Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title Ergonomics in the Biosciences

Permalink https://escholarship.org/uc/item/7g54b6k6

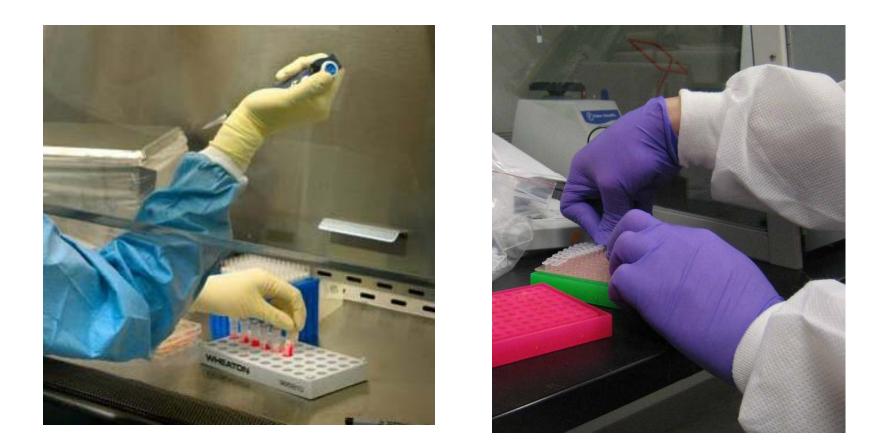
Author Janowitz, Ira

Publication Date 2010-04-23

Peer reviewed

Ergonomics in the Biosciences

Ira Janowitz, PT, CPE Lawrence Berkeley National Laboratory



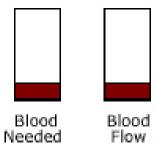
LOUIS STOKES LABORATORIES, NIH

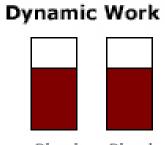
"What the cathedral was to the 14th century and the office building was to the 20th century, the laboratory is to the 21st century."

Don Prowler, LS&EM Conference, 2001

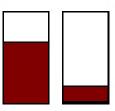

Ergonomics Risk Factors

Many lab activities involve repetitive, forceful pinching in awkward postures


High precision demand



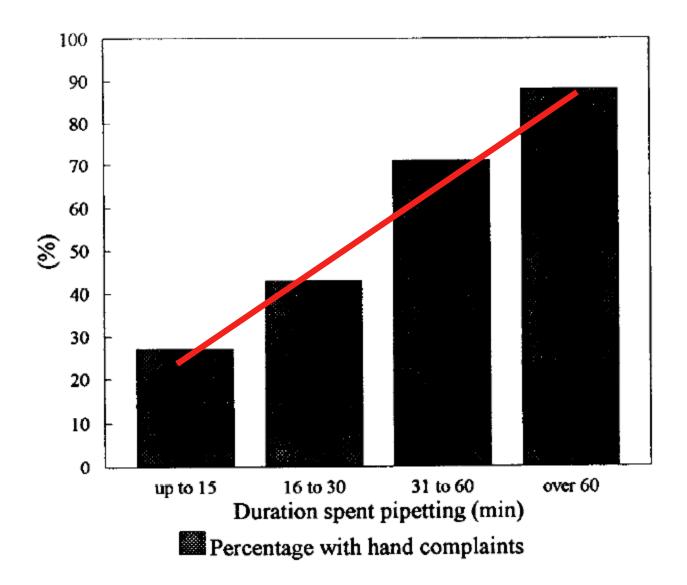
Static postures \rightarrow Fatigue, Contact stress


Resting Muscles

Blood Blood Needed Flow

Static Work

Blood Blood Needed Flow



Manual Pipetting

- Frequent use (>300 hrs/yr) associated with high risk of hand & shoulder problems
- Elevated rates MSDs (Bjorksten, 1994)
 - Hand problems (OR 5.0)
 - Shoulder problems (OR 2.4)
- Increased risk (David & Buckle, 1997)

– pipetting > 1-1.5 hours per day

David & Buckle, Applied Ergonomics, 28:4, 1997

Microscopy

- 85% of cytotechnologists with musculoskeletal symptoms: headache, neck pain/stiffness, back pain, upperextremity discomfort.
- numbness, tingling, and/or pain in the fingers: >1/3 Left, 1/2 Right

(Thompson, 2003)

Musculoskeletal Problems Reported by Microscope Users

Anatomical Location	Employee Percentage
Neck	50-60
Shoulders	65-70
Back (Total)	70-80
Lower Back	65-70
Lower Arms	65-70
Wrists	40-60
Hands and Fingers	40-50
Legs and Feet	20-35

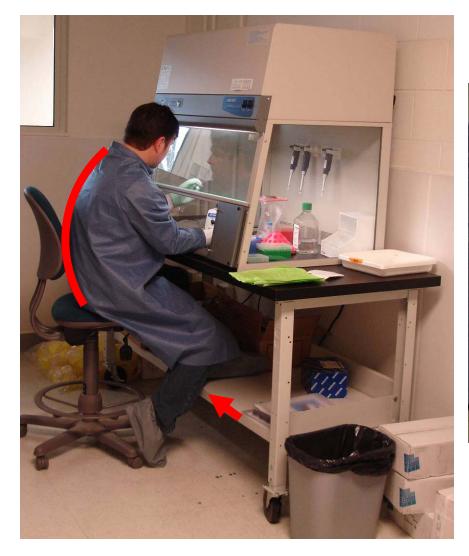
Workstation adjustability is a key factor in our ability to adapt work areas to the constantly changing people, task, and equipment in the lab environment.

"Biosafety cabinets and laboratory workbenches ...present ergonomic hazards which are mostly due to *lack of adjustability & leg room*."

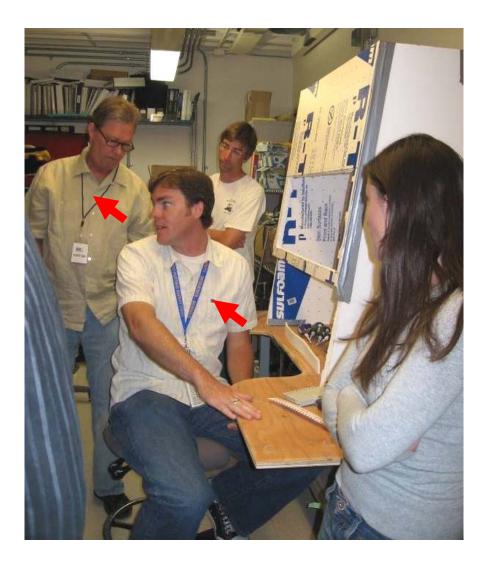
> CDC, Laboratory Ergonomics website, 9-24-07 http://www.cdc.gov/od/ohs/Ergonomics/labergo.htm

Where should things go?

Height adjustability adapts to changes in equipment and technology over time

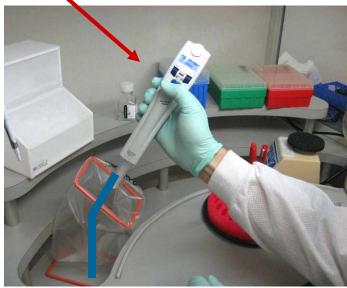


Modular lab furniture



Bench top DNA Hood before ergo modification: Inadequate legroom & long reach distances \rightarrow flexed back and awkward neck/shoulder posture

Early mock-ups for 454 group input & collaboration w/ Ergo Team (June 07)


Bench top DNA Hood design

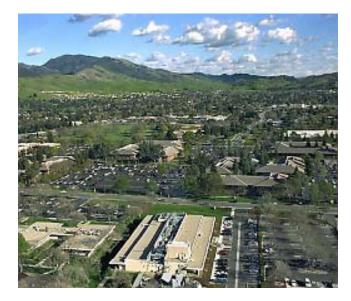
Ergonomic features:

 Recessed area & tilted receptacles reduce awkward wrist postures
Padding protects elbows & forearms
Programmable pipette (Eppendorf Xstream) improves hand position, reduces force & repetitive movement

SOMA Hybrid chair

References

- American Glovebox Society http://www.gloveboxsociety.org/
- Baron, E.J. (2002) Speculations on the microbiology laboratory of the future (2002) *Clinical Infectious Disease* 35 pp. 84-87
- Cooper, E.C (1994). Laboratory Design Handbook CRC Press ISBN 0849389968
- Fredriksson, K. (May 2005) Laboratory work with automatic pipettes: a study on how pipetting affects the thumb Department of Occupational Health, Pharmacia AB, Stockholm *Ergonomics*, 38(5) pp 1067-1073
- Garikes, R.W. (7/04) Lean lab design. Retrieved 9-18-07: <u>www.mlo-online.com</u>
- Gilson (ND) Laboratory ergonomics: Things you should know... things you should do Retrieved 9-18-07: <u>http://www.gilson.com/Downloads/mlhAppNote1.pdf</u>
- Jones, R.L. & Eagleson, D. (May 2001). Ergonomic considerations in the development of a Class II, Type A/B3 biological safety cabinet. *American Clinical Laboratory* pp 37-41.
- Kofler, M., Kreczy, A., & Gschwendtner, A. (2-19-02) "Occupational backache"surface electromyography demonstrates the advantage of an ergonomic versus a standard microscope workstation. *European Journal of Applied Physiology*
- Mandal, AC (1981): The Seated Man (Homo Sedens), Appl Ergo, 12.1, p19.
- Sillanpaa, J, Nyberg, M. & Laippala, P. (July 10, 2003) A new table for work with a microscope, a solution to ergonomic problems. Elsevier Science Direct
- Thompson, SK, Mason E, Dukes S (2003). Ergonomics and cytotechnologists: Reported musculoskeletal discomfort, *Diagnostic Cytopathology* 29:6.

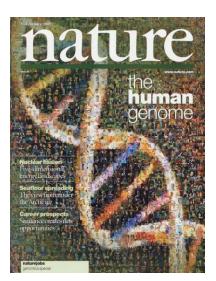

JGI Ergonomics Program

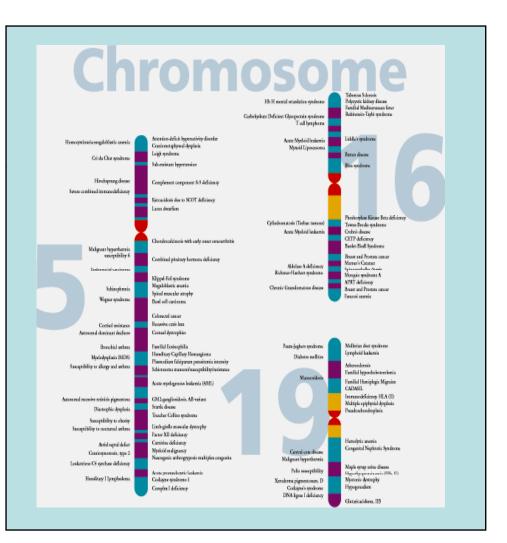
"A recipe for success to improve worker safety and health"

Presented by Melanie Alexandre and Christine Naca

Overview

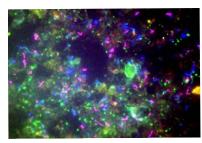
- Description of the JGI
- Review of Production Tasks
- JGI Ergonomics Program


- Walnut Creek, CA-located PGF opened in 1999
- ~250 employees

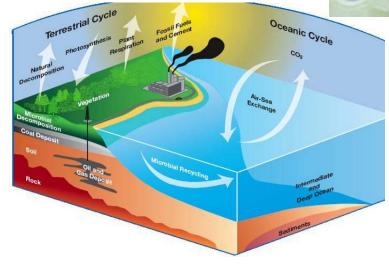

Mission:

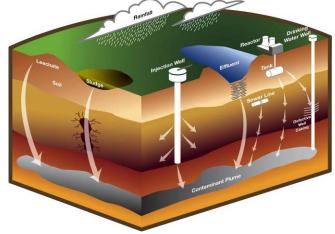
DOE JGI, Serving as a genomic user facility in support of the DOE missions:

bioenergy, carbon cycling, and bioremediation.



Bioenergy


Carbon Cycling 👩

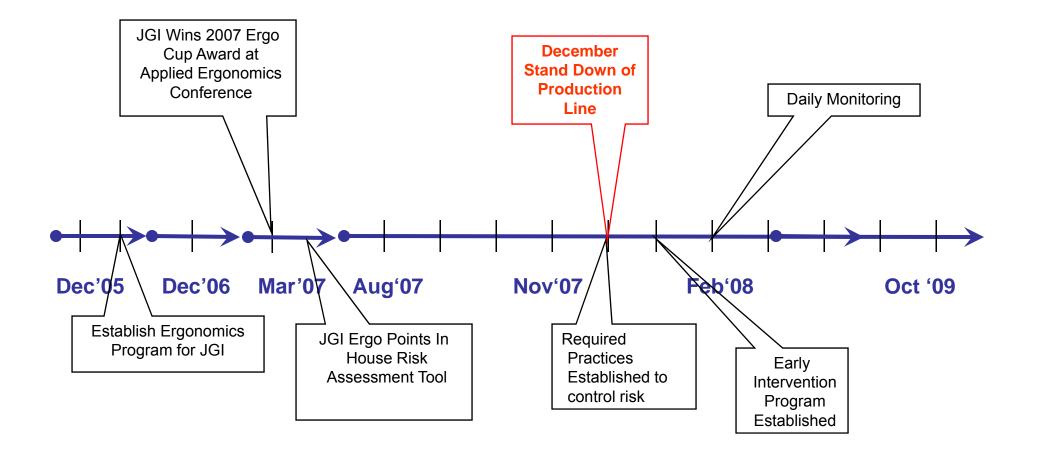


Biogeochemistry

Office & Manufacturing Work Environments

60% staff in computerintensive office settings

40% staff in handintensive production tasks (2 shifts)


Root Causes of Ergonomic Injuries

- Equipment/instruments designed for small batches/small lab use now being used for high throughput operation
- Culture:
 - Understanding Efficiency vs. Speed
- High force fingerintensive tasks

We are striving to determine how much is too much

History of Ergonomics at JGI (Dec 2005-Current)

Engineering designs and solutions

Early intervention

Targets employees with discomfort Includes bi-weekly review meeting

Proactive Efforts

Labs and offices Monitoring Walk-abouts Comfort surveys

Safety Culture Working Group

Promotion Awareness Communication

Training/education

Risk targeted classes Stretch break programs Potty training Website resources

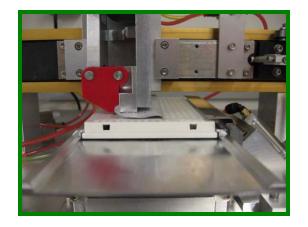
Relaxation/Rejuvenation Room

Ergonomics Demo Room

Work tool and practices

Ergo Points Required Practices

Top 3 High Risk Factor Tasks (Then-2007)

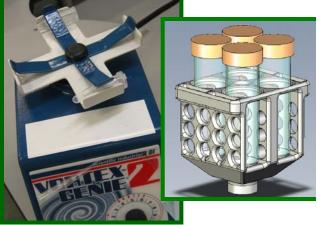

Thermal Cycler Loading

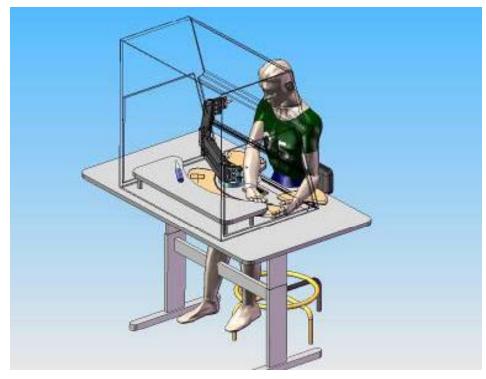
Peeling Seals

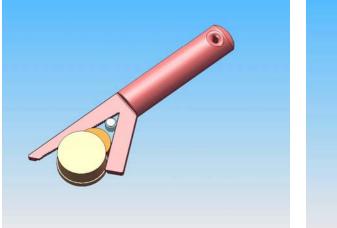
Freezer Rack Lifting

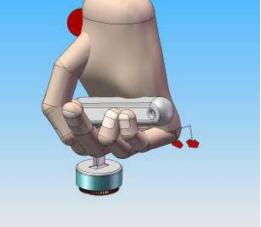
Top 3 High Risk Factor Tasks (Now-2007)

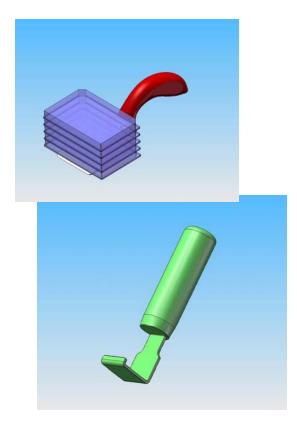
Pipetting

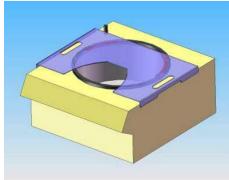





Vortexing






Employee Driven Designs

454 & Illumina Pipetting

Best Practices

Don't use thumbs to open tubes.

Use uncapping tool to open ALL tubes, .2mL, 1.5mL, 2.0mL

Ergo Points

 Supervisors want to know....

"HOW MUCH IS TOO MUCH?"

- Guidelines for schedulers
 - What tasks can be scheduled together
 - How many tasks can be conducted in one day
- No ergonomics risk tool exists for low force high repetition tasks

GOAL: Reduce ergonomic risk caused by the combination of tasks assigned

'Ergo Points'

Weight Watchers

Fask	ErøæRgnints Watchers Points
Mændilling Foriæsasay trays	20
Commentations and the stackers (Top Loading)	176
Boading/Unloading Stackers (Front Loading)	154
Coseadim@ble at Seals	138

Tour of Ergo Projects

This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.