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Abstract: A bonding process was developed for glass-to-glass fusion bonding using Borofloat
33 wafers, resulting in high bonding yield and high flexural strength. The Borofloat 33 wafers
went through a two-step process with a pre-bond and high-temperature bond in a furnace. The
pre-bond process included surface activation bonding using O2 plasma and N2 microwave (MW)
radical activation, where the glass wafers were brought into contact in a vacuum environment in an
EVG 501 Wafer Bonder. The optimal hold time in the EVG 501 Wafer bonder was investigated and
concluded to be a 3 h hold time. The bonding parameters in the furnace were investigated for hold
time, applied force, and high bonding temperature. It was concluded that the optimal parameters
for glass-to-glass Borofloat 33 wafer bonding were at 550 ◦C with a hold time of 1 h with 550 N of
applied force.

Keywords: wafer bonding; fusion bonding; Borofloat glass; plasma activation

1. Introduction

The global market for micro-electrical mechanical systems (MEMSs) and sensors has
continued to rise where the technical requirements of MEMS-based substrates have ex-
panded to include higher biological compatibility, optical transparency, corrosion and heat
resistance, and a need to withstand high transition temperatures. Using glass as a primary
substrate in MEMS devices has increased in popularity due to its unique physical properties
that enable MEMS devices to meet these requirements and more. Glass substrates, such as
Borofloat 33, have many uses in scientific and industrial areas, such as microelectronics,
biotechnology, optics, and chemistry. Characterized by its similar optical properties to fused
silica, it is less expensive with high resistance to thermal shock (CTE = 3.25 × 10−6 K−1)
and chemicals, such as alkalis, acids, and organic substances [1].

Various methods have been explored to bond glass wafers, such as anodic bonding,
where a hermetic connection is created between the glass to glass or glass with an inter-
mediate layer. With an intermediate layer, the substrates are heated to 400 ◦C with a high
voltage applied up to 1 kV. At higher temperatures, the sodium oxide splits into sodium
and oxygen ions where the intermediate layer acts as a diffusion barrier. The sodium ions
migrate towards the cathode, whereas the oxygen ions migrate towards the anode, creating
an interface at the intermediate layer [2–6]. However, the use of an intermediate layer
may be unfavorable for the optical transparency of devices and certain anodic bonding
equipment may not be readily available. Other processes have been developed to produce
strong bonding strength at lower temperatures, even without cleanroom facilities. By
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prewashing the wafers with acetone, substrates can be bonded by the continuous flow
of demineralized water. However, fabricating strong bonding strength of glass-to-glass
wafers at low temperatures and loads has not been obtained [7].

Experiments have been conducted to determine effective bonding procedures; how-
ever, the influence of cleaning procedures prior to the bonding can affect the quality of
the bond. Contamination of particulates can directly affect the quality of the bond and
bond strength by acting as spacers between the wafer surfaces. Cleaning methods for
fusion bonding for microfluidic devices include various wet chemical baths. Lin et al. and
Liao et al. used an acetone and piranha solution (H2SO4:H2O2 = 3:1), followed by a rinse
with deionized water and wafers were blown with N2 [8,9]. Other chemicals were used in
addition to piranha solution, such as hydrochloric acid and ammonium hydroxide solution
in the case of Plößl et al. [10]. Additional chemical solutions also include KOH, HNO3, and
ethyl alcohol [11–14]. Based on all the chemical solutions, piranha and HCl solutions are
commonly used to minimize organic contamination [15].

Separate explorations have been made into surface-activated bonding (SAB) methods,
by treating the surface of the substrate with various ions or radicals. In SAB, wafers are
directly bonded after the sample surface is activated using reactive ion etching (RIE), induc-
tively coupled plasma, ozone, and UV radiation plasma carried in different atmospheres.
Furthermore, room temperature bonding is possible with the SAB method. Notably, N2
and O2 have been used in a two-step plasma surface-activation process where the O2
plasma removes contaminants and reactivates native oxides on the bond interface [16,17].
Wang et al. proposed a bonding mechanism with surface activation. During O2 plasma
activation, oxygen free radicals break the Si-O-Si and Si-Si covalent bonds. The chemical
bonds are regenerated into Si-O covalent bonds due to the high energy of oxygen free radi-
cals. The newly generated Si-O bonds can create a dehydration reaction to form covalent
bonds of Si-O-Si where the bonding of substrates can be achieved [18]. Subsequent N2
microwave (MW) radical activation can further generate chemical reactive surfaces and
decreasing the surface roughness of oxide substrates without damaging the nanostructured
surfaces [18–20]. SAB has generally been utilized for various materials, such as silicon,
silicon carbide, and aluminum oxide, whereas the use of SAB with glass has only been
explored with the use of an oxide intermediate layer [21–24]. Nevertheless, SAB may not
always generate high-quality bonded glass wafers due to the void formation of trapped
air between the wafers as they make contact. Moreover, the surface energy of the bond
interface deteriorates exponentially over time.

Alternatively, fusion bonding proves to be a common method of bonding glass sub-
strates, as it is an inexpensive and versatile way of creating a hermetic seal [15]; a good
bonding strength with a high bonding yield can be achieved. Numerous studies have
utilized fusion bonding, for example, a glass-to-glass fusion bonding study that used a
buffered oxide etch (BOE) and pre-heating a coverslip in a furnace at 400 ◦C before heat-
ing up to 580 ◦C [8]. Other pre-bonding treatments have been used, such as a two-step
baking process with a dip into hydrochloride solution, followed by a BOE bath where
the substrates are bonded at 580 ◦C for 20 min [25]. A bench-scale press furnace has also
been used to bond the glass substrates for 6 h at 590 ◦C and apply a 12 PSI pressure [12].
Other fusion bonding studies used 630 ◦C and 1.98 lb of applied force, or annealing wafers
at 1100 ◦C [9,26]. Varying parameters were proposed for a multitude of various glass
materials, such as Pyrex 7740, borosilicate glass coverslip, fused silica wafers, and Thermo
Scientific soda lime glass slides, all of which have varying thicknesses [8,9,12,15,25,26].
Although there have been numerous successes with glass-to-glass bonding at high bonding
temperatures, there is a need to optimize the parameters of bonding temperature, hold
times, and applied load to bond glass substrates, in this case, with Borofloat 33.

A fusion bond is a settling bond where a chemical reaction with van der Waals
hydroxyl bonds is transferred to covalent siloxane bonds. This process can occur in ambient
conditions and can be accelerated, strengthened, and enhanced with annealing. The
chemical reaction between the hydroxyl molecules on the mating surfaces is responsible for
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the bonding of glass wafers. If the bond becomes monolithic, the bond is as strong as the
interface in the bulk of the material. However, to have a monolithic fusion bond, a severe
annealing procedure has to be executed to prevent thermal shock through such means as
having a gradual heating and cooling cycle [27].

When examining the thermal properties of glass wafers for bonding, the viscosity and
annealing of the glass are key factors for a product able to retain its shape after forming
with little to no crack formation. Some of the key parameters affecting viscosity are the
glass transition temperature (Tg), the softening point, and the annealing point. The Tg of
borosilicate glass, generally around 500–550 ◦C, depends on the molar ratio of silica to
boron. The softening point, around 820 ◦C in the case of borosilicate glass, is where the
glass starts to deform under its own weight at that viscosity. Finally, the annealing point is
defined to be the temperature at which the stresses generated during the processing can
be released by viscous relaxation. To release the internal stresses, the glass needs to be
heated above the annealing point and subsequently cooled down slowly [28]. For fusion
bonding, quartz substrates are bonded above 1000 ◦C and borosilicate glass is bonded
between 600 and 800 ◦C. Based on the thermal properties of borosilicate glass, the ideal
bonding temperature would range between Tg and the softening point of glass, in the
500–820 ◦C range [28].

In this study, a bonding procedure for Borofloat 33 glass was developed, which
incorporated two major steps of a pre-bond step and a high-temperature bond step. The
pre-bond step utilizes SAB, where the wafers are in contact in a vacuum setting to generate
a temporary bond and alleviate possible contamination. By including SAB in this pre-bond
step, the formation of Newton’s rings and voids was greatly reduced. During the pre-bond
step, the wafers are heated up to 450 ◦C with 500 N of applied force and the time duration
was investigated.

For the high-temperature bond step, the wafers will be evaluated based on the bonding
percentage of the wafer and the flexural strength test. The bonding percentage of the wafer
would be obtained via ImageJ analysis, where a threshold is applied to assess the unbonded
regions of the wafer. As for the flexural strength tests, the use of bending tests instead
of peel tests is utilized as a repeatable assessment of adhesion strength, with numerous
studies conducted on bending displacement tests, four-point bending tests, or three-point
bending tests [29–31]. Based on these variables, the high-temperature bond step can be
evaluated and investigated based on bonding temperature, hold time, and applied force.

2. Materials and Methods
2.1. Wafer Preparation

Figure 1 describes the full process of fusion bonding the borosilicate glass wafers. The
borosilicate glass wafers used in this experiment were Borofloat 33 glass wafers with a
diameter of (100 ± 0.1) mm and thickness of 700 µm (University Wafer, South Boston, MA,
USA). The topside and backside surface roughness of the wafers are both <1 nm, with a
warp of <30 µm. The bonding process was conducted in an ISO 5, Class 100 cleanroom
environment. All wafers were cleaned in a piranha solution (H2SO4:H2O2 = 4:1) that was
prepared at ambient temperature and were cleaned for 10 min (Figure 1a). All samples
were immediately cleaned after the preparation of the piranha solution. The wafers were
then rinsed with deionized (DI) water and dried in pure N2 in a Semitool Spin Rinser
(Semitool PSC-101, Semitool, Kalispell, MT, USA). The wafers were prepared to be used
immediately, to ensure that all organic surface contaminants were removed.
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at 450 °C with 500 N applied force. (d) Fusion bond substrates with a custom screw fixture to apply 
force in a furnace. (e) Bonded Borofloat 33 wafers. 

2.2. Two-Step Plasma Activation 
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wafers were then aligned using the EVG 620 Mask Aligner (EVG, St Florian, Austria) and 
EVG 4 in/100 mm Bond Chuck (EVG, St Florian, Austria), allowing for a higher degree of 
alignment accuracy. To avoid direct contact between the wafers prior to the pre-bond 
soak, the 4 in/100 mm bond chuck comes with complimentary separation wafer flags as 
part of the stock EVG bonder configuration to be set between the wafers as spacers. The 
full wafer stack is held down using the wafer clamping glass and retention tabs from the 
bond chuck. On top of the wafer stack, a 4 in/100 mm Graphite Foil 106.5x1 and a 4 in/100 
mm Graphite Electrode without a center for a bow pin (EVG, St Florian, Austria) are in-
stalled.  

Figure 1. Schematic of the process of fusion bonding borosilicate glass. (a) Cleaning with piranha
solution to remove all organic materials from two separate borosilicate wafers. (b) Using a two-step
plasma surface activation process with O2 plasma and N2 MW radical activation. (c) Pre-bond soak
at 450 ◦C with 500 N applied force. (d) Fusion bond substrates with a custom screw fixture to apply
force in a furnace. (e) Bonded Borofloat 33 wafers.

2.2. Two-Step Plasma Activation

The surface of both wafers underwent a two-step plasma surface activation process
in the EVG 810 Plasma Activation (EVG, St Florian, Austria) (Figure 1b). The surface was
first activated with an O2 plasma at 75 W/100 W (low-frequency power/high-frequency
power) for 20 s with a gas flow of 2500 sccm, followed by N2 MW radicals at 75 W/150 W
(low-frequency power/high-frequency power) for 20 s with a gas flow of 5000 sccm. The
wafers were then aligned using the EVG 620 Mask Aligner (EVG, St Florian, Austria) and
EVG 4 in/100 mm Bond Chuck (EVG, St Florian, Austria), allowing for a higher degree of
alignment accuracy. To avoid direct contact between the wafers prior to the pre-bond soak,
the 4 in/100 mm bond chuck comes with complimentary separation wafer flags as part
of the stock EVG bonder configuration to be set between the wafers as spacers. The full
wafer stack is held down using the wafer clamping glass and retention tabs from the bond
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chuck. On top of the wafer stack, a 4 in/100 mm Graphite Foil 106.5x1 and a 4 in/100 mm
Graphite Electrode without a center for a bow pin (EVG, St Florian, Austria) are installed.

We evaluated whether the surface activation process is necessary to the bonding
process. Wafers were tested with and without the two-step plasma activation step, then
went through the entire fusion bonding process.

2.3. Pre-Bond Soak

From the EVG 620 Mask Aligner, the bond chuck is transferred to the chamber of the
EVG 501 Wafer Bonder (EVG, St Florian, Austria) for a pre-bond soak (Figure 1c). This
chamber enables the wafer assembly to be in a vacuum environment that is then heated to
450 ◦C at a rate of 30 ◦C/min followed by a 10 min period for even heat distribution. The
flags are then removed to allow the wafers to have direct contact where 500 N of load is
applied at a rate of 100 N/min. The EVG 501 has a flat plate and piston where pressure is
applied to have intimate contact between the glass wafers to form chemical bonds. This
environment is held constant and three duration periods were tested (3 h, 5 h, and 9 h
hold), before gradually returning to ambient temperature.

2.4. Glass-to-Glass Bonding Process

After the pre-bond soak, the bonded pair is assembled into a custom-built screw fixture.
The fixture consists of 410 stainless-steel plates, 4 in/100 mm graphite discs, bolts, and
screws. The 4 in/100 mm graphite discs were installed at the interface between the glass
wafers and 410 stainless steel plates due to the difference in thermal expansion coefficients
to avoid fracture propagation during the high-temperature step. The stainless-steel plates
were machined to have holes for the bolts and were finished with electropolishing to
provide a smoother surface finish. The plates were coated with a 200 nm layer of silicon
nitride (SiNx) using a PlasmaTherm Vision 310 PECVD (Plasma-Therm, St. Petersburg,
FL, USA).

The wafer stack from the EVG 501 Wafer Bonder was transferred and assembled to
the fixture (Figure 1d), applying torque to the hex nuts to achieve a prescribed load. Three
loads were tested (550 N, 840 N, and 1110 N). The torque to apply is calculated through
Equation (1):

T = k ∗ d ∗ F (1)

where T is the tightening torque (N·m), k is the torque coefficient (k = 0.2 for stainless
steel), d is the screw nominal diameter (d = 9.525 mm), and F is the axial force (N) [32].

A programmable furnace (Vulcan-Hart 3-550, ESP Chemicals, Tucson, AZ, USA)
was used to fusion bond the borosilicate glass together at higher temperatures. Three
temperatures were tested (550 ◦C, 650 ◦C, and 700 ◦C) at a fixed rate of 4 ◦C/min. The
furnace is held at a high temperature and three holding periods were tested (1 h, 2 h, and
4 h), before allowing the bonded wafers to gradually cool down to room temperature
(Figure 1e).

For all bonding conditions, three wafers were tested with each bonding variable. The
bonding variables to be assessed are bonding temperature (550 ◦C, 650 ◦C, and 700 ◦C),
hold times (1 h, 2 h, and 4 h), and applied load (550 N, 840 N, and 1110 N). With all wafers
going to the glass-to-glass bonding process, the pre-bond soak time in the EVG 501 Wafer
Bonder was 3 h at 450 ◦C with 500 N applied force.

2.5. Data Analysis

The bonded wafers are visually assessed for the percentage of the wafer that has
bonded. This was evaluated using ImageJ analysis software version 1.53f51 (NIH, Bethesda,
MD, USA), to quantify the number and size of voids in each sample. Photos of the wafers
were taken against a white background in a lightbox where a threshold ranging from 20 to
40% was applied on ImageJ to create a contrast between the voids and bonded regions. The
voids and unbonded regions were then visually assessed and evaluated once the threshold



Micromachines 2022, 13, 1892 6 of 13

was applied. The area of the wafer and unbonded regions was measured to assess the
bonding percentage.

To be reliably integrated into devices, bonded wafers need to have sufficient resistance
to bending and exhibit minimal warping, two metrics that will increase the likelihood of
successful bonding [33]. A review of destructive methods to assess the bonding strength
in wafers is given by Vallin et al. [31]: double cantilever beam tests, peel/tensile tests,
blister tests, and chevron tests. Double cantilever beam tests are based on the insertion of
a thin blade into the bond and the measurement of the crack propagating from the initial
discontinuity. The tests are very sensitive to the measurement of this crack length, [31]. In
tensile tests, bonded samples are glued onto studs, which are loaded in tension. For brittle
materials, these tests are sensitive to misaligned loads and, in these circumstances, edge
effects will cause an early fracture; moreover, a large scatter has also been reported [31].
With blister tests, debonding is caused by the creation of a cavity below the film, with
the cavity being pressurized. Although the tests have been successful for some thin-film
systems, there are problems, such as the compliance of the testing system and the potential
of stress-corrosion cracking between the debond and the pressurized environment [34].
In the chevron tests, a specially formed notch is introduced. The crack, which needs
to be measured, initially grows in a stable manner, followed by unstable propagation.
Dauskardt et al. proposed the use of bending tests in place of peel tests, as a more robust
and repeatable assessment of adhesion strength in multi-layer thin-film structures [34].
The quality of bonding in MEMS devices can be assessed through bending tests [30,33–40],
from the amount of bending displacement (e.g., Ikeda et al.; Tanaka et al.; Djuzhev et al.),
while some authors have carried out four-point bending tests to compute the critical
adhesion energy (Dauskardt et al.; Kwon et al.; Zou et al., etc.) or three-point bending tests
(Kalkowski et al.). In our work, bonding strength quality is assessed through a modified
version of the ASTM C1161-18 standard, “Standard Test Method for Flexural Strength
of Advanced Ceramics at Ambient Temperature”. The flexural strength tests performed
could not conform completely to the standard (test specimens may be 3 × 4 × 45 to
50 mm3 in size) due to the geometry of the samples. A rolling, non-articulating three-point
fixture configuration was used, with a span length of 39.56 mm, and the corresponding
displacement rate was computed based on the required strain rate. Autoclave adhesive
covered by its non-sticky paper was applied on the rollers for improved support of the
samples, based on the setup of ASTM C1505-15, “Standard Test Method of Breaking
Strength and Modulus of Rupture of Ceramic Tiles and Glass Tiles by Three-Point Loading”,
which was also consulted.

The samples were tested until failure using an instrumented MTS 810 hydraulic
testing machine, at a displacement rate of 1.11 mm/min computed based on support span
(L = 39.56 mm), sample thickness (t = 1.40 mm), and desired strain rate (10−4 s−1). The
material ultimate flexural strength S was calculated using Equation (2) (ASTM C1161-18):

S =
3PL
2bt2 (2)

where P is the maximum compressive load (break force), L is the support span, b is the
specimen width, and t is the specimen thickness. This formula should be considered an
estimate because of the deviation from the standard sample geometry, but the testing
procedure was the same for all samples. Examples of how glass substrates are evaluated
for flexural strength are in Figure 2. Statistical analyses were performed using MATLAB
version R2021a (MathWorks, MA, USA).
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Statistical analysis was conducted using a Wilcoxon rank sum test to calculate p-values
comparing each treatment of the bonding parameters.

3. Results
3.1. Surface-Activation Evaluation

The two-step plasma surface-activation process in Figure 1b was evaluated to verify
if the process was vital to the bonding process, particularly the pre-bond soak. The fixed
variables were a 5 h EVG 501 Wafer Bonder hold at 400 ◦C. During the furnace bonding
process, the samples were bonded at 650 ◦C, 550 N of applied load with a 2 h hold time.
As shown in Figure 3, the ultimate flexural strength for tests with SAB treatment was
(77.10 ± 14.50) MPa and (79.80 ± 16.00) MPa without SAB treatment, that is, the two groups’
flexural strengths were statistically equivalent. However, a bonding process with surface
activation produces wafers have slightly higher percentages (88.40 ± 1.57)% for those
without SAB and (93.86 ± 0.75)% (see Supplementary material Table S1 for Wilcoxon rank
sum tests). With the use of plasma activation, the O2 plasma removes surface contaminants,
such as hydrocarbons and particles, where a hydrophilic oxide layer can be adsorbed by
exposed hydroxyl groups. The N2 radicals in the second step of the plasma treatment were
then used to further remove surface contaminants, increasing the level of contact between
the glass wafers to create chemical bonds. At the contact surface, the chemical reaction
between hydroxyl molecules is responsible for the bonding of glass-to-glass wafers where
plasma surface treatment leads to a higher bonding percentage and higher quality bond.
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3.2. Pre-Bond Soak Bond Percentage Evaluation

The pre-bond soak (Figure 1c) was performed at 450 ◦C, over a range of hold times
(3 h, 5 h, and 9 h), to evaluate the optimal time to expose the wafer assembly to a vacuum
environment as the wafers make contact. As the glass transition temperature is Tg = 525 ◦C,
the pre-bond soak would produce relatively weak bonding. In order to anneal the glass
wafers, higher temperatures are required. However, this pre-bond soak step was introduced
to allow the wafer samples to have contact in a vacuum environment after undergoing
surface plasma activation, to minimize voids being created. Based on previous attempts,
voids can easily be created during wafer assembly and after the surface plasma activation
process, even in a cleanroom environment, as particles could contaminate the surface. The
hold times were evaluated to see the effect on the percentage of the wafer bonding time
(3 h, 5 h, and 9 h), with n = 3 samples per holding time. Results are shown in Table 1.
The 3 h bonding time had the highest percentage of the wafer bonded and had the least
amount of standard error (93.24 ± 0.43)% relative to other hold times. Wilcoxon rank sum
tests were conducted between 3 and 5 h, 5 and 9 h, and 3 and 9 h where all values were
p > 0.05 (p = 0.70, p = 1.00, and p = 0.70, respectively). This indicates that the data give
little confidence to conclude that the overall means are statistically different from each
other. With a longer holding time, the wafers could experience distortion, as thermally
induced stress can be introduced in the stack as the chemical bonds formed in the pre-bond
soak are electrostatic and are not permanent. It should be noted that there could also be
thermal stress due to the difference in ambient and holding temperature. From the results,
a pre-bond soak time of 3 h produces a partially bonded wafer with the least amount of
scattering, as the wafers continue to the high-temperature bonding step.
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Table 1. Results of pre-bond soak percentage bonded. N = 3 experiments were conducted for each of
the EVG hold times. Sample standard error describes variability across multiple wafer samples.

Trial 3 h (%) 5 h (%) 9 h (%)

1 92.46 91.57 92.25
2 93.33 89.76 95.19
3 93.93 94.15 84.71

Average 93.24 91.83 90.72
Sample Std Error 0.43 1.28 3.12

3.3. Furnace Bonding Variables

The bonding variables are critical parameters for the furnace bonding process. The
optimum bonding variables were investigated based on hold time, applied load, and high
temperature. For hold times, the fixed variables were at 650 ◦C for the high temperature and
500 N of applied load. From Figure 4, there were varying results based on trying to achieve
a high bonding percentage and bonding strength bonded wafer. Based on the bonding
percentage, the longer hold times produced wafers that had a higher bonding percentage
for 4 h at (95.82 ± 0.75)% but had an inverse relationship with bonding strength where the
ultimate flexural strength was (119.60 ± 8.90) MPa (see Supplementary Material Table S2
for Wilcoxon rank sum tests). Exposing the wafer assembly to a high bonding temperature
for a longer period of time allows the glass substrates to interact with each other more to
anneal and create a hermetic seal. However, the longer hold time can thermally induce
stress to the wafers. Therefore, based on Figure 4, the optimal hold time is 1 h.
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As for the applied load, the fixed variables were at 650 ◦C for the high temperature
and 2 h of hold time. From the results in Figure 5, the bonding percentages differed slightly
from each other; it was evident that applying 550 N of force yielded the best results. By
applying 550 N to the wafer samples, (93.04 ± 2.05)% of the wafer was bonded, with an
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ultimate flexural strength of (139.97 ± 7.81) MPa (see Supplementary Material Table S3 for
Wilcoxon rank sum tests). Applying forces to the wafer samples causes them to have direct
contact and adhere with each other as they reach the glass transition phase. However, at
higher force values, stress concentrations can be created around areas of imperfections on
the wafer from when it was first manufactured or increase in thermally induced stress. As
a result, the optimal applied force with the screw fixture is 550 N.

Figure 5. Applied force bonding variables at 550 N, 840 N, and 1110 N show (a) the average bonding
percentage and (b) flexural strength with sample standard error bars.

When evaluating the high bonding temperature, the fixed variables were at a 2 h hold
with a 550 N force applied. Figure 6 shows that with bonding percentage, 550 ◦C and
700 ◦C treatments were close in value at (97.03 ± 0.30)% and (97.71 ± 0.27)%, respectively.
However, data for the flexural strength showed otherwise, where the strength of the 700 ◦C
was significantly lower than the 550 ◦C, with (72.56 ± 14.50) MPa and (102.0 ± 20.51) MPa,
respectively (see Supplementary Material Table S4 for Wilcoxon rank sum tests). Since the
700 ◦C temperature is higher than the Tg of Borofloat 33, this value is closer to the softening
point of 820 ◦C, where the glass would start to deform under its own weight. Such results
for the 700 ◦C treatment indicate that the treatment at 550 ◦C is superior.

For all bonding parameters, the bond evaluation was conducted based on the bonding
percentage of the wafer and the flexural strength of the bond. However, other modes of
bond evaluation could be conducted, such as atomic force microscopy (AFM), scanning
electron microscopy (SEM), or tensile strength tests. There were limitations with access to
such equipment and fixtures to conduct additional bond evaluation modes that should be
considered going forward with this bonding process. Further testing was conducted on the
external surface roughness after the bonding procedure to evaluate the finish of the glass
wafers (see Supplementary Material Table S5) The use of this bonding process is attractive
for an application that requires additional deposition of material on the external surface.
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4. Conclusions

Through this study, a fusion bonding process was developed for 4 in/100 mm, 700 µm
Borofloat 33 with a pre-bond soak and a high-temperature bonding step. For the high-
temperature bonding step, the optimal conditions for direct fusion bonding were assessed
by varying high bonding temperature, hold time, and applied force. The pre-bond soak
process included a two-step surface activation step and the EVG501 Wafer Bonder. In the
EVG501 Wafer Bonder, the bonding percentages showed that a hold time of 3 h at 450 ◦C
yielded the best results. As for the high-temperature bonding step, based on the bonding
percentages and flexural strength calculated, it was found that, among the tested conditions,
Borofloat 33 4 in wafers bonded most optimally at 550 ◦C, with a hold time of 1 h and 550 N
of applied force. This bonding process yielded samples that had a high bonding percentage
and high flexural strength.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi13111892/s1, Table S1: Wilcoxon rank sum tests were conducted
for bonding percentage, and flexural strength with and without surface activation; Table S2: Wilcoxon
rank sum tests were conducted for bonding percentage, and flexural strength between 1–2 h, 2–4 h,
and 1–4 h values; Table S3: Wilcoxon rank sum tests were conducted for bonding percentage and
flexural strength between 550–840 N, 840–1110 N, and 550–1110 N values; Table S4: Wilcoxon
rank sum tests were conducted for bonding percentage and flexural strength between 550–650 ◦C,
650–700 ◦C, and 550–700 ◦C values; Table S5: Calculated RMS and Wilcoxon rank sum tests were
conducted on all samples made for fusion bonding.
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