009a; Vogel et al., 2011). However,

detecting changes given the observations can be challenging because many drivers o cli-

mate variability influence the results, e.g., long term persistence and human induced climate

change (Villarini et al., 2009a). Moreover, hydrological records are usually short when com-

pared to geological timescales (Matalas, 1997), and the null hypothesis of the test may be

ill-posed. Indeed, hypothesis tests are proved by contradiction, and if there is no agreement

with the natural system, the test results are not acceptable a priori (Cohn and Lins, 2005).

The predictability power of nonstationary models

In the case that a nonstationary model is selected, it is important to assess its capabilities

to predict statistics of future events. The discussion concerning the predictability power of

the model hinges mainly around the uncertainty of future estimates. Indeed, estimations

to be informative should be within an acceptable uncertainty range (Stedinger and Griffis,

2011). In the literature, two opposite positions concerning the effect of model selection on

uncertainty can be identified:
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1. The assumption of a nonstationarity increases the degree of uncertainty in the future,

because of lack of information on how the observed trend will propagate in the future

(Beven2016, Lins2011, Matalas1997, Matalas2012, Serinaldi2014a, Stedinger2011);

2. The assumption of nonstationarity, if it is modeled as a deterministic component, will

induce a reduction of the uncertainty. This reduction is not acceptable when the change

observed is not well understood (Koutsoyiannis2005, Koutsoyiannis2015)

1.4 Nonstationary Models

Given the importance of correctly estimating the probability of rare events and in the light of

observed changes in both occurrence of and exposure to natural hazards, several studies have

considered nonstationary models for extreme value analysis to address temporal changes in

statistics of extremes (e.g., Katz et al., 2002; Sankarasubramanian and Lall, 2003; Mailhot

et al., 2007; Huard et al., 2009; Villarini et al., 2010; Vogel et al., 2011; Zhu et al., 2012;

Willems et al., 2012; Katz, 2013; Obeysekera and Salas, 2013; Salas and Obeysekera, 2014;

Yilmaz and Perera, 2014; Mirhosseini et al., 2014; Cheng et al., 2014; Cheng and AghaK-

ouchak, 2014; Volpi et al., 2015; Read and Vogel, 2015; Sadegh et al., 2015; Krishnaswamy

et al., 2015; Mirhosseini et al., 2015; Mondal and Mujumdar, 2015; Lima et al., 2016; Sarhadi

and Soulis, 2017; Luke et al., 2017; Salas et al., 2018; Yan et al., 2018; Bracken et al., 2018;

Ragno et al., 2018). Among those, Cooley et al. (2007) proposed a spatio-temporal Bayesian

hierarchical modeling approach for defining Intensity-Duration-Frequency (IDF) maps for

flood management in the Front Range of Colorado. Villarini et al. (2009a) presented a

framework for dealing with annual maximum peak discharge values under nonstationary

conditions. Rosner et al. (2014) introduced a methodology for flood risk assessment inte-

grating the concepts of under- and over-preparedness in a nonstationary context. Cheng et al.

(2014) developed a Bayesian-based framework for analyzing time-dependent extremes. Re-
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liable nonstationary analysis, however, requires understanding the deterministic process(es)

causing time-variant behavior (Cohn and Lins, 2005; Koutsoyiannis, 2005; Montanari and

Koutsoyiannis, 2014; Lins and Cohn, 2011; Koutsoyiannis and Montanari, 2015; Serinaldi

and Kilsby, 2015). For this reason, projecting observed historical trends may lead to un-

reliable estimates of frequency for future extremes (Serinaldi and Kilsby, 2015; Luke et al.,

2017). One limitation of the existing methodologies lies in the use of mainly observed histor-

ical data for nonstationary extreme value analysis, with some assumption on future trends.

In this dissertation, this research gap is addressed and methodologies have been proposed for

integrating (a) physically-based covariates; and (b) climate model projections for describing

change in extremes.

1.4.1 Detection and Attribution Studies

Within the discussion about human footprint on the natural system, one of the primary

uses of climate models is to investigate how the natural system would respond in the case

of different forcings. Detection and attribution studies aim to identify and quantify to what

extent human activities have resulted in significant changes in climate variables.

Different methodologies are adopted in attribution studies. In regression-based fingerprint

methods, (Hasselmann, 1993; Hegerl et al., 1996; Zhang et al., 2007; Santer et al., 2013, e.g.,)

observations are regressed onto a pattern derived from a numerical simulation with known

external forcing(s). Non-fingerprint methods (e.g., Kolmogorov-Smirnov test, Cramer Von

Mises test), similarly, rely on running a global climate model with known forcing(s) to

reproduce a hypothetical alternative world, and then detect changes by analyzing whether

observations are consistent with simulations (Knutson, 2017). Attribution studies can also

rely on causality tests, such as Granger causality test (Granger, 1960), where the aim is

to infer the causal relationship between external forcings, e.g., CO2 concentration, and the
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observed pattern of the climatic variable of interest, e.g. temperature (Stern and Kaufmann,

2014). Observed changes can also be attributed to changes in environmental conditions,

which can be themselves attributed to the external/anthropogenic forcing, i.e. multistep

attribution, (Knutson, 2017). An example could be the intensification of the water cycle,

which is mainly attributed to the increase in atmosphere temperature, which in turn is caused

by higher CO2 concentration in the atmosphere as a result of human activities (Trenberth,

2011).

1.5 Improving our Understanding and Ability to Model

Extremes in a Changing Climate

The threat of natural hazards on human safety and economic development is well recognized.

Population growth and consequent urban expansion have increased the exposure of lives and

goods to climate-related extremes. Moreover, human activities have been identified as the

major driver of the observed changes in the natural variability of the climate, causing extreme

events to become more frequent and more intense. The overarching goal of this dissertation

is to improving our understanding and our ability to model extreme events in a changing

climate.

In Chapter 2, we present a generalized, process-based and flexible statistical methodological

framework for extreme value analysis considering the observed changes in the characteristics

of extremes (nonstationary assumption) and their physically-based covariates/drivers (i.e.,

underlying processes). The latter is particularly important because changes in extremes are

often linked to physical processes, which purely statistical models cannot handle. Therefore,

our framework, namely Process-based Nonstationary Extreme Value Analysis (ProNEVA)

model, is designed to incorporate process-based nonstationarity assumptions into extreme
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value analysis. The proposed framework is flexible enough to handle models based on a

user-defined covariate (process-based or temporal), so that any type of nonstationarity can

be represented. ProNEVA builds upon a newly-developed hybrid evolution Markov Chain

Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty as-

sessment. This leads to more robust uncertainty estimates of return levels, return periods,

and risks of climatic extremes under both stationary and nonstationary assumptions. We

show the potential and versatility of ProNEVA considering four different hydroclimatic ap-

plications: peak over threshold precipitation, annual maxima discharge affected by urban

expansion, annual maxima sea level, and annual maxima temperatures influenced by the

CO2 emissions in the atmosphere. The intent is to provide a modeling framework accessible

to a broad audience and thus, a Graphical User Interface (GUI) of the model is also provided

(see Section 2.9).

In Chapter 3, we discuss the need to communicate the uncertainty associated with extreme

values estimated from statistical models used in risk assessment and infrastructure design.

This uncertainty is inherent in extreme value analysis procedures because of the limited

amounts of observed rare events in our records. We provide a universal chart from which

decision-makers can derive the level of confidence associated with the estimated probability

(or return period) of rare events. The only information required to assess the level of confi-

dence are the length of records and the return period of the event of interest. We believe that

users, including decision-makers, should be aware of the information that can be obtained

from an existing record in relation to the information they are interested to infer (expected

extreme events) from that same observations. Consequently, we recommend an approach

that offers confidence associated with estimated rare events as a function of length of record.

In Chapter 4, we propose a framework for assessing the resilience of infrastructure and

landslide hazard in a warming climate (Ragno et al., 2018). Traditionally, infrastructure

design and rainfall-triggered landslide models rely on the notion of stationarity, which assume
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that the statistics of extremes do not change significantly over time. However, in a warming

climate, infrastructure and natural slopes will likely face more severe climatic conditions,

with potential human and socio-economic consequences. Here, we outline a framework for

quantifying climate change impacts based on the magnitude and frequency of extreme rainfall

events using bias-corrected historical and multi-model projected precipitation extremes. The

approach evaluates changes in rainfall Intensity-Duration-Frequency (IDF) curves and their

uncertainty bounds using a nonstationary model based on Bayesian inference. We show

that highly populated areas across the United States may experience extreme precipitation

events up to 20% more intense and twice as frequent, relative to historical records, despite

the expectation of unchanged annual mean precipitation.

In Chapter 5, we focus on detection and attribution of extremes. Understanding to what

extent human activities have altered the occurrence of extreme events can provide insight

for further studies on the physical relationship between natural variables. The methodolo-

gies available and commonly used for detection and attribution studies, however, rely on

a modeling assumption of independence between climatic variables. In the real world, cli-

matic variables or features of a natural phenomena are interdependent. To overcome this

limitation, we suggest a new methodology to detect changes in a multivariate context via

copula functions. The approach proposed here is applied to precipitation characteristics,

i.e. intensity and duration. The method is able to account for changes in the dependence

structure between pairs of variables or characteristics of the same variable, as well as changes

in their absolute values. Multivariate models, such as copulas, offer an alternative tool to

investigate the relationship between one variable and its covariates by directly modeling their

dependence structure preserving the stochastic nature of the marginals. The capability of

detecting changes in all the aspects of extreme precipitation is of great importance espe-

cially for water-related risk reduction strategies, climate change adaptation measures, and

infrastructure design procedure.
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Chapter 2

A Generalized Framework for

Process-based Nonstationary Extreme

Value Analysis

Natural hazards pose significant threats to the public safety, infrastructure integrity, natural

resources, and economic development around the globe. In recent years, the frequency and

impacts of extremes have increased substantially in many parts of the world (e.g., Melillo

et al., 2014; Coumou and Rahmstorf, 2012; Alexander et al., 2006; Mazdiyasni et al., 2017;

Mallakpour and Villarini, 2017; Hallegatte et al., 2013; Wahl et al., 2015; Vahedifard et al.,

2016; Jongman et al., 2014; AghaKouchak et al., 2014b). For this reason, there is a great

deal of interest in understanding how extreme events will change in the future. Historical

observations are the main source of information on extremes (Klemeš, 1974; Koutsoyiannis

and Montanari, 2007) and stochastic models are used to infer frequency and variability of

extremes based on historical records (e.g., Katz et al., 2002).

Stochastic models used to study extremes can be broadly categorized into two groups: sta-
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tionary and nonstationary (e.g., Salas and Pielke Sr, 2002; Coles and Pericchi, 2003; Griffis

and Stedinger, 2007; Obeysekera and Salas, 2013; Serinaldi and Kilsby, 2015; Madsen et al.,

2013; Koutsoyiannis and Montanari, 2015). In a stationary model, the observations are as-

sumed to be drawn from a probability distribution function with constant parameters (i.e.,

statistics of extremes do not change over time). In a nonstationary model, however, the

parameters of the underlying probability distribution function change over time or respond

to a given covariate (i.e., model accounts for changes in statistics of extremes).

Water resources practices have traditionally adopted stationary models primarily for the

sake of simplicity (Milly et al., 2008), though changes in the water cycle and Earth system

processes are inherent (Montanari et al., 2013). Over the past decades, increasing surface

temperatures (e.g., Barnett et al., 1999; Villarini et al., 2010; Melillo et al., 2014; Diffenbaugh

et al., 2015; Fischer and Knutti, 2015; Mazdiyasni and AghaKouchak, 2015), more intense

rainfall events (e.g., Zhang et al., 2007; Villarini et al., 2010; Min et al., 2011; Marvel and

Bonfils, 2013; Westra et al., 2013; Cheng et al., 2014; Fischer and Knutti, 2016; Mallakpour

and Villarini, 2017), changes in river discharge (e.g., Villarini et al., 2009a,b; Hurkmans

et al., 2009; Stahl et al., 2010), and sea level rise (e.g., Holgate, 2007; Haigh et al., 2010;

Wahl et al., 2011) have been observed and attributed to anthropogenic climate change. The

observed hydrologic trends, which can be in response to a physical process (e.g., changes

in emissions, temperatures, climatic cycles) or only perceived (statistical) (Matalas, 1997),

have challenged the stationary assumption.

Several studies have promoted the idea of moving away from stationary models to ensure cap-

turing the changing properties of extremes (Milly et al., 2008). However, some have criticized

this viewpoint particularly because the assumption of nonstationarity implies adding a deter-

ministic component in the stochastic process, which must be justified by a well-understood

process (Koutsoyiannis, 2011; Matalas, 2012; Lins and Cohn, 2011; Koutsoyiannis and Mon-

tanari, 2015). Montanari and Koutsoyiannis (2014) noted that more efforts should focus on
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including relevant physical processes in stochastic models, and suggested stochastic-process-

based models as a way to bridge the gap between physically-based models without statistics

and statistical models without physics.

Following the recommendation by Montanari and Koutsoyiannis (2014), we propose a gener-

alized framework named Process-based Nonstationary Extreme Value Analysis (ProNEVA) in

which the nonstationarity component is defined by a temporal or process-based dependence

of the observed extremes on an explanatory variable (i.e., a physical driver). Here, process-

based dependence corresponds to a process or driver that can alter the statistics of extremes.

For example, ProNEVA can be used for analyzing changes in extreme temperatures using

CO2 emissions as the covariate. It is widely recognized that higher amount of CO2 in the

atmosphere results in a warmer climate (e.g., Zwiers et al., 2011; Fischer and Knutti, 2015;

Barnett et al., 1999). For this reason, CO2 emissions can be considered a process-based

covariate for studying temperature extremes. Other examples include temperature or large

scale climatic circulations as covariates for rainfall, and CO2 concentration or temperature

as covariates for sea level rise.

2.1 Method

2.1.1 Process-Based Nonstationarity Extreme Value Analysis

Extreme Value Theory (EVT) provides the bases for estimating the magnitude and frequency

of hazardous events (including natural and non-natural extreme events) (Coles, 2001). Most

applications utilize either the Generalized Extreme Value distribution (GEV) or the Gen-

eralized Pareto distribution (GP) for describing the behavior of extremes. The former is

applied to the annual maxima of a variable (e.g., a time series consisting of the most ex-

treme daily rainfall from each year of the record), while the latter is used to describe extremes

22



above a predefined threshold (e.g., all independent river flow values above the flood stage).

Both GEV and GP allow incorporating nonstationarity through varying parameters. Sev-

eral studies have investigated methodologies for testing the assumptions of stationarity and

nonstationarity in hydrology, climatology, and earth system sciences (e.g., Katz et al., 2002;

Sankarasubramanian and Lall, 2003; Cooley et al., 2007; Mailhot et al., 2007; Huard et al.,

2009; Villarini et al., 2009a, 2010; Vogel et al., 2011; Zhu et al., 2012; Willems et al., 2012;

Katz, 2013; Obeysekera and Salas, 2013; Salas and Obeysekera, 2014; Rosner et al., 2014;

Yilmaz and Perera, 2014; Mirhosseini et al., 2014; Cheng and AghaKouchak, 2014; Volpi

et al., 2015; Read and Vogel, 2015; Sadegh et al., 2015; Krishnaswamy et al., 2015; Mirhos-

seini et al., 2015; Mondal and Mujumdar, 2015; Lima et al., 2016; Sarhadi and Soulis, 2017;

Salas et al., 2018; Yan et al., 2018; Bracken et al., 2018; Ragno et al., 2018).

A number of packages and software tools are currently available including the R (Team,

2013) package ismev (Gilleland et al., 2013; Gilleland and Katz, 2016) where nonstation-

arity is modeled as linear regression function of generic covariates (Gilleland et al., 2013).

The package extRemes - version ≥ 2.0 offers EVA capability and evaluates the underlying

uncertainties with respect to parameters (Gilleland and Katz, 2016). extRemes also allows

a tail-dependence analysis and a declustering technique for peak over threshold analysis.

The package climextRemes (available also in Python) builds upon extRemes and includes an

estimate of the risk ratios for event attribution analyses. R packages vgam and gamlss are

available for modeling nonstationarity through generalized additive models (see for example

Villarini et al. (2009a)). The package GEVcdn estimates the parameters of a nonstationary

GEV distribution using a conditional density method (Cannon, 2010), and it is specific for

hydroclimate variables.

Cheng et al. (2014) developed a Bayesian-based framework, Nonstationary Extreme Value

Analysis (NEVA) toolbox for estimating the parameters of a GEV and GP distributions for

time-dependent extremes along with uncertainty quantification (available in Matlab Matlab
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(2017)). In the nonstationary case, the parameters are modeled as a linear function of time.

NEVA plots return level curves based on the concept of expected waiting time (Wigley,

2009; Olsen et al., 1998; Salas and Obeysekera, 2014) and effective return level (Katz et al.,

2002). The package nonstationary Flood Frequency Analysis estimates the parameters of the

Log-Pearson Type III distribution as a linear function of time, based on Bayesian inference

approach (Luke et al., 2017). The tsEVA toolbox implements the Transformed-Stationary

(TS) methodology described in Mentaschi et al. (2016), which comprises of, first, a trans-

formation of a nonstationary time series into a stationary one, so that the stationary EVA

theory can be applied, and then a reverse-transformation of the results to include the non-

stationary components in the GEV and the GP distributions.

However, the existing tools for implementing EVA under the nonstationary assumption have

a number of limitations, mainly lack of a generalized framework for incorporating physically

based covariates. Moreover, most existing tools are incapable of handling the estimation of

parameters which depend on a generic physical covariate (e.g., when the parameters are esti-

mated as a non-linear function of a covariate). To address the above limitations, we present

ProNEVA, which builds upon NEVA package (Cheng et al., 2014) but expands to process-

based nonstationary extreme value analysis. In addition to stationary EVA, ProNEVA allows

nonstationary analysis using both time and a physical covariate. Using time indicates that

changes in a variable over time will be used for EVA, where as in the latter, changes of

a variable in response to a physical driver will be considered. Figure 2.1 depicts the core

structure of ProNEVA.

ProNEVA offers parameter estimation, uncertainty quantification, and a comprehensive as-

sessment of the goodness of fit. The key features of ProNEVA are described as follows: (a)

the model includes the most common distribution functions used for extreme value analysis

including the GEV, GP, and LP3 distributions; (b) for nonstationary analysis, the users can

select both the covariate and the choice of function for describing change in parameters;
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(c) the covariate can be any user-defined physical covariate; (d) the model also includes a

default time-covariate (i.e., describing change over time without a physical covariate); (e)

the function describing change in parameters with respect to the covariate can be linear,

exponential, or quadratic; (f) the users can select the GP distribution threshold (peak-

over-threshold) as a constant value or as a linear quantile regression function of the choice

covariate; (g) ProNEVA estimates the distribution parameters based on a Bayesian inference

approach; (h) the model allows using a wide range of priors for parameters including the

uniform, normal, and gamma distributions; (i) ProNEVA samples from the posterior distri-

bution function of the parameters using a newly-developed hybrid evolution Markov Chain

Monte Carlo (MCMC) approach (Sadegh et al., 2017), which provides a more robust nu-

merical parameter estimation and uncertainty quantification; (j) different model diagnostics

and model selection indices (e.g., RMSE, AIC, BIC) are implemented to provide supporting

information; (k) ProNEVA includes additional exploratory data analysis tools such as the

Mann-Kendall test for monotonic trends and the White test for homoscedasticity in time

series; (l) in addition to the source code, a Graphical User Interface (GUI) for ProNEVA is

also available for easier implementation (Section 2.9); (m) finally, ProNEVA is intended for

a broad audience and hence, it is structured such that the users can easily customize and

modify it based on their needs.

In the reminder of the paper, a detailed description of ProNEVA is provided. Four different

example application are presented with different variables (e.g., precipitation, sea levels, tem-

perature, river discharge) and different covariates (time, CO2 emissions in the atmosphere,

urbanization). ProNEVA can be used for analyzing annual maxima (also known as block

maxima) using the GEV and LP3 distributions, and peaks over threshold (POT) or partial

duration series using the GP distribution. In the following, we provide a brief overview of

the extreme value models and their parameters.
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Figure 2.1: Flowchart representing the core structure of the Matlab Toolbox ProNEVA
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2.1.2 Generalized Extreme Value (GEV)

The GEV function is used for block maxima time series. The National Oceanic and At-

mospheric Administration (NOAA), for example, derives precipitation Intensity-Duration-

Frequency (IDF) curves based on the GEV distribution. GEV is also widely used in other

fields including bridge performance assessment (e.g., Ming et al., 2009), among others. The

GEV cumulative distribution function is (Coles, 2001):

ΨGEV (X) = exp
{
−
(

1 + ξ ·
(X − µ

σ

))− 1
ξ
}

(2.1)

for ξ ·
(
X−µ
σ

)
> 0. µ, σ, and ξ are the parameters of the distribution: µ is the location

parameter and represents the center of the distribution; σ > 0 is the scale parameter and

describes the distribution of the data around µ; ξ is the shape parameter and defines the tail

behavior of the distribution.

The stationary GEV model can be extended for dependent series by letting the parameters

of the distribution be a function of a general covariate Xc, i.e., µ(Xc), σ(Xc), ξ(Xc), (Coles,

2001). Hence, the nonstationary form of eq. 2.1 is described as:

ΨGEV (X|Xc) = exp
{
−
(

1 + ξ(Xc)) ·
(X − µ(Xc)

σ(Xc)

))− 1
ξ(Xc)

}
(2.2)

For each of the three parameters, the users can select a function to describe change in pa-

rameters with respect to time or a covariate (Table 2.1). The function for each parameter

does not constrain the functional relationship used for the other parameters. To ensure the

positivity of the scale parameter, σ(Xc) is modeled in the log-scale, (Coles, 2001; Katz, 2013).

Consequently, the exponential function is not available for σ(Xc). Moreover, the shape pa-

rameter ξ(Xc) is known to be a difficult parameter to precisely estimate even in the stationary

case, (Coles, 2001), especially for short time series, (Papalexiou and Koutsoyiannis, 2013).
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Table 2.1: GEV dependence models

type model µ(Xc) ln(σ(Xc)) ξ(Xc)
Linear Bl ·Xc + Al X X X
Quadratic Cq ·X2

c +Bq ·Xc + Aq X X −
Exponential Ae · exp(Be ·Xc) X − −

For this reason, only the linear function is included for ξ(Xc).

2.1.3 Generalized Pareto (GP)

The GP distribution is used for time series sampled based on the POT method. GP is

widely used for studying extreme wind speeds when storms exceeding a certain wind speed

are of interest (Holmes and Moriarty, 1999). The GP distribution has also been applied to

precipitation (e.g., De Michele and Salvadori, 2003a) earthquake data (e.g., Pisarenko and

Sornette, 2003) and economic data (e.g., Gençay and Selçuk, 2004), among others. The GP

cumulative distribution function is as follows (Coles, 2001):

ΨGP (X) = 1−
(

1 + ξ ·
(X − u

σ

))− 1
ξ

(2.3)

for a large enough threshold, u, such that X > u, σ > 0 and
(

1 + ξ · (X−u
σ

)
)
> 0. In

particular, if X is a block maxima series following a GEV distribution, then the threshold

excesses {X > u} have a GP distribution. The parameter ξ of the GP distribution is equal

to the parameter ξ of the corresponding GEV distribution (Coles, 2001).

In the nonstationary model of the GP distribution, both the threshold value and the param-

eters of the distribution can be modeled as a function of the user-covariate, (Coles, 2001).

ΨGP (X|Xc) = 1−
(

1 + ξ(Xc) ·
(X − u(Xc)

σ(Xc)

))− 1
ξ(Xc)

(2.4)
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Table 2.2: GP dependence models

type model u(Xc) ln(σ(Xc)) ξ(Xc)

Linear Bl ·Xc + Al X(∗) X X
Quadratic Cq ·X2

c +Bq ·Xc + Aq − X −
(*) Regression quantile (Koenker and Bassett, 1978)

Analogously to the GEV case, ProNEVA allows incorporating different functional forms for

describing change in parameters over time or with respect to a covariate (Table 2.2). The

same considerations for the GEV parameter functional forms are applied to GP distribution

too. In addition, the users can specify the type of threshold u. Two quantile-based options

are available: constant or linear. In the case of a linear threshold, a linear regression quantile

model is adopted. The α-regression quantile function is (Koenker and Bassett, 1978; Kyselý

et al., 2010)

Y = X ·U(α) + r+ − r− (2.5)

where 0 < α < 1 is the quantile, Y is the column vector of n-observations, X = [ Xc In ]

with Xc being the column vector of covariance and In the n-identity vector, U = [u1 u0 ]′

is the vector of the regression coefficients, and r+ and r− are respectively the positive and

negative parts of the residuals. Then, U(α) is calculated as the optimal solution to eq. 2.6

(Koenker and Bassett, 1978; Kyselý et al., 2010).

α · In′ · r+ + (1− α) · In′ · r− := min (2.6)

2.1.4 Log-Pearson Type III (LP3)

The LP3 distribution has been widely used in hydrology for flood frequency analysis after

the release of the USGS Bulletin 17B (U.S. Water Resources Council, 1982). However, it

has been applied to other studies, such as design magnitude of earthquakes (Gupta and
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Deshpande, 1994) and evaluation of apple bud burst time and frost risk (Farajzadeh et al.,

2010).

The LP3 distribution characterizes the random variable Q = ln(X), given that X follows

a Pearson type III (P3) distribution (Griffis et al., 2007). Hereafter, the base-e logarithm

is used, however any base can be implemented, such as base-10 as in Bulletin 17B (Griffis

et al., 2007). The P3 probability density function is

ψP3(X) =
1

|β| · Γ(α)
·
(X − τ

β

)α−1

· exp
(
− X − τ

β

)
(2.7)

defined for α > 0, (X − τ)/β > 0, and Γ(α) being a complete gamma function (Griffis et al.,

2007). The parameters α, β, and τ are functions of the first three moments, µX , σX , γX ,

(Griffis et al., 2007):

α = 4/γ2
X (2.8)

β = (σX · γX)/2 (2.9)

τ = µX − 2 · (σX/γX) (2.10)

In the case of nonstationary analysis, the first three moments are modeled as a function

of the user-defined covariate Xc (Table 2.3). The GEV and GP considerations mentioned

above hold for the functions to describe change in parameters.

ψP3(X|Xc) =
1

|β(Xc)| · Γ(α(Xc))
·
(X − τ(Xc)

β(Xc)

)α(Xc)−1

· exp
(
− X − τ(Xc)

β(Xc)

)
(2.11)
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Table 2.3: LP3 dependence models

type model µX(Xc) ln(σ(Xc)) γ(Xc)
Linear Bl ·Xc + Al X X X
Quadratic Cq ·X2

c +Bq ·Xc + Aq X X −
Exponential Ae · exp(Be ·Xc) X − −

2.2 Parameter Estimation: Bayesian Analysis and Markov

Chain Monte Carlo Sampling

ProNEVA estimates the parameters of the selected (non)stationary EVA distribution using

a probabilistic-based approach, which provides a better characterization of the underlying

uncertainty derived from both input errors and model selection. Bayesian analysis has been

widely implemented for parameter inference and uncertainty quantification (e.g. Thiemann

et al., 2001; Gupta et al., 2008; Cheng et al., 2014; Kwon and Lall, 2016; Sarhadi et al., 2016;

Sadegh et al., 2017; Luke et al., 2017)

Let θ be the parameter of a given distribution and let Y = {y1, . . . , yn} be the set of n ob-

servations. Following Bayes theorem, the probability of θ given Y (posterior) is proportional

to the product of the probability of θ (prior) and the probability of Y given θ (likelihood

function). Assuming independence between the observations Y:

p(θ|Y) ∝
n∏
i=1

p(θ) · p(yi|θ) (2.12)

The prior brings priori information, which do not depend on the observed data, into the pa-

rameter estimation process. The choice of the prior distribution, then, is somehow subjective.

The available prior options in ProNEVA include the uniform, normal, and gamma distribu-

tions, providing a variety of possibilities. ProNEVA assumes independence of parameters

and hence, each parameter requires its own prior.
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The likelihood function coincides with the probability density function of the distribution

family (i.e. GEV, GP, or LP3) as representative of the data.

In the case of a nonstationary analysis, the vector of parameters θ includes a higher number

of elements than in the stationary case, depending on the functional form selected for each

of the distribution’s parameters.

The posterior distribution is then delineated using a hybrid-evolution MCMC approach pro-

posed by Sadegh et al. (2017). The MCMC simulation searches for the region of interest

with multiple chains running in parallel, which share information on the fly. Moreover, the

hybrid-evolution MCMC benefits from an intelligent starting point selection (Duan et al.,

1993) and employs Adaptive Metropolis (AM) (Roberts and Sahu, 1997; Haario et al., 1999,

2001; Roberts and Rosenthal, 2009), differential evolution (DE) (Storn and Price, 1997; Ter

Braak and Vrugt, 2008; Vrugt et al., 2009), and snooker update (Gilks et al., 1994; Ter Braak

and Vrugt, 2008) algorithms to search the feasible space. The Metropolis ratio is selected

to accept/reject the proposed sample, and the R̂ informs on the convergence of the chains,

which should remain below the critical threshold of 1.1 (Gelman and Shirley, 2011; Cheng

et al., 2014). For a more detailed description of the algorithm, the reader is referred to

Sadegh et al. (2017).

2.3 Model Diagnostics and Selection

The purpose of fitting a statistical model, whether it is stationary or nonstationary, is to

characterize the population from which the data was drawn for further analysis/inference

(Coles, 2001). Hence, it is necessary to check the performance of the fitted model to the

data (Coles, 2001). We implemented different matrices in the ProNEVA for goodness of fit

(GOF) assessment and model selection including: quantile and probability plots for a graph-
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Table 2.4: Standard Transformations

Statistical Model Transformation Reference Distribution

Zt(µ̃(t), σ̃(t), ξ̃(t)) ∼ GEV Z̃t = 1
ξ̃(t)
·
{

1 + ξ̃(t) ·
(
Zt−µ̃(t)
σ̃(t)

)}
Std. Gumbel(1)

Zt(ũ(t), σ̃(t), ξ̃(t)) ∼ GP Z̃t = 1
ξ̃(t)
·
{

1 + ξ̃(t) ·
(
Zt−ũ(t)
σ̃(t)

)}
Std. Exponential(1)

Zt(α̃(t), β̃(t), τ̃(t)) ∼ P3 Z̃t = Zt−τ(t)
˜β(t)

Std. Gamma(2)

(1) Coles (2001) (2) Koutrouvelis and Canavos (1999)

ical assessment, two-sample Kolmogorov-Smirnov (KS) test, Aikaike Information Content

(AIC), Baysian Information Critiria (BIC), Maximum Likelihhod (ML), Root Mean Square

Error (RMSE), and Nash-Sutcliff Efficiency (NSE) coefficient. The hybrid-evolution MCMC

approach (Sadegh et al., 2017) within the Bayesian framework provides an ensemble of so-

lutions for the (non)stationary statistical model fitted to the data. ProNEVA uses the best

set of parameters, θ̂, which maximizes the posterior distribution. Marginal posteriors will

then provide uncertainty estimates of the estimated parameters.

2.3.1 Standard Transformation

When applied to nonstationary applications, the homogeneity in the distributional assump-

tion requires an adjustment to the traditional GOF techniques (Coles, 2001). Consequently,

ProNEVA standardizes the observations based on the underlying distribution family such

that the GOF tests can be performed. Table 2.4 provides information on the transforma-

tion methods in ProNEVA. However, it is worth noting that the choice of the reference

distribution is arbitrary (Coles, 2001). Here, we selected those transformations that are

widely accepted in the literature (Coles, 2001; Koutrouvelis and Canavos, 1999). In the

case of a LP3 distribution, the transformation can only be applied when the parameter α

is constant(Koutrouvelis and Canavos, 1999). Based on Equation 2.8, this implies that the

transformation can be performed only in the case of constant skewness γX .
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2.3.2 Probability and Quantile Plots

The probability plot and quantile plot are graphical techniques for evaluating the goodness-

of-fit of models. Given an ordered set of n random observations z(1) < · · · < z(n), the

empirical estimate of the probability of z(i) is F̄i = i/(n + 1), where (n + 1) guarantees

F̄i 6= 1 (Coles, 2001). Assuming F̂ as the estimated unknown distribution function of the

population, the probability plot consists of the points (Coles, 2001)

{(
F̂ (z(i));

i

n+ 1

)
: i = 1, · · · , n

}
(2.13)

Analogously, the quantile plot contains the points (Coles, 2001)

{
F̂−1

( i

n+ 1

)
; z(i)

)
: i = 1, · · · , n

}
(2.14)

In both the probability and quantile plots, F̂ is a reasonable fit if the points are close along

the unit diagonal (Coles, 2001). Moreover, both plots provide the same information, however

on a different scale. Indeed, it is important to investigate both scales, because what seems

an acceptable fit in one scale could be a poor fit in the other (Coles, 2001).

2.3.3 Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (KS) test is a non-parametric hypothesis testing tech-

nique which compares two samples, Z(1) and Z(2), to assess whether they belong to the same

population (Massey, 1951). Being FZ(1)(z) and FZ(2)(z) the (unknown) statistical distribu-

tions of Z(1) and Z(2) respectively, the null-hypothesis H0 is FZ(1)(z) = FZ(2)(z), against

alternatives. The KS test statistics D∗ is:

D∗ = max
x

(|FZ(1)(z))− FZ(2)(z)|) (2.15)
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H0 is rejected when the pvalue of the test is equal to or exceeds the selected α-level of

significance, e.g., 5%. We implemented the KS test in ProNEVA as one of the methods to

test the goodness-of-fit of the model. Specifically, ProNEVA generates 1000 random samples

from the fitted statistical distribution or, in the case of a nonstationary analysis, from the

reference distribution. Then, the KS test is performed between the random samples and the

input (original or transformed) data. Finally, the rejection rate (RR), eq. 2.16, is provided

as a GOF index.

RR =

∑
(H0 rejected)

1000
(2.16)

2.3.4 Model Selection based on Model Complexity

Numerical models showing a desirable level of performance efficiency with a minimum num-

ber of parameters, e.i. parsimonious models (Serago and Vogel, 2018), are usually preferred

and, in the case of a nonstationary analysis, have shown to perform better (Serinaldi and

Kilsby, 2015; Luke et al., 2017). Consequently, ProNEVA evaluates different GOF matrices

(i.e., AIC, BIC), which account for the number of parameters within the numerical model.

The Akaike Information Criterion (AIC) (Akaike, 1974, 1998; Aho et al., 2014) is formulated

as follows

AIC = 2 · (D − L̂) (2.17)

where D is the number of parameters of the statistical model and L̂ is the log-likelihood

function evaluated at θ̂. The model associated with a lower AIC is considered a better fit.

The Bayesian Information Content (BIC) (Schwarz, 1978) is defined as

BIC = D · ln(N)− 2 · L̂ (2.18)
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where N is the length of records. Similar to AIC, the model with lower BIC results a better

fit.

2.3.5 Model Selection based on Minimum Residual

Root Mean Square Error (RMSE) and Nash-Sutcliff Efficiency (NSE) coefficient are two

matrices widely used in hydrology and climatology as GOF measurements. The focus of

both is to minimize the residuals. The vector of residual RES is

RES =
((
F̂−1

( 1

n+ 1

)
−z(1)

)
, · · · ,

(
F̂−1

( i

n+ 1

)
−z(i)

)
, · · · ,

(
F̂−1

( n

n+ 1

)
−z(n)

))
; (2.19)

following the same notation used for defining the quantile plot. Hence,

RMSE =

√∑n
i=1RES

2
i

n− 1
(2.20)

NSE = 1−
∑n

i=1 RES
2
i∑n

i=1(z(i) −mean(z))2
(2.21)

A perfect fit is considered when RMSE = 0, RMSE ∈ [0,∞), and NSE = 1, NSE ∈

[−∞, 1).

2.4 Predictive Distribution

The primary objective of a statistical inference is to predict unobserved events (Renard et al.,

2013). EVA, for example, provides the basis for estimating loads for infrastructure design

and risk assessment of natural hazards (e.g., floods, extreme rainfall events). Considering a
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Bayesian viewpoint, the predictive distribution can be written as (Renard et al., 2013):

f(z|X) =

∫
f(z,θ|X) · dθ =

∫
f(z|θ) · f(θ|X) · dθ (2.22)

where X is the observed data, z is a grid at which f(z|X) will be evaluated, θ is the vector

of parameters, f(z|θ) is the pdf of the selected distribution (i.e., GEV, GP, LP3), and

f(θ|X) is the posterior distribution function. The predictive distribution function relies on

the fitted distribution function over the parameter space, and uses the posterior distribution

for uncertainty estimation (Renard et al., 2013). In practice, eq. 2.22 often cannot be

derived analytically. Therefore, Renard et al. (2013) suggest to numerically evaluate it using

the MCMC ensemble of solutions sampled from the posterior distribution. The probability

density of the kth-element of the vector z is:

f̂(zk|X) =
1

Nsim

·
Nsim∑
i=1

f(zk|θi) (2.23)

In the nonstationary case, predictive pdf is a function of the covariate, since the distribution

parameters depend on the covariates. For this reason and for a matter of representation,

ProNEVA provides the predictive pdf for a number of predefined values of the covariates.

2.5 Return Level Curves under Nonstationarity

Given a time series of annual maxima, the Return Level (RL) is defined as the quantile

Qi for which the probability of an annual maximum exceeding the selected quantile is qi

(Cooley, 2013). Under the stationary assumption, the characteristics of the statistical model

are constant over time, meaning that the probability q does not change on a yearly basis.

The concept of Return Period (RP) is defined as the inverse of the probability of exceedance,

Ti = 1
qi

in years. For example, assuming Ti=100 year for an event indicates that the event has
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0.01 probability of occurrence in each year (Cooley, 2013). Under the stationary assumption,

there is a one-to-one relationship between RL and RP (Cooley, 2013). Therefore, the RL

curves are defined by the following points:

((
Ti;Qi

)
, Ti > 1yr, i = 1, · · ·

)
(2.24)

RL curves are traditionally used for defining extreme design loads for infrastructure design

and risk assessment of natural hazards. However, in a nonstationary context both RP and RL

terms become ambiguous (Cooley, 2013) and numerous studies have attempted to address

the issue. For nonstationary analysis, ProNEVA integrates two different proposed concept:

the expected waiting time (Salas and Obeysekera, 2014), for default time-covariate only, and

the effective RL curves Katz et al. (2002).

2.5.1 Effective Return Level

Katz et al. (2002) proposed the concept of effective design value (or effective return level),

which is defined as q-quantile, Q varying as a function of the covariate (i.e, time or physical).

Therefore, for a constant value of RP = 1/q, where q is the yearly exceedance probability,

the effective RL curves is defined by the points

((
xc, Qq(xc)

)
, q ∈ [0, 1]

)
(2.25)

where xc is the covariate, and Qq(xc) is the q-quantile.
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2.5.2 Expected Waiting Time

Wigley (2009) firstly introduced the concept of waiting time, i.e., the expected waiting time

until an event of magnitude Qi is exceeded, in which the probability of exceedance in each

year,qi, changes over time. Olsen et al. (1998) and, later, Salas and Obeysekera (2014)

provided a comprehensive mathematical description of the suggested concept.

The event Qq0 is defined as the event with the exceedance probability at time t = 0 equal to

q0. Under nonstationary conditions, at time t = 1 the probability of exceedance of Qq0 will

be q1, at time t = 2, it will be q2, and so on. Given the selected statistical model FQ with

characteristics θt, qt = 1− FQ(Qq0 , θt). Hence, the probability of the event to exceed Qq0 at

time m is given by (Salas and Obeysekera, 2014):

f(m) = qm ·
m−1∏
t=1

(1− qt) (2.26)

where f(1) = q1 and f(m) = 1. The cumulative distribution function (cdf) of a geometrical

distribution (eq. 2.26) is:

FX(x) =
x∑
i=1

f(i) =
x∑
i=1

qi ·
i−1∏
t=1

(1− qt) = 1−
x∏
t=1

(1− qt) (2.27)

where x is the time at which the event occurs, x = 1, · · · , xmax, FX(1) = q1, and FX(xmax) =

1. Therefore, the expected waiting time (or RP) in which for the first time the occurring

event exceeds Qq0 can be derived as

T = E(X) =
xmax∑
x=1

x · f(x) =
xmax∑
x=1

x · px
x−1∏
t=1

(1− pt) (2.28)
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Cooley (2013) simplifies eq. (2.28) as:

T = E(X) = 1 +
xmax∑
x=1

x−1∏
t=1

(1− pt) (2.29)

which gives the return period under nonstationary conditions, and it is consistent with the

definition of RP in the stationary case (Salas and Obeysekera, 2014).

2.6 Explanatory Analysis: Mann-Kendall and White

Tests

With the intention of providing additional explanatory data analysis, ProNEVA includes

two different tests including the Mann-Kendall (MK) monotonic trend test and the White

Test (WT) for evaluating homoscedasticity in the record. These tests can be used to decide

whether to incorporate a trend function in one or more of the model parameters or not

(i.e., deciding whether to use a stationary or nonstationary model). However, these tests are

optional and are not an integral part of ProNEVA.

2.6.1 Mann-Kendall

MK trend test is a widely used test for detecting temporal monotonic changes in the data

(Mann, 1945; Kendall, 1955) and thus, it has been applied for detecting nonstationarity in

time series (Villarini et al., 2009a; Cheng et al., 2014). MK evaluates the monotonic trend

of the time series X = {x1, · · · , xi, · · · , xn} based on the Kendall’s S-statistics, which is the

difference between the numbers of concordant and discordant pairs (Villarini et al., 2009a),

S =
∑
i<j

sign(xi − xj) (2.30)
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In the case when X is independently and randomly distributed, S = 0 (Villarini et al., 2009a).

For large samples, S tends to normality, and so it is possible to test the Null-Hypothesis

(H0) of no monotonic trend (S = 0) against the alternative, at the α-level of significance.

This test is most useful for temporal nonstationary analysis. When using a process-based

covariate, however, ProNEVA replaces the MK test with the zero slope test for a linear

regression model between the time series of the data X and the covariate Xc (Shumway and

Stoffer, 2011). Given β̂1 the estimated slope parameter and β1 the true value:

tn−2 =
β̂1 − β1

sβ1
=

β̂1

sβ1
(2.31)

where sβ1 is the standard error of β1, n is the number of observations, and tn−2 is a t-

distribution with n-2 degrees of freedom. H0: β1 = 0 is performed at 5% level of significance.

2.6.2 White Test

Given the regression model:

y = β0 + β1 · xc + u (2.32)

the homoscedasitcity assumption requires that var{u2|xc} = σ2. In the case of heteroscedas-

ticity then, the residuals of a linear regression model will vary with the dependent variable

xc, (Wooldridge, 2002). White (1980) proposed a test, the WT for heteroscedasticity, based

on the estimation of u as (Wooldridge, 2002):

u2 = δ0 + δ1 · ŷ + δ2 · ŷ2 + error (2.33)

where ŷ is the fitted value ŷ = β0 + β1 · x. H0 is then δ1 = 0, δ2 = 0. Being R2
u2 the

R − squared for the regression in equation 2.33, the Lagrange Multiplier (LM) statistic is
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calculated as:

LM = n ·R2
u2 (2.34)

which follow a χ2
2 distribution. The test is performed at a 5% level of significance.

2.7 Results

As previously discussed, the changes in extremes observed over the past years can derive from

different physical processes. In order to account for the observed changes, we need statistical

tools that are able to incorporate the source of variability, which can be represented as time-

covariate or a physical-based covariate. In the following, we show example applications of

ProNEVA under both stationay and nonstationary assumptions including modeling changes

induced by different type of covariates (both temporal and process-based changes).

In the first application, we analyze discharge data from Ferson Creek (St. Charles, IL), which

has experienced intense urban development over the years. Urbanization has a direct effect

on the amount of water discharged at the catchment outlet, since it increases impervious

surfaces. For this reason, we use a process-based nonstationary LP3 model for fitting dis-

charge data, in which the covariate is represented by percent of urbanized catchment area.

The second application involves temperature maxima data averaged over the Contiguous

United States. Many studies have shown that the amount of CO2 in the atmosphere causes

temperatures to increase. For this reason, we fit temperature data to a nonstationary GEV

model, in which the covariate is represented by CO2 emissions in the atmosphere to include

the known physical relationship. In the third application, we investigate sea level in the city

of Trieste (Italy), which has increased over the years. In this case, we adopted a temporal

nonstationary GEV model. The last application involves precipitation data for New Or-
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leans, LA in which we fit a stationary GP model, given that there is no evidence of change

in statistics of extremes.

2.7.1 Application 1: Modeling discharge with urbanization as the

physical driver

Since 1980, Ferson Creek (St. Charles, IL) basin has experienced land use land cover changes

due to urbanization. The percent of urban areas within the catchment has increased from

20% in 1980 to almost 65% in 2010. River discharge highly depends on the land use and land

cover of the basin as it determines the ratio of infiltration to direct runoff (Figure 2.2). Here,

urbanization can be considered as a known physical process that has altered the runoff in the

basin. To incorporate the known physical process, we investigate annual maxima discharge

of the Ferson Creek (station USGS 05551200) using a processed-based nonstationary LP3

model, in which the covariate, Xc, is the percent of urbanized area. LP3 is widely used for

Figure 2.2: ProNEVA results for Application 1: Modeling discharge in Ferson Creek with
urbanization as the physical driver of change. a) Discharge data and percent of urbanization
in the basin; b) Discharge data as a function of urbanization.

modeling discharge data (Bulletin 17B, U.S. Water Resources Council (1982)). We select

a nonstationary model in which the parameter µ (mean) is an exponential function of the

covariate Xc. We adopt non-informative normal priors for the LP3 parameters. Figure

2.3.b shows the results of the process-based nonstationary analysis for an arbitrary value of

urbanized area, here 37%. For the sake of comparison, Figure 2.3.a displays the results when
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Figure 2.3: ProNEVA results for Application 1: Modeling discharge in Ferson Creek with
urbanization as the physical driver of change. a) Return Level curves based on a stationary
model; b) Return Level base on a nonstationary model considering an urbanization area
equal to 37% of the catchment area; c) Expected return level curves, i.e. ensemble medians,
under stationary and nonstationary assumption; d) Effective return period, i.e. return period
as a function of the percent of urbanized area.

a stationary model is implemented. It is worth noting that the nonstationary model (Figure

2.3.b) fits extreme discharge values (high values of return period) better than the stationary

model (Figure 2.3.a). While based on the AIC and BIC diagnostic tests, the stationary model

and the nonstationary model perform similarly, the RMSE of the nonstationary model (25.06

m3/s) is considerably lower than that of the stationary model (77.58 m3/s).

Urbanization alters the runoff in the basin by reducing the amount of water that infiltrates

and increasing the amount of direct runoff. Figure 2.3.c shows the ability of the statistical

model to incorporate this physical process. As anticipated, the expected (ensemble median)
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nonstationary return level curve associated with a 62% of urbanized area returns higher

values of discharge than the one associated with a 37% of urbanized area. For example,

under the nonstationary assumption, the magnitude of a 50-year event is 62.47 m3/s for

37% of urbanized area, similar to the stationary case. However, the magnitude of the 50-

year event increases to 78.11 m3/s (25% more) for 62% of urbanized area. On the contrary,

the stationary analysis estimates a 50-year event as an event with magnitude 63.74 m3/s,

independently on the level of urbanization of the catchment. The result demonstrates that

a combination between statistical concepts and physical processes is required for a correctly

estimating the expected magnitude of an event. Figure 2.3.d displays the effective return

level curves (Katz et al. (2002)) which summarize the impact of urbanization on discharge

by describing return levels as functions of the selected covariate (x-axis), here urbanization.

2.7.2 Application 2: Modeling temperature with CO2 as the phys-

ical covariate

Over the past decades, many studies have reported higher surface temperature (e.g.: Zhang

et al., 2006; Stott et al., 2010; Melillo et al., 2014; Zwiers et al., 2011), mainly due to an-

thropogenic activities and consequent increase in greenhouse gasses concentration in the at-

mosphere. Therefore, we investigate annual maxima surface temperature for the Contiguous

United States available from NOAA (NCDC archive - https://www.ncdc.noaa.gov/cag/

national/time-series) using a process-based nonstationary GEV model in which the user-

covariate is represented by CO2 emissions over the US (Figure 2.4.a). Territorial fossil fuel

CO2 emissions data are available on Global Carbon Atlas http://www.globalcarbonatlas.

org/en/CO2-emissions (Boden et al., 2017; BP, 2017; UNFCCC, 2017). To incorporate the

observed relationship between temperature and CO2 in the statistical model (Figure 2.4.b),

we select a model in which the location and the scale parameters of the GEV distribution

are linear functions of the covariate, while the shape parameter is constant. We assume
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Figure 2.4: ProNEVA results for Application 2: Modeling temperature maxima with CO2

emissions as the physical covariate. a) Temperature and CO2 time series; b) Annual tem-
perature maxima as a function of CO2 emissions in the atmosphere

normal non-informative priors. Figure 2.5.b shows the results of the nonstationary model

for a value of CO2 equal to 4.9 GtCO2. For comparison, we also plot the results when a

stationary model is selected, Figure 2.5.a. One can see that the nonstationary model bet-

ter captures the observed extreme events, particularly events associated with higher values

of CO2. Moreover, the diagnostics tests confirm that the nonstationary model is a better

fit. Fore the nonstationary model, the AIC and the BIC are 93.91 and 104.13, respectively.

When the stationary model is considered, both the AIC and BIC increase to 104.98 and

111.11, respectively. Lower values of AIC and BIC indicate a better model. The advantage

of the AIC and BIC for model selection is their ability to account for the number of model

parameters: models with higher number of parameters are penalized. Figure 2.6 shows the

effective return level as a function of CO2 emissions. The results show how temperature

extremes change in response to the increasing CO2 emissions (here, the physical co-variate).

For example, looking at the expected magnitude of a 50-year event, the temperature increases

of about 4%, from 18.79 ◦C to 19.5 ◦C, when the CO2 emissions increase from 4.49 GtCO2

to 5.51 GtCO2. The results are consistent with the expectation that higher CO2 leads to

a warmer climate, indicating that the statistical nonstationary model is able to model the

observed physical relationship between temperature and CO2.
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Figure 2.5: ProNEVA results for Application 2: Modeling temperature maxima with CO2

emissions as the physical covariate. a) Return Level curves based on a stationary model; b)
Return Level base on a nonstationary model considering CO2 emissions equal to 4.9 GtCO2.

Figure 2.6: ProNEVA results for Application 2: Modeling temperature maxima with CO2

emissions as the physical covariate. Effective return period, i.e. return period as a function
of CO2 emissions.

47



Figure 2.7: ProNEVA results for Application 3: Modeling sea level rise with time as the
covariate. Sea Level in the city of Trieste (IT).

2.7.3 Application 3: Modeling sea level rise with time as the co-

variate

The coastal city of Trieste (Italy) has been experiencing an increase in sea level height

over the years (Figure 2.7). Given the observed trend, we investigate annual maxima sea

level data from the Permanent Service for Mean Sea Level (PSMSL - station ID 154) by

adopting a temporal nonstationary GEV model. The location and scale parameters of the

GEV distribution are modeled as linear functions of the time-covarite. The shape parameter

is kept constant and we use non-informative normal priors for parameter estimation. Figure

2.8.b shows the return level curves for a fixed value of the time-covariate equal to 45 years

from the first observation (i.e., 45 years into the future from the beginning of the data). The

nonstationary analysis in Figure 2.8.b provides a better performance that the stationary

model in Figure 2.8.a. Both the AIC and the BIC values confirm that a nonstationary

model is the best choice to represent sea level observations in a changing climate. The AIC

for the nonstationary model is 976.69, while it is 992.74 for the stationary model. Similarly,

the BIC for the nonstationary model is 989.08, while it is 1000 for the stationary model.

Lower values for AIC and BIC indicates a better model. The value of the temporal covariate
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Figure 2.8: ProNEVA results for Application 3: Modeling sea level rise with time as the
covariate. a) Return Level curves based on a stationary model; b) Return Level base on a
nonstationary model considering equal to 45 years from the first observation; c) Expected
return level curves, i.e. ensemble medians, under stationary and nonstationary assumption;
d) Effective return period, i.e. return period as a function of the covariate, here time.

should be regarded as the time at which we estimate expected values of, as in this specific

case, sea level. The expected (ensemble median) nonstationary return level curves in Figure

2.8.c refer to three different time at which we evaluate sea level: 45, 85, and 133 years from

the first observation. Here, 133 years from the first observation is beyond the period of

observations (88 years) meaning that we project into the future the observed trend and we

infer from there. The observed increasing trend in the sea level records results in increasing

values of sea level for higher value of the temporal covariate (Figure 2.8.c). For example, a

50 year event is equal to 7296.3 mm for time equal to 45 years from the first observation,

7349.3 mm for 85 years, and 7410.4 mm for 133 years. We register about 2% increase in
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Figure 2.9: ProNEVA results for Application 3: Modeling sea level rise with time as the
covariate. Waiting time.

sea level when the time of the first observation changes from 45 to 133 years, confirming the

ability of the nonstationary model to reproduce the increasing trend in observations. On the

contrary, the stationary analysis return a 50-year sea level equal to 7314.3 mm regardless

of the first observation. Figure 2.8.d shows the effective return level (Katz et al., 2002)

curves, which capture the variability over time (here, the covariate) in the observed data.

In the case of a nonstationary model with a temporal covariate, it is possible to evaluate

the expected waiting time (Wigley, 2009; Olsen et al., 1998; Salas and Obeysekera, 2014),

which incorporates the observed changes in the sea level over time in the estimation of

return periods. Figure 2.9 shows that the current return periods (lower x-axis) will change

considering the observed nonstationarity (upper x-asis). For example, the 100-year sea level

estimated at t0 (beginning of the simulation) turns into a 40-year event when the observed

trend over time in sea level values is taken into account.
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Figure 2.10: ProNEVA results for Application 4: Modeling precipitation under a stationary
assumption. Precipitation excesses.

2.7.4 Application 4: Modeling precipitation under a stationary

assumption

As last example application, we investigate a time series of precipitation from New Orleans,

LA that does not exhibit changes in statistics of extremes. We obtain daily precipitation

from the National Climatic Data Center (NCDC) archive (https://www.ncdc.noaa.gov/

cdo-web/ ) for the city of New Orleans, station GHCND:USW00012930. Given that we

are interested in heavy precipitation events, we use a GP distribution to focus on values

above a high threshold (i.e., avoid including non-extreme values). We extract precipitation

excesses considering a constant threshold of the 98th-percentile of daily precipitation values

(Figure 2.10) For this application we select a stationary GP model, given that we do not have

physical evidence to justify a more complex model. However, for the sake of comparison, we

perform a nonstationary analysis considering the scale parameter as a linear function of time.

Figure 2.11.a represents the return level curves based on a stationary model, while Figure

2.11.b depicts return level curves for a value of the covariate (here time) equal to half of the

period of observation. From a comparison between the two models, the stationary model

performs better. The stationary model returns values of the AIC and BIC equal to 713.3
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and 721.14, respectively. For the nonstationary model the values of the AIC and BIC are

higher (715.02 and 726.79, respectively). The results of this example application suggests

that when no evidence of changes due to a physical process can be identified, ProNEVA

favors the simplest form of model that represents the historical observations.

Figure 2.11: ProNEVA results for Application 4: Modeling precipitation under a stationary
assumption. a) Return Level curves under the stationary assumption; b) Return Level curves
under the temporal nonstationary assumption for a value of the covariate within the period
of observation.

2.8 Conclusion

The ability of correctly modeling the expected magnitude and frequency of extreme events is

fundamental for improving design concepts and risk assessment methods. This is particularly

important for extreme events that have significant impacts on societies, infrastructure and

human lives, such as extreme precipitation events causing flooding and landslides.

The observed increase in extreme events and their impacts reported from around the world

has motivated moving away from the so-called stationary approach to ensure capturing the

changing properties of extremes (Milly et al., 2008). However, there are opposing opinions

and perspective on the need and also form of suitable nonstationary models for extreme
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value analysis.

Most of the existing tools for implementing extreme value analysis under the nonstationary

assumption have a number of limitations including lack of a generalized framework for: incor-

porating physically based covariates; and estimating parameters which depend on a generic

physical covariate. To address the above limitations, we propose a generalized framework

entitled Process-based Nonstationary Extreme Value Analysis (ProNEVA) in which the non-

stationarity component is defined by a temporal or process-based dependence of the observed

extremes on a physical driver (e.g., change in runoff in response to urbanization, or change

in extreme temperatures in response to CO2 emissions). ProNEVA offers temporal and

process-based stationary and nonstationary extreme value anlaysis, parameter estimation,

uncertainty quantification, and a comprehensive assessment of the goodness of fit.

The source code of ProNEVA is freely available to the scientific community. A graphical user

inter face (GUI) version of the model is also available to facilitate its applications (Section

2.9). We hope that ProNEVA motivates more physically-based nonstationary analysis of

extreme events.
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2.9 Supporting Information: ProNEVA User Manual

Process-based Nonstationary Extreme Value Analysis (ProNEVA) is a Matlab software

package intended to facilitate extreme value analysis (EVA) for stationary and nonstation-

ary models. ProNEVA estimates the parameters of the Generalized Extreme Value (GEV)

distribution, the Generalized Pareto (GP) distribution, and the Log-Pearson Type III (LP3)

distribution. Bayesian approach and a hybrid Markov Chain Monte Carlo (MCMC) method

for sampling from the posterior distribution are implemented. ProNEVA also provides di-

agnostic tests and return level plots. The toolbox is released along with a Graphical User

Interface (GUI) so that it can reach a broad audience. Moreover, the toolbox can be a

valuable educational tool for advanced data analysis courses. By using ProNEVA software

users agree to the disclaimer. 1

1 Disclaimer: The Process-based Nonstationary Extreme Value Analysis (ProNEVA) software package is
provided ‘as is’ without any endorsement made and without warranty of any kind, either express or implied.
While we strive to ensure that ProNEVA is accurate, no guarantees for the accuracy of the codes, output
information and figures are made. ProNEVA codes and outputs can only be used at your own discretion and
risk and with agreement that you will be solely responsible for any damage and that the authors and their
affiliate institutions accept no responsibility for errors or omissions in ProNEVA codes, outputs, figures, and
documentation. In no event shall the authors, developers or their affiliate institutions be liable to you or
any third parties for any special, direct, indirect or consequential damages and financial risks of any kind,
or any damages whatsoever, resulting from, arising out of or in connection with the use of ProNEVA. The
user of ProNEVA agrees that the codes and algorithms are subject to change without notice.
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2.9.1 ProNEVA Folder Content

The software package ProNEVA contains the following elements (Figure 2.12):

• GUIpackage. It is the folder that includes the source codes of the ProNEVA GUI.

Do not rename or move the folder or its content.

• ProNEVApackage. It is the folder that contains the source codes for stationary and

nonstationary extreme value analysis, diagnostic tests, and plots. Do not rename or

move the folder or its contents.

• RUN GUI for ProNEVA. It is the code to run to perform stationary and nonsta-

tionary extreme value analysis using ProNEVA. A GUI will guide users in selecting

inputs and run specifics.

• RUN ProNEVA. It is the code intended for users who wish to perform stationary

and nonstationary extreme value analysis using ProNEVA bypassing the GUI. Such

users must edit the portion of the code associated with the inputs before running it.

• Disclaimer. By using ProNEVA users agree to the disclaimer. Please read the docu-

ment before using the software.

• UserManual ProNEVA.
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Figure 2.12: Content of the folder ProNEVA.

2.9.2 RUN ProNEVA

The ProNEVA software package can be executed via (1) the GUI or (2) the main source

code based on the preference of the user. The results of the analyses do not depend on this

choice.

ProNEVA via GUI

(1) Open Matlab and select the folder “ProNEVA” as the current folder.

(2) Run RUN GUI for ProNEVA.m code by either (a) typing “RUN GUI for ProNEVA”

on the command window or (b) opening “RUN GUI for ProNEVA.m” in the editor

subsection and clicking the “RUN” button on the toolbar. The window in Figure 2.13

will pop up.
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Figure 2.13: ProNEVA GUI - Data&Model for selecting data, distribution, and model type.

(3) In the section “Select Data”, click on “BROWSE” and navigate to the file containing

the data. The data must be formatted as one vector stored in a text file (.txt

extension). Before uploading the file, make sure that the data are processed as follows:

GEV: Block maxima.

GP: Complete time series. The threshold will be selected in the next step.

LP3: Annual maxima in real or original space. ProNEVA will automatically transform

the data in log-space.

(4) In the section “Select Distribution”, select the desired distribution – GEV, GP, or

LP3 – in accordance with uploaded data.

(5) In the section “Select Model”, select between stationary and nonstationary analysis

(6) In the case of a nonstationary analysis, the section “Covariate” will be active. Select

the type of covariate between “Time” and “User Defined.” In the case of “User Defined”

covariate, click on “BROWSE” and navigate to the text file containing the data. The
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data must be formatted as one vector and the same length as the main variable

selected in Step (3).

(7) Click “CONTINUE” to continue. One of the following windows will pop up, based

on the distribution type selected in Step (4):

Figure 2.14 when a GEV distribution is chosen. For each parameter of the GEV dis-

tribution, specify the prior distribution and associated parameters. Specifically,

lower and upper bound for uniform distribution; mean and standard deviation for

normal distribution; shape and scale for gamma distribution. For more details

about the types of distributions refer to Matlab help. In the case of a nonstation-

ary analysis, the trend sections will be active. Select the type of trend: “none”

refers to a constant parameter. If “none” is selected for all the parameters, a

stationary analysis will be performed.

Figure 2.15 when a GP distribution is chosen. Select the type of threshold. Select

the quantile to determine the value of the threshold parameter. Insert the num-

ber of observation in one year; this variable will be used for plotting return level

curves. For each parameter of the GP distribution, specify the prior distribution

and associated parameters. Specifically, lower and upper bound for uniform dis-

tribution; mean and standard deviation for normal distribution; shape and scale

for gamma distribution. For more details about the types of distributions, refer

to the Matlab help. In the case of a nonstationary analysis, the trend sections

will be active. Select the type of trend: “none” refers to a constant parameter. If

“none” is selected for all the parameters, a stationary analysis will be performed.

Figure 2.16 when a LP3 distribution is chosen. For each parameter of the LP3 dis-

tribution, specify the prior distribution and associated parameters. Specifically,

lower and upper bound for uniform distribution; mean and standard deviation
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Figure 2.14: ProNEVA GUI. Select priors and trends for the GEV parameters.

for normal distribution; shape and scale for gamma distribution. For more de-

tails about the types of distributions, refer to the Matlab help. In the case of a

nonstationary analysis, the trend sections will be active. Select the type of trend:

“none” refers to a constant parameter. If “none” is selected for all the parameters,

a stationary analysis will be performed.

(8) Click “CONTINUE” to continue. The last window will pop up, Figure 2.17. Specify

the number of chains and iterations, and the burn-in period for MCMC. Specify the

maximum return period of interest for return level curves. Select “YES” to the three

questions to perform Man-Kendall trend test and White test, to plot return level curves,

and to save the results.
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Figure 2.15: ProNEVA GUI. Select threshold type along with priors and trends for the GP
parameters.

(9) Click “RUN” and the analysis will start. When the option to save the results is

selected, the folder “Results” containing the outputs (.mat and .fig files) will be created

in the folder “ProNEVA”.
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Figure 2.16: ProNEVA GUI. Select priors and trends for the LP3 parameters.

Figure 2.17: ProNEVA GUI for selecting the parameters for MCMC along with complemen-
tary options such as tests, plots, and save.
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ProNEVA via Source Code

Users can perform stationary and nonstationary extreme value analysis using ProNEVA

avoiding the GUI. To do so:

(1) Open Matlab and select the folder “ProNEVA” as the current folder.

(2) Open “RUN ProNEVA.m” in Matlab Editor.

(3) Edit section “Load Data”. Replace “DataPath\MyData.txt’‘ with the name of the

desired file. Include the file path when the file .txt is outside the folder “ProNEVA”.

1 %% (1) EDIT - LOAD DATA

2 fileOBS = fopen(’DataPath\MyData.txt’);

(4) Edit section “Distribution Type”. Specify the distribution of interest in Line 7 based

on the legend.

1 %% (2) EDIT - DISTRIBUTION TYPE

2 % RUNspec.DISTR.Type

3 % (i) RUNspec.DISTR.Type = ’GEV ’ Generalized Extreme Value

Distribution

4 % (ii) RUNspec.DISTR.Type = ’GP’ Generalized Pareto

Distribution

5 % (iii) RUNspec.DISTR.Type = ’P3’ Pearson Typer III

6 RUNspec.DISTR.Type = ’GEV’;

(5) Edit section “Model Type”. Specify the type of model in line 5, stationary or non-

stationary. In the case of nonstationary analysis, RUNspec.DISTR.Model = ‘Non-

Stat’, specify the type of covariate. If RUNspec.COV.type = ‘User’, replace ‘Cov-

Path\MyCovariate.txt’ with the name of the text file containing the vector of covariate.

Include the file path if the file is outside the ProNEVA folder.
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1 %% (3) EDIT - MODEL TYPE

2 % ’Stat ’ : Stationary Analysis

3 % ’NonStat ’ : Nonstationary Analysis

4

5 RUNspec.DISTR.Model = ’Stat’;

6

7 if strcmp(RUNspec.DISTR.Model , ’NonStat ’;

8

9 %% EDIT - COVARIATE TYPE

10 % RUNspec.COVtype:

11 % (i) RUNspec.COV.type = ’Time ’

12 % (ii) RUNspec.COV.type = ’User ’

13 RUNspec.COV.Type = ’Time’;

14

15 if strcmp(RUNspec.COV.Type , ’User’)

16

17 %% EDIT - SELECT FILE COVARIATE

18 fileCOV = fopen(’CovPath\MyCovariate.txt’);

19 % DO NOT EDIT

20 textCOV = textscan(fileCOV , ’%f’);

21 fclose(fileCOVE);

22 RUNspec.COV.X = textCOV {1}(:);

23 end

24 end

(6) Uncomment and edit the sections in Listings 2.1, 2.2, and 2.3 based on the type of

distribution chosen at Step (4). For each distribution’s parameter, specify the type

of prior and associated parameters, following the legend at the top. In the case of a

GP distribution, specify the threshold quantile and the type, along with the number of
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observations in a year, used for return level plots. In the case of nonstationary analysis,

define the type of trend for the different parameters.

1 %% (4) UNCOMMENT and EDIT if RUNspec.DISTR.Type = ’GEV ’

2

3 %% Edit PRIOR

4 % (i) ’Uniform ’: parm1 = min | parm2 = max

5 % (ii) ’Normal ’ : parm1 = mean | parm2 = std

6 % (iii) ’Gamma ’ : parm1 = shape | parm2 = scale

7

8 % Location - MU:

9 RUNspec.PRIOR.MUdistr = ’Normal ’;

10 RUNspec.PRIOR.MUparm1 = 0;

11 RUNspec.PRIOR.MUparm2 = 100;

12

13 % Scale - SI:

14 RUNspec.PRIOR.SIdistr = ’Normal ’;

15 RUNspec.PRIOR.SIparm1 = 0;

16 RUNspec.PRIOR.SIparm2 = 10;

17

18 % Shape - XI:

19 RUNspec.PRIOR.XIdistr = ’Normal ’;

20 RUNspec.PRIOR.XIparm1 = 0;

21 RUNspec.PRIOR.XIparm2 = 0.2;

22

23 % DO NOT EDIT

24 if strcmp(RUNspec.DISTR.Model , ’Stat’)

25

26 RUNspec.NS.MU = ’none’;

27 RUNspec.NS.SI = ’none’;
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28 RUNspec.NS.XI = ’none’;

29 else

30 %% EDIT TREND ’NonStat ’ case

31 % TREND LOCATION

32 % ’none ’ | ’Linear ’ | ’Quadratic ’ | ’Exponential ’

33 RUNspec.NS.MU = ’Linear ’;

34 % TREND SCALE

35 % ’none ’ | ’Linear ’ | ’Quadratic ’

36 RUNspec.NS.SI = ’Linear ’;

37 % TREND SHAPE

38 % ’none ’ | ’Linear ’

39 RUNspec.NS.XI = ’none’;

40 end

Listing 2.1: Section for GEV.

1 %% (4) UNCOMMENT AND EDIT if RUNspec.DISTR.Type = ’GP’

2

3 %% EDIT GP THRESHOLD

4 % RUNspec.THtype: (i) ’Const ’ | (ii) ’QR’ - Quantile Regression

5 RUNspec.THtype = ’Const’;

6 % RUNspec.THp: p-quantile for threshold definition [0 1]

7 RUNspec.THp = 0.98;

8 % RUNspec.NobsY: Observations in a year

9 RUNspec.NobsY = 365;

10

11 %% EDIT PRIOR

12 % (i) ’Uniform ’: parm1 = min | parm2 = max

13 % (ii) ’Normal ’ : parm1 = mean | parm2 = std

14 % (iii) ’Gamma ’ : parm1 = shape | parm2 = scale
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15

16 % Scale

17 RUNspec.PRIOR.SIdistr = ’Normal ’;

18 RUNspec.PRIOR.SIparm1 = 0;

19 RUNspec.PRIOR.SIparm2 = 10;

20

21 % Shape

22 RUNspec.PRIOR.XIdistr = ’Normal ’;

23 RUNspec.PRIOR.XIparm1 = 0;

24 RUNspec.PRIOR.XIparm2 = 0.2;

25

26 % DO NOT EDIT

27 if strcmp(RUNspec.DISTR.Model , ’Stat’)

28

29 RUNspec.NS.MU = ’none’;

30 RUNspec.NS.SI = ’none’;

31 RUNspec.NS.XI = ’none’;

32 else

33 %% EDIT TREND ’NonStat ’ case

34 % TREND SCALE

35 % ’none ’ | ’Linear ’ | ’Quadratic ’

36 RUNspec.NS.SI = ’Linear ’;

37 % TREND SHAPE

38 % ’none ’ | ’Linear ’

39 RUNspec.NS.XI = ’none’;

40 end

Listing 2.2: Section for GP.

1 %% (4) UNCOMMENT and EDIT if RUNspec.DISTR.Type = ’P3’
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2

3 %% Edit PRIOR

4 % (i) ’Uniform ’: parm1 = min | parm2 = max

5 % (ii) ’Normal ’ : parm1 = mean | parm2 = std

6 % (iii) ’Gamma ’ : parm1 = shape | parm2 = scale

7

8 % Location - MEAN:

9 RUNspec.PRIOR.MUdistr = ’Normal ’;

10 RUNspec.PRIOR.MUparm1 = 0;

11 RUNspec.PRIOR.MUparm2 = 100;

12

13 % Scale - STANDARD DEVIATION:

14 RUNspec.PRIOR.SIdistr = ’Normal ’;

15 RUNspec.PRIOR.SIparm1 = 0;

16 RUNspec.PRIOR.SIparm2 = 10;

17

18 % Shape - SKWENESS:

19 RUNspec.PRIOR.XIdistr = ’Normal ’;

20 RUNspec.PRIOR.XIparm1 = 0;

21 RUNspec.PRIOR.XIparm2 = 0.2;

22

23 % DO NOT EDIT

24 if strcmp(RUNspec.DISTR.Model , ’Stat’)

25

26 RUNspec.NS.MU = ’none’;

27 RUNspec.NS.SI = ’none’;

28 RUNspec.NS.XI = ’none’;

29 else

30 %% EDIT TREND ’NonStat ’ case
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31 % TREND LOCATION

32 % ’none ’ | ’Linear ’ | ’Quadratic ’ | ’Exponential ’

33 RUNspec.NS.MU = ’Linear ’;

34 % TREND SCALE

35 % ’none ’ | ’Linear ’ | ’Quadratic ’

36 RUNspec.NS.SI = ’Linear ’;

37 % TREND SHAPE

38 % ’none ’ | ’Linear ’

39 RUNspec.NS.XI = ’none’;

40 end

Listing 2.3: Section for LP3.

(7) Edit MCMC information and optional results in Listing 2.4. Specify the desired num-

ber of chains and iterations, and the burn-in period for MCMC approach. Specify the

maximum return period for return level curves. Finally, specify whether ProNEVA

will perform the Mann-Kendall trend test and White test, plot return level curves, and

save the results. When the option to save the results is selected, a folder “Results”

will be created in the folder “ProNEVA” containing the analysis outputs (.mat and .fig

files).

1 %% (5) EDIT - MCMC AND EXTRA OPTIONS

2 % MCMC

3 % Number of Chains

4 RUNspec.Nchain = 3;

5 % Number of Iterations

6 RUNspec.maxIT = 10000;

7 % Burn -in period

8 RUNspec.brn = 9000;

9 % Return Period
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10 RUNspec.RP = 100;

11

12 % Extra Options

13 % ’Y’: Yes - ’N’: No

14 % Save Results? ’Y’ /’N’

15 EXTRAS.saveRES = ’Y’;

16 % Run Mann -Kendall and White Tests? ’Y’/’N’

17 EXTRAS.RunTests = ’Y’;

18 % Plot Return Level? ’Y’/’N’

19 EXTRAS.PlotRL = ’Y’;

Listing 2.4: Section for LP3.

(8) Run the code.

2.9.3 ProNEVA Results

When the option to save the data is selected, a folder “Results” will be created and it will

contain the outputs from the run. Table 2.5 summarizes the expected outputs. However,

some outputs may not be available because of the type of the input previously selected.
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OUTPUT.
CH Parameters of the selected distribution

RhatCH Gelman R̂ for convergency check
Z Standardized Observations for GOF tests
RES Residuals
EWT Expected Waiting Time
Zq0 Quantile associated with the EWT
RLplot.VC Covariate values for the return level plots
PARvc Distribution parameters for covariate equal to RLplot.VC
RLplot.RL95 Upper bound of return level curves (95-percentile)
RLplot.RL05 Lower bound of return level curves (5-percentile)
RLplot.RL50 Expected return level curves (median)
RLplot.RLm Maximum likelihood return level curves
ERP.TT Return period for effective return level plot
RLeff Effective return level curves: each row corresponds to ERP.TT
PDFhat Predictive PDF
DGN.
KS.HH Kolmogorov Smirnov (KS) Test Results
KS.RJrate KS test rejection rate
AIC Akaike Information Content
BIC Bayesian Information Criterion
RMSE Root Mean Square Error
NSE NashSutcliffe model Efficiency Coefficient
TST.
MK.H Statistical significance of Mann-Kendall trend test
MK.p value p value for the Mann-Kendall trend test
WT.H Statistical significance of White test
WT.p value p value for the White test

Table 2.5: List of ProNEVA outputs
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Chapter 3

On the Probability of Rare Events

Since the beginning of time, humans have managed to cope with unavoidable, and often

unpredictable, natural hazards. Today’s highly populated and urbanized society is extremely

vulnerable to rare events and their disruptive consequences: entire communities fight, fall,

and then rise against them. Hurricane Harvey unfolded in August of 2017 along Texas coast

and was one of the most recent natural hazards which caused devastating impacts due to

widespread flooding (NWS, 2018). Almost 780,000 Texans evacuated their homes, and the

estimated total cost in damages of the hurricane was about $125 billion (FEMA, 2017). The

news referred to the event as a 1,000-year flood (Samenow, 2017). A 1 in 1,000 year flood

event is expected to be observed once in a 1,000 years on average (in statistical terms, an

event with a probability of occurrence of 0.1 % (1/1,000) in any given year.

Determining the recurrence interval (return period) of extreme events is fundamental to

infrastructure design, risk assessment, asset management and disaster relief planning and

response. Generally, the return period of a rare event and its magnitude (known as return

level) is inferred from limited observations - often derived by extrapolating from a distribution

function fitted to the available observations (Coles, 2001). This indicates that the reliability
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of return period analyses of extremes and their corresponding magnitudes are closely related

to the length of record. For example, if we have only 50 years of data (typical for hydrology

and climate data records), the chance that a 100-yr event has happened in this period is only

50%. This could be rephrased in a more general question such as: what is the probability of

observing a T–year event given a time series of (say, precipitation) annual maxima of length

N?

Let’s consider a time series X = {X1, ..., XN} of N independent and identically distributed

(i.i.d) observations of precipitation/temperature annual maxima. Let’s assume that xT is the

T -year event of interest. Then, P (X > xT ) = 1/T , where xT is the event with an exceedance

probability of 1/T in each year. The probability that the event xT will not be exceeded in N

years is then P (X(1) < xT , ..., X(i) < xT , X(N) < xT ) where X(i) is the event in year i. Given

independence of observations, P (X(1) can be described as follows:

P (X(1) < xT , ..., X(i) < xT , X(N) < xT ) =
N∏
i=1

(
1− 1

T

)
=
(

1− 1

T

)N
(3.1)

Hence, the complementary event, i.e. the probability that we observe xT at least once in N

years, P (xt ∈ X), is

P (xT ∈ X) = 1− P (X(1) < xT , ..., X(i) < xT , X(N) < xT ) = 1−
(

1− 1

T

)N
(3.2)

The return period (T ) can be expressed as a function of the length of record N as T = α ·N ,

where T and N are in years and α is dimensionless. Therefore, Equation 3.2 can be rewritten

as follows:

P (xT ∈ X) = 1−
(

1− 1

α ·N

)N
(3.3)
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Figure 3.1: Probability of observing a T-year event at least once in N-years (P (xT ∈ X)):
Comparing P (xT ∈ X) for different lengths of records (Equation 3.3; solid lines) relative to
the case of N →∞ (Equation 3.4; dashed lines).

For large values of N , Equation 3.3 can be approximated as

lim
N→∞

P (xT ∈ X) = lim
N→∞

(
1−

(
1− 1

α ·N

)N)
= 1− e−1/α (3.4)

Equation 3.4 suggests that for large number of observations (N), the probability of observing

an event only depends on the ratio α between the return period of interest and the length

of records, and not on their absolute values. In statistical applications, a minimum of 30

elements is commonly considered necessary for significant inferences. Figure 3.1 shows that

Equation 3.4 is a good approximation of the occurrence probability of a rare event when

N ≥ 30.

Figure 3.1 shows that a reliable estimation of the probability and return period of a rare

event does not depend solely on the number of observations or on the rarity of the event.

For example, the probability of observing a 100-year event in 100 years of data is the same

as the probability of observing a 1,000 year event in 1,000 years of data. We believe that

estimates of return periods of extreme events should include information on their reliability
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Figure 3.2: The universal chart indicating the likelihood of observing an extreme events

or our confidence in the estimates based on the available data. This is necessary to improve

the way risk information is communicated to decision-makers by providing confidence in the

estimated magnitude and frequency of natural hazards.

To address this gap, we implement Equation 3.4 to delineate a universal chart summarizing

the likelihood of observing the rare event of interest within the available set of observation

(see Figure 3.2). The goal of this figure is to communicate the confidence in the estimated

return period or probability of an extreme event. To be consistent with the climate science

literature, in this chart, the ratio between the length of record and the rarity of the extreme

event is combined with the likelihood scale adopted by the Intergovernmental Panel on

Climate Change (IPCC) Fifth Assessment Report (Mastrandrea et al., 2010).

Figure 3.2 shows that observing a T -year event is very likely (P (xT ∈ X) ≤ 0.9) if the

number of observations are equal to or greater than 2.3T . Observing a rare event is likely

(0.66 ≥ P (xT ∈ X) < 0.9) when the number of observations is between T and 2.3T , and
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observing it is about as likely as not (0.33 ≥ P (xT ∈ X) < 0.66) when the number of

observations is between 0.4T and T . Finally, observing a T -year event is unlikely (P (xT ∈

X) < 0.33) when the number of observations is less than 0.4T .

In the following, we show examples of the likelihood of observing specific rare events (e.g., T

= 100-yr event) given a fixed length of record - e.g., 50 years (Figure 3.3 left) and 100 years

(Figure 3.3 right). The figure shows that a 50-year event is as likely as not when estimated

based on 50 years of observations (Figure 3.3 left), while it only becomes likely when there

is over 100 years of observations (Figure 3.3 right).

Figure 3.3: The likelihood of observing a rare event (e.g., T=50-yr, 100-yr, 500-yr) for 50
years (left) and 100 (right) years of observations.

Figure 3.4 displays the likelihood of observing a 50-yr (left) and 100-yr (right) events for

different lengths of records (e.g., N=15 to N=200 years). The figure highlights that an

estimated 100-year event is unlikely to be observed when only 30 years of observation are

available (Figure 3.4). In many parts of the world, the observe records barely exceed 30

years which indicates our estimates of the magnitude of extremes may be highly biased.

The results indicate that predicting future rare events requires paying special attention to

the confidence in the estimates based on the available observations. Given that predicting
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Figure 3.4: The likelihood of observing a 50-yr (left) and 100-yr (right) events for different
lengths of records (N=15 to N=200 years).

rare events does not depend solely on the number of observations or on the rarity of the

event of interest, we recommend adopting the proposed universal chart for communicating

our confidence in estimated return periods of extreme events. This chart sheds light on un-

certainties associated with the return period estimates often used for design and operational

applications.
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Chapter 4

Quantifying Changes in Future

Intensity-Duration-Frequency Curves

Using Multi-Model Ensemble

Simulations

Chapter based on the following published work:

Ragno, E., AghaKouchak, A., Love, C. A., Cheng, L., Vahedifard, F., and Lima, C. H. R.

(2018). Quantifying changes in future IntensityDurationFrequency curves using multimodel

ensemble simulations. Water Resources Research, 54, 17511764. https: // doi. org/ 10.

1002/ 2017WR021975 .
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4.1 Introduction

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC -

(Field et al., 2014)) states that since 1960 anthropogenic activities have likely contributed

to altering the global water cycle by increasing, more than decreasing, the number of heavy

precipitation events in terrestrial regions. Indeed, higher surface temperatures observed over

the past decades (e.g.: Barnett et al., 1999; Melillo et al., 2014; Diffenbaugh et al., 2015;

Fischer and Knutti, 2015; Mazdiyasni and AghaKouchak, 2015), mainly driven by human

activities (Zhang et al., 2006; Stott et al., 2010; Melillo et al., 2014; Zwiers et al., 2011),

can alter the hydrological cycle leading to more intense rainfall events (Zhang et al., 2007;

Min et al., 2011; Marvel and Bonfils, 2013; Westra et al., 2013; Cheng et al., 2014; Fischer

and Knutti, 2016). Reports indicate that many regions including the United States, central

Africa, parts of southwest Asia (i.e., Thailand, Taiwan), Central America, Australia, and

parts of eastern Europe have experienced more extreme events (DeGaetano, 2009; Melillo

et al., 2014; Zheng et al., 2015; Fischer and Knutti, 2015; Wasko et al., 2016). Heavier

precipitation events have increased the risk of flooding at regional scale (Field et al., 2014)

and rainfall-triggered landslide activity in the U.S. over the past few decades, (Gariano and

Guzzetti, 2016). Moreover, recent studies using precipitation projections from Global Cli-

mate Models (GCMs) indicate that there is a high chance of substantial impact on landslide

activity in natural slopes (Robinson et al., 2017) and on the performance of man-made

earthen structures (Vahedifard et al., 2017b; Jasim et al., 2017).

The observed trends and projected changes in future extreme events have called into ques-

tion the preparedness of existing and future construction (Milly et al., 2008; Mailhot and

Duchesne, 2010; Hallegatte et al., 2013; Moftakhari et al., 2017b; Yan et al., 2018). Current

design and failure risk assessment procedures for infrastructure (e.g., dams, roads, sewer and

storm water drainage systems) and earthen structures (e.g., levees, natural and engineered

slopes) rely on rainfall Intensity-Duration-Frequency (IDF) curves for estimating the design
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storm intensity and the corresponding flow. IDF curves represent the probable intensity of

a rainfall event given a certain duration (or time of concentration - e.g., 24-hour) and an

average return period (recurrence interval), estimation of which involves fitting a represen-

tative distribution function to observed precipitation (Bonnin et al., 2006). In the current

procedure, the parameters of the distribution are estimated under the so-called stationary

assumption (i.e., time-invariant parameters). This assumes that no significant changes are

expected in magnitude or frequency, and hence in distribution parameters, of precipitation

extremes over time (Milly et al., 2008).

Several studies have considered nonstationary models for extreme value analysis to address

temporal changes in climate extremes (Katz et al., 2002; Sankarasubramanian and Lall, 2003;

Mailhot et al., 2007; Huard et al., 2009; Villarini et al., 2010; Vogel et al., 2011; Zhu et al.,

2012; Willems et al., 2012; Katz, 2013; Obeysekera and Salas, 2013; Salas and Obeysekera,

2014; Yilmaz and Perera, 2014; Mirhosseini et al., 2014; Volpi et al., 2015; Read and Vo-

gel, 2015; Sadegh et al., 2015; Krishnaswamy et al., 2015; Mirhosseini et al., 2015; Mondal

and Mujumdar, 2015; Lima et al., 2016; Sarhadi and Soulis, 2017). Among those, Cooley

et al. (2007) proposed a spatio-temporal Bayesian hierarchical modeling approach for defin-

ing IDF maps for flood management in the Front Range of Colorado. Villarini et al. (2009a)

presented a framework for dealing with annual maximum peak discharge under nonstation-

ary conditions. Rosner et al. (2014) introduced a novel methodology for flood risk assess-

ment integrating the concepts of under- and over-preparedness in a nonstationary context.

Cheng et al. (2014) developed a Bayesian-based framework for analyzing time-dependent

extremes. Reliable nonstationary analysis, however, requires understanding the determin-

istic process(es) causing time-variant behavior (Cohn and Lins, 2005; Koutsoyiannis, 2005;

Montanari and Koutsoyiannis, 2014; Lins and Cohn, 2011; Koutsoyiannis and Montanari,

2015; Serinaldi and Kilsby, 2015). For this reason, projecting observed historical trends may

lead to unreliable estimates of frequency for future extremes (Serinaldi and Kilsby, 2015;

Luke et al., 2017).
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One limitation of the methodologies proposed lies in the use of solely observed historical data

for nonstationary extreme value analysis, with some assumption on future trends. However,

Global Climate Models (GCM), although they exhibit high uncertainty, offer plausible sce-

narios of future climate and can be implemented for extreme value analysis, in particular

for deriving future IDF curves. Therefore, we first outline a new methodology for deriving

multi-model nonstationary IDF curves. It incorporates simulations from multiple GCMs

processed using the nonstationary extreme value analysis method proposed by Cheng et al.

(2014). The IDF curves derived will then include information from both climate inter-model

variability and precipitation changes over time. We then introduce the concept of safety

factor, i.e., ratio of medians of the future relative to the past IDF curves, for practitioners

who want to account for future changes in infrastructure loads (i.e., precipitation) during

the design process and risk analysis. We, finally, propose a new way of communicating the

risk of hazardous climatic conditions by calculating the expected future return period (i.e.,

average occurrence of an event in years) of events which, based on historical observations,

have a return period of 25-, 50-, and 100-year. Indeed, characterizing changes in extreme

events in terms of changes in the associated return period can be more easily interpreted

by both experts and non-experts. We will apply the new framework to annual precipitation

maxima intensity in a number of urban areas across the United States to calculate updated

future IDF curves, expected future changes in the frequency (return period) of extreme

precipitation intensity, and safety factors for the locations investigated.

4.2 Data

In this study, we focus on extreme precipitation events in a number of cities across the

United States (see Tables 4.2 and 4.3), where urbanization, when compounded with rare

precipitation events, can lead to extreme floods and land-slide activity with potentially high
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impacts on the population.

We retrieved downscaled GCM simulations of historical and projected precipitation from

the Coupled Model Intercomparison Project Phase 5 (CMIP5), made available through the

online archive Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections (DCHP),

(Brekke et al., 2013). Future projections are based on four Representative Concentration

Pathways (RCPs) each of them describing a potential future GHG concentration trajectory

during the 21st century (IPCC2014 - (Field et al., 2014)).

For this study, we selected the CMIP5-BCCAv2 (Bias Corrected Constructed Analogs) daily

precipitation products with 1/8 degree spatial resolution, developed using the constructed

analogues downscaling method, and bias-corrected based on available observations, using a

quantile mapping technique, (Hidalgo et al., 2008). We selected the models in Table 4.1

that provide the following simulations: historical simulations from 1950 to 1999, and future

projections between 2050 to 2099 from RCP4.5 (moderate GHG concentration trajectory)

and RCP8.5 (very high GHG concentration trajectory). The interval selected for our his-

torical simulations (1950 - 1999) coincides with the period of time in which the historical

simulations were adjusted based on available observations (Hidalgo et al., 2008).

Afterwards, we processed GCM daily precipitation to obtain time series of annual max-

ima precipitation intensity within a water year (October through September, as defined by

the United States Geological Survey - USGS) for events of 1-day to 7-day duration. The

duration of precipitation events in the present study (1-day events and higher) has been

constrained by the time resolution of the GCM simulations. A time series of annual max-

ima is retrieved as follows. Let’s consider the time series of daily precipitation of the jth

water year, P j = {pj1, . . . , pjnj}, where nj is the number of days in the jth water year.

The annual maximum precipitation intensity of a d-day event for the jth water year is

P j
d,max = max{

∑d
t=1 p

j
t

d
, . . . ,

∑i+d−1
t=i pjt
d

, . . . ,

∑nj
t=nj−d+1 p

j
t

d
}. The time series of annual maxima is

then Pd,max = {P 1
d,max, ..., P

ny
d,max}, where ny is the total number of water years. We processed
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the historical simulations and the projections independently, model by model. Each time

series consists of 49 water years (number of water years contained in a 50 year period). Thus,

each station has the following set of time series: HEs
m,d, FE45sm,d, and FE85sm,d correspond-

ing to historical simulations, RCP4.5, and RCP8.5 projections, respectively; s indicates the

urban area; m refers to the GCM; d expresses the duration of the event in days.

4.3 Methodology

4.3.1 Distance Components Test

Here, we are interested in characterizing changes in historical and future precipitation sim-

ulations. Specifically, we are interested in testing the null-hypothesis of equal distributions

and equal means between extreme precipitation from historical and future simulations to

assess whether the statistics of extremes are expected to change. There are specific tests for

assessing equal distributions (e.g., Kolmogorov - Smirnov test (Massey, 1951), Cramér - von

Mises test (Anderson, 1962), Anderson - Darling test (Anderson et al., 2011)), equal means

(e.g., Analysis of Variance (ANOVA) test, Students’ t-test), presence of a monotonic trend

(e.g., Mann-Kendall trend test (Mann, 1945)). Here, we have adopted the Distance Compo-

nents (DISCO) test proposed by Rizzo and Székely (2010) that combines equal distribution

and equal mean tests. This method is a nonparametric extension of the analysis of variance

(ANOVA) and the multivariate analysis of variance (MANOVA) tests as a more generalized

hypothesis testing framework (Székely and Rizzo, 2013; Rizzo and Székely, 2010). Compared

to the classical ANOVA and MANOVA tests, the DISCO test does not require a minimum

sample size and/or homogeneity of the error variance (Rizzo and Székely, 2010), and it can

be implemented under different null-hypotheses (i.e., equal means and equal distributions)

eliminating the need for additional tests. Moreover, the test, available in the R package en-
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ergy, is performed by permutation, avoiding any dependence on the choice of the distribution

(Rizzo and Székely, 2010; Székely and Rizzo, 2013).

The DISCO test is derived as follows. A version of the Gini mean distance statistic between

two samples A = {a1, . . . , an1} and B = {b1, . . . , bn1} is defined as follows (Rizzo and Székely,

2010);

gα(A,B) =
1

n1 · n2

·
n1∑
i=1

n2∑
j=1

‖ai − bj‖α = E[‖A−B‖α] (4.1)

where, ‖ · ‖ is the Euclidean norm, and and 0 < α ≤ 2.

Let’s consider K samples X1, . . . , XK of sizes n1, . . . , nK . Analogous to the decomposition

of the variance in the ANOVA test, the total dispersion of the K samples Tα is (Rizzo and

Székely, 2010; Székely and Rizzo, 2013):

Tα = Tα(X1, . . . , XK) =
N

2
· gα(X,X) (4.2)

where N =
∑K

k=1 nk, and X is the pooled sample. Moreover, the within-sample dispersion,

Wα, and the between-sample dispersion, Sα, are (Rizzo and Székely, 2010; Székely and Rizzo,

2013):

Wα = Wα(X1, . . . , XK) =
∑K

k=1
nk
2
· gα(Xk, Xk) (4.3)

Sα = Sα(X1, . . . , XK) =
∑

1≤i<k≤K [
nj+nk

2N
] · [ nj ·nk

nj+nk
· εα(Xj, Xk)] (4.4)

where εα = (2gα(Xj, Xk)−gα(Xj, Xj)−gα(Xk, Xk)) is the Energy distance (εα-distance). For

0 < α ≤ 2, the decomposition Tα = Wα + Sα holds and Wα and Sα are non-negative (Rizzo

and Székely, 2010; Székely and Rizzo, 2013). For K ≥ 2 and 0 < α ≤ 2, and X1, . . . , XK

independent and identically distributed (i.i.d.), the following statements about Sα hold:
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• Sα(X1, . . . , XK) ≥ 0;

• for 0 < α < 2, Sα(X1, . . . , XK) = 0 if X1 = . . . = XK ;

• α = 2, S2(X1, . . . , XK) = 0, if and only if X1, . . . , XK have equal means.

For proof and details see Theorem 1 and Corollary 1 in (Rizzo and Székely, 2010).

Given the properties of Sα, Rizzo and Székely (2010) proposed the following statistic for

testing equal distributions:

Fα =

(
Sα

K − 1

)
·
(
N −K
Wα

)
(4.5)

Fα does not have an F-distribution, but it is non-negative and takes large values when

the samples X1, . . . , XK are drawn from non-equal distribution, supporting the alternative

hypothesis (Rizzo and Székely, 2010).

Here, we implemented the test considering two values of the index α: α = 1 to test the

null-hypothesis of equal distributions between pairs of time series, and α = 2 to test the

null-hypothesis of equal means between pairs of time series. The former choice corresponds

to the Euclidean distance and allows gα (eq. 4.1) to be linearized, reducing the computational

effort (Rizzo and Székely, 2010). The latter choice adds information about the mean of the

two samples.

4.3.2 Extreme Value Analysis for IDF curves

Precipitation-based IDF curves estimation involves fitting a representative distribution func-

tion to observed extreme precipitation (Bonnin et al., 2006). Extreme value analysis is widely

used in hydrological design and risk assessment for a statistical representation of rare events

(Coles, 2001). Time series of annual maxima are commonly described by the Generalized
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Extreme Value (GEV) distribution. The cumulative distribution function of the GEV dis-

tribution is (Cheng et al., 2014):

Ψ(x) = exp
{
−
(

1 + ξ ·
(x− µ

σ

))− 1
ξ
}

(4.6)

for ξ ·
(
x−µ
σ

)
> 0. µ, σ, and ξ are the statistics of the distribution: µ is the location parameter

and represents the center of the distribution; σ is the scale parameter and describes the

distribution of the data around µ; ξ is the shape parameter and defines the tail behavior of

the distribution. Current IDF curves in the United States, available through the National

Oceanic and Atmospheric Administration (NOAA), are derived based on the stationary GEV

distribution (i.e., time independent parameters) shown in equation 4.6. The stationary GEV

model can be adapted for time-dependent series by letting the parameters of the distribution

be a function of time (µ(t), σ(t), ξ(t)), (Coles, 2001), for a more realistic representation of

the time series behavior (Cheng et al., 2014).

Here, we derived future IDF curves of precipitation based on a GEV distribution with time-

dependent statistics only upon detection of a statistically significant trend in the data (Mann-

Kendall trend test (Mann, 1945) with a 0.05 level of significance). We used the Nonstationary

Extreme Value Analysis (NEVA) framework proposed by Cheng et al. (2014) to estimate

the distribution parameters because it has two main advantages:

(i) it is versatile enough to deal with temporally stationary and nonstationary extremes

(including annual maxima and extremes over a particular threshold);

(ii) it is based on Bayesian inference and Differential Evolution Markov Chain (DE-MC),

which provide both parameter estimation and uncertainty quantification (Cheng et al.,

2014).

Let θ be the parameter of a given distribution and let Y = {y1, . . . , yn} be the set of

85



n observations. Following the Bayes theorem, the probability of θ given Y (posterior) is

proportional to the product of the probability of θ (prior) and the probability of Y given θ

(likelihood function). Assuming independence between the observations Y:

p(θ|Y) ∝
n∏
i=1

p(θ) · p(yi|θ) (4.7)

In NEVA, the likelihood function is the GEV distribution, and θ is the vector containing the

parameters of the GEV distribution to be estimated. In the stationary case, θ = {µ, σ, ξ}.

Hence, considering independent GEV parameters:

p(µ, σ, ξ|Y) ∝
n∏
i=1

p(µ) · p(σ) · p(ξ) · p(yi|µ, σ, ξ) (4.8)

In the case of a nonstationary analysis, θ contains additional parameters, which are the

coefficients of the time-dependent functions, e.g., µ(t), σ(t), and ξ(t).

p(θ|Y, t) ∝
n∏
i=1

p(θ) · p(yi|θ, t) (4.9)

In NEVA, the priors are non-informative normal distributions, for location and scale pa-

rameters, while the prior for the shape parameter is a normal distribution, with a standard

deviation of 0.3, as suggested by Renard et al. (2013), (Cheng et al., 2014). The DE-MC

algorithm is then implemented to sample a large number of realizations of θ over the param-

eter space, (Cheng et al., 2014). The R̂ criterion (Gelman and Shirley, 2011) is used to assess

convergence, where R̂ should remain below 1.1(Cheng et al., 2014). Moreover, Bayes factor

is implemented as a test for model selection: it compares the posterior distributions of two

alternative models (e.g. stationary model vs. non–stationary model) (Cheng et al., 2014;

Renard et al., 2013). For further details about the Bayesian parameter estimation approach,

the reader is referred to Cheng et al. (2014) and Cheng and AghaKouchak (2014).

In this study, the nonstationary GEV distribution refers to a GEV distribution with either
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the location parameter or location and scale parameters as a function of time. Hence, θ is

in the former case θ = {µ1, µ0, σ, ξ}, and in the latter θ = {µ1, µ0, σ1, σ0, ξ}. The selection

of the nonstationary model versus a stationary model depends on the Mann-Kendall trend

(MK, with 5% significance level) test, which characterizes the average behavior (mean) of the

data over time. The mean can be regarded as an approximation of the location parameter

of the GEV distribution. Hence, we modeled µ(t) to reproduce the observed trend. We

assumed µ(t) = µ1 · t+µ0, because a more complex trend could likely result in an overfitting

of the observation period and lead to an unrealistic representation of the future (Serinaldi

and Kilsby, 2015). Even though more complex models are considered in the literature to

be more accurate (e.g., Kwon and Lall, 2016; Sarhadi et al., 2016), parsimonious models

(i.e., models showing desired level of performance efficiency with a minimum number of

parameters) have shown to perform better (Serinaldi and Kilsby, 2015; Luke et al., 2017;

Serago and Vogel, 2018). In the case of a time–dependent location parameter, the White test

(White, 1980) for homoscedasticity is performed; if the null-hypothesis of constant variance

in the residuals is rejected (with 5% significance level), we assumed a non–stationary model

with time-dependent location and scale parameters. The scale parameter is modeled as

log(σ(t)) = σ1 · t+ σ0, as suggested by Coles (2001) to ensure positivity. Finally, ξ was kept

constant given the difficulties to precisely estimate it, (Coles, 2001), especially for short time

series, (Papalexiou and Koutsoyiannis, 2013).

4.3.3 Incorporating Multi-Model Simulations for IDF curve Anal-

ysis

GCM projections can provide information on characteristics of future extremes. Conse-

quently, we propose a new framework for deriving IDF curves of precipitation based on

multi-model simulations. First, we derived the IDF curves for the climate models using the

aforementioned Bayesian inference approach (i.e., NEVA). Since there is significant variabil-
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ity across the climate models, we chose to estimate the IDF curves for each model separately

(Figure 4.1). We then merged the resulting IDF curves from each model to derive multi-

model IDF curves. The final result is the expected IDF curve along with its uncertainty

bounds, which summarize the variability due to both the parameter estimation approach

(variability within each model) and the diversity of climatic models (variability across mod-

els).
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Figure 4.1: Comparison between 1-day extreme historical records (grey dotted line) and
future climate (RPC4.5 orange and RCP8.5 red dotted line) ECDFs. The shaded dotted
lines represent the uncertainty on the future climate. The inner boxes show the right tail
behavior of the distributions. A) San Diego - CA, E) Chicago - IL, M) Atlanta - GA.

Here, we applied the proposed framework to annual precipitation maxima intensities from

historical simulations HEs
m,d, and future climate FE45sm,d and FE85sm,d. Consequently, for
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each station, we derived the historical multi-model IDF curves and future multi-model IDF

curves based on RCP4.5 and RCP8.5 scenarios. We derived historical IDF curves imposing a

stationary GEV model without performing a trend test, to be consistent with NOAA’s IDF

curves. We then derived IDF curves from future climate projections RCP4.5 and RCP8.5

separately; the GEV model selected (stationary/nonstationary) depends upon the result

of the Mann-Kendall trend test, and subsequent White test. GCMs provide gridded area

average simulations while the current IDF curves available from NOAA are mainly based

on point observations. Gridded area averaged observations are always smoother compared

to point observations. Hence, we identified a bias by comparing historical IDF curves and

NOAA IDF curves, which implies assuming a quantile-based bias. We then applied the same

correction to historical and projected IDF curves.

In the case of a nonstationary GEV model, the GEV distribution function is time-dependent.

The intensity of the p-event is then given by equation 4.10:

qp =
((
− 1

ln(p)

)ξ
− 1
)
· σ̂
ξ

+ µ̂ (4.10)

where µ̂ is µ̂ = median(µ(t)) and σ̂ is σ̂ = median(σ(t)). We selected µ̂ and σ̂ within the

period of the simulations to avoid any further projections of future climate. Finally, we

investigate how the frequency of past events is expected to change. Given the ith set of

GEV parameters (µi, σi, and ξi) from the ensemble of solution, the expected return period

Ti is given by 1
1−Ψ(IT )

, where Ψ(IT ) is as follows:

Ψ(IT ) = exp
{
−
(

1 + ξi ·
(IT − µi

σi

))− 1
ξi

}
(4.11)

Consequently, a sample of the return periods Ti of an event of intensity IT can be retrieved,

Figure 4.2, and inference can be made.

In this study, we selected the intensity of a 1-day event with return period T , IT , from the
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current NOAA precipitation frequency estimates for a specific location. To assess whether

the recurrence of an event with intensity IT is projected to change under future climate

scenarios, we used the ensemble of return level curves retrieved via Bayesian inference to

define IDF curves, and we derived the 0.25-, 0.50-, and 0.75-percentile of the ensemble. We

then evaluated the expected future return period, along with its inter-quartile variability as

the intersection between IT and the 0.25-, 0.50-, and 0.75-percentile curves.

Figure 4.2: Conceptual explanation of the methodology adopted to quantify changes in the
occurrences of historical events under future climate.

4.4 Results

The null-hypotheses of equal distributions (α = 1) and equal means (α = 2) between the

median of historical records and the future climate projections are rejected (pvalue ∼ 0), in-

dicating that the occurrence of future extreme precipitation intensities are likely to diverge

from historical ones. This contradicts the commonly-used stationary assumption in infras-

tructure design and risk assessment. Figure 4.1 shows the Empirical Cumulative Distribution

Functions (ECDFs) of 1-day extreme precipitation for 3 of the selected stations; Table 4.2

summarizes the percent change in the median and in the 90th quantile of the simulated 1-day
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extreme precipitation intensity. The ECDFs of future climate precipitation extremes (Figure

4.1) display a shift towards the right, indicating that these cities may face an increase in

severe rare events in the near future, even though there is high variability across the models.

Overall, the RCP 8.5 scenario seems to lead to more severe events. In the western U.S., the

percent change in the median and the 90th quantile is around 10% for RCP4.5 and 10-15 %

RCP 8.5. Sacramento (CA) and Salt Lake City (UT) are the exception, as they display a

percent change around 20% for both scenarios (Table 4.2). In the eastern U.S., Chicago (IL),

Nashville (TN), and New York (NY) display a 15-20% change in the median and 90th quan-

tile for RCP 8.5, while the remaining cities exhibit a change around 10% or below for both

scenarios (Table 4.2). IDF curves provide information on the magnitude and recurrence

of extreme events based on frequency analysis. For this reason, shifts in extreme rainfall

distribution will affect how the IDF curves are defined, and will also affect the intensity of

the design value for the event. Therefore, the resilience of infrastructures and natural and

engineered slopes can be compromised. Figures 4.3, 4.4, and 4.5 illustrate pairs of current

and projected IDF curves along with the 90% Confidence Interval (or Credible Interval)

within and across climatic models based on RCP 8.5 scenario (see Figures 4.8 - 4.10 for RCP

4.5) Under the future scenarios chosen, our results show an overall upward shift of the IDF

curves, indicating that more severe events are expected to occur. Assuming that climate

model simulations provide reasonable estimates of future extremes, Figure 4.6b and Figure

S4 show the so-called safety factors C (i.e., ratio of medians of the future relative to the past

IDF curves), if one is interested in adjusting current design values to cope with a changing

climate. In western U.S., the intensity of extreme events could potentially experience a 20%

increase, e.g. Salt Lake City and Sacramento, Figure 4.6b. After investigating the change

in extreme event intensity for a fixed return period, we explored changes in the frequency

of extreme events of 1-day duration for a given event magnitude. Specifically, we chose the

intensity of three baseline events corresponding to 25-, 50- and 100-year events (retrieved

from current NOAA IDF curves) to estimate their expected occurrence in the future, along
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Figure 4.3: RCP 8.5 - Comparison between current (grey lines) and future climate scenario
(red lines) IDF curves, along with 90 % confidence intervals, given an average return interval
of 25 years.
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Figure 4.4: RCP 8.5 - Comparison between current (grey lines) and future climate scenario
(red lines) IDF curves, along with 90 % confidence intervals, given an average return interval
of 50 years.
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Figure 4.5: RCP 8.5 - Comparison between current (grey lines) and future climate scenario
(red lines) IDF curves, along with 90 % confidence intervals, given an average return interval
of 100 years.
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with their inter-quartile range (IQR). Figure 4.6a illustrates the return periods expected in

the future of the baseline events (dots), along with the IQR (gray lines). Events expected

to occur every 50, or 100 years are becoming more frequent, raising public safety concerns

within anthropized environments, especially in the western U.S.. For example, climate model

simulations project that the frequency of a 50-year event in the future will double in San

Diego (CA) and Salt Lake City (UT). Although the future scenarios predict changes in mag-

nitude and frequency of extreme precipitation events, total annual mean rainfall is expected

to remain the same. Figure 4.6c shows that locations in the eastern U.S. register an in-

crease in mean total annual precipitation and moderate changes in extreme events, whereas

locations in the western U.S. do not expect to receive more water overall than in the past,

even though extreme events are predicted to become more severe and more likely. A recent

study argues that drought conditions in California, linked to warmer temperatures, have

been worsened over the past decades, even though negative precipitation anomalies have

not shown any change (Diffenbaugh et al., 2015). Analogously, in California we observed

total annual precipitation in a future climate consistent with the past. Consequently, to

better characterize meteorological extremes over the state, we analyzed a number of urban

locations mainly along California’s coast (Table 4.3), adopting the same procedures used

for the other urban stations across the U.S.. California’s IDF curves are shown in Figures

4.17 - 4.22. However, we only used the four GCMs as recommended by the guidelines for

originating the California’s Fourth Climate Change Assessment Report (Table 4.4) that offer

much higher spatial resolution (1/16 degree). Our results suggest a substantial increase in

the severity of future extreme precipitation events for RCP 8.5 scenario (Figure 4.7). The

results indicate an approximately threefold increase in occurrences of extremes relative to

past events, particularly in southern California (Figure 4.7).
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Figure 4.6: a) Return periods under future climate of events currently associated with return
periods of 50-, and 100-year in urban locations across the U.S.: expected projected return
periods (dots) along with inter-quartile range (IQR - grey lines). b) Safety factors (i.e., ratio
of medians of the future relative to the past IDF curves). c) Total annual mean precipitation
of historical records.
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Figure 4.7: Return periods under future climate of events historically associated with return
periods of 50-, and 100-year in California. Expected projected return periods (dots) and 90
% confidence interval (gray lines).

4.5 Conclusion and Discussion

In this study, we have shown the potential impacts of a warming climate on extreme pre-

cipitation intensity and recurrence interval. Urban areas, especially in the western U.S.,

may struggle against increases in severity and frequency of rare events. Increase in intensity,

duration, and frequency of extreme precipitation can adversely impact the integrity of in-

frastructure and natural and engineered slopes. Infrastructure built with soil (e.g., earthen

dams, levees, embankments), or that interface with soil (e.g., roads, bridge, pipelines, founda-

tions), are more vulnerable because severe rainfall causes soil erosion and, upon infiltration,

can significantly reduce the strength of soil. The topic of infrastructure resilience is even

more important in regions where multiple drivers of change coincide. Coastal cities, for ex-

ample, are even more vulnerable due to the compounding effects of sea level rise and change

in climate (Hallegatte et al., 2013). By 2070, the population jeopardized by extreme floods

is expected to increase threefold with exposed assets increasing by approximately 9% of the

projected global GPD of the same period (Hanson et al., 2011).
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We argue that better infrastructure planning and maintenance is fundamental for a resilient

society. The proposed method for addressing nonstationarity in future climate scenarios can

reduce the risk of underestimating future extreme precipitation events and their severity. The

adaptation of existing infrastructure, which were designed assuming a stationary climate,

requires assessing their performance under future climate scenarios. Further, it requires

revisiting design guidelines for infrastructure to employ nonstationary IDF curves in future

design procedures.
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RCP 4.5 RCP 8.5

access1-0.1.rcp45 ccess1-0.1.rcp85

bcc-csm1-1.1.rcp45 bcc-csm1-1.1.rcp85

canesm2.1.rcp45 canesm2.1.rcp85

ccsm4.1.rcp45 ccsm4.1.rcp85

cesm1-bgc.1.rcp45 cesm1-bgc.1.rcp85

cnrm-cm5.1.rcp45 cnrm-cm5.1.rcp85

csiro-mk3-6-0.1.rcp45 csiro-mk3-6-0.1.rcp85

gfdl-esm2g.1.rcp45 gfdl-esm2g.1.rcp85

gfdl-esm2m.1.rcp45 gfdl-esm2m.1.rcp85

inmcm4.1.rcp45 inmcm4.1.rcp85

ipsl-cm5a-lr.1.rcp45 ipsl-cm5a-lr.1.rcp85

ipsl-cm5a-mr.1.rcp45 ipsl-cm5a-mr.1.rcp85

miroc-esm.1.rcp45 miroc-esm.1.rcp85

miroc-esm-chem.1.rcp45 miroc-esm-chem.1.rcp85

miroc5.1.rcp45 miroc5.1.rcp85

mpi-esm-lr.1.rcp45 mpi-esm-lr.1.rcp85

mpi-esm-mr.1.rcp45 mpi-esm-mr.1.rcp85

mri-cgcm3.1.rcp45 mri-cgcm3.1.rcp85

noresm1-m.1.rcp45 noresm1-m.1.rcp85

Table 4.1: List of Global Climate Models used
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Location State Lat. Long. Change in Median Change in 90th
◦N ◦ W % %

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
San Diego CA 32.71 117.16 5.9 8.8 8.0 14.4
Salt Lake City UT 45.51 122.68 17.0 22.2 20.1 20.2
Denver CO 39.71 105.01 4.8 4.5 1.8 0.5
New York NY 40.71 74.03 9.8 13.5 10.0 10.7
Washington D.C. 38.93 77.04 10.1 11.2 10.7 8.8
Orlando FL 28.55 81.36 4.6 7.0 5.6 9.2
Nashville TN 36.16 86.81 11.7 18.8 10.1 18.9
Kansas City MO 39.09 94.58 8.2 10.4 7.8 11.7
Atlanta GA 33.75 84.39 8.8 13.3 9.13 14.1
Chicago IL 41.87 87.63 10.4 13.9 12.9 18.3
Albuquerque NM 35.09 106.60 9.0 9.4 12.0 11.2
Phoenix AZ 33.43 112.05 7.8 9.2 11.6 10.5
New Orleans LA 29.94 90.06 5.3 7.3 5.9 5.1
Sacramento CA 38.57 121.49 11.9 16.1 12.8 18.2

Table 4.2: Observed Changes in Median and 90th quantile of 1-day precipitation event.

City Lat. Long.
◦N ◦ W

San Jose 37.34 58.11
Fresno 36.74 60.22
Santa Barbara 34.42 60.30
Los Angeles 34.04 61.78
Irvine 33.67 62.20
Riverside 33.95 62.61
Ventura 34.28 60.78
Temecula 33.49 62.85
Escondido 33.12 62.91
Palm Springs 33.84 63.47
San Francisco 37.78 57.58
Monterey 36.59 58.10

Table 4.3: Cities in California investigated in the study.

RCP 4.5 RCP 8.5
HadGEM2-ES.rcp45 HadGEM2-ES.rcp85
CNRM-CM5.rcp45 CNRM-CM5.rcp85

CanESM2.rcp45 CanESM2.rcp85
MIROC5.rcp45 MIROC5.rcp85

Table 4.4: List of LOCA downscaled Global Climate Models used for California

102



Figure 4.8: RCP 4.5 - Comparison between current (grey lines) and future climate scenario
(orange lines) IDF curves, along with 90 % confidence intervals, given an average return
interval of 25 years.
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Figure 4.9: RCP 4.5 - Comparison between current (grey lines) and future climate scenario
(orange lines) IDF curves, along with 90 % confidence intervals, given an average return
interval of 50 years.
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Figure 4.10: RCP 4.5 - Comparison between current (grey lines) and future climate scenario
(orange lines) IDF curves, along with 90 % confidence intervals, given an average return
interval of 100 years.
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Figure 4.11: So-called safety factor (i.e., the ratio of medians of the future relative to the
past IDF curves) for 25- and 100-year events.

Figure 4.12: Percent of GCMs showing a statistical significant trend in the time series of
extreme maxima precipitation intensities based on Mann - Kendall trend test. Significance
level 5%.
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Figure 4.13: Percent of GCMs showing a statistical significant trend in the time series of
extreme maxima precipitation intensities based on Mann - Kendall trend test. Significance
level 1%.

Figure 4.14: Percent of GCMs showing a statistical significant trend in the time series of
extreme maxima precipitation intensities based on Mann - Kendall trend test. Significance
level 10%.

Figure 4.15: Percent of GCMs showing a statistical significant trend in the time series of
extreme maxima precipitation intensities (Mann-Kendall trend test, significance level 5%)
and statistical significant variability in the residuals (White test, significance level 5%).
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Figure 4.16: a) Example of annual time series with a significant trend and b) constant
variance of the residuals - RCP8.5 Salt Lake City ; c) example of annual time series with
a significant trend and d) time dependent variance of the residuals - RCP8.5 Washington
D.C..
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Figure 4.17: RCP 4.5 - California - Comparison between current (grey lines) and future
climate scenario (orange lines) IDF curves, along with 90 % confidence intervals, given an
average return interval of 25 years.
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Figure 4.18: RCP 4.5 - California - Comparison between current (grey lines) and future
climate scenario (orange lines) IDF curves, along with 90 % confidence intervals, given an
average return interval of 50 years.
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Figure 4.19: RCP 4.5 - California - Comparison between current (grey lines) and future
climate scenario (orange lines) IDF curves, along with 90 % confidence intervals, given an
average return interval of 100 years.
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Figure 4.20: RCP 8.5 - California - Comparison between current (grey lines) and future
climate scenario (red lines) IDF curves, along with 90 % confidence intervals, given an
average return interval of 25 years.
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Figure 4.21: RCP 8.5 - California - Comparison between current (grey lines) and future
climate scenario (red lines) IDF curves, along with 90 % confidence intervals, given an
average return interval of 50 years.
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Figure 4.22: RCP 8.5 - California - Comparison between current (grey lines) and future
climate scenario (red lines) IDF curves, along with 90 % confidence intervals, given an
average return interval of 100 years.
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Chapter 5

Multivariate Attribution of Extremes

Using Copulas

In recent years, understanding the role of human activities on observed extreme events and

climatic changes has received a great deal of attention. Studies investigating the causes

of observed climatic changes use two main terms: detection and attribution. Detection of

change is “[...] the process of demonstrating that climate or a system affected by climate

has changed in some defined statistical sense without providing a reason for that change,”

(IPCC, 2014a). Attribution is “[...] the process of evaluating the relative contributions of

multiple causal factors to a change or event with an assignment of statistical confidence,”

(IPCC, 2014a).

Examples included understanding effect of anthropogenic emissions and/or land cover changes

on the observed increases in surface temperatures (e.g., Barnett et al., 1999; Villarini et al.,

2010; Melillo et al., 2014; Diffenbaugh et al., 2015; Fischer and Knutti, 2015; Mazdiyasni

and AghaKouchak, 2015) and extreme precipitation events (e.g., Zhang et al., 2007; Villar-

ini et al., 2010; Min et al., 2011; Marvel and Bonfils, 2013; Westra et al., 2013; Cheng et al.,
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2014; Fischer and Knutti, 2016; Mallakpour and Villarini, 2017), with the aim of improving

risk assessment, adaptation planning and management (Hegerl et al., 2010).

Different methodologies have been developed and adopted in attribution studies. In regression-

based fingerprint methods (e.g. Hasselmann, 1993; Hegerl et al., 1996; Zhang et al., 2007;

Santer et al., 2013) observations are regressed onto a pattern derived from a numerical sim-

ulation with known external forcings. If the scale factor is significantly different than zero,

the detected change is attributed to the forcings of the numerical model (Knutson, 2017)

(e.g., a model simulation with anthropogenic emissions as forcing). Non-fingerprint methods

(e.g. Kolmogorov-Smirnov test, Cramer Von Mises test) similarly rely on running a global

climate model with known forcings to reproduce a hypothetical alternative world, and then

detect changes by analyzing whether observations are consistent with simulations (Knutson,

2017). Attribution studies can also rely on causality tests, such the Granger causality test

(Granger, 1960), where the aim is to infer the causal relationship between external forcings,

e.g. CO2 emissions, and the observed pattern in a climate data record (Stern and Kaufmann,

2014). In general, identifying and quantifying to what extent human activities have resulted

in significant changes in climate variables is a major challenge (Fischer and Knutti, 2015)

because the outcome often relies on the suitability of the methodologies used to evaluate

change.

For extreme events, attribution studies can be carried out considering the concept of fre-

quency analysis. For example, the Fraction of Attributable Risk (FAR) is a measure of the

change in the risk associated with an event caused by external forcings. FAR is defined

as FAR = 1 − p0/p1, where p0 is the probability of an event given its natural variability

(e.g., a climate model forced with solely natural forcings), and p1 is the probability of the

same event in the case of anthropogenic forcings (Knutson, 2017; Fischer and Knutti, 2015)

(e.g., a climate model forced with the observed anthropogenic emissions). Observed changes

can also be attributed to changes in environmental conditions, which can be themselves at-
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tributed to the external/anthropogenic forcings, i.e. multistep attribution, (Knutson, 2017).

An example could be the intensification of the water cycle, which is mainly attributed to the

increase in atmosphere temperature, which in turn is caused by higher CO2 concentration

in the atmosphere as a result of human activities (Trenberth, 2011).

The methodologies available and commonly used for detection and attribution studies rely

on a modeling assumption of independence between climate variables or different features

of a climate variable (e.g., intensity and duration). However, in the real world, climatic

variables or features of natural phenomena are interdependent, such as the dependence be-

tween intensity and duration of extreme precipitation events (i.e. more intense storms have

shorter durations and vice versa). To overcome this limitation, we present a new multi-

variate methodological framework to investigate changes between characteristics of climate

variables considering their interdependencies (here, precipitation intensity and duration).

The methodology, based on copula functions (Nelsen, 2006), is able to capture changes in

both the occurrences (or return periods) of baseline events and the dependence structure

of the two characteristics/variables. The capability of detecting changes in all the aspects

of extreme precipitation is of great importance especially for water-related risk reduction

strategies, climate change adaptation measures, and infrastructure design procedure.

We apply the methodology to pairs of intensity and duration associated with precipitation

events from the Coupled Model Intercomparison Project 5 (CMIP5) simulations. We consider

two types of runs: the historical run (HR) and the historical natural run (HNR). The former

represents a hypothetical “natural world” driven only by natural variability (excluding the

observed increase in anthropogenic emissions), whereas the latter includes both natural and

anthropogenic forcings. From the numerical perspective, the two simulations are identical

and they only differ in the anthropogenic emissions component. The difference between the

two simulations (e.g., change in extreme precipitation in the two sets of simulations) is then

attributed to anthropogenic activities.
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In the reminder of the chapter, we will introduce the proposed multivariate detection and

attribution framework. We will then provide a comprehensive description of the precipitation

data used for testing the proposed method. Finally, we will present and discuss the results.

5.1 Methodology

5.1.1 Copula and Conditional Copula

The bivariate joint distribution function FXY of two time-independent variables X and Y

can be greatly simplified by expressing it in terms of its one-dimensional uniform marginals,

FX and FY , and the dependent function C, called copula (Salvadori and De Michele, 2004).

Following Sklar’s theorem (Sklar, 1959) and the notation in Salvadori and De Michele (2004),

let FXY be a joint distribution function with marginals FX and FY . Then, there exists a

copula function C such that

FXY (x, y) = C(FX(x), FY (y)) (5.1)

for all x, y ∈ IR. If FX and FY are continuous, C is uniquely defined; otherwise, C is

uniquely defined on Ran(FX)× Ran(FY ), where Ran denotes their range. Conversely, if C

is a copula and FX and FY are distribution functions, then FXY is given by equation 5.1.

C : [0, 1]× [0, 1] → [0, 1] such that for all u,v ∈ [0, 1] C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0,

C(1, v) = v, and C is a 2-increasing function (Salvadori 2004). The pair (X, Y ) represents the

variables of interest in their original domain, i.e. precipitation intensity and duration, while

the pair (U = FX , V = FY ) represents their uniform marginals in [0, 1] × [0, 1] (Salvadori

and De Michele, 2004).

The copula conditional probability can be retrieved by differentiating equation 5.1 (Nelsen,
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2006).

P{U ≤ u|V = v} =
∂

∂v
C(u, v) (5.2)

P{V ≤ v|U = u} =
∂

∂u
C(u, v) (5.3)

In the following study, we are interested in a comprehensive characterization of the simulta-

neous changes in intensity and duration of extreme precipitation events. In common practice,

the relationship between precipitation intensity, duration, and frequency is represented by

Intensity-Duration-Frequency (IDF) curves, which summarize the expected maximum inten-

sity of a rainfall event for a fixed storm duration and frequency. IDF curves are traditionally

derived based on univariate frequency analysis because of the intrinsic difficulty of deriving

the joint distribution of precipitation characteristics (Singh and Zhang, 2007). However,

copula method provides a venue to overcome the limitation of standard bivariate distribu-

tions, such that IDF curves can be derived based on conditional copula (Singh and Zhang,

2007; De Michele and Salvadori, 2003b; Morales-Nápoles et al., 2017).

Frank copula function has been shown to be the most flexible to represent the relationship

between intensity and duration of precipitation events (Singh and Zhang, 2007; De Michele

and Salvadori, 2003b), and it provides a good fit for the pairs in this study.

The Frank copula Cδ belongs to the Archimedean family, and it is defined as

Cδ(u, v) = −1

δ
ln

(
1 +

(e−δu − 1) · (e−δv − 1)

e−δ − 1

)
(5.4)

where u, v ∈ [0, 1] and δ ∈ IR. The parameter δ can be expressed as a function of Kendall’s

τ :

τ(δ′) = 1 + 4
D1(δ)− 1

δ
(5.5)
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where δ′ = e−δ and D1 is the first order Debye function (De Michele and Salvadori, 2003b).

Negative values of the parameter δ corresponds to negative dependence (τ < 0), while

positive values of δ correspond to positive dependence (τ > 0); the limit case of δ = 0

corresponds to independence (De Michele and Salvadori, 2003b). Therefore, Frank copula is

flexible enough to model both positive and negative dependence (De Michele and Salvadori,

2003b).

The conditional probability for the Frank copula can be expressed as:

Cδ(U |V = v0) =
(e−δu − 1)e−δv0

(e−δu − 1)(e−δv0 − 1) + (e−δ − 1)
(5.6)

where v = v0 is the conditioning variable (Singh and Zhang, 2007). Given the symmetry of

the Frank copula, Cδ,V |U=u0 , can be derived from equation 5.6 by exchanging the variables u

and v.

The conditional return period can be estimated as

TCδ(U |V=v0) =
1

1− Cδ(U |V = v0)
(5.7)

5.1.2 Detection of Changes

Extreme events are commonly identified among experts and non-experts in relation to their

occurrence probability, recurrence interval or return period. For example, an event with a

0.01 probability of being exceeded each year is called a 100-year event, where 100 years is

the return period. Generalizing, an event with a q-probability of being exceeded each year

is referred to as the (1/p)-year event. One way to express changes in extreme events is to

estimate the expected return period of a baseline event when an alternative climate scenario

is considered (Ragno et al., 2018). In other words, we are interested in estimating the
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expected return period of the historical 25-, 50-, 100-year events, hereafter baseline events,

in a hypothetically alternative world, the “natural world”, characterized only by natural

variability. The difference would then explain the contribution of anthropogenic activities

on changes in the frequency of extremes.

Let (IHNR, DHNR) and (IHR, DHR) be the two bivariate time series of simulated precipitation

intensity (I) and duration (D), respectively, from HNR (natural only) and HR (baseline or

historical) runs. Let FIHNR , FDHNR , FIHR , and FDHR be their respective marginal distribu-

tions. Let (IHNR, DHNR) and (IHR, DHR) be represented by the Frank copulas, CδHNR and

CδHR , respectively. Let ITHR,d be the intensity of a baseline T -year event given a storm dura-

tion d. Therefore, the expected return period in the alternative “natural world” is defined

based on equation 5.6 such as:

THNR =
1

1− P (I ≤ ITHR,d|D = d)
(5.8)

where P (I ≤ ITHR,d|D = d) = CδHNR(FHNR(ITHR,d)|FHNR(d)). The changes in return pe-

riod will account for changes in both the dependence structure between I and D, and the

magnitude of precipitation events.

For a comprehensive characterization of changes in precipitation I and D, we suggest to

isolate the changes in their dependence structure. The advantage in the use of copula

functions resides in the possibility of representing the correlation structure in a simplified

domain, [0, 1]× [0, 1], where the effect of the absolute value of the two variables is removed.

By numerically inverting the equation 5.6, it is possible to express u as a function of the

conditioning variable v and fixed conditional probability Cu|v (Figure 5.1). Once the value of

the joint conditional probability is chosen, the dependence structure controls the associated

marginal distribution u: for negative dependence, lower values of the conditioning variable v

are associated with u ≥ Cu|v (Figure 5.1 top panels); for positive dependence, higher values

121



Figure 5.1: Effect of the dependence structure of the copula model (τ) on the marginal
distribution u for fixed value of the joint conditional probability Cu|v.

of the conditioning variable v are associated with u ≥ Cu|v (Figure 5.1 bottom panels).

Because of the upper limit inherent in the cumulative density function, Cu|v → 1, u → 1

for v → 0 (negative dependence) or for v → 1 (positive dependence). It is worth noting

that the relation between u and v, relative to the joint conditional probability Cu|v, is fully

defined by the copula family and its parameter(s), while it is independent from the marginal

distributions.

Let the marginal u be u = FI(i) and the marginal v of the conditioning variable be v =

FD(d). The relation between u and v, given a joint conditional probability equal to the

frequency of baseline events commonly used for risk assessment (e.g., 25-, 50-, 100-year), can

reveal changes in extreme events induced by changes in the dependence structure between

precipitation’s characteristics, i.e. intensity and duration.

The above results can be extended to any copula family as well as any pair of dependent

variables, even when they are not characteristics of the same phenomenon (i.e., two different
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variables or sets of events such as droughts and heatwaves). This approach can provide

insights to aspects of natural phenomena for further investigation and to improve our un-

derstanding of their sensitivity to external forcings.

5.2 Data

We apply the proposed approach for change detection of interdependent climate variables

to simulated precipitation from the following Global Climate Models (GCMs): CCSM4,

CNRM-CM5, and MIROC-ESM (Archive, 2018). We retrieve simulations from HNR and

HR. The HNR is representative of an alternative “natural world” driven only by natural

variability, in which the amount of CO2 in the atmosphere attributed to human activities is

removed (Taylor et al., 2009, 2012). The choice of these two runs enable us to attribute the

detected changes to the human footprint. We consider 156 years of daily simulations, i.e.

from 1850 to 2005, from a spatial grid cell geographically identified with Los Angeles (CA,

USA). The precipitation unit is kg/(sm2), which corresponds to 1mm/s = 3600mm/hr.

We then identify, in each given year, all storm events, and we characterize them in terms of

intensity (I −mm/hr) and duration (D − day). We use a dry period of 1-day to separate

storm events, the choice of which is justified by the temporal resolution of the simulations.

Moreover, I is equal to the average precipitation intensity during the storm event. For

example, for a D-day storm duration I will be given by:

I =
1

D
·
D∑
d=1

pi (5.9)

where pi is the precipitation intensity simulated for the i-th day.

Once the storms have been characterized in terms of I and D, for each year we sample only

one event per duration, i.e. the event associate with the maximum intensity among events
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Models τHNR τHR δHNR δHR

CCSM4 −0.16 −0.19 −1.41 −1.39
CNRM-CM5 −0.31 −0.30 −2.88 −2.68
MIROC-ESM −0.14 −0.20 −1.20 −1.74

Table 5.1: List of Kendall’s τ and Frank copula parameter δ for the models, i.e. CCSM4,
CNRM-CM5, MIROC-ESM, and runs, i.e. HNR, HR, investigated.

with the same duration. This sampling procedure guarantees a time series of independent

elements, and it allows us to derive the 25-, 50-, and 100-year events as the inverse of the

joint conditional exceedance probability, Cδ(FI(I)|FD(D)). We assume a maximum storm

duration of 7 days, to ensure a representative number of storm events for each duration.

After having processed the data, for each GCM we have two bivariate time series for each

climate model: (IHNR, DHNR) and (IHR, DHR). Generally, the following negative dependence

is observed between I and D: the lower D is, the higher I is.

5.3 Result

We first calculate the Kendall correlation coefficient τ to have an insight into the correla-

tion structure between simulated precipitation characteristics. All the pairs (I,D) show a

negative correlation, see Table 5.1.

Afterwards, we transform (I,D) into [0, 1]× [0, 1] domain, such as: u = FI(i) and v = FD(d),

where FI and FD are the empirical cumulative distribution functions of the precipitation

characteristics I and D respectively. Once the uniform marginals have been calculated, we

estimate the parameter δ of the Frank copula based on the observed pair of (u, v) using

the maximum likelihood estimate method (see copulafit built-in function of Matlab (Matlab,

2017)). Given a negative correlation structure between I and D, negative values of the

Frank parameter δ are estimated. Figure 5.2.a, .c, and .e show the scatter plots of the pairs
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(I,D) in IR and [0, 1]× [0, 1] domain. Figure 5.2.b, .d, and .f show the fitted Frank copulas.

Both the Kendall correlation τ and the Frank copula parameter δ, Table 5.1 and Figure 5.2,

reveal a minor sensitivity of precipitation characteristics on the CO2 concentration in the

atmosphere.

We further investigate the effect of the increase in greenhouse gas (GHG) emissions by looking

at the tail behavior of the joint conditional probability. Indeed, the tail of a distribution is

the aspect ruling water-related risk management and adaptation strategies.

Changes in the return period

We investigate changes in extreme events such as 25-, 50-, and 100-year precipitation events

(corresponding to the conditional Frank copula Cδ(FI |FD(d)) equal to 0.96, 0.98, and 0.99)

following Ragno et al. (2018). We calculate the expected return period of baseline events

(events simulated in the “real world” - HR) in the hypothesized alternative “natural world”

(HNR), Figure 5.3.a, .c, and .e. As an example, we estimate the 25-year 1-day storm event,

I25
HR,1 such that CδHR(I ≤ I25

HR,1|D = 1) = 0.96. Subsequently, we calculate the corresponding

return period in the “natural world” as THNR = 1/(1− CδHNR(I ≤ I25
HR,1|D = 1)).

Even though there is disagreement across the models selected, the increase in CO2 concen-

tration in the atmosphere has made extreme events more frequent. For example, what is

considered today to be a today 50-year event (Figure 5.3 c) of 1-day duration would have

been, on average, a 60-year event in the alternative “natural world” (Figure 5.3.c red dot).

The results summarized in Figure 5.3.a, .c, and .e, about the changes in the frequency of

extreme events, account for the GHG effects on both the amount of precipitation and the

interdependence between precipitation characteristics I and D.
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Figure 5.2: (I,D) scatter plots and Frank copulas. Model CCSM4: a) Scatter plot in IR and
[0, 1] × [0, 1] domain and b) Fitted Frank Copulas. Model CNRM-CM5: c) Scatter plot in
IR and [0, 1] × [0, 1] domain and d) Fitted Frank Copulas. Model MIROC-ESM: e) Scatter
plot in IR and [0, 1]× [0, 1] domain and f) Fitted Frank Copulas.
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Changes in the dependence structure

We want to isolate the changes in the dependence structure by focusing only on the [0, 1]×

[0, 1] domain. Figure 5.3.b, .d, and .f show isolines corresponding to Cδ(FI |FD(d)) equal to

0.96, 0.98, and 0.99, respectively. The negative dependence structure of the joint probability

function acts on the value of marginal probability u corresponding to the conditional joint

probability of interest: the marginal probability u decreases for increasing value of marginal

probability v. This result confirms that the interdependence between precipitation char-

acteristics adds valuable information in defining the frequency, and therefore the absolute

value, of the variable, i.e. precipitation intensity, used for infrastructure design and risk

assessment. It is possible to notice that MIROC-ESM (M3) is the most sensitive model to

CO2 concentration in terms of dependence structure, Figure 5.3.b, .d, and .f - diamonds,

given that the two corresponding curves diverge for large v.

From a comparison between the changes observed in the return period and those observed

in the dependence structure, we notice that in the IR domain the magnitude of precipitation

intensity hides the changes occurring in the dependence structure. For example, the MIROC-

ESM model exhibits the largest change in the dependence structure (see Table 5.1 and

Figures 5.3.b, .d, and .f). However, in terms of return periods, it is the model that exhibits

the smallest changes among the three (Figures 5.3.a, .c, and .e). Overall, when we average

the three dependence structures, no changes are observed between HR and HNR.

5.4 Discussion and Conclusion

Most studies on attribution of extremes are univariate and focus on only one variable or

one feature of a variable (e.g., annual precipitation maxima). In this study, we propose a

multivariate attribution analysis framework that allows investigating changes in dependent
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Figure 5.3: Detected changes in the precipitation characteristics (I,D). M1, M2, and M3
denote the models CCSM4, CNRM-CM5, and MIROC-ESM, respectively. Panel a, c, and e
show the corresponding 25-, 50-, and 100-year events, respectively, in the alternative natural
world. Panel b,d, and e represents the effect of the dependence structure on the marginal
distribution u = FI(I) for a fixed value of the joint conditional probability, Cδ(FI |FD(d)),
equal to 0.96, 0.98, and 0.99 respectively

.
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variables or multiple features of a climate data record.

We show that human footprint has altered the magnitude and frequency of extreme pre-

cipitation events. Comparing model simulations with and without anthropogenic emissions,

we show that extreme precipitation events that we define as 25-, 50- and 100-year events in

today’s climate (observed record) are occurring more frequently than under an alternative

“natural” world, driven only by natural variability. These results mean that anthropogenic

CO2 emissions have contributed to more frequent storms, increasing the exposure of popu-

lation and societies to natural hazards. Moreover, we showed that changes in the magnitude

of events (e.g., amount of precipitation) can potentially affect changes in the dependence

structure of different features of an event (e.g., duration vs intensity of rain event).

The method we proposed here addresses this issue through describing the potential depen-

dencies in a unit domain independent of the magnitudes and marginals of the data. The

approach proposed here can be extended for higher dimension problems. Future work in this

direction will focus on developing a generalized metric linking the dependence structure of

variables of interest to their marginals to facilitate extreme value analysis in a multivariate

case.
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Chapter 6

Conclusion

Today’s society is extremely vulnerable to natural hazards because of the observed climatic

changes and the higher exposure to them resulting from growth and urban development.

When combined with other anthropogenic changes such as land use and land cover, these

factors exacerbate the societal and economic impacts of natural hazards.

The ability to correctly model the expected magnitude and frequency of extreme events is

fundamental for improving design concepts, risk assessment methods, and adaptation plans.

This is particularly important for extreme events that have significant impacts on societies,

infrastructure and human lives, such as extreme precipitation events which cause flooding and

landslides. The scientific community, global organizations, and other stakeholders have all

recognized the urgency of improving our understanding of both natural and human-induced

climate variability.

In order to advance our understanding we propose a methodological framework for inves-

tigating hydroclimatic extremes over time and in response to a physical driver/covariate

(Chapter 2) and we shed light on the uncertainty inherent in the estimation of climatic

extremes and how it should be interpreted by planners and and decision-makers under con-
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ditions of uncertainty (Chapters 3). Using the method developed in this thesis, we show how

extreme precipitation is expected to change in the future (Chapters 4). We also highlight

the importance of merging information from observations and climate model simulations for

risk assessment purposes (Chapters 4). Finally, we outline a methodological framework for

attribution of multiple extremes or multiple features of an extreme event (Chapter 5). The

key findings and conclusions are summarized below.

In Chapter 2, we propose a generalized framework for process-based nonstationary extreme

value analysis. Most of the existing tools for implementing extreme value analysis under

the nonstationary assumption lack of a generalized framework for incorporating physically

based covariates and estimating parameters which depend on a generic physical covariate. To

address the above limitations, we propose the Process-based Nonstationary Extreme Value

Analysis (ProNEVA) framework in which the nonstationarity component is defined by a

temporal or process-based dependence of the observed extremes on a physical driver (e.g.,

changes in runoff in response to urbanization, or changes in extreme temperatures in re-

sponse to CO2 emissions). ProNEVA offers temporal and process-based stationary and

nonstationary extreme value anlaysis, parameter estimation, uncertainty quantification, and

a comprehensive assessment of the goodness of fit. We freely provide the source code of

ProNEVA and a graphical user interface (GUI) to facilitate its applications (Section 2.9) in

the hope that an easily accessible ProNEVA motivates more physically-based nonstationary

analysis of extreme events.

In Chapter 3, we propose a universal chart for improving how the risk of natural hazard is

communicated. Given the variable likelihood of observing a rare event in a set of observations,

predicting future rare events requires paying special attention to the confidence with which

those predictions are made. Because predicting rare events does not depend solely on the

number of observations or on the rarity of the event of interest, we propose a universal chart

summarizing the likelihood of observing the rare event of interest within the available set
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of observations (Figure 3.2). We recommend adopting the proposed chart to clarify and

communicate the confidence of rare event inferences. To facilitate its proliferation within

the scientific community, in this chart, the ratio between the length of records and the

rarity of the extreme event is combined with the likelihood scale as determined by the

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report guidance.

This chart is a necessary tool for a more informative decision-making process related to

natural hazard preparedness.

In Chapter 4 (Ragno et al., 2018), we show the potential impacts a warming climate has

on extreme precipitation intensity and recurrence intervals. Urban areas, especially in the

western U.S., are particularly impacted by increases in the severity and frequency of rare

events. Increases in intensity, duration, and frequency of extreme precipitation can adversely

impact the integrity of infrastructure and of natural and engineered slopes. Infrastructure

built with soil (e.g., earthen dams, levees, embankments) or interfacing with soil (e.g., roads,

bridges, pipelines, foundations) is vulnerable because severe rainfall causes soil erosion and

can significantly reduce the strength of soil upon infiltration. The topic of infrastructure re-

silience is even more important in regions where multiple drivers of change coincide. Coastal

cities, for example, are even more vulnerable due to the compounding effects of sea level

rise and change in climate (Hallegatte et al., 2013). By 2070, the population jeopardized

by extreme floods is expected to increase threefold with the exposed assets increasing by

approximately 9% of the projected global GDP of the same period (Hanson et al., 2011).

We argue that better infrastructure planning and maintenance is fundamental for a resilient

society. The proposed method for addressing nonstationarity in future climate scenarios can

reduce the risk of underestimating future extreme precipitation events and their severity.

The adaptation of existing infrastructures, designed assuming a stationary climate, requires

assessing their performance under future climate scenarios. Such adaptation also requires

revisiting design guidelines for infrastructure and to employ nonstationary IDF curves in

future design procedures.
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In Chapter 5 we propose a multivariate attribution analysis framework which allows for

investigating changes in dependent variables or in multiple features of a climate data record.

We show that the human footprint has altered the magnitude and frequency of extreme

precipitation events. A comparison of model simulations with and without anthropogenic

emissions shows that extreme precipitation events (defined as 25-, 50- and 100-year events

in the observed record) occurs more frequently in the human model than they do in the

alternative “natural” model, which is driven only by natural variability. These results mean

that anthropogenic CO2 emissions have contributed to more frequent storms, increasing the

exposure of population and societies to natural hazards. Moreover, we show that changes in

the magnitude of events (e.g., amount of precipitation) can potentially affect changes in the

dependence structure of different features of an event (e.g., duration versus intensity of rain

event). The method we proposed here addresses this issue through describing the potential

dependencies in a unit domain independent of the magnitudes and marginals of the data.

The approach proposed here can be extended for higher dimension problems. Future work in

this direction will focus on developing a generalized metric linking the dependence structure

of variables of interest to their marginals to facilitate extreme value analysis in a multivariate

case.
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