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Executive Summary  

In this project, a novel approach has been developed to estimate traffic states on arterial road 
links using both loop detector data and signal phasing information. The approach consists of the 
following two tasks: (i) estimate the traffic flow fundamental diagrams for arterial road links 
that are used to categorize traffic states into different regimes; (ii) develop estimation 
algorithms that utilize the proposed fundamental diagram and produce estimates of traffic 
states and vehicle queues for the traffic movements at a given intersection approach.  

In the first task, the proposed fundamental diagram is trapezoidal, due to the presence of signal 
control. Two occupancy thresholds are proposed to categorize the traffic states into three 
different regimes: Uncongested, Congested, and Downstream Queue Spillback. The parameters 
used to compute these two thresholds are closely related to road geometry, detector layout, 
signal settings, and vehicle dynamics, which can be either measured or estimated from the field 
data. We point out that the proposed trapezoidal fundamental diagram is point-based, which 
can represent most of the traffic states on a link. However, when traffic is congested and the 
residual queue spills over the advance detectors, it fails to represent the traffic states on the 
link. Moreover, we carefully analyze the impacts of platoon dispersion, initial queue, and 
coordination level on the shape of the fundamental diagram. We analytically show that with 
minor platoon dispersion, our estimation of vehicle queueing time at advance detector is 
accurate. We also graphically show that the impact of initial queue can be ignored if we 
consider near-stationary traffic states. However, we find that poor coordination level can 
significantly degrade the traffic performance, which drifts the observed data points to the right 
with higher occupancies. As a case study, we select three intersections along Huntington Drive 
in the City of Arcadia in the I-210 Connected Corridors pilot. We carefully analyze the flow-
occupancy relations at both advance and stopline detectors and decide to use the data from 
the former because it is less impacted by the traffic signal and the measurements are more 
reliable. In order to obtain the trapezoidal fundamental diagram, a key parameter to be 
estimated is the saturation flow rate. Therefore, we develop an algorithm that is used to 
estimate the saturation flow rates based on the data from advance detectors. Our results show 
that the estimated saturation flow rate varies a lot, ranging from 1200 veh/hr/ln to 2300 
veh/hr/ln. According to the road geometry and the signal setting in the study site, we find that 
the low saturation flow rate may be caused by inappropriate detector placement, shared traffic 
movements, active pedestrian calls, and temporary lane blockages by the turning movements. 
To validate the estimation results, we first develop an algorithm to estimate the upper bounds 
of the flow-occupancy plots, which is considered to represent the actual fundamental diagrams. 
Then we calculate the Mean Absolute Percentage Error (MAPE) between the estimated 
trapezoidal fundamental diagram and the estimated upper bound. Our results show that 
generally the estimated trapezoidal fundamental diagram matches the estimated upper bound 
well. However, several exceptions are found which can be caused by insufficient data and poor 
coordination level.  
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In the second task, based on the proposed trapezoidal fundamental diagram, we further 
develop estimation algorithms for arterial road links. Especially, we use the two occupancy 
thresholds to categorize the traffic states at different types of detectors: three regimes for 
advance detectors, and two regimes for stopline detectors. We successfully validate these two 
thresholds by demonstrating a good fit to the data from the field and microsimulations for both 
advance and stopline detectors. Then with the consideration of different detector coverages 
and lane configurations, we develop algorithms that aggregate traffic states from individual 
detectors and produce estimates of traffic states and vehicle queues for the traffic movements 
at an intersection approach. Under the assumption of congested traffic and minor turning 
movements, we theoretically prove there exists a linear relation between the total vehicle 
queues and the travel times for multiple intersections with similar road geometries along an 
arterial corridor. We further select five intersections along Huntington Drive in Arcadia as the 
study site and successfully validate such a linear relation for the eastbound and west bound 
traffic using the field detector and Bluetooth travel time data. For traffic initialization, we 
develop an estimation and initialization framework for the microsimulation in AIMSUN. As an 
application example, we choose the I-210 AIMSUN network in the Connected Corridors project 
and generate simulated vehicles on the arterial road links in the City of Arcadia using the 
developed estimation and initialization algorithms.  

Overall, the outcomes from this project provide valuable insights for both researchers and 
engineers to better understand arterial traffic. The proposed trapezoidal fundamental diagram 
reveals intrinsic characteristics of arterial traffic under signal control and has been thoroughly 
studies in this project. The developed estimation algorithms can work with the conventional 
data sources and is applicable under different detector layouts and lane configurations. The 
proposed estimation and initialization framework can be hooked up with large-scale simulation 
models since it fundamentally eliminates the step of simulation warmup and generates reliable 
and accuracy traffic states under good detector coverage and data quality. In addition, this 
study also provides building blocks for several future research directions, e.g., identification of 
lane blockage and queue spillback, optimal signal control based on the trapezoidal fundamental 
diagram, and a data fusion approach with probe trajectories to improve estimation accuracy. 
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1. Part I: Introduction 

Traffic flow estimation is one of the key components in the Decision Support System (DSS) for 
Integrated Corridor Management (ICM). Accurate, robust, and timely estimates of traffic states 
are essential to allow traffic management agencies to make better decisions so as to reduce 
traffic congestion, road accidents and air pollution. Several methods have been proposed to 
estimate the traffic states on freeway segments.  Fewer methods exist for arterials due to more 
complicated road geometries and the presence of signal control.  

In practice, arterial traffic estimation is most needed when traffic incidents occur on freeways 
since it is important for traffic agencies to make sure the recommended response plans will not 
divert freeway traffic to the arterial road links that are already congested, which would worsen 
the traffic conditions. Furthermore, if traffic prediction is used in the DSS, it is important to 
make sure the simulated network starts with a good initial traffic state. The state-of-the-
practice method in transportation simulation is to use a warm-up period with predefined 
demands and control settings. Such a method becomes inappropriate for real-time traffic 
management as the network size gets bigger due to the fact that it is more challenging to 
calibrate the network and takes a significantly longer time to reach a reasonable and stable 
traffic state. Therefore, it is critical to develop new methods to estimate arterial traffic states 
using existing road infrastructure and data sources. 

Unlike freeway traffic, arterial traffic is impacted by many factors. First of all, traffic flow at an 
intersection approach is significantly impacted by signal control: a higher flow is expected if 
upstream demand is high and more green time is allocated. Besides that, various parties are 
involved at a given intersection: vehicles, cyclists, and pedestrians. Heavy cyclist and pedestrian 
traffic will significantly slow down the discharging process of certain traffic movements, e.g., 
right turns. As a result, a lower saturation flow is expected. Moreover, lower flows are expected 
when lane blockage and queue spillback occur. This is particularly true for left turn movements 
with insufficient green times. Therefore, estimating traffic states on arterial road links turns out 
to be more challenging than on freeways. 

In this study, we want to tackle this problem by fusing signal phasing information from traffic 
signal controllers with data from loop detectors so as to provide accurate, robust, and timely 
estimates of traffic states. In the development of estimation algorithms, the following aspects 
are considered.  

• First, the proposed algorithms should work under different detector layouts in the field. 
In field implementations, not all traffic movements have complete detector coverage. 
For example, left-turn movements are usually equipped with both stopline and advance 
detectors. But for through and right-turn movements, only advance detectors are 
available. This typical detector layout will also impact the signal control implemented in 
the field. 
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• Secondly, the proposed algorithms should work under different lane configurations of 
traffic movements. In the field, some lanes are dedicated for a certain traffic movement, 
while others are shared with multiple movements. As a results, traffic data from the 
corresponding detectors either represents an exclusive traffic movement, or the shared 
ones. This in turn will impact the development of our estimation algorithms since we 
need to aggregate traffic states from individual detectors to the approach level for each 
traffic movement.  

• Thirdly, the proposed algorithm aims to work with conventional data from the 
controllers. In the literature, there have been studies that estimate vehicles queues at 
intersection approaches using detector data at a fine granularity, e.g., 30 seconds or 
even event based. However, these types of data are not easy to get since conventional 
controllers will aggregate and report the data at a longer interval, e.g., five minutes. 
Since the interval of five minutes consists at least two normal cycles at a signalized 
intersection, the estimated traffic states, e.g., vehicle queues, are in the “averaged” 
sense, not the actual ones at a particular time.  

• Last but not least, the proposed algorithm should take into account the intrinsic 
characteristics of different types of detectors and try to maximize the information from 
them. For example, traffic at advance detectors is significantly different from that at 
stopline detectors, due to the fact that it is less impacted by the signal control. As a 
result, the flow-occupancy plots between these two types of detectors are very 
different. In our algorithm development, we will need to categorize the traffic states 
into different regimes for each detector type.   

The trapezoidal fundamental diagram can be used to describe the traffic states on arterial road 
links. Two occupancy thresholds are proposed to divide the traffic states into three different 
regimes: Uncongested, Congested, and Queue Spillback. The required parameters are closely 
related to road geometry, detector layout, signal settings, and vehicle dynamics, which can be 
either measured or estimated from the field data. Note that the proposed trapezoidal 
fundamental diagram is point-based, which may fail to represent the actual vehicle queue on 
the link under certain circumstances. Furthermore, we will analyze potential impacts of platoon 
dispersion, initial queue, and coordination level on the shape of the trapezoidal fundamental 
diagram. In order to obtain the trapezoidal fundamental diagram, the saturation flow rate/ 
headway is the key parameter that should be calibrated/estimated from the field data. 
Therefore, we develop an algorithm that is used to estimate the saturation flow rates from 
individual detectors and select a study site along Huntington Dr in the city of Arcadia as an 
application example. Since data can be obtained from different types of detectors, e.g., 
advance and stopline detectors, we will perform a comprehensive analysis to show which data 
source is more reliable. Then we will show the estimation results of the detectors in the study 
site and point out potential causes of low saturation flow rates. For validation, we first propose 
an algorithm that estimates the upper bound of the flow-occupancy plot at a given detector, 
which is considered to represent the actual fundamental diagram. Then we calculate the MAPE 
between the estimated trapezoidal fundamental diagram and the upper bound. We will show 
that the estimated trapezoidal fundamental diagram generally matches the estimated upper 
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bound of the flow-occupancy plot well. However, we will also show some exceptions which may 
be caused by the lack of enough data points and poor coordination level.  

Next, we move to the development of traffic estimation algorithms based on the above 
trapezoidal fundamental diagram. In particular, we apply the two occupancy thresholds to 
categorize the flow-occupancy plots into different regimes: three regimes for advance 
detectors, and two regimes for stopline detectors. Using data from the field and the AIMSUN 
microscopic simulation model, we first perform a fitness analysis to demonstrate how well the 
proposed two occupancy thresholds in categorizing the traffic states at advance and stopline 
detectors. Then with the consideration of different detector coverages and lane configurations, 
we develop our algorithm that aggregates the traffic states from individual detectors and 
produce traffic states and vehicle queues for different traffic movements at the approach level. 
With the assumption of congested traffic and no significant turning movements, we 
theoretically prove that there exists a linear relation between the total vehicle queues and the 
travel times for multiple intersections along an arterial corridor. Again, we select five 
intersections along Huntingtin Dr in Arcadia as a test site and demonstrate such a linear 
relationship for the eastbound and the westbound traffic. In addition, for traffic initialization in 
microsimulation, we propose an estimation-initialization framework in AIMSUN that generates 
simulated vehicles from the estimates of vehicle queues. As an application example, we 
demonstrate such a framework using the AIMSUN model in the I-210 Connected Corridors 
project and initialize the traffic states on the arterial road links in the city of Arcadia. 

The rest of the report is organized as follows. In Part II, we focus on the estimation of the 
arterial traffic flow fundamental diagram. In Part III, we introduce the estimation algorithms for 
arterial traffic based on the proposed fundamental diagram. In Part IV, we draw our conclusions 
with some future research directions. 

2. Part II: Estimation of Arterial Traffic Flow Fundamental 

Diagram 

2.1 Problem Statement 

In transportation networks, flow, speed, and density (or occupancy) are three common 
variables used to describe traffic states on a road link. Earlier in (Greenshields et al., 1935), it 
was found that a fundamental relation linking speed, flow, and density together exists in the 
field, which later is known as traffic flow fundamental diagram. Since then, a number of studies 
have confirmed its existence, particularly in freeway networks. Examples can be found in 
(Greenberg, 1959; Newell, 1961; Edie, 1961; Pipes, 1967; Payne, 1977; Castillo and Benitez, 
1995; Lu et al., 2009; Dervisoglu et al., 2009; Li and Zhang, 2011; Yan et al., 2018). At the 
microscopic level, such a relation can be analytically derived from some prevailing car-following 
models, e.g., Pipes’ model (Pipes, 1953), Optimal Velocity model (Bando et al., 1995), and 
Newell’s model (Newell, 2002), under stationary traffic conditions (Cassidy, 1998). At the 
macroscopic level, numerous functions have been proposed to model the shape of 
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fundamental diagrams, either continuous (Greenshields et al., 1935; Greenberg, 1959; Newell, 
1961; Pipes, 1967; Castillo and Benitez,1995) or discontinuous (Edie, 1961; Payne, 1977). To 
estimate key parameters of a fundamental diagram, i.e., free flow speed, critical density (or 
occupancy), jam density, and capacity, various types of data have been used, e.g., vehicle 
trajectory data (Lu et al., 2009) and loop detector data (Payne, 1977; Dervisoglu et al., 2009; Li 
and Zhang, 2011; Yan et al., 2018). To reduce noise impacts, some studies aggregated the data 
into different intervals, e.g., 10 seconds in (Lu et al., 2009) and 5 minutes in (Dervisoglu et al., 
2009), while some others only used data points under near-stationary traffic conditions, e.g., 
(Payne, 1977; Li and Zhang, 2011; Yan et al., 2018). However, most of existing studies are for 
freeway road links, and few of them are for their arterial counterparts. 

In arterial networks, vehicle movements are often interrupted by traffic signals. Because of 
that, the observed data points from a given detector, particularly for the one closer to the 
stopline, can scatter in a wide range in the flow-occupancy domain. Therefore, fundamental 
diagrams for freeway road links cannot directly be applied to the arterial ones. Using both loop 
detector and taxi data from Yokohama, Japan, Geroliminis and Daganzo (2008) showed that 
fundamental diagram of urban networks exists, which is known as the Macroscopic 
Fundamental Diagram (MFD). Since then, efforts have been devoted to various areas, e.g., 
analytical derivation of MFDs (Daganzo and Geroliminis, 2008; Helbing, 2009; Daganzo et al., 
2011; Jin et al., 2013; Gan, 2014; Gan et al., 2017), empirical and numerical analysis of network 
inhomogeneity (Buisson and Ladier, 2009; Ji et al., 2010; Mazloumian et al., 2010; Gayah and 
Daganzo, 2011b,a; Geroliminis and Sun, 2011; Knoop et al., 2012) on the shape of MFDs, and 
etc. However, the aforementioned studies are for urban networks, not for individual arterial 
road links. 

In the field, numerous detectors have been installed at intersection approaches to facilitate the 
control of conflicting traffic movements. For example, advance detectors are normally installed 
about 200 feet upstream from the stopline to detect vehicle arrivals, while stopline detectors 
are installed to detect vehicle’s presence. Depending on the configuration, these detectors can 
consist of different loops: normally signal loop for advance detectors, and multiple loops for 
stopline detectors. As a result, they have different lengths, which will impact their detection 
accuracy. In the literature, few efforts have been devoted to analytically deriving or empirically 
illustrating the shape of fundamental diagrams for arterial road links. As shown in Wu et al. 
(2011), the major reason is because the wide scattering data points in the flow-occupancy plots 
make it difficult to justify the shape of fundamental diagrams. By eliminating the queue-over-
detector (QOD) impact inside the cycle-based data from loop detectors, results in (Wu et al., 
2011) have demonstrated that fundamental diagrams for arterial road links should exist. 
However, the regime with heavy congestion was not detected, and no analytical models were 
provided. 

In this part, we aim to fill this gap. We want to provide a general approach to derive the 
fundamental diagrams (i.e., the flow-occupancy relation) for arterial road links. At a given 
intersection approach, we assume vehicles arrive in platoons with no dispersion, which is 
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particularly true when signals are coordinated and intersections are narrowly-spaced. Based on 
this assumption, we derive a trapezoidal fundamental diagram, the break points of which are 
determined by a set of parameters including saturation flow rate, saturation speed, green ratio, 
detector length, and average vehicle length. Furthermore, we discuss potential impacts of 
platoon dispersion, initial queue, and coordination level on the shape of the fundamental 
diagram. We demonstrate that our estimation of vehicle queuing time at advance detectors is 
accurate with minor platoon dispersion, and the impact of initial queues can be ignored if we 
consider near-stationary traffic conditions. However, poor coordination level does degrade the 
traffic performance, which shifts the observed data points to the right with higher occupancies. 
Three intersections along Huntington Dr in the City of Arcadia are chosen as the study site, 
which is within the I-210 Connected Corridors Pilot1. The data has been collected for one year 
and a half from Arcadia’s TCS Server and is divided into two subsets: data in the first twelve 
months is used for calibration, while the rest is used for validation. Before calibration and 
validation, we first analyze the flow and occupancy relations at both advance and stopline 
detectors, with the consideration of potential impacts from traffic congestion, detector length, 
and distance to the stopline. We find that measurements from advance detectors are more 
reliable, and the relation between flow and occupancy is much clearer. In order to obtain the 
trapezoidal fundamental diagram, a key parameter to be estimated is the saturation flow rate. 
Therefore, we select observations from the calibration dataset with occupancies in the 
congested region to estimate the corresponding saturation flow rates for different advance 
detectors and signal control plans. Our results show that the saturation flow rate varies a lot 
among intersections as well as signal control plans. For validation, we first estimate the upper 
bounds of flow-occupancy plots in the validation dataset, which are considered to represent 
the actual fundamental diagrams. Then we calculate the corresponding MAPE with the 
estimated trapezoidal fundamental diagrams. Our results demonstrate that the estimated 
trapezoidal fundamental diagram generally matches the field data well. 

2.2 Derivation of Arterial Traffic Flow Fundamental Diagram 

In this section, we introduce a general framework to derive traffic flow fundamental diagrams 
for arterial road links. In particular, we focus on the flow-occupancy relationship since they are 
the two direct and conventional measurements from loop detectors in the field. 

Figure 1 illustrates the proposed trapezoidal fundamental diagram for arterial road links. From 
the figure, we can find that the original fundamental diagram is triangular, with a maximum 
flow rate of 𝑞𝑠. Due to the presence of signal control, the actual capacity is reduced to 𝑞𝑐, and 
as a result, the fundamental diagram becomes trapezoidal. In the literature, such a trapezoidal 
fundamental diagram has been used to match the field data in Figure 11 in (Wu et al., 2011). 
However, in order to determine its shape, we need to estimate three of the following four 

                                                 

 

 
1 Connected Corridors. https://connected-corridors.berkeley.edu/. Last visited on 2018/09/17. 

https://connected-corridors.berkeley.edu/
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parameters: {𝑞𝑠, 𝑞𝑐, 𝑂𝑐𝑐1, 𝑂𝑐𝑐2}. In the following, we will provide the details on how to 
determine these parameters. 

 

Figure 1 Proposed trapezoidal traffic flow fundamental diagram for arterial road links. 

2.2.1 Determination of Saturation Flow Rate 

In the Highway Capacity Manual (HCM) (TRB, 2000), the saturation flow rate 𝑞𝑠 is determined 
as: 

𝑞𝑠 =
3600

ℎ𝑠
         (vphg)                                                      (1) 

Where ℎ𝑠 is the saturation headway, that is the minimum headway that vehicles discharge 
assuming a queue of vehicles and the signal is green.  A number of studies have shown that the 
saturation headway is location dependent and may vary from 1.8 to 2.4 seconds (Al-Ghamdi, 
1999; TRB, 2000; Tong and Hung, 2002; Lin and Thomas, 2005; Jin et al., 2009). Also, the 
saturation flow rate (or headway) is lane specific since vehicle’s discharging pattern on a 
specific lane is closely related to its configuration of traffic movements. 

2.2.2 Determination of Link Capacity 

The effective green time is the actual green time minus the start-up delay plus the utilization of 
the yellow.  Start-up lost time is the time from when traffic signal turns green and vehicles 
discharge at their minimum headway. Utilization of the yellow is the time that vehicles continue 
to cross the intersection after the onset of the yellow interval.  We assume that the start lost 
time and utilization of the yellow time are equal resulting in the effective green time being 
equal to the actual green time.  The link capacity is equal to the discharge flow (saturation flow) 
during the green time:  

𝑞𝑐 = 𝑞𝑠 ∗
𝐺

𝐶
,     (vph)                                                                 (2) 

where 𝐺 is the green time, and 𝐶 is the cycle length. 
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2.2.3 Determination of Critical Occupancies  

When the flow rate reaches capacity, it can span over a wide range of occupancies, from Point 
A to Point B in Figure 1. Specifically, the two critical occupancies at points A and B correspond 
to two significantly different platoon arrival patterns. As a first step, we have the following 
assumptions: 

(i) No initial queue at the beginning of red time. 

(ii) Platoon arrivals from upstream intersections with no dispersion. 

2.2.3.1 Ideal case: Platoon Arrival with Perfect Coordination 

As shown in Figure 2(a), the first case is an ideal case when we have perfect coordination along 
an arterial corridor with the maximum green wave. Under such a condition, vehicle platoons 
from the upstream can cross the intersection freely without stopping, and no queue is formed. 
If we assume the total lost time within a phase is close to the yellow and all red time, the 
effective green time for vehicle passage is 𝐺 (sec). Furthermore, the saturation speed is 
denoted as 𝑣𝑠 (mph), the average vehicle length is denoted as 𝐿 (feet), and the detector length 
is denoted as 𝐷 (feet). Since the effective green time is fully used, the total time 𝑇𝑝𝑎𝑠𝑠  for 

vehicles passing the advance detector freely within one cycle is 

𝑇𝑝𝑎𝑠𝑠 =
(𝐿+𝐷)∗3600

𝑣𝑠∗5280
∗
𝑞𝑠∗𝐺

3600
=

(𝐿+𝐷)𝐺𝑞𝑠

5280𝑣𝑠
.                                                     (3)   

Therefore, the corresponding occupancy (i.e., Point A in Figure 1) is computed as 

𝑂𝑐𝑐1 =
𝑇𝑝𝑎𝑠𝑠

𝐶
=

(𝐿+𝐷)𝑞𝑠𝐺

5280𝑣𝑠𝐶
.                                                                (4) 

 

a. Ideal case 
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b. Worst case 

 

c. Normal case 

Figure 2 Platoon arrival patterns under different levels of coordination. 

2.2.3.2 Worst Case: Platoon Arrival with the Longest Waiting Time 

As shown in Figure 2(b), the second case is the signal coordination is so poor that the vehicle 
platoon hits the starting time of the red interval every time it arrives at the intersection. As a 
result, a queue forms and propagates back to advance detectors. In such a case, the time when 
an advance detector is occupied can be separated into two different portions: (i) queuing time, 
i.e., it is 𝐶 − 𝐺 in this case; and (ii) passage time, i.e., 𝑇𝑝𝑎𝑠𝑠  in Equation 3. Therefore, the 

corresponding occupancy (Point B in Figure 1) is computed as 

𝑂𝑐𝑐2 =
𝑇𝑝𝑎𝑠𝑠+𝐶−𝐺

𝐶
= 1 −

𝐺

𝐶
+

(𝐿+𝐷)𝑞𝑠𝐺

5280𝑣𝑠𝐶
.                                            (5) 

Please note that since we consider no platoon dispersion, the shock-wave speed (when a 
moving vehicle joins the tail of a queue) is the same as the rarefaction wave speed (when a 
queued vehicle is released at the saturation flow rate). Therefore, we will see two parallel 
arrows in Figure 2 and some of the following figures. 

2.2.3.3 Normal Case: Platoon Arrival Waiting for a Certain Proportion of Red Time 

As shown in Figure 2(c), a more general case is that the vehicle platoon randomly hits the red 
interval, and therefore, has to wait for a portion of red time. Depending on when the vehicle 
platoon hits the red interval, the queuing time varies and can be computed as 

𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔 = 𝛼(𝐶 − 𝐺),                                                         (6) 

where 𝛼 is the portion of red time the vehicle platoon has to wait and is in the range of (0,1). 
Then, the corresponding occupancy (Point C in Figure 1) is computed as 

𝑂𝑐𝑐 =
𝑇𝑝𝑎𝑠𝑠+𝑇𝑤𝑎𝑖𝑡𝑖𝑛𝑔

𝐶
= 𝛼(1 −

𝐺

𝐶
) +

(𝐿+𝐷)𝑞𝑠𝐺

5280𝑣𝑠𝐶
.                              (7) 
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2.2.4 Formulation 

After we determine the capacity and the two critical occupancies, the trapezoidal traffic flow 
fundamental diagram can be formulated as below: 

𝑞 (𝑂𝑐𝑐,
𝐺

𝐶
 ) =

{
 

 𝑞𝑐
𝑂𝑐𝑐

𝑂𝑐𝑐1
, 𝑂𝑐𝑐 ∈ [0,𝑂𝑐𝑐1]

𝑞𝑐 , 𝑂𝑐𝑐 ∈ (𝑂𝑐𝑐1, 𝑂𝑐𝑐2]

𝑞𝑐
1−𝑂𝑐𝑐

1−𝑂𝑐𝑐2
, 𝑂𝑐𝑐 ∈ (𝑂𝑐𝑐2, 1]

 .                        (8) 

From Equation 8, the outflow rate is impacted by the green ratio, i.e., 
𝐺

𝐶
 , which plays an 

important role in determining the capacity flow and the two critical occupancies. It is also clear 
to see that when the green ratio converges to 1, the fundamental diagram in Equation 8 
becomes the traditional triangular one.  

Using these two critical occupancies, the flow-occupancy relation can be categorized into three 
different regimes: 

(i) Uncongested regime with 𝑶𝒄𝒄 ≤ 𝑶𝒄𝒄𝟏. 

In this regime, vehicles can travel across advance detectors freely. There may be a minor queue 
at the stopline during the red time period. But the allocated green time is able to clear the 
queue since vehicle’s arrival rate is relatively low. 

(ii) Congested regime with 𝑶𝒄𝒄𝟏 < 𝑶𝒄𝒄 ≤ 𝑶𝒄𝒄𝟐. 

In this regime, traffic is congested at the given approach, with a queue that will spread to the 
advance detectors for a certain period of time. Several reasons will lead to this situation. For 
example, there may be a persisting short queue that cannot be cleared by the green time in 
each cycle. Also, bad signal coordination will force the upstream vehicle platoon to stop every 
time they reach the intersection. If the upstream arrival rate is high, it is easy to generate a 
queue that will occupy the advance detectors for a certain time. However, we need to be sure 
that in this regime the downstream road link is uncongested, and thus vehicles at the stopline 
can exit freely when the signal turns green. 

(iii) Downstream spillback regime with 𝑶𝒄𝒄𝟐 < 𝑶𝒄𝒄 ≤ 𝟏. 

In this regime, the occupancies are very high, but the corresponding flows are relatively low. 
Such a case is caused by downstream queue spillback to the targeted intersection. As a result, 
the outflow is restricted by the downstream traffic, depending on whether there is enough 
space to accommodate the exiting vehicles. Meanwhile, there should be a long queue at the 
given approach that spreads to the advance detectors and occupy it for a long time. 

2.2.5 Limitation in Point Detection 

The trapezoidal fundamental diagram in Figure 1 is point-based, which means it is derived from 
measurements at fixed detectors. For most of the cases, the point-based state can represent 
the correct state on a link. However, it fails when the allocated green time cannot clear all 
vehicles in a cycle and the residual queue is so long that it spills over the advanced detectors. In 
this case, at the advance detectors, no matter how long the residual queue is, the detected 
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occupancy and flow rate remain to be 𝑂𝑐𝑐2 and 𝑞𝑐 respectively, i.e., point B in Figure 1. In other 
words, point B in Figure 1 represents a wide range of heavy traffic states on a link.  

However, this limitation is not that critical to the applications/methods developed based on the 
proposed trapezoidal fundamental diagram. Take optimal signal control as an example. When 
the optimized green time is long enough to clear the arrival flow, the residual queue shrinks 
gradually cycle by cycle. Finally, the traffic will stabilize itself on the left-hand side of point B, 
which demonstrates the improvement by the optimal signal setting. 

2.3 Discussion of Potential Impacts 

In this section, we analyze key factors that will impact the derived fundamental diagram. 
Particularly, we are interested in the following factors: platoon dispersion, initial queue, and 
coordination level. 

2.3.1 Impact of Platoon Dispersion 

Considering the case of closely spaced intersections, we assume vehicles arrive at an 
intersection approach in platoon with no dispersion. But actually, platoon dispersion with a 
larger vehicle gap will occur as vehicles escape from the upstream intersection. Under such a 
case, we consider the arrival speed is still the same, but the arrival flow rate is smaller due to 
the enlarged vehicle gaps. In Figure 3, we graphically illustrate of the impact of platoon 
dispersion on the estimation of queue waiting time in Equation 6. As shown in Figure 3(a), since 
the vehicle gap is larger, the actual queuing time is smaller than the proposed one. Let’s denote 
the distance between the stopline and the advance detectors as d, the rarefaction wave speed 
at the saturation flow as w1, and the shock wave speed at the arrival flow as w2. The values of 
w1 and w2 are illustrated in Figure 3(b). Then the time difference between the actual queuing 
time and the proposed one used in Equation 6 can be calculated as 

𝑇𝑑𝑖𝑓𝑓 =
𝑑

𝑤2
−
𝑑

𝑤1
=
𝑑(𝑤1 −𝑤2)

𝑤1𝑤2
 

 

a. Time difference in the space-time diagram 
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b. Two different wave speeds 

Figure 3 Illustration of platoon dispersion 

From Equation 9, we can see that the time difference is closely related to the shock wave speed 
𝑤2. The lower 𝑤2, the lager 𝑇𝑑𝑖𝑓𝑓. In other words, if the platoon dispersion is significant with a 

lower arrival rate, which leads to a lower 𝑤2, the error in estimating the queuing time from the 
advance detectors will increase.  

Assume the saturation flow rate 𝑞𝑠=1800veh/hr/ln, jam density 𝜌𝑗 = 180veh/mile, critical 

density 𝜌𝑐 = 60veh/mile, wave speed 𝑤1= 15mph, and 𝑑 = 200feet. If the wave speed 
𝑤2=12mph, which corresponds to an arrival rate of 1543veh/hr/ln, the time difference 𝑇𝑑𝑖𝑓𝑓= 

2.27sec. The relative error is very small, only 2.5% if the cycle length is C = 90sec. It is even 
smaller if the cycle length is longer. But if we set 𝑤2= 6mph, which corresponds to an arrival 
rate of 900veh/hr/ln, the time difference 𝑇𝑑𝑖𝑓𝑓= 13.6sec and the relative error is 15%. 

Therefore, significant platoon dispersion will degrade the estimation accuracy of queuing time 
at advance detectors (Equation 6), which will lead to unrealistic estimates of the two critical 
occupancies in Figure 1. 

 

a. Demand lower than capacity 



 12 

 

b. Demand at capacity 

 

c. Demand greater than capacity 

Figure 4 Platoon arrival patterns under the existence of initial queues. 

2.3.2 Impact of Initial Queues 

In Figure 4, we provide platoon arrival patterns under the existence of initial queues. As shown 
in Figure 4(a), when the upstream demand (i.e., arrival rate) is lower than the intersection 
capacity, the initial queue will finally disappear because the green time at the targeted 
intersection is long enough to dissipate these queued vehicles. Therefore, the impact of initial 
queue can be eliminated as time elapses. 

However, when the upstream demand reaches the intersection capacity, as shown in Figure 
4(b), the initial queue persists over time. As a result, the queuing time at the advance detectors 
reaches its maximum, which is the whole red time period. In this case, the corresponding flow 
and occupancy is Point B in Figure 1. 

In an extreme case when the demand is greater than the intersection capacity, as shown in 
Figure 4(c), the queue grows as time elapses and finally partially blocks the upstream 
intersection. No matter whether an initial queue exists or not, the queuing time at the advance 
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detectors will be the total red time period. Thus, the corresponding flow and occupancy will be 
Point B at Figure 1.  

As discussed above, upstream demand dominates the traffic dynamics in the downstream 
intersection approach. If we consider stationary traffic states, the impact of initial queue can be 
ignored. 

2.3.3 Impact of Coordination Level 

In Figure 5, we provide the arrival patterns of small platoons under different coordination 
levels. The first is an ideal case with perfect signal coordination, under which vehicle platoons 
can cross the intersections without stopping. The corresponding arrival pattern is provided in 
Figure 5(a). In this case, since the arrival rate is less than the capacity, the corresponding flow 
and occupancy is point D in Figure 5(b). 

The second case is under normal situations that vehicle platoons hit the red time occasionally 
and have to wait for a short time period, which is shown in Figure 5(c). Since the arrival flow 
rate is smaller than the capacity, the outflow rate is the same as the first case. However, the 
corresponding occupancy is higher due to the waiting time. Therefore, it corresponds to Point E 
in Figure 5(d). 

The third case is the worst with bad coordination. As shown in Figure 5(e), vehicle platoons 
arrive at the intersection approach right at the beginning of the red interval. As a result, the 
platoon has to wait for the whole red time. Since the arrival flow rate is smaller than the 
capacity, the next green time can clear the residual queue. However, the corresponding 
occupancy is the highest. This case corresponds to Point F in Figure 5(f). 

The above patterns can be found from the field data. For example, in Figure 8(a), there are 
many points under the traffic flow fundamental diagram (i.e., the upper bound of the flow-
occupancy plot). Note that as illustrated in Figure 5(a,c,e), in order to see these traffic patterns 
from advance detectors, the arrival flow rate should be high enough so that the vehicle queue 
can spill back to the advance detectors. That also explains why we cannot see a wide range of 
occupancy for low arrival flow rates in Figure 8(a). 

 

(a) Without stopping: Space-Time Diagram                 (b) Without stopping: Fundamental Diagram 
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(c) With a short waiting time: Space-Time Diagram       (d) With a short waiting time: Fundamental Diagram 

 

(e) With the longest waiting time: Space-Time Diagram       (f) With the longest waiting time: Fundamental Diagram 

Figure 5 Arrival patterns of small platoons under different coordination levels. 

2.4 Study Site 

This section introduces the study site that will be used to calibrate and validate the proposed 
trapezoidal fundamental diagram in Section 2.2. It consists of three parts: (a) road geometry and 
detector layout, (b) signal phase settings, and (c) data source. 

2.4.1 Road Geometry and Detector Layout 

In Figure 6, we provide the road geometry of three intersections along Huntington Dr in the City 
of Arcadia, CA: Huntington Dr&Santa Anita Ave, Huntington Dr&First Ave, Huntington 
Dr&Second Ave. Meanwhile, detector locations are mapped into the figure. From the figure, we 
find that most of the intersection approaches contain only advance detectors and stopline 
detectors for exclusive left-turn movements. Very few of them, e.g., the eastbound and 
westbound approaches at Huntington Dr&Second Ave, are covered by stopline detectors that 
are used to detect through and/or right-turn movements. Detailed configuration, including 
detector type, detected movements, distance to stopline, number of lanes, and detector 
length, is provided in Table 1 
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Figure 6 Road geometry and detector layout at three intersections along Huntington Dr in 

Arcadia. 

 

Figure 7 Signal phase settings at the three intersections in Arcadia. 

2.4.2 Signal Phase Settings 

Through the I-210 Connected Corridors project, we are able to collect signal timing sheets and 
intersection detection layouts from LA County, Pasadena, Arcadia, and other jurisdictions. Figure 
7 illustrates signal phase settings of the three intersections. From the figure, we can find that 
there are eight phases for the intersection between Huntington Dr and Santa Anita Ave, while 
there are only six phases for the other two intersections. In the eastbound and westbound 
directions, the left-turn movements at the three intersections are designed as “Protected-
Permitted”, which means left-turn vehicles still can cross the intersection if there are enough 
gaps in the opposite traffic. In the northbound and southbound directions, the left-turn 
movements at the intersection between Huntington Dr and Santa Anita Ave are “protected” only, 
while the corresponding ones at the other two intersections are “permitted”. Detailed signal 
phase plans at these intersections are provided in Table 2. From the table, we can see that there 
are four different signal plans, which are used for six different time periods in a daily sequence 
of 𝐸 → 𝑃2 → 𝑃1 → 𝑃3 → 𝑃1 → 𝐸. The allocated green times are different among the timing plans. 
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All timing plans except “E” at the three intersections are designed for coordinated control with a 
common cycle length. 

Table 1 Detector configurations at the three intersections. 
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Table 2 Signal timing plans at the three intersections. 

 

2.4.3 Data Source 

As a continuing effort in the I-210 Connected Corridors project, we have been retrieving detector 
data from Arcadia’s TCS server. The data used in this study was collected from 2016-01-01 to 
2017-06-30. It contains a number of measurements at the interval of five minutes, e.g., hourly 
volume, occupancy, speed, number of stops, and delay. But we only use the measurements of 
hourly volume and occupancy in this study because they are direct measurements from the 
detectors. For the collected data, it is divided into two subsets that will be used in Section 2.6: (i) 
a calibration set that contains data from 2016-01-01 to 2016-12-31; and (ii) a validation set that 
contains the data from 2017-01-01 to 2017-06-30. 

2.5 Analysis of Flow-Occupancy Relations 

Before calibrating and validating the proposed trapezoidal fundamental diagram, we would like 
to analyze the flow-occupancy relations at both advance and stopline detectors in this section. 
In particular, we are interested in understanding the reliability of flow and occupancy 
measurements as well as how the distance to the stopline would reduce or even eliminate the 
impact of signal control on the traffic. 

2.5.1 Flow-Occupancy Relations From the Field 

As an example, we consider detectors in the eastbound approach at the intersection between 
Huntington Dr and Second Ave. In Figure 8, we provide the flow-occupancy plots of advance 
detector 680219 and stopline detector 608202 on Thursdays. The data points are marked 
differently according to the six activation time periods in Table 2. 
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Figure 8 Flow-occupancy plots on Thursdays in Year 2016 

2.5.1.1 Advance Detectors 

From Figure 8(a), we can find that: 

(i) The maximum flow rate is attained at about 850 veh/hr/ln during the afternoon 
peak period, from 15:30 to 19:00. During that period, the cycle length is 120 
seconds, and the green time is 62 seconds. If we consider vehicle’s lost time is close 
to the yellow and all red time, the effective green ratio is about 0.52. Furthermore, if 
we consider the saturation flow rate is about 1700 veh/hr/ln, the observed 
maximum flow rate is very close to the capacity in this direction, which is about 884 
veh/hr/ln. 

(ii) The upper bound of the flow-occupancy plot turns out to be trapezoidal with two 
break points, which is very consistent with the proposed one in Figure 1. 

(iii) There are scattering points below the trapezoidal upper bound. There are several 
potential reasons for this. The first reason is the lack of upstream demand. If the 
demand is lower than the capacity, we should expect the points are below the upper 
bound. The second reason is poor coordination between intersections. In such a case, 
vehicle platoons exiting from the upstream intersection may frequently hit the red 
phase of the downstream intersection. If the demand is high enough, it is possible to 
form a queue that reaches the location of advance detectors, which as a result 
generates high occupancies and flow rates. The third reason is the existence of initial 
queue due to the lack of green time or downstream congestion. For example, if 
downstream traffic is congested, which limits vehicle passages at the intersection, a 
queue will form and propagate to the advance detectors. Similarly, if the upstream 
arrival rate is low but there is an initial queue at the intersection approach, such a 
queue will persist and may reach the advance detectors if the green time is too short 
to clear all vehicles within a cycle. As a result, the flow-rate at the advance detectors 
is low, while the corresponding occupancy is high. 
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2.5.1.2 Stopline Detectors 

From Figure 8(b), we can find that the flow-occupancy relation is significantly different from that 
in Figure 8(a). First of all, the data points are scattering in a wider range in the flow-occupancy 
space. Second, the whole curve is skewed to the right, yielding a lower slope of the upper bound 
on the left-hand side. Third, more points with lower flows and higher occupancies are observed. 
Particularly, we observe traffic is totally blocked with 100% occupancy for certain time periods. 
This significant difference between Figure 8(a) and Figure 8(b) may be due to the fact that 
stopline detectors are more impacted by signal control. Even though vehicle platoons can pass 
the upstream advance detectors without stopping, they may hit the red light at different time 
stamps and wait for the next green phase. Also, vehicles at the stopline detectors are directly 
impacted by downstream traffic conditions, e.g. queue spillback. In addition, driver’s behaviors 
may vary when they approach the stopline, which also contributes to the wide scattering of data 
points. 

2.5.2 Advantages of Advance Detectors 

In the following, we further analyze the reliability of flow count measurements as well as the 
impact of distance to the stopline so as to demonstrate the advantages of using data from 
advance detectors. 

2.5.2.1 Reliability of Flow Count Measurements 

In Figure 6, there is full detector coverage in the eastbound direction at the intersection 
between Huntington Dr and Second Ave. The upstream includes two advance detectors, 
608217 and 608219, while the downstream includes three stopline detectors, 608214 for left 
turn, 608202 for through, and 608206 for right turn. In Figure 9, we provide the check of flow 
conservation among these detectors. As shown in Figure 9(a), when traffic is not congested, 
flow conservation generally holds between the upstream and the downstream detectors. 
However, when traffic is congested, flow conservation doesn’t hold, which can be observed 
from Figure 9(b). The main reason is because stopline detectors normally have longer detection 
lengths. As a result, they will undercount vehicle volumes when traffic is very congested with 
small gaps between consecutive vehicles. Therefore, flow counts from stopline detectors are 
less reliable than those from advance detectors. 
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Figure 9 Flow conservation check in the eastbound direction of Huntington Dr&Second Ave. 

2.5.2.2 Impact of Distance to the Stopline 

From Figure 8, we can clearly see that data points from the stopline detectors are scattering at a 
wider range, thus we are not able to see a clear relationship between flow and occupancy. 
Therefore, we further analyze how the distance to the stopline will reduce, or even eliminate the 
impact of signal control. In order to do this, we use microsimulation in AIMSUN2. We create a 
simple network in AIMSUN, which is provided in Figure 10(a). The demands are only created to 
allow vehicles going from Point A to Point B. The demands gradually increase over time so as to 
generate different queuing profiles at the approach where the targeted detectors are located. 
Furthermore, in order to general queue spillback to reduce the outflow rates at the stopline, we 
create an activation point at Point B, the outflow rate of which gradually reduces over time. 
Under the same OD demands, signal settings, and boundary constraints, detectors are installed 
every 50ft from the stopline, from 1.5ft to a maximum of 200ft. The corresponding flow-
occupancy plots are provided in Figure 10(b) to (f), respectively. From the figures, as detectors 
are shifting away from the stopline, it is clear to see that: (i) flow rates increase at the points with 
low occupancy; (ii) data points are less scatting in the flow-occupancy space, and thus a better 
shape can be observed; and (iii) no significant differences are observed from the flow-occupancy 
plots when the distance is over 150ft. Therefore, in order to reduce the signal impact, it is better 
to use data from advance detectors. 

                                                 

 

 
2 https://www.AIMSUN.com/. We have verified AIMSUN is able to replicate driver’s behaviors and generate flow and 
occupancy plots consistent with the field data. But we omit the analysis here since it is irrelevant. 
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Figure 10 Flow-occupancy plots from detectors with various distances to the stopline. 

2.6 Calibration and Validation 

In this section, we focus on the calibration and validation of the proposed trapezoidal 
fundamental diagram in Section 2.2 using data from advance detectors in the study site. 

2.6.1 Calibration 

In order to derive the trapezoidal fundamental diagram in Equation 8, the following parameters 
should be known/estimated first: 

(i) Detector length 𝐷; 

(ii) Averaged vehicle length 𝐿;  

(iii) Saturation speed 𝑣𝑠; 

(iv)  Cycle length 𝐶; 

(v) Green time 𝐺; 

(vi) Saturation flow rate 𝑞𝑠 (or equivalently, saturation headway ℎ𝑠). 
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For detector length 𝐷, it varies a lot depending on its configuration. For example, for advance 
detectors, the length is about 7 feet if they are “single-loop”, while it is about 13 feet if they are 
“dual-loop”. In reality, detector length can be measured from the field using street view in Google 
Maps. Examples can be found in Table 1. For vehicle length L, its average is about 17 feet for 
regular automobiles (Cheung et al., 2005). For saturation speed vs, we can use the posted speed 
limit instead, considering drivers do not violate the traffic rule. For example, the speed limit along 
Huntington Dr is 30mph, while it is 35mph along Santa Anita Ave and Second Ave. For cycle length 
𝐶 , it can be obtained directly from the traffic system. Especially, when it is under signal 
coordination, a common cycle length will be used. Examples can be found in Table 2. 

For the estimation of green times, it is a little complicated since it is closely related to the signal 
phase settings. In our study, we use the maximum green time among the traffic movements at a 
given approach, which normally is the green time for through and right-turn movements. The 
reasons to use this maximum value are: 

(i) If all traffic movements share the same phase, e.g., Phases 4 and 8 for the southbound 

and northbound in Figure 7(b) and Figure 7(c), the maximum green time is the actual 

allocated one for this phase. In this case, the estimation is correct. 

(ii) If the left turns for the E-W or the N-S directions are “protected” and under the setting 

of “Lead-Lag” phasing, the maximum green time is the one for the through and right 

turn movements, which is also the actual/maximum green time allocated to that 

approach. Therefore, the estimation is also correct. 

(iii) If the left-turns for the E-W or the N-S directions are “protected” and under the setting 

of “Lead-Lead” phasing, e.g., the left-turn settings for the E-W directions in Figure 7, 

the maximum green time would be the one allocated to the through and right-turn 

movements. In such a case, the green time is a little bit underestimated since some 

left-turn vehicles can pass the advance detectors during the allocated green time. As 

a result, the capacity for the given approach will be underestimated. However, this 

error won’t be significant if the left-turn arrival rate is relatively low. 

Therefore, the most important part is to estimate the saturation flow rate (or equivalently, the 
saturation headway). Suppose we have a set of 𝑀  flow-occupancy data points, i.e.,{𝑞𝑖}  and 
{𝑂𝑐𝑐𝑖}, and the corresponding green times {𝐺𝑖}  and cycle lengths {𝐶𝑖}, for 𝑖 ∈ [1,𝑀]. From 
Figure 8(a), there is a wide range of occupancy where the flow rates are almost constant. 
Therefore, we can select the data points in this region to estimate the saturation flow rate. After 
collecting enough data points, e.g., for several months, we estimate the saturation flow rate using 
the procedure in Algorithm 1. 
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𝒒𝒔
𝒋
= 𝒒𝒋 ×

𝑪𝒋

𝑮𝒋
.                                                            (9)   

In this study, we set 𝑂𝑐𝑐𝑚𝑖𝑛 = 0.20 (or 20%) and 𝑂𝑐𝑐𝑚𝑎𝑥 = 0.55 (or 55%). In order to have enough 
data points in each subset, we set 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  = 1 data point × number of days used. That means 
we require daily traffic congestion should last for at least 5 minutes. Instead of using the 

maximum value of {𝑞𝑠
𝑗
}, we set 𝛽 = 95 to give enough margin to avoid outliers. 

For calibration, the whole year flow and occupancy data in 2016 in our study site is used. All 
advance detectors are considered except Detectors 608204 and 608208 because they were failed 
in the year of 2016. Therefore, we have a total of 18 advance detectors in our study site. For a 
given point of flow and occupancy, e.g., (𝑂𝑐𝑐𝑗,𝑞𝑗), we obtain its corresponding green time and 

cycle length, e.g., (𝐺𝑗 , 𝐶𝑗), by checking its time interval and the signal timing plans provided in 

Table 2. Actually, it is not necessary to get the exact green time for a particular point of flow and 
occupancy. The reason is if the green time is not fully used, the corresponding flow rate would 
be lower than the capacity. If we replace the actual green time with the planned one, which is a 
larger value in the denominator in Equation 10, the estimated saturation flow rate is even lower 
and will be directly eliminated since we are using the percentile instead of other measurements 
(e.g., mean value). 

In Table 3, we provide the estimated saturation flow rates under different control plans for the 
18 advance detectors in our study site. We use a default saturation flow rate for those periods 
without enough data, which are highlighted in red in Table 3. Examples on how to estimate the 
saturation flow rate are provided in Figure 11. From the table, we find that 

(i) The estimated saturation flow rate varies a lot among detectors as well as control 

plans. For example, the highest saturation flow rate reaches 2316 veh/hr/ln at 

Detector 508303 under the control plan 𝑃2 , while the lowest one reaches 1179 

veh/hr/ln at Detector 608205 under the control plan 𝑃2. 
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(ii) It is not possible to estimate the saturation flow rate for the control plan 𝐸 due to the 

fact that traffic is not congested during the activation time period. Therefore, a default 

saturation flow rate of 1800 veh/hr/ln is used. 

Table 3 Estimated saturation flow rates at the three intersections 

 

 

Figure 11 Examples of estimated saturation flow rates: Eastbound at Hunting Dr&Santa Anita 

Ave. 

Furthermore, we check the network and signal settings carefully and find the following aspects 
that can lead to low saturation flow rates. 
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(i) Inappropriate detector placement. In the southbound of Huntington Dr&Santa Anita 

Ave, the two advance detectors, i.e., 508304 and 508308, are placed at the buffer 

area where two upstream lanes are further divided into two downstream lanes, two 

left-turn lanes, and one right-turn lane. As a result, some vehicles may escape from 

the detection, which leads to low saturation flow rates estimated from the data (See 

Figure 12).  

(ii) Shared lanes by multiple traffic movements. In the eastbound and westbound of 

Huntington Dr&First Ave, the rightmost lane is shared by the through and right-turn 

movements (See Figure 6). As a result, the outflow rates at the four advance 

detectors, i.e., 608101, 608102, 608105, and 608106, are lower due to the slow-

moving right-turn vehicles. Also, we have checked the historical signal timing data and 

find that Pedestrian Call is often activated at this intersection, which as a result leads 

to even lower saturation flow rates (See Figure 13).   

(iii) Temporary lane blockages by left-turn and right-turn movements. When Pedestrian 

Call is activated, left-turn and right-turns vehicles may have to wait before the 

intersection is clear to cross. As a result, it may create temporary lane blockages to 

reduce the outflow rate in the upstream section where advance detectors are often 

located. In such a case, we also expect low saturation flow rates. 

 

Figure 12 Examples of estimated saturation flow rates: Southbound at Hunting Dr&Santa 

Anita Ave. 
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Figure 13 Examples of estimated saturation flow rates: Eastbound at Hunting Dr&First Ave. 

2.6.2 Validation 

In this subsection, we only validate the estimated trapezoidal fundamental diagrams for those 
detectors and control plans with estimated saturation flow rates available in Table 3. Herein, the 
first six-month (from January to June) flow and occupancy data in 2017 is used for validation. 
Before that, we follow the procedure in Algorithm 2 to get the upper bound of flow-occupancy 
plots, which is considered to represent the actual trapezoidal fundamental diagrams. 

 
For the parameters in Algorithm 2, we set Δ= 0.02, which leads to a maximum of 50 bins. In order 
to maximize the chance of having data points reaching the actual upper bound, we set 𝑁Δ = 10 
based on the current setting of Δ and the given number of days in the validation dataset. To avoid 
potential outliers, we set 𝛽 = 95 instead of using the maximum observation inside each bin. 
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For detector d and signal control plan s, we can get the estimated trapezoidal traffic flow 
fundamental diagram, i.e., 𝑞 = 𝑄𝑑,𝑠

𝑒𝑠𝑡(𝑂𝑐𝑐). Using the procedure in Algorithm 2, we also can get 

the upper bound of the flow and occupancy data, i.e., {𝑞̅𝑘} and {𝑂𝑐𝑐̅̅ ̅̅ ̅
𝑘} for 𝑘 ∈ [1, 𝐾] and  𝐾 ≤

𝐾. To assess estimation accuracy, the MAPE is used and is computed as below: 

𝑴𝑨𝑷𝑬 =
𝟏𝟎𝟎

𝑲̅
∑ |

𝑸𝒅,𝒔
𝒆𝒔𝒕(𝑶𝒄𝒄̅̅ ̅̅ ̅𝒌)−𝒒̅𝒌

𝒒̅𝒌
|𝑲̅

𝒌=𝟏 .                                             (10) 

We provide two examples of validation results in Figure 14. Figure 14(a) illustrates a good case 
at Detector 608219 with control plan P3. As shown in the figure, the estimated upper bound 
covers all three regions: Uncongested, Congested, and Downstream spillback, and the estimated 
trapezoidal fundamental diagram matches the upper bound very well with a MAPE of 6%. Figure 
14(b) illustrates a bad case at Detector 508302 with control plan P2. From the figure, we can find 
that when traffic is uncongested, e.g., with Occ < 10%, the estimated trapezoidal fundamental 
diagram matches the upper bound very well. However, as traffic gets congested, the observed 
data points are shifted to the right with the same flow rates but higher occupancies, and 
therefore, significant differences are observed between the upper bound and the estimated 
trapezoidal fundamental diagram. Such a pattern indicates that upstream vehicle platoons often 
arrive at the intersection approach during the red time period and have to wait for the next green 
phase, which as a result leads to extra waiting times and higher occupancies. 
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Figure 14 Examples of validation results. 

In Table 4, we provide the validation results for the estimated trapezoidal fundamental diagrams 
at the study site. From the table, we find that: 

(i) The estimated trapezoidal fundamental diagram generally matches the estimated 

upper bound well. Particularly, all the MAPEs under control plan 𝑃3 and most of the 

MAPEs under control plan 𝑃2 are less than 15%. 

(ii) The validation results vary among intersections and approaches. For example, the 

MAPEs are higher at Huntington Dr&Santa Anita Ave, particularly for the eastbound 

and westbound directions. 

(iii) The validation results vary among control plans. For example, the average MAPE for 

𝑃1 is the highest (17.2%), while the one for 𝑃3 is the lowest (7.77%). 
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Table 4 Validation results for the estimated trapezoidal fundamental diagrams. 

 

In reality, high MAPEs in Table 4 may be caused by the following aspects. 

(i) The lack of enough data points. Even though we have set a threshold for each bin, still 

it is not quite clear how many data points are enough to have a higher chance to reach 

the actual trapezoidal fundamental diagram. 

(ii) Poor coordination level. As we have illustrated in Section 2.3.3, for a given arrival rate, 

poor coordination level can lead to high occupancies. If offsets at the upstream 

intersections are not set appropriately, it is possible to have vehicle platoons always 

arrive during the red time period. As a result, we are not able to observe the upper 

bound no matter how many points we have collected from the field.  

Nevertheless, according to the validation results in Figure 14 and Table 4, we conclude that the 
trapezoidal fundamental diagram does exist in the field, and the derivation proposed in this study 
is valid under various settings of road geometries and signal control plans. 

2.7 Discussion 

A general approach is proposed to estimate the trapezoidal fundamental diagram for arterial 
road links using data from advance loop detectors. Under the assumption of platoon arrivals 
with no dispersion, the break points in the trapezoidal fundamental diagram are derived using 
the information from road geometries, detector layout, signal settings, and vehicle dynamics. 
We pointed out that the proposed trapezoidal fundamental diagram is point-based, which 
represents most of the traffic states on a link. However, when traffic is very congested and the 
residual queue spills over the advance detectors, it fails to represent the actual queue length on 
the link. Furthermore, we analytically demonstrated that with minor dispersion, our estimation 
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of vehicle waiting time at advance detectors is accurate. We also graphically showed that under 
near-stationary traffic states the impact of initial queue can be ignored. However, poor 
coordination level will degrade the traffic performance, shifting the data points to the right with 
higher occupancies. Three intersections along Huntington Drive in the City of Arcadia were 
selected as a test site. Detector data was collected for one year and a half and was divided into 
two subsets: the first 12 months for calibration, and the rest for validation. According to the 
flow-occupancy plots at both stopline and advance detectors, we found that it is better to use 
data from advance detectors since measurements from stopline detectors are significantly 
impacted by the traffic signal and are not reliable under severe congestion. In order to obtain 
the trapezoidal fundamental diagram, we estimated the saturation flow rates at different 
advance detectors under different signal control plans using the calibration dataset. We found 
that the saturation flow rate varies a lot among intersection approaches as well as signal 
control plans. Low saturation flow rate may be caused by a number of aspects, for example, 
inappropriate detector placement, shared lane with multiple traffic movements, active 
pedestrian activities, and temporary lane blockages by the turning movements. Furthermore, 
using the validation dataset, we estimated the upper bounds of flow-occupancy plots, which is 
considered to represent the actual fundamental diagrams. Then we calculated the 
corresponding MAPEs against with the estimated trapezoidal fundamental diagrams. We 
demonstrated that the estimated trapezoidal fundamental diagram generally matches the field 
data well, which in turn proves the existence of such a fundamental diagram on arterial road 
links. 

3. Part III: Arterial Traffic State Estimation 

3.1 Problem Statement 

Traffic estimation plays a key role in the Decision Support System (DSS) in Integrated Corridor 
Management (ICM). For traffic management agencies, arterial traffic estimation is most needed 
when traffic incidents occur on freeways since they need to ensure the recommended response 
plans do not detour freeway traffic to the arterial road links that are already congested. In the 
literature, there have been studies that estimate traffic queues using data in a fine granularity, 
e.g., event-based (Liu et al., 2009) or 30 seconds (Skabardonis and Geroliminis, 2008). However, 
conventional controllers will aggregate and report traffic data in longer intervals, e.g., five 
minutes, and therefore, the proposed methods in the aforementioned studies won’t work. 
Moreover, when traffic prediction is used in the DSS, it is very important to make sure the 
network starts with a set of “reasonable” traffic states, particularly at active bottleneck locations. 
The state-of-the-practice approach is to use a warm-up period to load appropriate numbers of 
vehicles into the network under given demand and control settings. However, due to the 
complexity in road geometry and the uncertainty in simulation inputs, it is very difficult to drive 
initial traffic states to the correct ones for arterial networks. Also, the warm-up period becomes 
significantly longer as the size of the network gets bigger, as is the network size of the I-210 
Connected Corridors Pilot. Therefore, a more direct approach is needed to use the conventional 
traffic data to estimate the traffic states in arterial networks.  
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With the existence of signal control, traffic in arterial networks is very different from that on 
freeways. For a given intersection approach, different vehicle movements interact with each 
other, especially when traffic is congested. A severe condition is the occurrence of lane blockage 
and queue spillback when the upstream demand of a particular movement is higher than the 
allocated capacity and persists for a long time. To evaluate intersection performance, metrics of 
delay and LOS are usually used. However, the prevailing HCM method (TRB, 2000) that is used to 
compute delay and LOS is not reliable under heavy traffic congestion (Gan et al., 2017), 
particularly when lane blockage or queue spillback occurs. Therefore, instead of using indirect 
measurements of delay and LOS, it would be extremely helpful if we can directly estimate the 
traffic states at individual intersection approaches to assess the overall performance. 

In this part, we aim to tackle the problems discussed above. In Part II, we have developed 
occupancy thresholds to categorize detector data into different regimes/states at advance and 
stopline detectors. Therefore, we first perform a fitness analysis of the proposed occupancy 
thresholds using data from the field and microsimulations. Then we develop an estimation 
algorithm that fuses data from advance and stopline detectors with signal phasing information 
from the field. The estimation output consists of traffic states and average queues for the traffic 
movements at an intersection approach. The proposed estimation algorithm is generic since we 
consider various combinations of road geometry, detector layout, and signal setting in the field 
and we try to maximize the amount of detail given the availability and quality of the detector 
data. Under the assumptions of congested traffic and minor turning movements, we theoretically 
prove there exists a linear relation between the total vehicle queues and the travel times at 
multiple intersections along an arterial corridor. We further select five intersections along 
Huntington Dr. in the City of Arcadia as a test site and validate such a linear relation for the 
eastbound and the westbound traffic. In addition, we propose a general framework of traffic 
initialization in the microsimulation software, AIMSUN. We develop an initialization algorithm 
that generates simulated vehicles from the estimated traffic queues and the detailed network 
structure in AIMSUN. As an application example, we apply the proposed framework to the I-210 
AIMSUN model and initialize the traffic states in the City of Arcadia. The proposed framework in 
this part is novel, which provides a fundamentally different way of state estimation and 
initialization. It is expected to outperform the conventional method given good detector 
coverage and data quality.  

3.2 Fitness Analysis of Occupancy Thresholds at Advance and Stopline Detectors 

In Section 2.2.3, two occupancy thresholds (i.e., 𝑂𝑐𝑐1
𝑎𝑑𝑣 and 𝑂𝑐𝑐2

𝑎𝑑𝑣) are proposed to determine 
traffic states at advance detectors, i.e., Equation 4 and Equation 5. According to these two 
thresholds, we can further divide the flow-occupancy plots into three regimes: 

(i) Uncongested regime with 𝑂𝑐𝑐 ≤ 𝑂𝑐𝑐1
𝑎𝑑𝑣; 

(ii) Congested regime with 𝑂𝑐𝑐1
𝑎𝑑𝑣 < 𝑂𝑐𝑐 ≤ 𝑂𝑐𝑐2

𝑎𝑑𝑣; 

(iii) Downstream spillback regime with 𝑂𝑐𝑐2
𝑎𝑑𝑣 < 𝑂𝑐𝑐 ≤ 1. 
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From Figure 8(b), we can clearly see that the flow-occupancy plot at stopline detectors is 
significantly different from the one at advance detectors, with points scattering in a wider region. 
The major reason for this is the signal control. Although vehicle platoons can pass advance 
detectors without stopping, they may be forced to stop behind the stopline due to the activation 
of red light. Depending on the waiting time on red, there exists infinitely many occupancies at a 
given flow rate. Therefore, the first occupancy threshold in Equation 4 is not applicable to 
stopline detectors.  

However, when the number of upstream queued vehicles is high enough, the allocated green 
time will be fully used once it is activated. Depending on the occurrence of downstream queue 
spillback, the second occupancy threshold 𝑂𝑐𝑐𝑠𝑡𝑝 in Equation 5 should be applied. Also, we have 

observed that the occupancy measurement is more reliable than the flow measurement at 
stopline detectors when traffic is congested. With this occupancy threshold, the flow-occupancy 
domain for stopline detectors can be divided into the following regions: 

(i) No downstream spillback regime with 𝑂𝑐𝑐 ≤ 𝑂𝑐𝑐𝑠𝑡𝑝; 

(ii) Downstream spillback regime with 𝑂𝑐𝑐 > 𝑂𝑐𝑐𝑠𝑡𝑝. 

In the following, we are using both field and simulated data to perform a fitness analysis of the 
occupancy thresholds at advance and stopline detectors.  

3.2.1 Using Field Data 

In this case, we take the detectors at Huntington Dr and 2nd Ave as an example (See Figure 6). 

3.2.1.1 Advance Detectors 

Since signal settings are changing over time, we select the PM peak period (15:30 hr– 19:00 hr) 
for analysis. At that time period, 𝐶 =120s and 𝐺=62s according to Table 2. For illustration 
purposes, we take the advance detectors in the eastbound and westbound approaches as an 
example. The saturation flow rate is chosen as 𝑞𝑠 = 1700vph, and the saturation speed is chosen 
as the speed limit, i.e., 𝑣𝑠 = 30mph. We select the average vehicle length as 𝐿 = 17ft, and the 
detector length 𝑎𝑠 𝐷 =  7𝑓𝑡 (See Table 1), which means the effective vehicle length is 𝐿 + 𝐷 = 
24ft and the jam density is 220vpm.  

In Figure 15, we provide the flow-occupancy plots with the estimated occupancy thresholds for 
the four advance detectors in the eastbound and westbound approaches. From the figure, it is 
clear to see that the two occupancy thresholds perfectly match the change points in the flow-
occupancy plots, particularly for the advance detectors in the eastbound approach. In the 
westbound approach, traffic is not very congested and no queue spillback is observed. 
Nevertheless, the first occupancy threshold perfectly matches the transition from uncongested 
to congested regimes. Therefore, the figure supports the validity of the proposed occupancy 
thresholds for advance detectors. 
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Figure 15 Occupancy thresholds of advance detectors at Huntington Dr and 2nd Ave. 

3.2.1.2 Stopline detectors 

Here, we again consider the PM peak period (15:30 hr – 19:00 hr). We focus on the stopline 
detectors in the eastbound and westbound approaches, particularly for those detecting left-turn 
and through movements. Since vehicles at the stopline must accelerate at the beginning of the 
green phase, we assign a lower saturation speed for the though movement, i.e., 𝑣𝑠

𝑇𝐻  = 25mph. 
In addition, because left-turn vehicles are required to turn to other links, we assign an even lower 
speed for the left-turn movement, i.e., 𝑣𝑠

𝐿𝑇 = 20mph. The corresponding detector lengths are 
obtained from Table 1. According to the signal settings in Table 2, we can calculate the occupancy 
threshold using the formula in Equation 5. 

In Figure 16, we provide the flow-occupancy plots with the estimated occupancy thresholds for 
the stopline detectors in the eastbound and westbound approaches. For the eastbound through 
movement, it can be seen that the estimated threshold matches the data points well: the flow-
rates drop when the occupancies are higher than the threshold. For the left-turn movement, we 
can see that the number of left-turn vehicles is very small, most likely one or two vehicles per 
cycle.  

For the westbound through movement, we can see that the majority of the data points are on 
the left-hand side of the estimated threshold, which indicates that the downstream is mostly in 
free conditions. Such a pattern is consistent with the flow-occupancy plots in Figure 15(c) and 
Figure 15(d), in which queue spillback was an infrequent occurrence. For the left-turn movement, 
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we can see that the volume is not high, about two to three vehicles per cycle. It is very rare to 
see the case when downstream congestion reduces the discharging flow of left turn vehicles. 

 

Figure 16 Occupancy thresholds of stopline detectors at Huntington Dr and 2nd Ave. 

3.2.2 Using AIMSUN Microsimulation Model 

Test Network and Experiment Setup 

In AIMSUN, we create a test network to validate the flow-occupancy curves and critical 
occupancies. Detailed network layouts are shown in Figure 17. In order to generate queue 
spillback, we create a break point in the downstream road link. This break point is simply a 
traffic signal, which is typically set to all green so that vehicles can pass freely. When testing the 
case of queue spillback, the break point is activated by introducing red time to reduce the 
vehicle throughput. 

The experiment consisted of four simulations. Because the critical occupancies depend on the 

green ratio 
𝐺

𝐶
 of an approach, we hold all other parameters in Equations 4 and 5 constant in 

each simulation while only varying the green time 𝐺 at the targeted (“East”) intersection.  

In our experiment setup, each simulation lasted for 24 hours. For simplicity purposes, we only 
test the performance of stopline and advance detectors in the southbound direction at the 
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targeted (“East”) intersection. The parameter settings provided in Table 5 are constant 
throughout all simulations. 

 

Figure 17 Test network in AIMSUN. 

Table 5 Parameter settings in AIMSUN simulation. 

 

 

Figure 18 Demand profile over 24-hour AIMSUN simulation. 
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Figure 19 Signal green time settings at the two intersections. 

The demand settings for traffic going from north to south is provided in Figure 18, while the signal 
plans for the two intersections are depicted in Figure 19. For example, Intersection 1 (“East” 
Intersection) in the first simulation had a constant green time of 25s for the north-to-south 
through movement. Meanwhile, Intersection 2 (Breakpoint Intersection)’s green time was 
decreased throughout the simulation according to the settings shown in Figure 19. In order to 
observe the derived occupancy thresholds (i.e., Occ1 and Occ2) from the flow-occupancy curves, 
each simulation is created according to the following procedures to create enough variations in 
traffic behavior. 

(i) First, the green time G for Intersection 1 was varied between each trial to verify the 

dependence of advance detector’s critical occupancies on the signal plan. Four trials 

were created, with green times of 25s, 20s, 15s, and 10s. 

(ii) Second, from 12 AM - 5 PM the demand is increasing linearly from 60vph to 1080vph, 

with the green time in Intersection 2 held constant. This creates traffic conditions that 

form the regimes of “uncongested” and “congested” without spillback. 

(iii) Third, while keeping the demand constant, from 5 PM - 12 AM the green time in 

Intersection 2 decreases each hour to create different amounts of queue spillback. 

Note that the demand and signal settings are set arbitrarily, which definitely does not reflect any 
traffic patterns (e.g., AM and PM peaks) observed in the field.  

3.2.2.1 Experiment results 

For advance detectors, we calculate the occupancy thresholds using Equations 4 and 5: the first 

critical occupancy Occ1
adv marks the transition between the uncongested and congested 

without spillback regimes, while the second occupancy Occ2
adv marks where spillback begins 

within the congested traffic portion. For stopline detectors, only one occupancy threshold is 
used to determine whether there exists downstream queue spillback or not, which is calculated 
from Equation 5. 

The flow-occupancy plots for the advance detectors shown in Figure 20 clearly indicate the 
presence of the three traffic regimes in Figure 15. The plots from the two advance detectors 

were very similar, and thus only one of them is given. The calculated critical occupancies Occ1
adv 
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and Occ2
adv are marked on the plots. These values are given in Table 6. They can be seen to 

match the transitions in the simulation graphs very closely.   

The single occupancy threshold for stopline detectors was calculated for different simulations. 
These are shown on the flow-occupancy plots in Figure 21. As can be seen, the calculated 
values for the occupancy threshold match very closely with the transition in the simulated flow-
occupancy plots. 

Note also that the diagrams reflect the traffic states that were created in the simulation. For 
example, the first few hours in the simulation had a relatively low demand, corresponding to 
uncongested traffic. It can be seen on the graphs in Figure 20 and Figure 21 that points from 12 

AM -6 AM are all below either Occ1
adv or Occstp. In addition, queue spillback was not 

introduced by the signal settings until 5 PM. Figure 20 and Figure 21 also show that the points 

in the queue spillback regime (above either Occ2
adv or Occstp) are all from 5 PM or later. 

From these results, we have confirmed that: (i) AIMSUN can generate traffic patterns consistent 
with field observations; and (ii) the derived occupancy thresholds are valid since they match 
field observations and simulation results very well.  

Table 6 Calculated values for occupancy thresholds under different simulated scenarios. 
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Figure 20 Flow-occupancy plots of advance detectors from simulations with various green 

times. 
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Figure 21 Flow-occupancy plots of stopline detectors from simulations with various green 

times. 

3.3 Development of Estimation Algorithm 

In this section, we are interested in estimating traffic states and queues at an intersection 
approach with given inputs of road geometry, detector layout, and identified traffic states at 
advance and stopline detectors.  

 

(a) Complete detector coverage       (b) Partially complete detector coverage 
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(c) With only advance detectors     (d) With only stopline detectors 

Figure 22 Four major types of sensor placement in the field. 

3.3.1 Examples of Detector Layout at an Intersection Approach 

At an intersection approach, it normally consists of three types of traffic movements: left-turn, 
straight through, and right-turn. Depending on the road geometry and the type of traffic control, 
we normally can see four major types of detector layout in the field, which is provided in Figure 
22. Detailed descriptions are provided below: 

(i) Complete detector coverage  

As shown in Figure 22(a), both advance and stopline detectors are installed at a given 
intersection approach. It is clear to see that: (a) advance detectors detect all traffic 
movements, and (b) for each traffic movement, at least one stopline detector is 
allocated. Therefore, we consider this as complete detector coverage since we can tell 
traffic states for each movement by using the data from both advance and stopline 
detectors. 

(ii) Partially complete detector coverage 

In Figure 22(b), advance detectors are installed to detect all traffic movements. 
However, there is only one stopline detector installed for the left-turn movement, and 
none for the through and right-turn movements. Therefore, detector coverage is 
complete for the left-turn movement, but is incomplete for the other two 
movements. In this case, we consider this detector layout as partially complete. 

(iii) With only advance detectors 

In Figure 22(c), only advance detectors are installed to detect all traffic movements. 
This detector layout often occurs in minor streets. In this case, we can only tell traffic 
states in the upstream (in the vicinity of advance detectors), not in the downstream 
(in the vicinity of stopline). Therefore, this detector layout is incomplete. 

(iv) With only stopline detectors 

In Figure 22(d), only stopline detectors are installed to detector all traffic movements. 
This detector layout also often occurs in minor streets. In this case, we can only tell 
traffic states in the downstream (in the vicinity of stopline detectors), not in the 
upstream. Therefore, we consider this detector layout is incomplete. In addition, 
given the fact that we only can apply the second occupancy threshold to stopline 
detectors, we tell less traffic states solely based on stopline detectors. 
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3.3.2 Detector Groups for Different Traffic Movements 

In the field, advance detectors are installed to detect one or more traffic movements. Based on 
our observations, we can have the following types of advance detectors: 

(i) Advance for all movements 

(ii) Advance for left turn only 

(iii) Advance for right turn only 

(iv) Advance for through only 

(v) Advance for left turn and through 

(vi) Advance for left turn and right turn 

(vii) Advance for through and right turns 

Similarly, we can have the following types of stopline detectors: 

(i) Stobline for all movements 

(ii) Stopline for left turn only 

(iii) Stopline for right turn only 

(iv) Stopline for through only 

(v) Stopline for left turn and through 

(vi) Stopline for left turn and right turn 

(vii) Stopline for through and right turn 

For the aforementioned detector types, the compositions (proportions) of traffic movements are 
different, which are location dependent and changing over time.  In our study, we have default 
proportions of traffic movements at these detectors, which are provided in Table 7. However, we 
also update these values if we have complete detector coverage and good data is available.  

Therefore, for the left-turn, through, and right-turn movements, we can have different detector 
groups: 

(i) Left-turn 

a. Advance detector group: Advance for all movements, Advance for left turn only, 

Advance for left turn and through, and Advance for left turn and right turn. 

b. Stopline detector group: Stopline for all movements, Stopline for left turn only, 

Stopline for left turn and through, and Stopline for left turn and right turn. 

(ii) Through 

a. Advance detector group: Advance for all movements, Advance for through only, 

Advance for left turn and through, Advance for through and right turn. 

b. Stopline detector group: Stopline for all movements, Stopline for through only, 

Stopline for left turn and through, Stopline for through and right turn. 
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(iii) Right-turn 

a. Advance detector group: Advance for all movements, Advance for right turn only, 

Advance for left turn and right turn, Advance for through and right turn. 

b. Stopline detector group: Stopline for all movements, Stopline for right turn only, 

Stopline for left turn and right turn, Stopline for through and right turn. 

Table 7 Default proportions of traffic movements at advance and stopline detectors. 

Detector Type 
Default Proportions 

Left Turn Through Right Turn 

Advance for all movement 0.15 0.8 0.05 

Advance for left turn only 1.0 0 0 

Advance for right turn only 0 0 1.0 

Advance for through only 0 1.0 0 

Advance for left turn and through 0.3 0.7 0 

Advance for left turn and right turn 0.5 0 0.5 

Advance for through and right turn 0 0.85 0.15 

Stopline for all movement 0.15 0.8 0.05 

Stopline for left turn only 1.0 0 0 

Stopline for right turn only 0 0 1.0 

Stopline for through only 0 1.0 0 

Stopline for left turn and through 0.3 0.7 0 

Stopline for left turn and right turn 0.5 0 0.5 

Stopline for through and right turn 0 0.85 0.15 

3.3.3 Aggregation of Detector States for a Given Traffic Movement 

For a given advance detector, its traffic state can be categorized into three regimes: 
Uncongested, Congested and Queue Spillback. Considering data missing due to detector failure, 
we can assign four different index values to these states:  

(i) 0 for No Data, 

(ii) 1 for Uncongested, 

(iii) 2 for Congested 

(iv) 3 for Queue Spillback.  

Similarly, for a given stopline detector, we assign three different index values to the following 
states: 

(i) 0 for No Data, 

(ii) 1 for Uncongested 

(iii) 2 for Congested/Queue Spillback  
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In the field, it is possible to have multiple detectors allocated to detect the same traffic 
movement, for example, the through movement in Figure 23. In the upstream, three advance 
detectors are assigned: A1 for left turn and through, A2 for through only, and A3 for through and 
right turn. Also, in the downstream, three stopline detectors are assigned: S2 for left turn and 
through, S3 and S4 for through only.  

 

Figure 23 Example of traffic state aggregation at a given approach 

In the upstream, all detectors, i.e., A1, A2 and A3, will provide their estimates of traffic states. 
Therefore, it is necessary to aggregate them from detector-level to movement-level (or 
approach-level). Normally, we can assign higher weights for detectors with exclusive movements, 
e.g., A2, and lower weights for detectors with shared movements, e.g., A1 and A3. In our case, 
we believe traffic is correlated between adjacent detectors sharing a common traffic movement. 
That means if traffic is congested at one detector, traffic at other detectors with a common traffic 
movement is expected to be congested. Therefore, we weight them according to the number of 
lanes they cover and the corresponding proportions of that common traffic movement.  

For a given traffic movement, 𝑚 ∈ [𝐿𝑇, 𝑇𝐻, 𝑅𝑇] , consider there are 𝐽  advance detectors 
involved. Then the index of advance detectors for that traffic movement can be simply calculated 
as 

𝑰𝒅𝒙𝒂𝒅𝒗
𝒎 =

∑ 𝑰𝒅𝒙𝒂𝒅𝒗,𝒋×𝒏𝒂𝒅𝒗,𝒋𝒋∈𝑱 ×𝒑𝒓𝒐𝒑𝒂𝒅𝒗,𝒋
𝒎

∑ 𝒏𝒂𝒅𝒗,𝒋𝒋∈𝑱 ×𝒑𝒓𝒐𝒑𝒂𝒅𝒗,𝒋
𝒎 ,                                               (11) 

where 𝑛a𝑑𝑣,𝑗 is the number of lanes advance detector 𝑗 covers, and propadv,j
m  is the proportion of 

movement 𝑚 at advance detector 𝑗. 

Similarly, suppose there are 𝑆  stopline detectors involving the same traffic movement, 𝑚 ∈
[𝐿𝑇, 𝑇𝐻, 𝑅𝑇]. The index of stopline detectors for that traffic movement can be simply calculated 
as 

 𝑰𝒅𝒙𝒔𝒕𝒑
𝒎 =

∑ 𝑰𝒅𝒙𝒔𝒕𝒑,𝒔×𝒏𝒔𝒕𝒑,𝒔×𝒑𝒓𝒐𝒑𝒔𝒕𝒑,𝒔
𝒎

𝒔∈𝑺

∑ 𝒏𝒔𝒕𝒑,𝒔×𝒑𝒓𝒐𝒑𝒔𝒕𝒑,𝒔
𝒎

𝒔∈𝑺
,                                            (12) 

where 𝑛stp,s is the number of lanes stopline detector 𝑠 covers, and propstp,s
m  is the proportion of 

movement 𝑚 at stopline detector 𝑠. 
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3.3.4 State Determination for a Given Traffic Movement 

Once we calculate the indexes of advance and stopline detectors, i.e., 𝐼𝑑𝑥a𝑑𝑣
𝑚  and 𝐼𝑑𝑥stp

𝑚 , we can 

use different thresholds that partition the state space into multiple regimes. 

For stopline detectors, we have one threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝 with a value of 1.5, which is the 

averaged index value of Uncongested (value=1) and Congested/Queue Spillback (value=2). 
Similarly, for advance detectors, we have two thresholds:  

(i) 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
𝑙𝑜𝑤 =1.5, which is the averaged index value of Uncongested (value=1) and 

Congested (value=2),  

(ii) 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

= 2.5, which is the averaged index value of Congested (value=2) and 

Queue Spillback (value=3).  

Note that, these thresholds are set empirically, which can be fine turned in the future to obtain 
better results. 

In the following, we will provide detailed discussion on how to partition the state space under 
different cases of detector coverage. 

3.3.4.1 With Full Coverage of Advance and Stopline Detectors 

For a given traffic movement, if both advance and stopline detectors exist, its state space can be 
categorized into six different regimes, which is shown in Figure 24. Details are provided below: 

(i) R1 (𝐼𝑑𝑥𝑎𝑑𝑣
𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣

𝑙𝑜𝑤 and 𝐼𝑑𝑥𝑠𝑡𝑝
𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): No Congestion 

When both stopline and advance detectors report “Uncongested”, it is clear that 
there is no congestion for the given traffic movement. Therefore, traffic states in this 
regime are categorized as “No Congestion”. 

(ii) R2 ( 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
𝑙𝑜𝑤 < 𝐼𝑑𝑥𝑎𝑑𝑣

𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

 and 𝐼𝑑𝑥𝑠𝑡𝑝
𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝 ): 

Congestion With Downstream Free 

It is possible that stopline detectors report “Uncongested” while advance detectors 
report “Congested”. This case may be caused by: (a) high upstream arrival rates but 
bad signal coordination; (b) unknown interruptions by other traffic movements within 
the area between the stopline and the advance detectors. In such a case, traffic states 
in this regime are categorized as “Congestion With Downstream Free”. 

(iii) R3 (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

< 𝐼𝑑𝑥𝑎𝑑𝑣
𝑚  and 𝐼𝑑𝑥𝑠𝑡𝑝

𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): Lane Blockage By Other 

Movements 

When queue spillback is found at advance detectors but stopline detectors indicate 
traffic is uncongested, it is possible this traffic movement is blocked by other 
movements. For example, through vehicles are often blocked by left-turn ones if the 
allocated green time is not able to clear the left-turn vehicles arriving from the 
upstream. In such a case, the stopline detectors that detect through vehicles will 
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report low occupancies, while the advance detectors will report high occupancies. 
Therefore, traffic states in this regime are categorized as “Lane Blockage By Other 
movements”.  

(iv) R4 (𝐼𝑑𝑥𝑎𝑑𝑣
𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣

𝑙𝑜𝑤 and 𝐼𝑑𝑥𝑠𝑡𝑝
𝑚 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): Light Congestion Caused 

By Downstream Traffic 

It is possible that downstream traffic is congested, either caused by temporary queue 
spillback or cycle failures. In this case, stopline detectors will report 
“Congested/Queue Spillback”. However, advance detectors will report 
“Uncongested” since the downstream congestion is temporary and short queues exist 
at the given approach.  Therefore, traffic states in this regime are categorized as “Light 
Congestion Caused By Downstream Traffic”. 

(v) R5 (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
𝑙𝑜𝑤 < 𝐼𝑑𝑥𝑎𝑑𝑣

𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

 and 𝐼𝑑𝑥𝑠𝑡𝑝
𝑚 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): Heavy 

Congestion Caused By Downstream Traffic 

If the downstream congestion lasts for a sufficient long time, the residual queue at 
the given approach may grow longer and interrupt vehicle passages at the advance 
detectors. In this case, stopline detectors will report “Congested/Queue Spillback”, 
while advance detectors will report “Congested”. Therefore, traffic states in this 
regime are categorized as “Heavy Congestion Caused By Downstream Traffic”. 

(vi) R6 (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

< 𝐼𝑑𝑥𝑎𝑑𝑣
𝑚  and 𝐼𝑑𝑥𝑠𝑡𝑝

𝑚 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): Queue Spillback Caused 

By Downstream Traffic 

A worse case is that the downstream congestion is heavy and lasts for a long time. As 
a result, a long queue is formed and spills back to the advance detectors. Then stopline 
detectors will report “Congested/Queue Spillback”, while advance detectors will 
report “Queue Spillback”. Therefore, traffic states in this regime are categorized as 
“Queue Spillback Caused By Downstream Traffic”. 

 

Figure 24 Traffic states for a given movement with full detector coverage. 
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3.3.4.2 With only Stopline Detectors Available 

For some intersection approaches, particularly minor streets, it is possible to have only stopline 
detectors installed. In this case, we only can divide the state space into two regimes, which are 
shown in Figure 25. Details are provided below. 

(i) R1 (𝐼𝑑𝑥𝑠𝑡𝑝
𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): No Congestion In Downstream 

When stopline detectors report “Uncongested”, it is for sure the downstream traffic 
is free. However, traffic is free in the downstream may be due to: (a) relatively low 
upstream demands; or (b) lane blockages by other movements which restricts 
vehicles arriving from the upstream. Therefore, traffic states in this regime are 
categorized as “No Congestion In Downstream”.  

(ii) R2 (𝐼𝑑𝑥𝑠𝑡𝑝
𝑚 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑝): Downstream Congestion/Spillback 

When stopline detectors report “Congested/Queue Spillback”, it is clear that the 
downstream traffic is congested, either caused by queue spillback from further 
downstream or inappropriate signal settings. However, without advance detectors, 
we don’t know its impact on the arriving vehicles. Therefore, traffic states in this 
regime are categorized as “Downstream Congestion/Spillback”.  

 

Figure 25 Traffic states for a given movement with only stopline detectors 

3.3.4.3 With only advance detector available 

It is normal to see only advance detectors are installed at the intersection approaches, 
particularly for minor streets. In this case, we can divide the state space into three different 
regimes, which are shown in Figure 26. Details are provided below: 

(i) R1 (𝐼𝑑𝑥𝑎𝑑𝑣
𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣

𝑙𝑜𝑤): No Congestion In Upstream 

When advance detectors report “Uncongested”, it only means upstream traffic is free. 
However, traffic in the downstream may be: uncongested or congested with a short 
queue. Therefore, traffic states in this regime are categorized as “No Congestion In 
Upstream”. 

(ii) R2 (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
𝑙𝑜𝑤 < 𝐼𝑑𝑥𝑎𝑑𝑣

𝑚 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

): Congestion In Upstream 

When advance detectors report “Congested”, traffic is congested in the upstream (in 
the vicinity of advance detectors). It is probably caused by: (a) downstream 
congestion with a relatively long queue that interrupts vehicle arrivals from the 
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upstream; or (b) lane blockage by other traffic movements that reduces vehicle’s 
throughput. Therefore, traffic states in this regime are categorized as “Congestion In 
Upstream”. 

(iii) R3 (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑑𝑣
ℎ𝑖𝑔ℎ

< 𝐼𝑑𝑥𝑎𝑑𝑣
𝑚 ): Queue Spillback In Upstream 

When advance detectors report “Queue Spillback”, a long queue should be formed 
that reaches the location of advance detectors. But in the downstream, it is not clear 
whether traffic is also congested or lane blockage occurs. Therefore, traffic states in 
this regime are categorized as “Queue Spillback In Upstream”. 

 

Figure 26 Traffic states for a given movement with only advance detectors 

3.3.5 Queue Estimation of Traffic Movements at an Intersection Approach 

In this subsection, given the estimated traffic state for a traffic movement, we are going to 
estimate an appropriate queue length, i.e., number of queued vehicles. Note that these queue 
estimates are in the “averaged” sense since the data we have is aggregated into a long time 
interval, e.g., 5 minutes. 

3.3.5.1 Three Different Queue Thresholds 

As shown in Figure 27, we first calculate three different queue thresholds for each traffic 
movement, which will be used as inputs to determine the queue length. Suppose there are 𝑁𝑑𝑜𝑤𝑛 
lanes in the downstream, and 𝑁𝑢𝑝lanes in the upstream. Note that 𝑁𝑢𝑝 is not necessarily the 

same as 𝑁𝑑𝑜𝑤𝑛 if there are turning pockets in the downstream. For lane 𝑖, the composition of 
each movement, 𝑚 ∈ [𝐿𝑇, 𝑇𝐻, 𝑅𝑇] , is denoted as 𝑝𝑟𝑜𝑝𝑖

𝑚 . The jam spacing for a regular 
automobile is denoted as 𝐿𝑗𝑎𝑚. The length of lane 𝑖 is denoted as 𝐿𝑖, and the distance to advance 

detectors is denoted as 𝐿𝑎𝑑𝑣. 
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Figure 27 Three proposed queue thresholds for a given traffic movement. 

In developing these thresholds, we consider: (a) different queue thresholds represent different 
levels of traffic congestion; (b) different lanes have different compositions of traffic movements; 
(c) the blockage of a certain movement cannot totally block other movements. Details are 
provided below: 

(i) Queue To Advance Detector, 𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆
𝒎 .  

When traffic is uncongested, depending on the arrival time of vehicle platoons, a short 
queue may exist at the stopline and even temporarily spill back to the location of 
advance detectors. However, the allocated green time is long enough to clear the 
upstream arrival flow. As a result, there is no residual queue exists at the end of each 
green time.  

While averaging the queue dynamics, we introduce 𝑄𝑇𝑜𝐴𝑑𝑣𝑎𝑛𝑐𝑒
𝑚  to consider the 

boundary case when the averaged queue of movement 𝑚  reaches the advance 
detectors. The calculation of 𝑄𝑇𝑜𝐴𝑑𝑣𝑎𝑛𝑐𝑒

𝑚  can be formulated as 

𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆
𝒎 =

∑ 𝒎𝒊𝒏{𝑳𝒂𝒅𝒗 ,𝑳𝒊}×𝒑𝒓𝒐𝒑𝒊
𝒎𝑵𝒅𝒐𝒘𝒏

𝒊=𝟏

𝑳𝒋𝒂𝒎
                                (13) 

Note if there is detector coverage on lane 𝑖, 𝑝𝑟𝑜𝑝𝑖
𝑚 can be updated using the 

detector data from the field. 

(ii) Queue With Max Green, 𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 . 

When the upstream arrival flow reaches the capacity that the allocated green time 
can handle, a residual queue will appear after the end of green time in each cycle. If 
the upstream arrival flow is temporarily over the capacity, the residual queue can 
grow and spill back to the advance detectors. When the residual queue reaches the 
location of advance detectors, the advance detectors can only detect a single constant 
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occupancy no matter how many vehicles arriving from the upstream, which is Point B 
in Figure 1. This residual queue may be so long that it spills back to the upstream 
intersection.  

Therefore, we introduce another threshold 𝑄𝑀𝑎𝑥𝐺𝑟𝑒𝑒𝑛
𝑚 , which considers the case 

when the allocated green time is fully used and a residual queue reaches the advance 
detectors. The calculation of 𝑄𝑀𝑎𝑥𝐺𝑟𝑒𝑒𝑛

𝑚  can be formulated as 

𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 = 𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆

𝒎 + ∑ 𝒑𝒓𝒐𝒑𝒊
𝒎𝑵𝒅𝒐𝒘𝒏

𝒊=𝟏 ×
𝑮

𝒉𝒔
                      (14) 

Note ∑ propi
mNdown

i=1  indicates the portion of lanes shared by the traffic movement 

𝑚. 

(iii) Queue To Link, 𝑸𝑻𝒐𝑳𝒊𝒏𝒌
𝒎 .  

When the downstream traffic is congested, queue spillback will occur and partially 
block the vehicle dissipation at the targeted intersection. As a result, a vehicle has to 
wait for a longer time to cross the intersection, and the corresponding occupancy 
increases while the flow decreases. Meanwhile, a long queue will generate and 
propagate to the upstream. 

Therefore, we introduce one more threshold 𝑄𝑇𝑜𝐿𝑖𝑛𝑘
𝑚  that consider the extreme case 

when movement 𝑚  is totally blocked due to the queue spillback from the 
downstream. The calculation of 𝑄𝑇𝑜𝐿𝑖𝑛𝑘

𝑚  can be formulated as 

𝑸𝑻𝒐𝑳𝒊𝒏𝒌
𝒎 = 𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆

𝒎 +
∑ (𝑳𝒊−𝑳𝒂𝒅𝒗)×𝒑𝒓𝒐𝒑𝒊

𝒎𝑵𝒖𝒑
𝒊=𝟏

𝑳𝒋𝒂𝒎
                         (15) 

3.3.5.2 With full coverage of advance and stopline detectors 

When we have full coverage of advance and stopline detectors for a given traffic movement, 
traffic can be categorized into six different states. For each state, we have different calculations 
of queue lengths, which are determined through its average occupancy 𝑂𝑐𝑐  from advance 
detectors and the three queue thresholds. Details are provided below and also in Figure 28. 

(i) R1. In this regime, traffic is uncongested. Therefore, we only assign a small number of 

queued vehicles for the given traffic movement.  

𝑸 = 𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆
𝒎 ×

𝑶𝒄𝒄

𝑶𝒄𝒄𝟏
𝒂𝒅𝒗.                                            (16) 

(ii) R2. In this regime, traffic is congested, but the downstream is free. The allocated 

green time is long enough to clear the upstream arrivals, but not all of them (queued 

and arriving vehicles). Therefore, after each green time, a residual queue remains 

there. In this case, the number of queued vehicles is assigned between 𝑄𝑇𝑜𝐴𝑑𝑣𝑎𝑛𝑐𝑒
𝑚  

and 𝑄𝑀𝑎𝑥𝐺𝑟𝑒𝑒𝑛
𝑚 , depending on its average occupancy from advance detectors. 

𝑸 = 𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆
𝒎 +

𝑶𝒄𝒄−𝑶𝒄𝒄𝟏
𝒂𝒅𝒗

𝑶𝒄𝒄𝟐
𝒂𝒅𝒗−𝑶𝒄𝒄𝟏

𝒂𝒅𝒗 (𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 −𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆

𝒎 ).                (17) 
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(iii) R3. In this regime, traffic is categorized as “Lane Blockage By Other Movements”. 

Therefore, we expect a long queue. However, we will not assign any queued vehicles 

between the stopline and the advance detectors (the point where lane blockage is 

detected). 

𝑸 = (𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 −𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆

𝒎 ) + (𝑸𝑻𝒐𝑳𝒊𝒏𝒌
𝒎 − 𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏

𝒎 )
𝑶𝒄𝒄−𝑶𝒄𝒄𝟐

𝒂𝒅𝒗

𝟏−𝑶𝒄𝒄𝟐
𝒂𝒅𝒗 .           (18) 

(iv) R4. In this regime, traffic is a little bit congested, which is caused by downstream 

traffic. However, since the average occupancy from advance detectors is still low, we 

will use the same calculation in R1 for queue assignment. 

(v) R5. In this regime, traffic is congested both in the upstream and the downstream. 

Therefore, we will use the calculation in R5 for queue assignment. 

(vi) R6. In this regime, traffic is categorized as “Queue Spillback Caused By Downstream 

Traffic”. In this case, no lane blockage occurs, and we will assign a long queue to the 

given traffic movement.  

𝑸 = 𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 + (𝑸𝑻𝒐𝑳𝒊𝒏𝒌

𝒎 − 𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 )

𝑶𝒄𝒄−𝑶𝒄𝒄𝟐
𝒂𝒅𝒗

𝟏−𝑶𝒄𝒄𝟐
𝒂𝒅𝒗 .                          (19) 

 

Figure 28 Calculation of vehicle queues with full detector coverage. 

3.3.5.3 With only stopline detectors available 

When we only have stopline detectors available, traffic can be categorized into two different 
states. Since only Occstp can be used, we have the following calculations for queue assignment, 

which is also provided in Figure 29. 

(i) R1. In this regime, traffic is considered to be uncongested. Due to the impact of signal 
control, even a low vehicle arrival flow may cause high occupancies. Therefore, we 
only assign a short queue to the given traffic movement. 
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𝑸 = (𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 −𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆

𝒎 )
𝑶𝒄𝒄

𝑶𝒄𝒄𝒔𝒕𝒑
.                                                (20) 

Note this calculation is different from Equation 17, and Occ is the occupancy from the 
stopline detectors. Due to the impact of traffic signal, the maximum number we will 
assign is the maximum number of vehicles that can be released from the intersection 
approach, i.e., QMaxGreen

m − QToAdvance
m . 

(ii) R2. In this regime, traffic is congested, which may be caused by downstream spillback. 
In this case, we will assign a long queue to the given traffic movement. 

𝑸 = (𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏
𝒎 −𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆

𝒎 ) + (𝑸𝑻𝒐𝑳𝒊𝒏𝒌
𝒎 − 𝑸𝑴𝒂𝒙𝑮𝒓𝒆𝒆𝒏

𝒎 +𝑸𝑻𝒐𝑨𝒅𝒗𝒂𝒏𝒄𝒆
𝒎 )

𝑶𝒄𝒄−𝑶𝒄𝒄𝒔𝒕𝒑

𝟏−𝑶𝒄𝒄𝒔𝒕𝒑
       (21) 

 

Figure 29 Calculation of vehicle queues with only stopline detectors. 

3.3.5.4 With only advance detectors available 

In the case when only advance detectors are available, traffic can be categorized into three 
different regimes. Detailed calculations are provided below as well as in Figure 30. 

(i) R1. In this regime, traffic is uncongested in the upstream. Therefore, we use the 
calculation in R1 (or R4) in Figure 28. 

(ii) R2. In this regime, congestion occurs in the upstream. However, there is no way to 
check whether downstream traffic is congested or not. Therefore, we use the 
calculation in R2 (or R5) in Figure 28. 

(iii) R3. In this regime, queue spillback occurs in the upstream. Due to the lack of 
downstream detection, we are not able to further find out whether the congestion is 
caused by lane blockage or downstream queue spillback. Therefore, we use the 
calculation in R6 in Figure 28. 
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Figure 30 Calculation of vehicle queues with only advance detectors. 

3.4 Validation 

In this section, we are interested in assessing the queue estimation method proposed in Section 
3.3. In particular, we would like to validate whether the queue estimates are consistent with real-
world observations. In practice, it is very difficult and time consuming to validate against with the 
actual queues in a test site. Therefore, we would like to validate the relation between vehicle 
queues and some conventional, easy-to-access measurements, e.g., Bluetooth travel times. 
Details are provided in the following subsections. 

3.4.1 A linear relation between vehicle queue and travel time 

According to (Herman and Prigogine, 1979), traffic in urban networks can be categorized into two 
different traffic states: (i) queued at the intersection, and (ii) moving across a link with an average 
speed 𝑣0 .  Therefore, the time for a vehicle to travel across a link consists of two parts: (i) 
queueing time 𝑡𝑞𝑢𝑒𝑢𝑒  at the intersection, and (ii) link travel time  𝑡𝑚𝑜𝑣𝑒 .  

To measure travel delay at a given intersection, a prevailing method is the one proposed by the 
Highway Capacity Manual (TRB, 2000). In the HCM calculation, the average delay 𝑑 for a traffic 
movement consists of three different components: (i) uniform delay 𝑑1, (ii) incremental delay 𝑑2, 
and (iii) initial queue delay 𝑑3. Detailed formulation is provided below. 

                                 𝒅 = 𝒅𝟏 + 𝒅𝟐 + 𝒅𝟑, 

                                            𝒅𝟏 =
𝟎.𝟓𝑪(𝟏−

𝑮

𝑪
)
𝟐

𝟏−
𝑮

𝑪
𝒎𝒊𝒏{𝟏,𝑿}  

, 

                                            𝒅𝟐 = 𝟗𝟎𝟎𝑻[(𝑿 − 𝟏) + √(𝑿 − 𝟏)𝟐 +
𝟖𝒌𝑰𝑿

𝒄𝑻
], 

                                            𝒅𝟑 =
𝟏𝟖𝟎𝟎𝑸𝒃(𝟏+𝝁)𝝉

𝒄𝑻
,                                                                              
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                                              𝝉 = {
𝟎 𝑸𝒃 = 𝟎

𝒎𝒊𝒏(𝑻,
𝑸𝒃

𝒄(𝟏−𝒎𝒊𝒏 (𝟏,𝑿))
) 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

,                                       

𝝁 = {
𝟎 𝝉 < 𝑻

𝟏 −
𝒄𝑻(𝟏−𝒎𝒊𝒏(𝟏,𝑿))

𝑸𝒃
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆,                                           (22) 

where 𝑐 is the capacity, 𝑋 is the ratio of flow rate to capacity (𝑓/𝑐), 𝑇 is the analysis time period, 
𝐼 is the upstream filtering/metering adjustment factor, 𝑘 is the incremental delay factor, and 𝑄𝑏  
is the initial queue.  

When traffic is congested, i.e., 𝑋 ≥ 1, the delay calculation can be rewritten as  

𝒅 = 𝜶 (𝑿, 𝒄,
𝑮

𝑪
) + 𝜷(𝒄)𝑸𝒃,                                                              (23) 

where 𝛼(. ) and 𝛽(. ) are functions. If signal settings (𝐺/𝐶) remain unchanged and arrival flow 𝑓 
changes slowly in the analysis time period T, the evolution of queue lengths for a given traffic 
movement follows the pattern in Figure 31. Therefore, the average queue 𝑄𝑎𝑣𝑔 can be computed 

as 

𝑸𝒂𝒗𝒈 ≈ 𝑸𝒃 + 𝜽(𝑿, 𝒄,
𝑮

𝑪
),                                                             (24) 

where 𝜃(. ) is also a function. 

 

Figure 31 Evolution of queue lengths under near-stationary states for a given traffic 

movement. 

Let’s consider 𝑛 intersections along a corridor, which have similar road geometries and signal 
settings. Also, we assume the demands of left-turn and right turn vehicles are low to ensure 
minimal interactions with the through vehicles. The total time 𝑡𝑡 for through vehicles crossing 
these intersections consists of the queueing time and the travel time with speed 𝑣0, which can 
be computed as 

                                      tt = ∑ [
Li

v0
+ αi (Xi, ci,

Gi

Ci
) + βi(ci)Qb,i]

n
i=1  

                                          = ∑
Li

v0

n
i=1 +∑ [αi (Xi, ci,

Gi

Ci
) + βi(ci)Qb,i]

n
i=1  

                                          ≈ ∑
Li

v0

n
i=1 + ∑ [αi (Xi , ci ,

Gi

Ci
) + βi(ci)θi (Xi, ci,

Gi

Ci
) + βi(ci)Qavg,i]

n
i=1  
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                                          = ∑
Li

v0

n
i=1 + ∑ ϕi (Xi , ci ,

Gi

Ci
)n

i=1 + ∑ βi(ci)Qavg,i
n
i=1  

                                         ≈
nL

v0
+ nϕ(X, c,

G

C
) + β(c)∑ Qavg,i

n
i=1  

= 𝒕𝒕𝒗𝟎 + 𝒕𝒕𝒒𝒖𝒆𝒖𝒆 (𝑿, 𝒄,
𝑮

𝑪
) + 𝜷(𝒄)𝑸𝒕𝒐𝒕,                                                   (25) 

where Li ≈ L , Xi ≈ X , ci ≈ c , 
Gi

Ci
≈

G

C
, ϕi(. ) = αi (Xi, ci,

Gi

Ci
) + βi(ci)θi (Xi, ci,

Gi

Ci
) ≈ ϕ (.), and 

βi ≈ β. In addition, we denote ttv0 =
nL

v0
, ttqueue (X, c,

G

C
) = nϕ(X, c,

G

C
), and Qtot = ∑ Qavg,i

n
i=1 . 

Note that Qtot is the total vehicle queues (in the averaged sense) of the through movement for a 
single direction along these n intersections.  

From Equation 26, it is clear to see there exists a linear relation between the total travel time 𝑡𝑡 
and the total vehicle queue Qtot for the through movement. Furthermore, if the left-turn and 
right-turn demands are relatively low, traffic dynamics at a given intersection approach is 
dominated by the through vehicles. In such a case, we also expect this linear relation is valid 
between the total travel time and the total vehicle queues of all traffic movements.  Therefore, 
we have the following conjecture. 

Conjecture: Under congested traffic conditions, the total travel time crossing multiple 
intersections along a corridor is linearly related to the total vehicle queues at these intersection 
approaches when: (i) these intersections have similar road geometries and signal settings; and 
(ii) the left-turn and right-turn demands are relatively low. 

Note that one reason of having the above conjecture for all traffic movements instead of through 
movement only is because it is difficult to have consistent and accurate queue estimates for 
through vehicles due to incomplete detector layouts in the field.  

In the following subsections, we are going to validate this linear relation using Bluetooth travel 
times from the field and the queue estimates from our proposed method. 

3.4.2 Study Site and Data Sources 

The selected study site consists of five intersections along Huntington Dr in the City of Arcadia, 
CA and is shown in Figure 32: @Santa Clara St, @ Santa Anita Ave, @First Ave, @Second Ave, and 
@Gateway Dr. Within the study site, we have good detector coverage, particularly along the 
eastbound and the westbound directions. In addition, we have two Bluetooth stations installed 
in this study site: one is at Huntington Dr & Santa Clara St, while the other is at Huntington Dr & 
Gateway Dr. As shown in the figure (partial information is also provided in Figure 6), these five 
intersections have similar road geometries in the eastbound and the westbound directions. Also, 
according to the timesheets from the field (partial information is also provided in Figure 7 and 
Table 2), these intersections have similar settings of traffic signals. Therefore, this is a good study 
site to validate the conjecture on the linear relation between the total travel time and the total 
(averaged) vehicle queue in the eastbound and the westbound directions.  
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Figure 32 Study site for validation 

Here, the travel time data is retrieved from the Bluetooth stations. However, given the low 
penetration rates of vehicles equipped with Bluetooth devices, we collected the data for four 
months, from 2016-01-01 to 2016-04-30, and used the weekday travel time profile (median 
values) for validation. 

Similarly, detector data and signal phasing data within the same period were collected from 
Arcadia’s TCS servers. The detector data is aggregated into five minutes, while the signal phasing 
data is reported cycle by cycle. In addition, we can get the planned signal phasing settings from 
the timesheets in the field. All the above information is used as inputs into the queue estimation 
model proposed in previous sections.  

3.4.3 Validation Results 

Figure 33 illustrates the relation between the estimated total queues and the Bluetooth travel 
times in the eastbound direction. From the weekday profiles in Figure 33(a), we can find that 
traffic is congested in the afternoon peak period, from 2 PM to 8 PM. During this time periods, 
we do see a strong correlation between the estimated total queues and the Bluetooth travel 
times. Therefore, we performed a regression analysis on the data selected in this time period 
(i.e., in the red-dashed rectangle), and the results are provided in Figure 33(b). Clearly, a strong 
linear relation exists with a R-Square of 0.72.  

Similarly, we extend our analysis to the westbound direction, and the results are provided in 
Figure 34. Clearly, from Figure 34(a), traffic is congested in the morning peak period, from 6AM 
to 10AM. We performed the same regression analysis on the data selected in this time period 
(i.e., in the red-dashed rectangle), and find a strong linear correlation with a R-Square of 0.72. 
The results are shown in Figure 34(b). 

Based on the above analysis, it is confirmed that the conjecture on the linear relation between 
the estimated total queue and the observed travel time is valid. That also means the proposed 
queue estimation is valid and can produce reasonable estimates consistent with real-world 
observations. 
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a. Weekday profiles  

 

(b) Linear relation in the selected afternoon peak period 

Figure 33 Relation between estimated total queues and Bluetooth travel times in the EB 
direction. 
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a. Weekday profiles 

 

(b) Linear relation in the selected morning peak period 

Figure 34 Relation between estimated total queues and Bluetooth travel times in the WB 
direction. 

3.5 Traffic Initialization from Estimates of Traffic States and Queues 

In Section 3.4, we have proposed methods to estimate traffic states and queues from detector 
and signal phasing data. In this section, we will introduce how to apply these estimates for the 
purpose of traffic initialization in microsimulations. 

3.5.1 Framework of Traffic Estimation and Initialization in AIMSUN 

In Figure 35, we provide the framework of traffic estimation and initialization in AIMSUN. It 
consists of the following components: 
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(i) Data Archive  

The database is used to host multiple sources and types of data: (a) detector data and 
signal information from the field; and (b) network information and simulation data 
from the AIMSUN model. The data from field detectors contains flows and 
occupancies at the interval of five minutes, while the signal information contains both 
planned and actual cycle lengths and green times for the phases. The network from 
the AIMSUN model is an important input for both estimation and initialization, which 
contains detailed information of nodes, sections, and detectors. Considering the 
AIMSUN model is well calibrated, a set of simulation data is required for initialization. 
Particularly, OD information within a link is an important input for initialization since 
we need to assign a vehicle with a certain OD to tell where it should go. Other statistics 
such as lane-based speed and flow are also collected. In addition, it is normal to have 
intersections and links without detector coverage. Therefore, snapshots of vehicle 
trajectories are recorded in order to fill in appropriate number of vehicles inside these 
intersections and links. 

(ii) Arterial Traffic Estimation. 

For arterial traffic estimation, network information such as intersection geometries 
and detector locations and types is used as static inputs. Detector data and signal 
information, either real-time or historical, are used as dynamic inputs to assess the 
traffic states and queues for the available traffic movements at a given intersection 
approach. The estimation method follows the one proposed in Section 3.3. Due to the 
fact that detector data is aggregated into the interval of 5 minutes, the estimated 
states and queues are the “averaged” ones within 5 minutes. 

(iii) Arterial Traffic Initialization. 

In the initialization step, the output from the estimation step is used as one of the 
inputs. However, the estimated queues are the “averaged” ones within fixed time 
intervals. If one wants to initialize the network and kick off simulation at a certain 
time, it requires a method that can convert the average queue into different portions 
of moving and queued vehicles. Therefore, signal information is required to 
determine the signal state at a given time input. In order to place vehicles to a specific 
lane on a certain section, the AIMSUN network is required as input. Also, lane-
based/link-based OD information is needed to tell a vehicle where it should go when 
we place it on a link. Other information such as speed is used to tell how fast a vehicle 
can travel within the link. In addition, considering not all intersections and links have 
detector coverage, we will use vehicles from AIMSUN simulations and place them on 
those links.  
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Figure 35 Framework of traffic estimation and initialization in AIMSUN. 

3.5.2 Initialization Algorithms 

At signalized intersections, there exist different compositions of vehicles during the green and 
red time periods. As shown in Figure 36, when the traffic light is red, there exist two portions of 
vehicles: one portion consists of queued vehicles that are waiting at the stopline for the next 
green period, while the other consists of moving vehicles from the upstream. However, when the 
traffic light turns green, there exist three portions of vehicles: one portion in the most 
downstream consists of vehicles moving with the saturation speed/headway; right after that, 
there may exist a portion that consists of queued vehicles which may be cleared before the end 
of green period; the third portion consists of moving vehicles that are generated from the 
upstream intersections. 
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Figure 36  Composition of vehicles at a signalized intersection approach. 

In our case, we want to simplify the compositions of vehicles at a give intersection approach to 
only consider two portions of vehicles: (i) queued vehicles at the most downstream, and (ii) 
moving vehicles in the upstream. This simplification will introduce errors during the green time 
period. However, this error is not critical if we can have a good estimate of the traffic state and 
put a reasonable number of vehicles inside the link. Also, once simulation starts, this error will 
become a minor issue after one or two cycles.  

The way to assign vehicles to a given intersection approach using the estimates of traffic states 
and queues is described below. 

 

Particularly, at a certain time 𝑡, we use signal settings in the field to determine its current state: 
whether it is in the green or red time period, and how long it has been green or red. Based on 
this information, we can determine the portions of queued and moving vehicles.  

As a first step, we need to know the minimum and maximum queue lengths for a given traffic 
movement under its current green time settings. Suppose the allocated green time is 𝐺, and the 
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saturation headway is ℎ. Then the maximum number of vehicles that can be cleared by the 
allocated green time within a cycle can be computed as 

𝑵𝒎𝒂𝒙 =
𝑮

𝒉
                                                                                  (26) 

Then there are two cases in calculating the minimum and maximum queues, which are provided 
in Figure 37.    

(i) With no initial queue when 𝑁𝑚𝑎𝑥 ≥ 2𝑄𝑎𝑣𝑔  

In this case, the minimum queue 𝑄𝑚𝑖𝑛 is  

𝑸𝒎𝒊𝒏 = 𝟎                                                                                   (27) 

And the maximum queue 𝑄𝑚𝑎𝑥  is  

𝑸𝒎𝒂𝒙 = 𝟐 × 𝑸𝒂𝒗𝒈                                                                      (28) 

(ii) With an initial queue when 𝑁𝑚𝑎𝑥 < 2𝑄𝑎𝑣𝑔  

In this case, the minimum queue 𝑄𝑚𝑖𝑛 is  

𝑸𝒎𝒊𝒏 =
𝟐𝑸𝒂𝒗𝒈−𝑵𝒎𝒂𝒙

𝟐
                                                                   (29) 

And the maximum queue 𝑄𝑚𝑎𝑥  is  

𝑸𝒎𝒂𝒙 = 𝑸𝒂𝒗𝒈 +
𝑵𝒎𝒂𝒙

𝟐
                                                            (30) 

 

Figure 37 Estimation of minimum and maximum queue lengths with/without initial queues 

After calculating the minimum and maximum queues, we consider: 

(i) The number of vehicles within an arterial link (between two intersections) is 𝑄𝑚𝑎𝑥 ; 

(ii) The portions of queued and moving vehicles are determined according to the 

current active traffic state (Geen/Red) and how long it has been in such a state. 

Therefore, we can have the following calculations: 

(i) Current signal state has been Green for 𝐺𝑎𝑐𝑡 ≤ 𝐺. 

𝑵𝒎𝒐𝒗𝒆 =
𝒎𝒊𝒏{𝑮𝒂𝒄𝒕,𝒉𝑸𝒎𝒂𝒙}

𝒎𝒊𝒏 {𝒉𝑸𝒎𝒂𝒙,𝑮}
(𝑸𝒎𝒂𝒙 − 𝑸𝒎𝒊𝒏)                                   (31) 

𝑁𝑞𝑢𝑒𝑢𝑒 = 𝑄𝑚𝑎𝑥 −𝑁𝑚𝑜𝑣𝑒                                                             (32) 
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(ii) Current signal state has been Red for 𝑅𝑎𝑐𝑡 ≤ 𝐶 − 𝐺 

𝑵𝒒𝒖𝒆𝒖𝒆 = 𝑸𝒎𝒊𝒏 +
𝑹𝒂𝒄𝒕

𝑪−𝑮
(𝑸𝒎𝒂𝒙 − 𝑸𝒎𝒊𝒏)                                     (33) 

𝑁𝑚𝑜𝑣𝑒 = 𝑄𝑚𝑎𝑥 −𝑁𝑞𝑢𝑒𝑢𝑒                                                             (34) 

3.5.3 Application to the I-210 Connected Corridors Pilot 

In this subsection, we illustrate how to apply this estimation-initialization framework to real 
networks, e.g., the I-210 Connected Corridors Pilot. Sensor placement (location & type) is 
provided in Figure 38(a), while the simulation network in AIMSUN is provided in Figure 38(b). 
Even though we have more than 400 intersections in this network, we now only have a stable 
data feed for the detectors in the City of Arcadia, which is highlighted with a red-dashed circle in 
Figure 38(a). Therefore, we only apply the estimation-initialization framework to the 
intersections with detector coverage in this city. For the rest of the network, including freeways 
and arterial road links, vehicles are generated from the simulation backup in AIMSUN. In the near 
future, when detector data is available for other cities, we will apply this framework to the whole 
corridor.   

 
a. Sensor placement 

 

(b) Simulation network in AIMSUN 

Figure 38 Sensor placement and simulation network of the I-210 Connected Corridors Pilot. 

Figure 39 demonstrates the traffic estimation-initialization framework in the study site (see 
Figure 6 and Figure 32) along Huntington Dr in Arcadia. For each intersection approach with 
detector coverage, queues are estimated using the proposed method in Section 3.3 and then are 
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converted into simulated vehicles using the initialization method in Section 3.5.2. As highlighted 
in Figure 39 (by red rectangle), these simulated vehicles are inserted into the designated links 
and lanes in the network using Python scripts: queued vehicles first, and moving vehicles next. 
For freeway links and intersections without detector coverage, vehicles are generated from the 
simulation backup and inserted back to the corresponding links and lanes in the network using 
Python scripts.  An example is highlighted by the green-dashed rectangle in Figure 39. 

 

Figure 39 Demonstration of traffic estimation and initialization along Huntington Dr in 
Arcadia. 

3.6 Discussion 

In this part, we focused on the estimation of arterial traffic using the trapezoidal fundamental 
diagram proposed in Part II. We first demonstrated the validity of the two occupancy thresholds 
for advance and stopline detectors by showing a good fit with the data both from the field and 
microsimulations. Then we developed an estimation algorithm that handles various aspects in 
the field, such as incomplete detector layout and detection of mixed traffic movements. For each 
traffic movement, approach-level traffic states are assessed based on the estimated states from 
associated individual detectors, and average queues are determined based on these traffic states 
as well as the restrictions of road geometry and detector layout. Furthermore, we demonstrated 
the validity of the estimation algorithm by showing a strong correlation between the queue 
estimates and the observed Bluetooth travel times from the field. In addition, we developed an 
estimation-initialization framework to initialize traffic states in microsimulations in AIMSUN. The 
proposed initialization algorithm will generate simulated vehicles using the queue estimates and 
some other necessary inputs from the AIMSUN model. These simulated vehicles consist of two 
portions: queued vehicles and moving vehicles. They are inserted into the designated links and 
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lanes in the network using Python scripts accordingly: queued vehicles first and moving vehicles 
next. Such a framework was demonstrated using the I-210 AIMSUN model in the City of Arcadia. 
The proposed estimation-initialization framework is novel, which provides a fundamentally 
different way of state estimation and initialization. It is expected to outperform the conventional 
method given good detector coverage and data quality. 

4. Part IV: Conclusion and Future Research 

4.1 Conclusion 

In this project, a novel approach has been developed to estimate traffic states on arterial road 
links using both loop detector data and signal phasing information. The approach consists of the 
following two tasks: (i) estimate the traffic flow fundamental diagrams for arterial road links that 
are used to categorize traffic states into different regimes; (ii) develop estimation algorithms that 
utilize the proposed fundamental diagram and produce estimates of traffic states and vehicle 
queues for the traffic movements at a given intersection approach.  

The proposed arterial fundamental diagram is trapezoidal due to the presence of signal control. 
Two occupancy thresholds are proposed to divide traffic into three different regimes: 
uncongested, congested, and downstream queue spillback. The required parameters are closely 
related to road geometry, detector layout, and vehicle dynamics, and can be either retrieved or 
estimated from field data. In our development, we carefully analyzed the limitation of point 
detection as well as potential impacts of platoon dispersion, initial queue, and coordination level 
on the shape of the proposed trapezoidal fundamental diagram. We concluded that the proposed 
trapezoidal fundamental diagram is point-based and represents most of the traffic states at the 
link level. But it fails to detect more traffic states when traffic is extremely congested and the 
residual queue spills over the advance detectors. We also analytically and graphically 
demonstrated that the estimation of queue waiting time at advance detectors is accurate under 
minor platoon dispersion and the impact of initial queue can be ignored if we consider near-
stationary traffic states. However, poor coordination level will significantly impact traffic 
performance, which drifts the observations in the flow-occupancy plots to the right with higher 
occupancies. By selecting a study site with three intersections along Huntington Drive in the City 
of Arcadia, we carefully analyzed the data from both advance and stopline detectors and decided 
to use the data from the former since the measurements are more reliable and less impacted by 
the traffic signal. In the proposed trapezoidal fundamental diagram, one of the key parameters 
is the saturation flow rate, which is lane specific and should be calibrated/estimated from field 
data. We proposed a calibration algorithm and applied it to estimate the saturation flow rates at 
the advance detectors in the study site. Results showed that the estimated saturation flow rate 
varies a lot, from 1200 veh/hr/ln to 2300 veh/hr/ln. We found that inappropriate detector 
placement, temporary lane blockage, slow turning movements, and active pedestrian crossings 
will significantly reduce the lane throughput, which as a result will lead to a low saturation flow 
rate. Furthermore, we developed an algorithm to estimate the upper bounds of the flow-
occupancy plots, which is considered to represent the actual trapezoidal fundamental diagrams. 



 65 

We then applied this algorithm to the advance detectors in the study site and compared the 
estimated upper bound with the estimated trapezoidal fundamental diagram. Results 
demonstrated that the estimated trapezoidal fundamental diagram generally matches the field 
data well with low MAPEs. Some exceptions with high MAPEs were found, which may be caused 
by: (i) the lack of enough data points, and (ii) poor coordination level. 

Furthermore, we extended our study to estimate traffic states at intersection approaches based 
on the proposed trapezoidal fundamental diagram, particularly using the two occupancy 
thresholds. As a first step, we confirmed the validity of the two occupancy thresholds at both 
advance and stopline detectors since they matched both observed and simulated data very well. 
Then for a given intersection approach, we developed a novel estimation algorithm that takes 
into account different configurations of detector layouts and traffic movements. The estimated 
states and average queues for the traffic movements (left-turn, through, and right-turn) at an 
intersection approach are determined based on the traffic states at both advance and stopline 
detectors. When traffic is congested and no significant left-turn and right-turn movements at 
multiple intersections along an arterial corridor, we theoretically proved that there exists a linear 
relation between the total vehicle queues and the travel times. The relationship was validated 
on a segment of five intersections along Huntingtin Drive in the City of Arcadia using detector 
data and Bluetooth travel times.  In addition, we developed a novel estimation and initialization 
framework that reads field data, estimates average vehicle queues, and generates simulated 
vehicles in the AIMSUN microsimulation software. We successfully applied such a framework to 
the arterial intersections in the City of Arcadia in the I-210 Connected Corridors pilot in AIMSUN.  

4.2 Future Research Directions 

As discussed above, efforts have been devoted to estimating the trapezoidal fundamental 
diagram and applying it to estimate traffic states on arterial road links. Such a comprehensive 
study provides building blocks for a number of future studies, which are listed below: 

(i) Detection of lane blockage and queue spillback: Lane blockage and queue spillback 
often occur at arterial road intersections, particularly for left turns with insufficient 
green times. It may cause serious traffic problems if such a phenomenon occurs 
frequently and lasts for a long time. Luckily, the findings in our study provide a novel 
way to identify this phenomenon if the detector coverage is complete. As illustrated 
in previous chapters, we can apply the two occupancy thresholds to categorize traffic 
states into three regimes at advance detectors: Uncongested, Congested, and 
Downstream spillback. For stopline detectors, even though the flow-occupancy plots 
are messy, we demonstrated that it is still possible to apply the second occupancy 
threshold to categorize the traffic states into two regimes: Uncongested, 
Congested/Downstream spillback. Therefore, if one intersection approach has 
complete coverage of detectors, it is possible to identify potential lane blockages and 
downstream queue spillback using the estimated traffic states from both advance and 
stopline detectors. Such a detection can be real-time if the data stream is real-time. 
Also, we can develop a new performance metric to quantify the performance of signal 
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control at the intersection based on the occurring frequency of lane blockage and 
queue spillback.  

(ii) Optimal traffic signal control: From our analysis, we can clearly see that the capacity 
of the trapezoidal fundamental diagram is closely related to the allocated green times 
to the traffic movements at the targeted intersection approach. A larger green ratio 
often results in a higher capacity. Meanwhile, coordination level plays another key 
role in traffic performance. A good coordination level will allow vehicles travel freely 
across the intersection without stopping, which as a result having a high flow rate with 
a low occupancy at both advance and stopline detectors.  

For a given intersection approach, the inflow is actually the sum of outflows of 
upstream intersections. Therefore, the whole arterial network is connected since the 
control of one intersection is also related to the control of other intersections. In the 
future study, we are interested in developing adaptive signal control strategies for 
individual intersections based on the proposed trapezoidal fundamental diagram. The 
proposed control strategies aim to use the trapezoidal fundamental diagrams at the 
targeted intersection as the optimal references and try to adjust the green times and 
offset to minimize the total distances between the actual traffic flows and the optimal 
ones. The proposed control strategies are decentralized, which focuses on individual 
intersections. However, we would like to further investigate their system impacts on 
large-scale arterial networks. 

(iii) Data fusion with probe trajectories: In this study, the proposed estimation algorithm 
purely relies on the data from loop detectors. However, several key aspects limit its 
applications. First of all, incomplete detector layout will reduce the estimation 
accuracy. In the field, for most of the cases, only left-turn movement has complete 
detector coverage with both advance and stopline detectors. For other traffic 
movements, e.g., through and right-turn, only data from advance detectors is 
available. Therefore, in this case, we can only have rough estimates of traffic states 
for through and right-turn movements. Furthermore, loop detectors are not always in 
good health.  Even with complete detector coverage, poor data quality also reduces 
the reliability of the estimated traffic states. Therefore, in the near future, we are 
interested in bringing more data types, e.g., probe trajectories, and fusing them with 
loop detectors to have more robust and accurate estimates of traffic states.  
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