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bEuropean Central Bank, Sonnemannstraße 20, Frankfurt am Main, 60134, Germany

cUniversity of California, Davis, One Shields Avenue, Davis, 95616, CA, United States

Abstract

Loan guarantees represent a form of government intervention to support bank
lending. However, their use raises concerns as to their effect on bank risk-taking
incentives. In a model of financial fragility that incorporates bank capital and a bank
incentive problem, we show that loan guarantees reduce depositor runs and improve
bank underwriting standards, except for the most poorly capitalized banks. We
highlight a novel feedback effect between banks’ underwriting choices and depositors’
run decisions, and show that the effect of loan guarantees on banks’ incentives is
different from that of other types of guarantees, such as deposit insurance.
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1. Introduction

Periods of crisis, when economic fundamentals are poor, are catalysts for gov-

ernment intervention. Often these periods are coupled with credit market freezes,

with banks sitting on capital rather than lending it out, possibly further worsening

fundamentals to the extent that viable firms get denied credit. A case in point is the

Covid-19 pandemic, which erupted in early 2020 as an unexpected shock leading to

a sudden and deep liquidity crisis for non-financial corporates and triggering massive

interventions by public authorities (e.g., Eichenbaum et al., 2021; Ding et al., 2021;

Li et al., 2020).

Despite differences across countries, one major form of intervention consisted of

public guarantee schemes (PGSs) on loans aimed at supporting the flow of credit to

the economy following the decline in economic fundamentals. As described in more

detail in Section 2 below, one important element in common in these schemes was

their use as stimulative tools through the offer of credit protection against the default

of the borrower. While sharing the objectives of such programs, their widespread

use has also raised important questions among economists concerning their impact

on lending standards and continuation decisions. While PGSs are typically adminis-

tered by a public authority, the final lending decisions (i.e., selection and monitoring

of the recipient) remain in fact with the financial intermediary. It follows that, as

with any form of insurance, the introduction of PGSs may generate moral hazard

by encouraging riskier lending at the margin through banks’ reduced incentives to

select and monitor borrowers properly (e.g., Kelly et al., 2016; Gropp et al., 2014).2

Similarly, the reliance on public support programs may induce banks, and in par-

ticular those with little capital, to engage in “evergreening,” thus keeping nonviable

2This is a commonly held view concerning the impact of deposit insurance, for instance, and
is often cited as a rationale for prudential policies (e.g., capital requirements) to control excessive
risk-taking.

1



firms alive (see e.g., Acharya et al., 2020, 2021; Laeven et al., 2020; Dursun-de Neef

and Schandlbauer, 2021).

In this paper, we analyze the effect of loan guarantees on banks’ underwriting

incentives in a framework where the asset and liability sides of banks’ balance sheets

endogenously interact and jointly determine banks’ incentives. Unlike other guar-

antee schemes, such as deposit insurance, loan guarantees accrue to banks and help

them remain solvent, thus having the potential to directly influence bank behavior.

In addition, they can also benefit depositors when losses would put the bank at risk

of defaulting on its liabilities, and therefore they have implications for depositors’

withdrawal behavior. Evidence supports the incentive view of demandable debt (e.g.,

Iyer and Puri, 2012; Iyer et al., 2016; Martin et al., 2018; Artavanis et al., 2019; Car-

letti et al., 2021): investors react to signals on banks’ fundamentals when deciding

whether to withdraw their funds and, anticipating this, banks take investors’ reac-

tions into account when making their lending decisions. It follows that the impact

of loan guarantees for lending is best analyzed in a framework that incorporates the

feedback between bank lending decisions and depositor withdrawal decisions.

To this end, we present a model of financial fragility in the spirit of Goldstein and

Pauzner (2005), which we enrich along two important dimensions. First, we introduce

an endogenous effort problem so that, through their underwriting decisions, banks

can influence the success probability of the loans they extend. Second, we assume

that banks maximize profits and fund themselves with equity in addition to deposits.3

The model has two periods. In the first period, banks with some equity capital

raise additional funds in the form of (demandable) debt and grant long-term loans to

finance firms’ projects. These projects yield a return in the final period that depends

3Thus, our framework features both an endogenous run probability and an endogenous bank
effort choice, extending the analysis in Calomiris and Kahn (1991) and (Diamond and Rajan, 2000,
2001), where the threat of a run plays a disciplinary role for bank incentives together with own
capital.
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on both bank effort and economic fundamentals. Depositors may leave their funds

in the bank until projects mature or they may withdraw in the first period, thus

precipitating a run. As is common in global-game models of bank runs, depositors

base their withdrawal decisions on a signal they receive in an intermediate period,

which provides them with information on the fundamentals and which allows them

to draw inferences on other depositors’ behavior. If the bank is unable to meet its

obligations at the final date, the bank’s default leads to costly bankruptcy.

We first show that banks are subject to runs with a probability that decreases

with the amount of capital they have. Highly capitalized banks are subject to runs

only when macroeconomic fundamentals are sufficiently poor, while banks with less

capital are also prone to panic runs, meaning that their depositors may run because

of coordination failures among them. This role for bank capital in determining banks’

exposure to depositor panics is reminiscent of Diamond and Rajan (2000), who argue

that capital reduces the cost of excessive runs. Anticipating depositors’ withdrawal

decisions, banks set the long term payoff on the deposit contract as well as their

underwriting standards.

We then analyze the introduction of loan guarantees. We focus on a scheme in

which the government is in a first-loss position so that, whenever a borrower fails to

repay the promised amount, the government makes a transfer to the bank to cover

the loss, up to some limit. Key for the analysis is the treatment of such transfer in

case of bank default. We consider two cases: either the transfer is subject to the

same bankruptcy costs as any other bank asset or it is protected from such costs

and is not subject to dissipation. The two cases reflect different views on the nature

of bankruptcy costs. The former case, which we refer to as “full bankruptcy costs,”

reflects a situation where bankruptcy losses originate primarily from inefficiencies

in bankruptcy procedures due to hold-up problems among creditors or inefficient

judicial systems. The latter, which we denote as ”bankruptcy-protected,” captures

instead a setting where bankruptcy losses stem primarily from the illiquidity of bank
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assets, such as loans, and hence do not apply to more liquid assets such as government

transfers.

Loan guarantees allow banks to obtain higher profits when they are solvent and

also to repay deposits when losses get sufficiently large. As a result, the presence of a

loan guarantee always leads to a reduction in depositors’ incentives to run. Combined

with banks’ increased profits, these two effects together contribute to increasing

banks’ charter values, thus increasing their incentives to avoid default. This leads

to improved underwriting standards when the guarantees are subject to dissipation

in the event of bankruptcy. The mechanism is reminiscent of that in Cordella et al.

(2018), where greater deposit guarantees may sometimes lead to better monitoring,

and distinct from papers such as Marcus (1984) or Keeley (1990), where changes in

charter value are driven by the degree of banking competition.

By contrast, when guarantees are bankruptcy-protected, the introduction of loan

guarantees may worsen bank monitoring incentives. Since depositors obtain the guar-

anteed transfers also when the bank’s monitoring effort is unsuccessful, the presence

of loan guarantees makes depositors’ withdrawal incentives less sensitive to changes

in bank underwriting standards. This effect reduces the benefit for banks to exert

effort and is dominant for the most poorly capitalized banks.

The impact of loan guarantees on bank underwriting incentives and run probabil-

ities remain qualitatively the same when we consider another guarantee type denoted

as a ”loss sharing” scheme, in which there is sharing of losses between the government

and the bank.4 However, the two schemes differ in terms of costs and effectiveness

for bank incentives. In particular, for a given run probability, the first-loss guarantee

provides greater incentives to the bank but at a higher cost.

In a further step, we analyze another form of bank risk-taking in the form of ever-

4The two schemes we consider mirror the structures of the guarantees used in practice in address-
ing the need for sustaining lending in the aftermath of the Covid-19 pandemic (see, for example,
European Commission (2020)).
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greening incentives (i.e., incentives to continue projects that ought to be liquidated),

which has also been at the center of the policy discussion. We show that the in-

troduction of loan guarantees leads to more evergreening due to depositors’ reduced

incentives to run, in particular for worse-capitalized banks. However, the improved

underwriting resulting from the loan guarantee partly attenuates this negative effect

and on net leads to an increase in total output.

We extend the analysis in two directions. First, we endogenize the deposit rate

in the presence of loan guarantees and show that all results remain unaltered. This

situation reflects the presence of long standing guarantees such as those used in the

US to sustain small businesses. Second, we contrast the results from loan guarantees

to those that obtain from deposit insurance. We show that introducing loan guar-

antees in a context where deposits are insured does not affect the qualitative results

concerning bank underwriting standards, although deposit insurance by itself always

leads to less bank effort.

2. Public guarantee schemes (PGSs)

Guarantees are relatively common in practice both in private and public forms.

For example, Beyhaghi (2022) shows that over one-third of corporate loans issued by

US banks are guaranteed by separate legal entities, mostly in the form of personal

or corporate guarantors. Similarly, Ahnert and Kuncl (2022) report that 62% of

outstanding residential mortgages were insured by the US government through the

Government Sponsored Enterprises in 2018.

The goal of PGSs is to improve access to credit for firms, thus also supporting

employment. From a policy perspective, loan guarantees can be used as stimulative

tools in normal times for businesses that may have difficulty in accessing credit, or

they can be a response to sudden shocks weakening economic fundamentals. An

example of the former can be found in Small Business Administration (SBA) loans,

which provide partial guarantees to private lenders, extending loans to younger firms
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and supporting employment and credit supply to these firms (e.g., Brown and Earle,

2017; Bachas et al., 2021). An example of the latter can be seen in the response

to the outbreak of the Covid-19 pandemic in many economies. To give an order of

magnitude, in Europe more than 320 billion euros of new loans were provided under

these crises response schemes in just four countries – France, Germany, Italy and

Spain – as of September 2020 (ECB (2020); Falagiarda et al. (2020)). Similarly,

in the US 5.16 million borrowers had access to guaranteed loans through the $669

billion Paycheck Protection Program (PPP) as of November 2020 (Balyuk et al.,

2020; Baudino, 2020; Chodorow-Reich et al., 2022).5

Public guarantees are paid when the borrower defaults, thus protecting the lender

from credit losses, and can be provided for loans intermediated by different types of

lenders. For example, in the US the PPP program was applicable to loans provided

by both banks and non-banks such as FinTech lenders, with the two types of lenders

extending around 80% and 20%, respectively, of the total guaranteed loans under

the program (Howell et al., 2021; Erel and Liebersohn, 2022), in line with the fast-

growing importance of FinTech in extending credit to US small businesses (Gopal

and Schnabl, 2022). By contrast, in Europe, given the greater reliance on bank

lending (e.g., ECB (2022)), the set of lenders eligible for PGSs extended during

the pandemic was limited to banks and regulated financial intermediaries (Core and

De Marco, 2021).

A growing literature analyzes the role of banks and other lenders as conduits of

public liquidity through government guaranteed loans to SMEs in Covid times, both

in Europe (e.g., Core and De Marco, 2021; Gonzalez-Uribe and Wang, 2020; Jiménez

et al., 2022) and the US (Balyuk et al., 2020; Bartik et al., 2020; Cole, 2020; Duchin

5Similarly, the European Commission adopted a new crisis framework in March 2022 to support
the economy in the context of Russia’s invasion of Ukraine, whereby Member States can provide
guarantees to ensure banks keep providing loans to companies affected by the current crisis (Euro-
pean Commission, 2022).
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et al., 2022; Hubbard and Strain, 2023). The focus in these studies ranges from

highlighting the importance of supply heterogeneity in the allocation of guaranteed

loans to their implications for firm employment.

While PGSs appear to have been generally successful at maintaining a stable

flow of credit, their use as a response to the pandemic has also been viewed as

entailing some fraud or undesired consequences. For example, focusing on the role

of banks in the PPP program, Granja et al. (2022) find evidence that the program

had little effect on employment in the months following its initial rollout, while

Griffin et al. (2022) find that, in the same context, both misreporting and suspicious

lending by FinTech companies has increased due to the lack of robust verification

requirements. In a similar vein, Altavilla et al. (2021) show that in Europe, despite

being extended to small but creditworthy firms in sectors severely affected by the

pandemic, guaranteed loans partially substituted for pre-existing debt, especially for

riskier firms, thus shifting part of the existing credit risk from banks to governments.

3. Relation to the literature

Our paper makes a number of contributions. First, our framework incorporates a

bank’s effort choice on the asset side in a model of financial fragility, where the prob-

ability of runs is endogenously determined. The paper therefore extends standard

models of financial fragility (e.g., Goldstein and Pauzner, 2005; Allen et al., 2018)

to analyze the importance of the run threat for a bank’s asset choice. This focus is

in line with empirical evidence finding that banks are traditionally highly leveraged

institutions, with debt being kept predominantly in the form of (both insured and

uninsured) demandable (or short term) debt (e.g., Egan et al., 2017).

Another strand of literature has instead analyzed credit risk in the form of bank

monitoring effort and the role of bank capital, but without including considerations

of financial fragility. For example, Holmström and Tirole (1997) study the incentive

problem for a bank to monitor a borrower and show how this incentive depends on
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the amount of capital the bank has. Hellmann et al. (2000), Repullo (2004), Morrison

and White (2005), Dell’Ariccia and Marquez (2006), Allen et al. (2011), Mehran and

Thakor (2011), Dell’Ariccia et al. (2014) study settings where banks are subject to

moral hazard in their monitoring decisions, and where equity capital helps improve

bank incentives (see also Thakor, 2014, for a survey). It follows that banks may have

incentives to raise capital even in the absence of capital requirements. None of these

papers, however, studies how bank monitoring is affected by, and in turn affects,

financial fragility in the form of bank runs. An exception is Kashyap et al. (2020),

who focus on the effect of capital and liquidity for credit and run risk. Instead, we

are interested in the effects of loan guarantees for bank monitoring choice and the

likelihood of runs.

Second, we contribute to the literature on the role of public loan guarantees by

building a framework where guarantees introduced in response to crises impact the

feedback between the asset and liability side of banks’ balance sheets. As remarked

above, guarantees on lending contracts are common in practice. Focusing on third-

party loan guarantees for residential mortgages, Ahnert and Kuncl (2022) present a

model where this type of guarantee decreases lending standards but improves market

liquidity. In their model, lenders can pass default risk to an outside guarantor upon

origination, thus avoiding costly screening. We also analyze loan guarantees upon

origination, but in a context where these are not an alternative to bank screening.

Third, our paper is related to the literature studying alternative ways to transfer

credit risk onto third parties after loan origination. For example, Parlour and Plantin

(2008) and Parlour and Winton (2013) study the effects of credit default swaps

(CDSs) on banks’ monitoring incentives as an alternative to loan sales in secondary

markets. They show that CDSs tend to dominate loan sales only for riskier credits,

while their effects on bank monitoring depend on credit quality. In contrast, we

focus on loan guarantees where banks retain both cash flow and control rights, and

show that in the presence of these guarantees bank incentives depend on the level of
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capital, the size of the guarantee, and the nature of bankruptcy costs.

Fourth, a large strand of literature has focused on the role of government guar-

antees such as deposit insurance or other forms of implicit guarantees on banks’

liabilities. On the one hand, these guarantees are thought to have a positive role

in preventing panics among investors and help stabilize the financial system (e.g.,

Diamond and Dybvig, 1983). On the other hand, they may distort banks’ incentives,

leading to an increase in financial fragility (see e.g., Calomiris, 1990; Acharya and

Mora, 2015). Reconciling the two views, more recent studies show that government

guarantees can improve welfare because they induce banks to improve liquidity pro-

vision (Keister (2016)), although they may also increase the likelihood of runs (Allen

et al. (2018)). The idea that a government guarantee on deposits can actually be

good for incentives has been studied in Cordella et al. (2018), who show that, by

reducing a bank’s cost of funding, a deposit guarantee increases the return to the

bank and creates greater incentives to monitor. In this paper, we focus on PGSs for

loans rather than deposits and study how they affect bank behavior and financial

stability through their interaction on the asset side of the balance sheet.

Finally, our analysis of the effect of loan guarantees on banks’ incentives to engage

in evergreening connects to a recent literature on zombie lending, i.e., the provision

of credit to firms already in distress.6 In Hu and Varas (2021), evergreening emerges

from the existence of dynamic lending relationships and the advantages that a re-

lationship bank can obtain from helping its borrowers to have a strong reputation.

Bruche and Llobet (2014) show that zombie lending arises from limited liability. Rel-

ative to these papers, we focus on the effect that the introduction of a loan guarantee

has on bank incentives to continue providing credit to firms in distress and highlight

the role of bank capital. Related to this last point, Blattner et al. (2023) show em-

6A number of earlier contributions focused on the Japanese experience; see, e.g., Peek and
Rosengren (2005); and Caballero et al. (2008).
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pirically that, following the introduction of more stringent capital requirements in

Portugal, weak banks started to provide credit to distressed firms for which the bank

had been underreporting loan loss provisions prior the regulatory change. A similar

result is also found in Schivardi et al. (2022), who show that during the 2008 financial

crisis undercapitalized banks were more likely to provide credit to zombie firms than

better capitalized ones. In line with this, in our framework poorly capitalized banks

have the greatest incentive to engage in evergreening.

4. The model

Consider a three date economy (t = 0, 1, 2) with banks and a large number of

both firms and (atomistic) risk-neutral investors, with unitary endowment at date

0. On the asset side, each firm has a unit demand for a bank loan to finance a long

term risky project7, which, if held to maturity, yields a return P̃ , with

P̃ =

{
Rθ w.p. q
0 w.p. 1− q .

The date 2 project return depends on the fundamentals of the economy θ and on the

bank’s effort choice q ∈ [0, 1]. The former captures the level of macroeconomic risk,

while the latter represents the (endogenous) effort undertaken by a bank, which we

will refer as either “underwriting” or “monitoring” throughout. We assume that the

fundamentals of the economy θ are drawn from a uniform distribution in the range

[0, 1] with probability α; with complementary probability 1 − α, θ is instead drawn

from a uniform distribution in the range [1, 2]. In this respect, we interpret changes

in α as shocks to the economy’s fundamentals. The assumption θ ∈ [0, 2] guarantees

that intermediation is feasible for any level of capital k. Furthermore, it captures

7This specification implies that investors inelastically supply funds to the bank, and firms have
an inelastic demand for loans, so that we can abstract from quantity effects on either the loan or
the deposit market. On the liability side, investors need only have their reservation utility satisfied
to be willing to deposit, consistent with the idea of a monopolistic deposit market. As specified
below, the loan market is more stylized and the loan rate is set exogenously.
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the realistic case where the borrower defaults only in some states (i.e., when θ < 1)

and, in turn, as we show below, the loan guarantee is only paid when such default

occurs.

Exerting greater underwriting effort q is costly and we assume that the bank bears

a private cost of c q
2

2
. For simplicity, we normalize the interest rate a bank receives

on its loan to R, so that the bank’s payoff is that of a standard debt contract. As

shown in Figure 1, the bank receives full repayment for θ ≥ 1, while there is partial

default for θ < 1, with the bank receiving Rθ and suffering losses R (1− θ).

Insert Figure 1

The loan can be liquidated early at t = 1, in which case it yields an amount whose

value depends on the fundamental θ. Specifically, the liquidation value is equal to

L < 1 for θ ∈ [0, θ̂) and to 1 for θ ∈ [θ̂, 2]. The idea is that the firm’s project can only

be liquidated at a cost when its returns are insufficient to fully repay the bank, while

the asset’s value upon liquidation is not impaired when its returns are high enough to

fully repay the bank’s loan.8 The cutoff value θ̂ is assumed to be close to but strictly

below 1. To this end, we set θ̂ ≤ 1− 2ε and, in most of the analysis, ε is taken to be

arbitrarily close to 0. Finally, we assume that α
∫ 1

0
qRθdθ+(1− α)

∫ 2

1
qRdθ−c q2

2
> 1

for some q, so that granting loans to finance firms’ projects dominates storing as long

as the bank exerts a sufficiently high monitoring effort.

Each bank has (internal) capital of k and, at date 0, raises the remainder 1 − k
from investors in the form of demandable debt. The mass 1− k of investors at each

bank holds a standard demandable deposit contract giving them the possibility to

withdraw early or wait until the final date. At date 1, a depositor, whose outside

option is normalized to 1, can redeem his deposit from the bank at par, i.e., for the

8The assumption concerning the liquidation value L resembles the technical assumption made
in Goldstein and Pauzner (2005) where there is no cost associated with early liquidation for high
enough levels of the fundamental θ.
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same amount that was originally deposited, while he receives r2 > 1 at date 2 if he

waits until then.9

The promised repayments {1, r2} are paid as long as the bank has enough re-

sources. If depositors choose to withdraw at date 1, the bank liquidates as much

of its assets as needed to satisfy withdrawals and carries any remaining amount to

date 2. If the bank has insufficient resources to meet depositors’ demands at date 1,

all its assets are liquidated and the 1 − k depositors receive a pro-rata share of the

liquidation value. By contrast, if the bank fails to repay depositors r2 at date 2, the

bank enters a bankruptcy procedure and depositors experience losses as a result.10

For simplicity, we assume full bankruptcy costs, so that depositors receive nothing

upon insolvency of the bank at date 2. The bankruptcy costs may originate either

from coordination failures among the bank’s creditors which makes it difficult and

costly for them to seize the remaining value of the bank, or from the illiquidity of

the bank’s assets, where some value is lost when selling to alternative users/lenders.

The different possible sources of bankruptcy costs will play an important role in the

analysis of the loan guarantee scheme, as we discuss in detail below.11

9While we assume that the bank offers demandable debt, Carletti et al. (2022) show, in a
similar framework, that profit-maximing banks find it optimal to offer demandable deposit contracts
without penalties for early withdrawals even at the risk of triggering a bank run. Hence, assuming
r1 = 1 is just a normalization in our context. Alternative justifications for the optimality of
demandable debt relate to the presence of asymmetric information problems in credit markets (see
e.g., Flannery, 1986; Diamond, 1991), conflicts between bank managers and debtholders (see e.g.,
Calomiris and Kahn, 1991; Diamond and Rajan, 2000, 2001; Eisenbach, 2017), and idiosyncratic
liquidity shocks to banks’ depositors (e.g., Diamond and Dybvig, 1983).

10Considerable empirical evidence shows that bank bankruptcy costs are substantial. For ex-
ample, James (1991) finds that when banks are liquidated, bankruptcy costs are 30 cents on the
dollar.

11The asymmetric treatment of bankruptcy costs at date 1 and 2 is consistent with the idea
that at least part of the cost associated with bankruptcy may stem from uncertainty related to
the asset return. Importantly, this assumption does not qualitatively affect our results, as we show
in Appendix B, where we replicate the analysis with a symmetric treatment of bankruptcy costs.
Specifically, we consider the presence of bankruptcy costs at both date 1 and 2 as well as their
absence at either date.
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The state of the economy θ is realized at the beginning of date 1, but is publicly

revealed only at date 2. After θ is realized at date 1, each depositor receives a private

signal si of the form

si = θ + εi, (1)

where εi are small error terms that are independently and uniformly distributed over

[−ε,+ε]. After the signal is realized, depositors decide whether to withdraw at date

1 or wait until date 2.

The timing of the model is as follows. At date 0, banks raise deposits with a

deposit contract {1, r2}, and then choose their monitoring effort q. At date 1, after

receiving the private signal about the state of the fundamentals θ, depositors decide

whether to withdraw early or wait until date 2. At date 2, the bank’s project return

is realized and depositors that chose to wait are repaid.

5. Economy without guarantees

In this section, we characterize the allocation for the baseline case where there

are no guarantees. We start by analyzing depositors’ withdrawal decisions at date 1,

taking the deposit contract {1, r2} and the riskiness of the investment project q as

given. Then, we move on to the choice of the monitoring effort q and the terms of

the deposit contract r2.

5.1. Depositors’ withdrawal decision

Depositors base their withdrawal decisions on the signal they receive, as this

gives them information about the economy’s fundamentals θ and allows them to

draw inferences on the actions of all other depositors at the bank. When he receives

a high signal, a depositor expects the return of the bank’s loan portfolio to be high

and, at the same time, he expects that other depositors have also received a high

signal. This lowers his incentives to withdraw early (i.e., run). Conversely, when a

depositor receives a low signal, he expects a low return for the bank, and hence less

13



cash available to repay depositors, and also a large number of depositors to run. As

a result, he has a higher incentive to run. This suggests that depositors withdraw

at date 1 when the signal is low enough, and wait until date 2 when the signal is

sufficiently high.

To show this formally, we first examine two regions of extremely bad and ex-

tremely good fundamentals, where each depositor’s action is based on the realization

of the fundamentals θ irrespective of his beliefs about other depositors’ behavior. We

start with the lower region.

Lower Dominance Region. The lower dominance region of θ corresponds to the

range [0, θ) in which running is a dominant strategy. Upon receiving a signal that

suggests θ is in this region, a depositor is certain that the date 2 expected repayment

is lower than the payment from withdrawing at date 1, even if no other depositors

were to withdraw. Given the presence of bankruptcy costs, the depositor knows

that at date 2 he will receive either qr2 > 1 if the bank is solvent or 0 otherwise.12

Thus, he has an incentive to run whenever the bank is insolvent, i.e., for θ below the

threshold θ (k), which is the solution to

Rθ = (1− k) r2. (2)

Upper Dominance Region. The upper dominance region of θ corresponds to the

range [θ, 2] in which fundamentals are sufficiently good that waiting to withdraw

at date 2 is a dominant strategy. The higher liquidation value for θ ≥ θ̂, together

with the promised date 1 repayment of 1, guarantees that the bank liquidates only

12The condition qr2 > 1 is required for investors to deposit and for intermediation to be feasible.
If qr2 < 1, depositors would never find it optimal to wait until date 2 and would strictly prefer
to withdraw early, at date 1. Anticipating this, all depositors would prefer to pursue whatever
alternative investment is available to them yielding 1 rather than deposit at the bank. Hence, a
minimum requirement for intermediation to be feasible is that the bank chooses a high enough
level of monitoring so that, given the equilibrium r2, qr2 > 1. This can readily be achieved for c
sufficiently low and/or R sufficiently high.
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1 unit of its investment for each withdrawing depositor, thus preventing strategic

complementarity in depositors’ decisions. Given that θ̂ > θ, the bank’s resources are

enough to fully repay depositors’ promised repayment at date 2. This implies that,

for any θ ≥ θ̂, a depositor waiting until date 2 expects to receive qr2 > 1. It follows

that θ = θ̂, so that the upper dominance region corresponds to the region where

there is no impairment in the liquidation value of the assets, as described above.13

The Intermediate Region. When the signal indicates that θ is in the intermediate

range, [θ, θ), a depositor’s decision to withdraw early depends on the realization of

θ as well as on his beliefs regarding other depositors’ actions. To see how, we first

calculate a depositor’s utility differential between withdrawing at date 2 and at date

1. Using n to represent the fraction of depositors who choose to withdraw early, this

differential is given by

v (θ, n) =


qr2 − 1 if 0 ≤ n ≤ n̂ (θ)
0− 1 if n̂ (θ) ≤ n ≤ n

0− L
(1−k)n

if n ≤ n ≤ 1
, (3)

where n̂ (θ) solves

Rθ

(
1− n̂ (1− k)

L

)
− (1− n̂) (1− k) r2 = 0, (4)

while n solves

L = n (1− k) .

The threshold n̂ (θ) represents the proportion of depositors running at which a bank

is no longer able to repay r2 to those waiting until date 2, while n captures the

number of withdrawing depositors at which a bank liquidates the entire portfolio at

date 1. As illustrated in Figure 2, when 1 − k ≤ L the function v (θ, n) is constant

in n and is equal to qr2 − 1 > 0 if θ ≥ θ and to −1 if θ < θ. Hence, in this case

13As θ̂ ≤ 1, the discontinuity in the distribution of θ due to the parameter α at θ = 1 is included
in the upper dominance region and thus does not affect the characterization of the panic threshold
θ∗ below.
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v (θ, n) is either positive or negative depending on whether θ is above or below θ.

This implies that a depositor’s incentive to run is independent of what others do or,

in other words, that runs are only triggered by the fear that fundamentals are low.

Insert Figure 2

Figure 3 illustrates the case when 1− k > L and shows that the function v (θ, n)

is constant and positive for 0 ≤ n ≤ n̂ (θ), while it is always below zero in the range

n̂ (θ) ≤ n ≤ n.

Insert Figure 3

Since 1 − k > L and each depositor is promised 1 unit at date 1, the bank has to

liquidate more units of the project than the number of withdrawing depositors, thus

being forced to liquidate all its assets prematurely if many depositors demand their

funds at date 1. This introduces strategic complementarities in depositors’ with-

drawal decisions, as is typical in models of runs (e.g., Goldstein and Pauzner, 2005):

the expected payoff of depositors waiting until date 2 is decreasing in the proportion

n of depositors withdrawing at date 1, so that their incentive to run increases with

n. Hence, a depositor’s withdrawal decision depends on other depositors’ behavior

and runs are driven by fears of large withdrawals in the form of panics.

Throughout, we focus our results on the limiting case where ε → 0, so that the

noise in depositors’ information becomes vanishingly small. This implies that all

depositors behave alike: they all either withdraw at date 1, or wait until date 2. The

following proposition characterizes depositors’ withdrawal decisions.

Proposition 1. The model has a unique equilibrium for depositors’ withdrawal de-

cisions, where depositors only withdraw below a certain threshold of fundamentals,

as follows:
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a) When 1− k ≤ L, only fundamental runs occur for θ below the threshold θ(k),

where

θ(k) =
(1− k) r2

R
, (5)

with θ(k) decreasing in k: ∂θ(k)
∂k

< 0.

b) When 1− k > L, panic runs also occur for θ below the threshold θ∗(q, k, L, r2),

where

θ∗(q, k, L, r2) = θ
qr2 − π1

qr2 − π1
(1−k)
L

, (6)

and π1 =
∫ n

0
dn +

∫ 1

n
L

(1−k)n
dn. The threshold θ∗ (q, k, L, r2) ∈ (θ (k) , 1) decreases

with q, L, and k: ∂θ∗(q,k,L,r2)
∂q

< 0, ∂θ∗(q,k,L,r2)
∂L

< 0, and ∂θ∗(q,k,L,r2)
∂k

< 0.

The proposition shows the importance of bank capital for run risk. When a bank

is well capitalized (i.e., when 1−k ≤ L), runs are driven only by poor fundamentals,

and the critical threshold θ is decreasing in the amount of capital k. In contrast,

when a bank has little capital (i.e., when 1 − k > L), it is exposed to runs over a

larger range of fundamentals (i.e., for θ < θ∗ with θ∗ > θ) due to the presence of

strategic complementarities. The panic threshold θ∗ decreases with the monitoring

effort q, the level of capital k, and the liquidation value L. A higher q increases

depositors’ expected payoff from waiting until date 2, while a higher k or a higher

L reduces the bank’s liquidation needs, thus mitigating strategic complementaries.

Thus, banks with little capital face higher run risk, and we assume that at the limit

θ∗ → θ as k → 0.14

The role of capital highlighted in Proposition 1 is, to our knowledge, novel, and

raises the question of which type of run may be more relevant in practice. As dis-

cussed in the survey by Goldstein (2012), there is a strong link between crises and

14Letting k → 0 in the expression for θ∗ in (6), it can be seen that θ∗ approaches its maximum,
i.e., θ∗ → θ as L decreases, as this leads to an increase in the strategic complementarity among
depositors’ withdrawal decisions.
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fundamentals, with coordination failures amplifying depositors’ response to funda-

mentals. Our model links this discussion to the level of bank capital. In normal

times, banks tend to be well capitalized on average, and thus we would expect fun-

damental crises to be the most relevant cases. By contrast, in a downturn banks

tend to have more stretched levels of capital, and thus crises may also arise due to

coordination failures among depositors. As we show below, however, for the most

part this distinction does not matter much for understanding the effects of a loan

guarantee on financial stability.

5.2. Bank’s date 0 decisions

Having characterized depositors’ withdrawal decisions, we now solve for banks’

underwriting standards q and the repayment r2. We use θR to denote the relevant

run threshold, i.e., θR = θ when 1− k ≤ L and θR = θ∗ when 1− k > L.

Each bank chooses q and r2 anticipating depositors’ withdrawal decisions at date

1, thus solving the following problem:

max
q,r2

Π = α

∫ θR

0

qmax

{
Rθ

(
1− 1− k

L

)
, 0

}
dθ + α

∫ 1

θR
q [Rθ − (1− k) r2] dθ

+ (1− α)

∫ 2

1

q [R− (1− k) r2] dθ − cq2

2
(7)

subject to

α

∫ θR

0

min

{
L

1− k
, 1

}
dθ︸ ︷︷ ︸

utility obtained in a run

+ α

∫ 1

θR
qr2dθ + (1− α)

∫ 2

1

qr2dθ︸ ︷︷ ︸
utility obtained if no runs occur

≥ 1︸︷︷︸
outside option

(8)

and

Π ≥ k. (9)

The first three terms in (7) capture the three instances when the bank accrues positive

profits at date 2, while the last term captures the monitoring cost. When a run
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occurs, a bank with 1 − k ≤ L does not liquidate its entire portfolio at date 1 and

thus obtains the return Rθ on the 1 − 1−k
L

remaining units of assets at date 2 with

probability q. When no run occurs, a bank makes positive profits at date 2 as given

by the project return (Rθ for θ ∈ (θR, 1) and R for θ ∈ [1, 2]) minus the repayment

(1− k) r2 to depositors.

The condition in (8) represents depositors’ participation constraint and requires

that the expected promised repayment from depositing be no lower than depositors’

outside option. The expected repayment is given by the minimum between the pro-

rata share L
1−k and the promised repayment 1 if there is a run (i.e., when θ ≤ θR)

and qr2 if there is no run (i.e., θ > θR). Finally, the inequality in (9) is simply a

non-negativity constraint on bank expected profits. We have the following result.

Proposition 2. The equilibrium is as follows:

a) When 1− k ≤ L, each bank chooses q as a solution to

α

∫ θ

0

Rθ

(
1− (1− k)

L

)
dθ+α

∫ 1

θ

[Rθ − (1− k) r2] dθ+(1− α)

∫ 2

1

[R− (1− k) r2] dθ−cq = 0,

(10)

where r2 > 1 solves (8) holding with equality;

b) When 1− k > L, each bank chooses q∗ as a solution to

α

∫ 1

θ∗
[Rθ − (1− k) r2] dθ+(1− α)

∫ 2

1

[R− (1− k) r2] dθ−α∂θ
∗

∂q
q [Rθ∗ − (1− k) r2]−cq = 0,

(11)

where r2 > 1 solves

−α∂θ
∗

∂r2

[Rθ∗ − (1− k) r2]− α
∫ 1

θ∗
(1− k) dθ − (1− α)

∫ 2

1

(1− k) dθ = 0 (12)

when µ = 0, and is the lowest r2 solving (8) holding with equality when µ > 0,

where µ is the Lagrange multiplier on depositors’ participation constraint as defined

in Appendix A.
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In choosing q, a bank trades off the marginal cost cq of an increase in q with its

marginal benefit as captured by the first three terms in either (10) or (11). A higher

q increases the expected profit when there is no run for θ > θR for any k and also

the profits when 1− k ≤ L in the event of a run for θ < θ in (10). In addition, when

1− k > L, a higher q reduces depositors the probability of a depositor run as given

by ∂θ∗

∂q
< 0 in (11).

Proposition 2 shows that the determination of r2 also depends on the level of

capital of the bank. Banks with 1− k ≤ L choose the lowest possible repayment r2

consistent with depositors being willing to provide funds to the bank. By contrast,

banks with 1− k > L also account for the potentially beneficial effect that a higher

r2 has on the run threshold θ∗ since θ∗ is decreasing in r2, at least for some values

of r2. As a result, a bank may find it optimal to choose a repayment r2 which leaves

depositors’ participation constraint (8) slack.

6. Public loan guarantee schemes

So far, we have characterized the equilibrium – depositors’ withdrawal decisions

and bank underwriting choices – for a given α, under the assumption that the project

has a positive NPV and banks are willing to lend so that there is no need for (pos-

sibly costly) government intervention. Now we consider the case of a negative shock

through an increase in α, which we interpret as a “crisis” episode leading to a wors-

ening of the distribution of fundamentals θ and consequently to a reduction of the

bank’s expected profit.15 It follows that a bank with projects for which its partic-

ipation constraint, (9) holds with equality or close to it, such as would be the case

if the return R is relatively low or the marginal cost of monitoring, cq, is relatively

15This can be easily seen from (7) when keeping q and r2 constant, but it holds also more generally
if the bank optimally chooses q and r2 as functions of the state of the economy α. To see this,
consider the opposite (and symmetric) case of a decrease in α. Keeping q and r2 constant, (7)
shows that bank’s expected profits must increase. Allowing the bank to reoptimize must therefore
(weakly) increase profits even further.
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high, may no longer find it optimal to grant a loan following a large enough increase

in α since its participation constraint would no longer be satisfied. For many of

these cases, however, it would be socially optimal to continue lending since the social

benefit of the project, which includes the portion that accrues to the borrower, is

greater than the bank’s private benefit. This calls for support measures such as loan

guarantees that offer credit protection against low realization of the fundamentals,

thus effectively providing banks with a subsidy tied to their lending activities.

In this section, we study how the introduction of loan guarantees affect bank

lending through their effects on bank underwriting standards and investors’ behavior.

To this end, we consider that the guarantee is introduced after the shock, as captured

by an increase in α, say from α0 to α1, which occurs unexpectedly after the bank has

secured funding, but before the fundamental of the economy θ is realized. In this

respect, we consider a situation such as the Covid pandemic, where loan guarantees

were extended in the face of an unexpected crisis that is still unfolding. Later, in

Section 8.1, we discuss the case when the introduction of the guarantees may also

affect bank funding costs. Similarly, since borrowers have unit demand for loans, we

assume that there is no pass-through of the guarantees to the loan rate.

We consider a loan guarantee, denoted as a first-loss guarantee, where losses

are first attributed to the government up to a certain limit, and only then to the

credit intermediary.16 In other words, the government guarantees any loss occurring

at date 2 up to an amount Rx, with any remaining losses being borne by the bank.

Formally, the government will transfer an amount Rmin {x, 1− θ} to the bank when

16While the specific terms may differ across countries, PGSs take essentially one of two forms:
first-loss or loss-sharing (see, for example, European Commission, 2020, for the two schemes used
in Europe during the pandemic). In the latter, losses are sustained proportionally by the credit
institutions and the state in some pre-determined proportions. We show in Section 6.3 that the
main insights of the analysis carry over to the loss-sharing scheme.
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the borrower is unable to repay the promised amount R, with

x <
1− k
R

. (13)

This assumption ensures that the government transfer alone is not sufficient to fully

shield depositors from losses, thus preserving depositors’ incentives to run. Thus, as

illustrated in Figure 4, the bank now obtains the full repayment R for θ ∈ [1− x, 1]

and a greater payoff R(θ+x) < R for θ ∈ [0, 1−x) where the losses are greater than

the guarantee provided.

Insert Figure 4

Within this scheme, we consider two cases concerning the treatment of the loan

guarantee in case the bank is insolvent at date 2. In the first case, denoted as

“full bankruptcy costs,” the amount provided by the government is dissipated in

bankruptcy in the same way as the return of any other asset. In the second case,

denoted as “bankruptcy protected,” the transfer Rx from the government to a bank

is instead protected from bankruptcy costs and can thus be used to repay investors.

The first case captures the idea that the bankruptcy costs primarily originate from

inefficiencies in bankruptcy procedures due to hold-up problems among creditors or

inefficient judicial systems and, as a result, resources are lost if the bank defaults at

date 2. The second case would be consistent with a setting where bankruptcy costs

primarily stem from illiquidity associated with selling assets. The guarantee paid by

the government would likely be in cash or other such liquid assets and less subject to

dissipation. Importantly, assumption (13) implies that the bank can only profit from

the guarantee at date 2 in states of the world when its monitoring decisions have paid

off (i.e., with probability q). For both of these cases, we assume that the interest

rate on the loan, R, remains unchanged, implying that there is no pass through of

the guarantee Rx onto loan rates. This is consistent with the assumption of unit

demand for loans by borrowers.
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6.1. First-loss guarantee scheme with full bankruptcy costs

As in the baseline case, we start by characterizing depositors’ withdrawal decisions

and then move on to the choice of q by banks. We use the subscript x to indicate

the case of the first-loss guarantee of size x with full bankruptcy costs.

Proposition 3. With a first-loss guarantee x and full bankruptcy costs, runs occur

for θ < θRx < θR as given by

θRx = θR − x, (14)

where θRx = θx and θR = θ for 1− k ≤ L, while θRx = θ∗x and θR = θ∗ for 1− k > L.

The threshold θRx decreases with x: ∂θRx
∂x

= −1 < 0.

The introduction of loan guarantees reduces the run thresholds for any given level

of bank capital. A higher x increases the range in which the bank is able to make

the promised repayment to depositors at date 2, thus reducing their incentives to

withdraw prematurely. The threshold θRx depends linearly on the amount x because

this accrues to depositors only if the bank’s monitoring is successful and the bank is

solvent.

Anticipating depositors’ withdrawal behavior, each bank solves the following op-

timization problem:

max
q
α

∫ θRx

0

qmax

{
R (θ + x)

(
1− (1− k)

L

)
, 0

}
dθ + α

∫ 1−x

θRx

q [R (θ + x)− (1− k) r2] dθ

(15)

+ α

∫ 1

1−x
q [R− (1− k) r2] dθ + (1− α)

∫ 2

1

q [R− (1− k) r2] dθ − cq2

2
,

where r2 is characterized in Proposition 2 since the guarantee scheme is assumed

to be unanticipated, and θRx denotes the relevant run threshold, i.e., θRx = θx when

1 − k ≤ L and θRx = θ∗x when 1 − k > L. The terms in (15) are similar to those in

(7) in the baseline model, with two main differences. First, as indicated in the first

two terms, the bank now obtains a per-unit return R (θ + x) at date 2 instead of Rθ
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whenever the loan is not fully repaid. Second, as shown in the third term, the bank

is able to obtain the full repayment R in the larger range of values of θ ∈ [1 − x, 2]

rather than for θ ∈ [1, 2]. Note that in (15), for ease of notation, we continue to

express bank profits as a function of a generic α, but recognizing that we have in

mind a case where a negative shock has occurred so that this weight has increased.

Each bank chooses the underwriting effort q
x

as a solution to

α

∫ θx

0

R (θ + x)

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ (16)

+ α

∫ 1

1−x
[R− (1− k) r2] dθ + (1− α)

∫ 2

1

[R− (1− k) r2] dθ − cq = 0

when 1− k ≤ L, and q∗x when 1− k > L as a solution to

α

∫ 1−x

θ∗x

[R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
[R− (1− k) r2] dθ (17)

+ (1− α)

∫ 2

1

[R− (1− k) r2] dθ − α∂θ
∗
x

∂q
q [R (θ∗x + x)− (1− k) r2]− cq = 0.

The interpretation of the various terms in (16) and (17) is the same as for the terms

in (10) and (11).

In the following proposition, we characterize the effect that the guarantees have on

banks’ underwriting effort decisions. We use qRx to denote either q
x

or q∗x, depending

on the level of bank capital.

Proposition 4. For any given level of k, the introduction of a first-loss loan guar-

antee x with full bankruptcy costs increases bank underwriting effort: dqRx
dx

> 0.

This proposition highlights that the introduction of the loan guarantee induces

banks to reduce the riskiness of their portfolios through improved underwriting in-

centives for all banks, irrespective of how much capital they have. The mechanism

resembles a ”charter value” (e.g., Keeley, 1990) in that the bank has more to lose

when it fails. In fact, the loan guarantee increases the bank’s expected profits both
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through an increase in the probability of survival until date 2 (i.e., a reduction of

the threshold θRx ) and an increased per-unit return in case of survival. Given this,

the bank has stronger incentives to remain active until the final date, which can be

achieved through a higher underwriting effort.

It is worthwhile noting that the unambiguously positive effect of the loan guaran-

tee on bank underwriting effort obtains for x < 1−k
R

. With full bankruptcy costs, this

condition, which ensures that the guarantee is insufficient to fully cover the promised

repayment to depositors, implies that the bank benefits from the guarantee only when

its project succeeds. If the guarantee was such that x ≥ 1−k
R

, depositors would no

longer impose any discipline on the bank through the threat of a run and the bank

would receive a portion of the loan guarantee even when its project fails, with prob-

ability 1− q. At the margin, this payment to the bank would reduce its monitoring

incentives.

The results in this section help provide guidance on policy initiatives supporting

access to credit through loan guarantees, as discussed in Section 2. To the extent

that many of these policy interventions entail partial guarantees, Propositions 3 and

4 suggest that the concerns regarding possible moral hazard may be overstated,

and provide a channel for financial stability to actually improve as a result. Our

results also highlight the importance of the design of any such policy initiatives,

which should ensure that any benefit a lender receives directly from the guarantee be

primarily obtained when it is sufficiently diligent in monitoring its lending activities

and properly underwriting loans, as is the case studied here for sufficiently small

guarantees.

6.2. Bankruptcy-protected first-loss guarantee scheme

In this section, we consider the possibility that the government’s transfer x is shel-

tered from other frictions which lead to losses that result from bankruptcy. Specifi-

cally, we assume that, in case of default by the bank, depositors receive these amounts

even if any revenues stemming from the bank’s loans are lost in bankruptcy. This
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would be consistent with a setting where bankruptcy costs primarily stem from illiq-

uidity associated with selling assets, be they loans or otherwise. The guarantee paid

by the government would likely be in cash or other such liquid assets and less sub-

ject to dissipation. As before we consider the case where x < 1−k
R

. The following

proposition characterizes depositors’ withdrawal decisions.

Proposition 5. With a bankruptcy-protected guarantee x, the run risk is as follows:

a) When 1− k ≤ L, runs occur for θ < θPx = θx < θ as given by (14);

b) When 1 − k > L, runs occur for θ < θ∗Px , with θ∗Px < θ∗x < θ∗ as given by the

solution to

π1 =

∫ n̂x(θ)

0

qr2dn+

∫ n

n̂x(θ)

q
Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

∫ n

0

(1− q)
Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn,

(18)

where π1 is as in Proposition 1. The run threshold θ∗Px decreases with q, k, and x:
∂θ∗Px
∂q

< 0, ∂θ∗Px
∂k

< 0, and ∂θ∗Px
∂x

< −1.

As for the case with full bankruptcy costs, the introduction of the guarantee

induces a reduction of the run probability. When 1−k ≤ L, the run threshold is the

same as for the case of full bankruptcy costs because what depositors obtain when

the bank is insolvent, Rx
1−k , is always lower than what they obtain when withdrawing.

By contrast, when 1 − k > L, the loan guarantee is now more effective in reducing

depositors’ incentives to run relative to the case of full bankruptcy costs, so that

θ∗Px < θ∗x. In the presence of strategic complementarities, depositors compare the

expected payoff at date 1 with that from waiting until date 2. Both payoffs depend

on other depositors’ actions. Thus, depositors take into account the possibility that,

depending on the size of n, they may obtain a pro-rata share both at date 1 or date

2, and that the guarantee x increases the payoff they obtain at date 2, as evident in

the last two terms on the RHS in (18). This reinforces their incentives to wait until

date 2.
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As in the baseline case, the run threshold θ∗Px is decreasing in both q and k,

as well as in x. Given that the transfer is not lost in bankruptcy, when the bank

is insolvent depositors expect to receive a pro-rata share of the bank’s available

resources
Rx(1−n (1−k)

L )
(1−n)(1−k)

, which is a function of the fraction n of withdrawing depositors.

Importantly, the sensitivity of the run threshold θ∗Px to the transfer x is now higher

relative to the case with full bankruptcy costs and it depends on q, i.e., ∂θ∗Px
∂x

<
∂θ∗x
∂x

= −1. The intuition behind the greater sensitivity lies in the extra effect of the

guarantee in terms of higher payoffs at date 2 whenever the bank is unable to repay

the promised amount.

The bank’s maximization problem for the choice of q is similar to the one char-

acterized in (15), with the only difference being that the relevant run threshold is

either θPx or θ∗Px instead of θRx . Each bank chooses underwriting effort qP
x

= q
x

as the

solution to (16) when 1− k ≤ L, and q∗Px as a solution to

α
∫ 1−x
θ∗Px

[R (θ + x)− (1− k) r2] dθ + α
∫ 1

1−x [R− (1− k) r2] dθ + (1− α)
∫ 2

1
[R− (1− k) r2] dθ

−α∂θ
∗P
x

∂q
q
[
R
(
θ∗Px + x

)
− (1− k) r2

]
− cq = 0

(19)

when 1− k > L.

Proposition 6. The impact of a bankruptcy-remote first-loss guarantee x on bank

monitoring effort is as follows:

a) When 1 − k ≤ L, the introduction of the loan guarantee leads to the same

positive impact on qP
x

as in Proposition 4, i.e.,
dqP
x

dx
> 0;

b) When 1 − k > L, there exists a value of k denoted as k̂Px < 1 − L such that

introducing the loan guarantee reduces bank effort for k < k̂Px , but increases effort as

k → 1− L: dq∗Px
dx

< 0 for k < k̂Px and dq∗Px
dx

> 0 for k → 1− L.

The proposition shows that the introduction of the loan guarantee increases bank

monitoring effort for banks with a sufficiently high level of capital, while it decreases
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it for banks with very little capital when they are subject to significant run risk. As in

the case with full bankruptcy costs, the bank obtains nothing when its monitoring is

unsuccessful (i.e., with probability 1−q) since x is assumed to be relatively small, as

defined in (13). However, differently from before, the transfer x accrues to depositors

whenever the bank is insolvent. When 1−k ≤ L, the more favorable treatment of the

guarantee under bankruptcy does not affect depositors’ incentives so that, in turn,

bank monitoring responds in the same way as before. By contrast, when 1− k > L,

the fact that depositors receive Rx with probability 1 − q introduces a disincentive

to monitor as a result of two effects: first, Rx reduces the sensitivity of the run

threshold θ∗Px to changes in q and, second, by reducing θ∗Px , it reduces the losses

associated with an increase in the probability of a run due to low monitoring effort

by the bank. These two effects combined lead highly levered banks (i.e., those with

k < k̂Px < 1 − L) to exert less effort q. In other words, the potential negative

impact of the loan guarantee on bank monitoring derives purely from its effect on

depositor behavior and run risk, and in particular from the reduced sensitivity of the

run threshold θ∗Px to the bank’s choice of q. For sufficiently poorly capitalized banks

(i.e., k < k̂Px ), these negative effects dominate.

6.3. Guarantee scheme with loss-sharing

In this section we analyze a second type of guarantee, which has also been used

during the Covid pandemic and which we denote as ”loss-sharing.” We first show

that the results obtained in Section 6 in the case of first-loss loan guarantees are

qualitatively the same. We then compare the two schemes in terms of their effective-

ness.

Suppose that the government commits to cover a fraction y ∈ (0, 1) of bank losses

R(1−θ), so that the bank’s per unit loan return is equal tomax {R,Rθ +R (1− θ) y}.
We have the following result, which encompasses both the case of full bankruptcy

costs and the one where transfers are bankruptcy-protected.
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Proposition 7. The introduction of a loss-sharing guarantee y leads to the follow-

ing:

a) In the case of full bankruptcy costs:

1. Runs occur for θ < θRy ≡
{
θy, θ

∗
y

}
, where

θRy =
θR − y
1− y

(20)

and θR = θ when 1 − k ≤ L and θR = θ∗ when 1 − k > L as characterized in

Proposition 1.

2. For any level of k, the bank’s underwriting effort qRy increases in the guaranteed

amount:
dqRy
dy

> 0.

b) In the case where the government’s transfers are protected from bankruptcy:

1. Runs occur for θ < θPy = θy when 1− k ≤ L and for θ < θ∗Py when 1− k > L,

where θ∗Py > θPy solves

π1 =

∫ n̂y(θ)

0

qr2dn+

∫ n

n̂y(θ)

q
R (1− θ) y

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0

(1− q)
Ry
(

1− n (1−k)
L

)
(1− n) (1− k)

dn,

2. Bank effort q
y

increases with the introduction of the guarantees when 1−k ≤ L:
dq
y

dy
> 0. Moreover, there exists a value k̂Py ∈ (0, 1− L) such that q∗y decreases

with the introduction of guarantees for any k < k̂Py :
dq∗y
dy

< 0 for k < k̂Py .

The scheme where the guarantee requires banks to share any losses on a propor-

tional basis delivers the same qualitative results in terms of financial fragility and

bank underwriting effort as the first-loss scheme: for any level of bank capital, the

guarantee reduces the run threshold relative to the case with no guarantees. Also,

as before, the effect of the loan guarantee on bank monitoring incentives depends

on the treatment of the guarantee in bankruptcy and the level of capital, in that

bank monitoring increases except for very poorly capitalized banks (i.e., with k <
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k̂Py ) if they are exposed to significant run risk when the guarantee is protected from

bankruptcy.

While the two guarantee schemes - first-loss or loss-sharing - deliver qualitatively

similar results, a natural question that arises is whether one of them may be more

effective or cost-efficient. To see this, we compare the two schemes (GS) under the

maintained assumption that the guaranteed amount is lost in bankruptcy and, for

tractability, we restrict attention to well-capitalized banks with 1 − k ≤ L. We

maintain the subscript x when referring to the first-loss guarantee (GSx) and the

subscript y to denote the loss-sharing scheme (GSy).

To compare the two schemes, we consider the case where the sizes x and y of

the guarantees are set, all things equal, to lead to the same run threshold: θx = θy.

Equating these two, we specify y as the level of y for which the two guarantee schemes

implement the same probability of a run. Hence, y solves

θ − y
1− y

= θ − x,

and is equal to

y =
x

1−max {θ − x, 0}
≥ x,

since θ − x ≡ θx < 1.

For a given size of the transfer x, the guarantee schemeGSx entails a disbursement

for the government equal to

GDx = α

∫ θ−x

0

Rx

(
1− 1− k

L

)
dθ + α

∫ 1−x

θ−x
Rxdθ + α

∫ 1

1−x
R (1− θ) dθ (21)

= α

[
Rx− Rx2

2
−Rx (θ − x)

1− k
L

]
,

while GSy entails a disbursement equal to

GDy = α

∫ θ−x

0

R (1− θ) y
(

1− 1− k
L

)
dθ + α

∫ 1

θ−x
R (1− θ) y (22)

= α

[
Ry

2
−Ry (θ − x)

1− k
L

+
Ry

2

1− k
L

(θ − x)2

]
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Comparing GDx and GDy when y = y, we have the following result.

Proposition 8. For any x > 0, when both schemes are designed to achieve the

same run threshold, the first-loss guarantee scheme entails a larger disbursement for

the government than the loss-sharing scheme, but it induces the bank to choose a

higher q.

The proposition shows that, while the first-loss guarantee scheme provides greater

incentives to the bank through improved bank underwriting standards, it achieves

this at a higher cost. Hence, neither type of scheme unambiguously dominates the

other, suggesting that fine tuning the design of the guarantee scheme may not be as

important as just getting one in place in the event of a crisis.

7. Inefficient liquidation and zombie lending

So far, we have characterized the effect of loan guarantees on bank risk-taking in

terms of monitoring effort. In this section, we analyze another form of risk-taking.

Specifically, we focus on banks’ incentives to engage in “evergreening,” or in other

words inefficient loan continuation, and how these are affected by loan guarantees.

To do so, we modify the model slightly and assume that at date 1 a bank can choose

whether to liquidate its loan portfolio or continue until the final date. Such choice

is made after depositors’ withdrawal decisions and thus does not interfere with how

depositors evaluate their private signals.

To isolate banks’ evergreening incentives, we start by analyzing a bank’s liquida-

tion decision at date 1 in a setting where runs at t = 1 are not possible and there

are no loan guarantees. In this case, each bank compares the expected return of the

loan at date 2 with its liquidation value at date 1, net of depositors’ repayments, and

it chooses to liquidate if θ falls below the threshold θBL as given by the solution to

L− (1− k)r2 = q (Rθ − (1− k)r2) ,
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which is equivalent to

θBL =
L− (1− q)(1− k)r2

qR
. (23)

A bank’s liquidation decision may not be socially optimal. To see why, we compare

it with that of a social planner who finds it optimal to liquidate the portfolio when

θ falls below the threshold θSPL as given by the solution to

L = qθR,

and is thus equal to

θSPL =
L

qR
. (24)

We have the following result.

Lemma 1. In an economy without runs, banks liquidate too little relative to what

is socially optimal: θBL < θSPL . The difference θSPL − θBL measures the extent of

evergreening and is decreasing in k:
∂(θSPL −θ

B
L )

∂k
< 0.

We now go back to the case where depositors can withdraw at t = 1. This implies

that loans can be liquidated at date 1 for two reasons: either because a run occurs,

or because a bank prefers to liquidate its portfolio prematurely even if no run occurs.

To see when either case is relevant, we compare banks’ liquidation threshold θBL with

the run threshold θR = {θ, θ∗} as characterized in Section 5, where we abstracted

from the possibility that the bank could make a liquidation decision itself.17

Lemma 2. The comparison between θBL and θR depends on the level of bank capital

k. Let kL = 1− L
r2
> 1− L. Then, θBL ≤ θR for k ≤ kL and θBL > θR otherwise.

17Depositors anticipate the bank’s liquidation choice when making their withdrawal decisions.
However, as we show in the proof of Lemma 2, their payoffs are unaffected by the bank’s choice
and thus the run thresholds remain the same as in Section 5.
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For a bank with little capital and exposed to panic runs, we have that θ∗ > θBL .

Hence, the bank’s liquidation decisions are not relevant as depositors’ run decisions

leads to more liquidation than what a bank would prefer. This highlights the disci-

pline role of runs, in a similar spirit as in Eisenbach (2017).

For a bank with more capital and therefore only exposed to fundamental runs,

two cases are possible. When k > kL, we have that θBL > θ and the bank liquidates

its loan portfolio for θ ∈
[
θ, θBL

]
, even if no run has occurred. By contrast, when

k < kL, we have instead that θBL < θ. In this case, the bank itself liquidates its entire

loan portfolio for θ ∈ [0, θBL ], while a run occurs for θ ∈ [θBL , θ], thus leading to a

partial liquidation as shown in Section 5.

We can now analyze the extent to which evergreening occurs when runs are also

possible. To this end, we compare the thresholds θBL and θR = {θ, θ∗} of banks’

liquidation decisions and depositors’ run behavior, respectively, with the liquidation

threshold of the planner as given by θSPL in (24). We have the following result.

Lemma 3. In an economy with runs, θSPL ≥ max
{
θBL , θ

}
for 1 − k ≤ L and θ∗ >

θSPL > θBL for 1− k > L.

The lemma shows that the early liquidation of the bank’s project in the baseline

economy is always inefficient. Highly capitalized banks with 1−k < L don’t liquidate

enough, thus carrying over until the final date projects that would be optimal to

terminate at t = 1. The extent to which they engage in evergreening is captured

by the difference θSPL − max
{
θBL , θ

}
. When θ > θBL , fundamental runs force the

liquidation of banks’ projects when θ < θ, while in the range (θ, θSPL ) banks choose not

to liquidate inefficient projects and evergreening occurs. When θ < θBL , evergreening

occurs, instead, in the range [θBL , θ
SP
L ). By contrast, for low capital banks with

1 − k > L, there is always excessive liquidation resulting from panic runs, i.e.,

θ∗ > θSPL . Only when 1− k = L is a bank’s liquidation decision efficient. The result
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is illustrated in Figure 5.

Insert Figure 5

We can now analyze the effect of the introduction of a first-loss guarantee x with

full bankruptcy costs on the incidence of evergreening. We first characterize the bank

liquidation threshold θBLx as given by the solution to

L− (1− k)r2 = q (R(θ + x)− (1− k)r2) ,

and thus

θBLx =
L− (1− q)(1− k)r2

qR
− x = θBL − x.

Comparing θBLx with the run thresholds θRx = {θx, θ∗x} in the presence of guarantees,

as given in (14), it is easy to see that the same result as in Lemma 2 applies, i.e.,

θRx > θBLx for banks with k < kL.

We now compare early liquidation as described by max
{
θBLx, θ

R
x

}
to the planner’s

threshold θSPL . In doing this, for the moment, we take bank underwriting effort q as

fixed and not affected by the guarantee x.

Proposition 9. The introduction of a first-loss loan guarantee with full bankruptcy

costs has the following effect on evergreening incentives:

a) When 1− k ≤ L, the difference θSPL −max
{
θBLx, θx

}
is larger than in the case

without guarantees;

b) When 1−k > L, there exists a level of capital k̃L ∈ [0, 1−L) such that θ∗x ≥ θSPL

for k ≤ k̃L and θ∗x < θSPL for k > k̃L.

The proposition, which is illustrated in Figure 5, shows that, holding q fixed,

the presence of the loan guarantee worsens the evergreening problem for any level

of bank capital. For highly capitalized banks, for which 1 − k ≤ L, the guarantee

increases the range of values of the fundamentals θ for which there is inefficient loan

continuation. Banks exposed to panic runs, those with capital k̃L < k < 1− L, will
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now also evergreen loans as the guarantee reduces the panic run threshold to a value

below the threshold for liquidation by the social planner, i.e., θSPL − θ∗x > 0 when

k̃L < k.

The equilibrium effect of the loan guarantee on banks’ evergreening incentives is,

however, more complicated and may introduce a trade-off for the planner. This is due

to the fact that q also changes with the introduction of the guarantee, thus affecting

the occurrence of evergreening. Since we are interested in how loan guarantees affect

the bank’s overall incentives, to study this we consider the case where the decision

to roll over a loan at date 1 is under the control of the bank rather than being

determined by depositors’ incentives to withdraw early. In other words, we focus

on the region where θBLx ≥ θx. In this case, the measure of evergreening is given by

θSPL − θBLx and is equal to

θSPL − θBLx =
1− q
q

(1− k)r2

R
+ x > 0.

While this difference is increasing in x, it is also decreasing in q. Thus, the negative

effect associated with evergreening is at least partly offset by the positive under-

writing incentive effect of the guarantee. These considerations raise the issue of how

the two countervailing forces should be traded off by a social planner. To address

this, we consider below how the introduction of a loan guarantee affects total output,

which is defined as follows:

TOx = α

∫ θBLx

0

Ldθ + α

∫ 1−x

θBLx

qRθdθ + α

∫ 1

1−x
qRθdθ + (1− α)

∫ 2

1

qRθdθ − cq2

2
− 1.

(25)

We have the following result.

Proposition 10. For small c, the introduction of a loan guarantee x increases total

output: dTOx
dx

> 0.

The proposition establishes that, as long as the bank’s cost associated with its

underwriting effort is not too large, total output increases with a loan guarantee, even
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though the bank makes more inefficient continuation decisions at date 1. The reason

is that the positive underwriting incentive dominates the negative evergreening effect.

From the perspective of the recent policy debate surrounding lenders’ evergreening

incentives, our results here suggest that even if at the margin the introduction of a

loan guarantee may increase the extent of evergreening, overall economic output has

the potential to increase as a result of the guarantee schemes put in place.

8. Extensions

In this section we extend the model in two directions. First, we extend the analysis

to allow the date 2 interest rate on deposits, r2, to change when a loan guarantee is

put in place. Second, we study deposit insurance and compare it with the effects of

loan guarantees. In what follows, for brevity we focus on the case of a first-loss loan

guarantee when the transfer x is lost in bankruptcy, as in Section 6.1.

8.1. Deposit interest rates and loan guarantees

Throughout our analysis, we have assumed that the loan guarantee is introduced

as a policy to stimulate lending in response to an unanticipated negative shock which

makes lending riskier and less attractive for banks. As such, we have assumed that it

is put in place after the bank has obtained funding. While we believe this represents

the effect of policy responses to crisis episodes reasonably well, it is also likely true

that downturns of longer duration, or loan guarantee programs that are longer-lived,

may engender changes to deposit rates as banks and depositors recognize the presence

of the guarantees when raising deposits. This case may be reflective of guarantee

programs such as those used in mortgage markets, where government guarantees

have long existed and are a normal part of the tools on which investors rely. Another

case in point are loans provided to small businesses through the Small Business

Administration (SBA) program, which guarantees loans under certain conditions for
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qualified lenders, and has as objective to stimulate lending.18 It is useful, therefore,

to discuss how allowing the deposit interest rate to adjust in the advent of the

introduction of a loan guarantee may affect our results.

To study this issue, we modify the model slightly to allow the bank to change the

date 2 deposit interest rate, r2, after the loan guarantee is introduced. Specifically,

we assume that when deposits are raised at date 0, the existence of any guarantee

is common knowledge. The model is otherwise unchanged. We can now state the

following result.

Proposition 11. For all levels of bank capital k, the introduction of a first-loss loan

guarantee x leads to a decrease in the date 2 deposit rate and thus to an increase of

the bank effort: ∂r2
∂x

< 0 and ∂q
∂x
> 0.

The proposition shows that banks respond to the introduction of the loan guar-

antee x by reducing the deposit interest rate r2. Since this reduction in r2 increases

the profit accrued by the bank when its monitoring effort is successful, this trans-

lates into a higher effort q. In other words, given the complementarity in terms of

the effects on bank incentives of the introduction of a loan guarantee and the pricing

of deposit contracts, allowing the long term deposit rate to reflect the introduction

of a loan guarantee further reinforces the improvement in underwriting incentives

established in Section 6.1.

8.2. Deposit insurance

Our analysis has considered so far only guarantees that insure bank loans against

default risk by borrowers. However, bank deposits are typically protected by other

guarantees (i.e., deposit insurance). Such guarantees also contain a stimulative com-

ponent since, in addition to reducing the required interest rate that must be paid

18See www.sba.gov/funding-programs/loans for details on the SBA program, and Brown and
Earle (2017) as well as Bachas, Kim and Yannelis (2020) for studies on the stimulative effects of
the SBA program.
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to depositors Cordella et al. (2018), they also directly increase stability by reducing

depositors’ run risk (see e.g., Allen et al., 2018). In this section, we first show that

deposit insurance differs substantially from loan guarantees in terms of the impact

on bank monitoring incentives. Second, we confirm that the effect of loan guarantees

remains unchanged in the presence of deposit insurance.

Following Allen et al. (2018), we consider a deposit guarantee scheme that ensures

depositors always to receive a minimum repayment δ > 0. To keep things simple,

we assume 0 < δ < L
1−k so that the deposit insurance is paid only to remaining

depositors at date 2 whenever the bank does not have enough resources to pay them

at least δ, thus making it comparable to the analysis with loan guarantees.19

8.2.1. An economy with only deposit insurance

As in the baseline model, we start by solving depositors’ withdrawal decisions.

Proposition 12. The run risk in the presence of deposit insurance depends on the

level of bank capital, as follows:

a) When 1 − k ≤ L, fundamental runs occur for θ < θδ(k) = θ(k), as given in

(5).

b) When 1 − k > L, panic runs also occur for θ < θ∗δ(q, k, δ) < θ∗(q, k) as given

by

θ∗δ(q, k, δ) =
(1− k) r2

R

(qr2 − π1) + δ (1− q)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L
− q
) , (26)

where π1 =
∫ n

0
dn +

∫ 1

n
L

(1−k)n
dn. The threshold θ∗δ ∈ (θ, 1) decreases with q and δ:

∂θ∗δ (q,k)

∂q
< 0 and

∂θ∗δ (q,k)

∂δ
< 0.

The run threshold is as in the baseline framework for banks with 1− k ≤ L, but

is smaller for those with 1− k > L. The reason is that the transfer δ increases what

19The assumption that the guarantee is only paid at date 2 when depositors do not run is without
loss of generality. As shown in Allen et al. (2018), the run threshold decreases in the guaranteed
amount δ even when this is paid in the event of a run.
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depositors expect to receive at date 2 only for the latter case, thus reducing their

incentives to withdraw prematurely in the presence of panic runs. This contrasts

with the result obtained in the presence of loan guarantees, where the run threshold

is reduced also for well capitalized banks.

Given depositors’ withdrawal decisions, we now analyze how deposit insurance

affects bank underwriting standards. Similarly to above, denoting as θRδ ≡ {θδ, θ∗δ}
the relevant run threshold, each bank chooses q to maximize

αq

∫ θRδ

0

max

{
0, Rθ

(
1− 1− k

L

)}
dθ+αq

∫ 1

θRδ

[Rθ − (1− k) r2] dθ+(1− α) q

∫ 2

1

[R− (1− k) r2] dθ−cq
2

2
.

(27)

The interpretation of the terms in the expression for bank profits is as in the baseline

framework. Importantly, and differently from the case of loan guarantees, the pres-

ence of deposit insurance does not directly increase the payoff that the bank obtains

at date 2. However, banks benefit indirectly since it reduces their exposure to runs.

We have the following result.

Proposition 13. The introduction of a deposit guarantee scheme has no impact on

bank monitoring effort when 1− k ≤ L, while it reduces it when 1− k > L:
dq
δ

dδ
= 0

when 1− k ≤ L and
dq∗δ
dδ
< 0 when 1− k > L.

As the proposition shows, highly capitalized banks with 1−k ≤ L are not affected

by the introduction of the deposit insurance since the run threshold θδ does not

depend on δ. By contrast, poorly capitalized banks with 1 − k > L reduce their

monitoring effort. For these banks, the introduction of deposit insurance reduces

both depositors’ incentives to run and the sensitivity of the run threshold to changes

in the monitoring effort, with the latter effect dominating and leading to a reduced

monitoring effort.

Overall, the result in Proposition 13 highlights the difference between deposit

insurance and loan guarantees. In line with the idea that insurance mechanisms

39



induce moral hazard considerations, the former never improves bank underwriting

incentives. By contrast, the latter improve bank monitoring incentives, except for

the most poorly capitalized banks when the transfer is protected from bankruptcy.

8.2.2. An economy with deposit insurance and loan guarantee

We now analyze the introduction of loan guarantees when bank deposits are

insured. As before, we consider that depositors always obtain at least δ when the

bank is unable to make the promised repayment.

We have the following result concerning depositors’ withdrawal decisions.

Proposition 14. The run risk in the presence of deposit insurance and first-loss

loan guarantee depends on the level of bank capital as follows:

a) When 1 − k ≤ L, fundamental-driven runs occur for θ < θδx(k) = θx, as

characterized in Section 6.1.

b) When 1− k > L, panic runs also occur for θ < θ∗δx(q, δ) < θ∗x, with

θ∗δx(q, δ) = θ∗δ − x, (28)

where θ∗δ is as in Proposition 12. The threshold θ∗δx ∈ (θδx, 1− x) decreases with q,

x, and δ:
∂θ∗δ (q,δ)

∂q
< 0,

∂θ∗δ (q,δ)

∂x
< 0 and

∂θ∗δ (q,δ)

∂δ
< 0.

We can now study the impact of the loan guarantees on bank monitoring effort

q.

Proposition 15. In the presence of deposit insurance, the introduction of a first-

loss loan guarantee with full bankruptcy costs always leads to an increase in bank

monitoring effort:
dq
δx

dx
> 0 and

dq∗δx
dx

> 0.

As shown in the proposition, the presence of deposit insurance does not alter the

effect that the loan guarantees has on bank underwriting incentives, which remains

beneficial for all banks irrespective of their level of capital.
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9. Conclusions

In this paper, we present a model in which banks raise demandable deposits and

grant long-term loans. A bank’s expected return depends on the economy’s funda-

mentals as well as on the bank’s underwriting efforts. Our focus is on analyzing how

the introduction of loan guarantees affects bank incentives and financial fragility.

We show that, contrary to common wisdom, loan guarantees improve bank moni-

toring incentives except for the most poorly capitalized banks when the guaranteed

amounts accrue to depositors even in the case when the bank’s monitoring is un-

successful. We also show, however, that the introduction of loan guarantees worsen

banks’ incentives to continue inefficient projects.

The issues studied here are germane to the policy debate concerning the use of

public guarantee schemes to support bank lending during a crisis, or to enhance access

to credit to particular sectors of the economy. Our results suggest that the perceived

wisdom surrounding guarantee programs, such as those designed to protect retail

depositors, may not translate to other types of guarantee schemes and, in particular,

to loan guarantees. We therefore provide a novel lens through which loan guarantee

schemes may be viewed, and policy initiatives evaluated.

We focus the analysis on the impact of loan guarantees when lenders’ liability

structures make them susceptible to runs, as is the case for banks. As discussed in

Section 2, however, in some jurisdictions, such as the US, loan guarantees are also

provided to non-bank lenders. We believe that our results concerning the effect of

loan guarantees on a lender’s effort should still be valid in this context as long as

underwriting/monitoring is an important part of what these lenders do. Addition-

ally, to the extent that nonbank institutions may be susceptible to some degree of

rollover risk, the feedback effect between the lender’s liabilities and their underwrit-

ing decisions should continue to hold as well.

In our setting, banks maximize their expected profits to remunerate their in-
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side capital. This allows us to study the role of capital for banks, and how that

impacts both banks’ effort decisions and depositors’ run choices, an issue that for

the most part has been absent in the financial fragility literature (e.g., Diamond

and Dybvig, 1983, and subsequent literature). In doing so, however, we take banks’

capital structures as given. An interesting avenue for future research would be to

endogenize bank capital structure and analyze how this interacts with bank lending

standards and the threat of runs, as well as with loan guarantees. Carletti et al.

(2022) move in this direction and study the feedback effects between banks’ capital

structure decisions and their choices concerning lending standards in a framework

where depositors’ withdrawal decisions are also endogenous.
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10. Appendix A

Proof of Proposition 1: The proof makes use of the technical approach developed

in Goldstein and Pauzner (2005) since, like theirs, our model also exhibits the prop-

erty of one-sided strategic complementarity, i.e., a depositor ’s incentive to run does

not monotonically increases with the proportion of depositors running.

We proceed in steps. First, we pin down the threshold θ (k), which corresponds

to the upper bound of the lower dominance region, as characterized in the main

text. Second, we characterize the threshold θ∗ (q, k, L, r2), which summarizes de-

positors’ withdrawal decision in the intermediate range of fundamentals, i.e., when

θ ∈ [θ (k) , θ). Third, we show that for any 1 − k ≤ L, the relevant run threshold is

θ (k), while it is θ∗ (q, k, L, r2) > θ (k) for any 1−k > L. We conclude the proof with

the comparative statics for the two run thresholds with respect to q, L, and k.
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Solving (2) with respect to θ, we obtain the threshold θ(k) as given in (5) in

the proposition. Given the definition of the lower dominance region, when θ <

θ(k), depositors always find it optimal to withdraw irrespective of what others do.

Symmetrically, given the definition of the upper dominance region, depositors find it

optimal to wait until date 2 when θ > θ. Given that θ̂ ≤ 1− 2ε and θ = θ̂, as shown

in the characterization of the upper dominance region, the relevant range of θ from

the perspective of depositors choosing whether to withdraw is [0, 1− 2ε). It follows

that the discontinuity in the distribution of θ does not play a role for depositors’

decisions.

For θ ∈ [θ(k), θ), a depositor’s withdrawal decision depends on what other de-

positors do when 1− k > L. The arguments in the proof of Theorem 1 in Goldstein

and Pauzner (2005) establish that there is a unique equilibrium in which depositors

run if and only if the signal they receive is below a common signal s∗. A depositor

who receives the signal s∗ is exactly indifferent between withdrawing at dates 1 and

2.

To characterize the threshold signal s∗, we start by assuming that all depositors

behave according to the threshold strategy s′. Then, the fraction of depositors with-

drawing at date 1, n (θ, s′), is equal to the probability of receiving a signal below s′

and can be specified as follows:

n (θ, s′) =


1 if θ ≤ s′ − ε

s′−θ+ε
2ε

if s′ − ε < θ ≤ s′ + ε
0 if θ > s′ + ε

.

Depositors’ withdrawal decisions are characterized by the pair {s∗, θ∗}, which corre-

sponds to the solution to the following system of equations:

Rθ∗
(

1− n (θ∗, s∗) (1− k)

L

)
− (1− n (θ∗, s∗)) (1− k) r2 = 0, (29)

and

∆ (s∗, n (θ, s∗)) = qr2 Pr (θ > θ∗| s∗)−1 Pr (θ > θn| s∗)−
L

(1− k)n (θ, s∗)
Pr (θ < θn| s∗) = 0,

(30)
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where θn = s∗+ ε− 2ε L
1−k represents the level of θ for which the bank liquidates the

entire portfolio at date 1 and, thus, is equal to the solution to

n (θn, s
∗) (1− k) = L.

Condition (29) identifies the level of fundamental, θ∗, at which the bank is at

the brink of insolvency at date 2 when n (θ∗, s∗) > 0 depositors run, for given s∗.

Condition (30) is an indifference condition for a depositor that receives a signal

exactly equal to the threshold signal s∗: the first term represents his expected utility

from withdrawing at date 2, while the second and third terms represent the expected

utility from withdrawing at date 1. This condition pins down s∗ given θ∗ (s∗) from

(29), so that together the two equations characterize the equilibrium withdrawal

decisions {s∗, θ∗}. In other words, the equilibrium threshold signal s∗ corresponds to

the signal at which the expression (30) is equal to zero, i.e., ∆ (s∗, n (θ, s∗)) = 0.

The function ∆ (si, n (θ, s′)) representing a depositor’ utility differential for any

signal si when all other depositors behave accordingly to the threshold strategy s′

exhibits the same properties as the corresponding function in Goldstein and Pauzner

(2005); thus, the arguments in their proof can be applied to show that our model has

a unique threshold equilibrium. First, ∆ (si, n (.)) is continuous in si, negative when

s′ < θ(k)− ε and positive when s′ > θ+ ε because of the definition of the lower and

upper dominance regions. To see this, we can rearrange the LHS in (29) as follows:

Rθ − (1− k) r2 − n (θ, s∗)

(
Rθ

(1− k)

L
− (1− k) r2

)
,

so that it is easy to see that the expression in (29) is always negative when θ falls in

the lower dominance region and positive when it is in the upper dominance region.

Since Pr (θ > θ∗| s′) is then 0 and 1 in these two extreme regions of fundamental,

this also implies that a depositor’s expected utility differential between withdrawing

at dates 2 and 1 is also negative when s′ < θ (k)− ε and positive when s′ ≥ θ + ε.

Second, ∆ (si, n (.)) is non-decreasing when both the individual signal si and the

threshold strategy s′ shift upward. Formally, take h > 0, ∆ (si + h, n (θ + h, s′)) is
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non-decreasing in h and strictly increasing when there is a positive probability that

n < n in the range [s′ − ε, s′ + ε] and s′ < θ + ε. This is because an increase in h

leads to a shift of equal magnitude in s′ and si, which leaves n (.) unaffected, while

it is associated with a better θ. To see this, differentiating (29) with respect to θ

keeping n constant, we obtain

R

(
1− n (θ, s∗) (1− k)

L

)
> 0.

Hence, it follows that, in the presence of an equal positive shift in the individual signal

and threshold signal, Pr (θ > θ∗| s′) strictly increases and so does the expected utility

differential.

All these properties imply that there is a unique s∗ satisfying ∆ (s∗, n (θ, s∗)) = 0

and also that ∆ (si, n (θ, s∗)) < 0 if si < s∗ and ∆ (si, n (θ, s∗)) > 0 if si > s∗. To

obtain the expression for θ∗ (q, k, L, r2) as in the proposition, we perform a change of

variable by defining θ∗ (n) = s∗ + ε (1− 2n). At the limit when ε → 0, θ∗ (n) → s∗

and we denote the run threshold as θ∗ (q, k, L, r2) , which corresponds to the solution

to ∫ n̂(θ)

0

qr2dn−
∫ n

0

dn−
∫ 1

n

L

(1− k)n
dn = 0, (31)

where n̂ (θ∗) solves (4) and n solves

(1− k)n = L.

The expression in (6) is obtained by rearranging the terms, using θ = (1−k)r2
R

, and

denoting

π1 =

∫ n

0

dn+

∫ 1

n

L

(1− k)n
dn. (32)

Now, we move on to show that the relevant run threshold is θ (k) when 1−k ≤ L

and θ∗ (q, k, L, r2) when 1−k > L. Consider first the case in which 1−k ≤ L. When

1− k = L, π1 = 1 and (29) simplifies to

(1− n (θ∗, s∗)) [Rθ − (1− k) r2] ,
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which is positive for θ > θ (k) and negative for θ < θ (k) for any n (θ∗, s∗) < 1. Then,

from (30), it follows that running is optimal when θ < θ (k), irrespective of n (.).

Hence, the relevant run threshold is θ (k) when 1− k = L. Since θ (k) is decreasing

in 1−k, condition (29) becomes less binding for any n when 1−k falls below L. This

implies that θ (k) is still the relevant run threshold when 1− k < L.

Consider now the case where 1 − k > L. Differentiating (29) with respect to θ,

we obtain

R

(
1− n (θ, s∗) (1− k)

L

)
− ∂n (θ, s∗)

∂θ

[
Rθ

(1− k)

L
− (1− k) r2

]
> 0,

for any θ > θ (k) when 1−k > L and ∂n(θ,s∗)
∂θ

< 0. It follows that θ∗ (q, k, L, r2) > θ (k)

when 1− k > L.

To complete the proof, we compute ∂θ(k)
∂k

, as well as ∂θ∗(q,k,L,r2)
∂q

, ∂θ∗(q,k,L,r2)
∂L

, and
∂θ∗(q,k,L,r2)

∂k
. Differentiating (5) with respect to k, we obtain ∂θ(k)

∂k
= − r2

R
< 0. Using

(6), we compute the effect of q, L, and k on θ∗ (q, k, L, r2) as follows:

∂θ∗ (q, k, L, r2)

∂q
=

θ(
qr2 − π1

(1−k)
L

)2

{
r2

(
qr2 − π1

(1− k)

L

)
− r2 (qr2 − π1)

}

= − θr2π1(
qr2 − π1

(1−k)
L

)2

[
(1− k)

L
− 1

]
< 0,

∂θ∗ (q, k, L, r2)

∂L
=

θ(
qr2 − π1

(1−k)
L

)2

{
−∂π1

∂L

(
qr2 − π1

(1− k)

L

)
+ (qr2 − π1)

(1− k)

L

[
∂π1

∂L
− π1

L

]}
< 0,

and

∂θ∗ (q, k, L, r2)

∂k
=

1(
qr2 − π1

(1−k)
L

) {∂θ
∂k

(qr2 − π1)− θ∂π1

∂k
+
θ∗

L

[
∂π1

∂k
(1− k)− π1

]}
< 0,

with ∂π1
∂L

=
∫ 1

n
1

(1−k)n
dn > 0, ∂π1

∂k
=
∫ 1

n
L

(1−k)2n
dn > 0, and ∂π1

∂L
− π1

L
= − 1

L

∫ n
0
dn.

Hence, the proposition follows. �
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Proof of Proposition 2: Using backward induction, we first compute the optimal

q and then solve for r2. Concerning the choice of q, (10) and (11) are obtained by

differentiating (7) with respect to q, setting θR = θ when 1 − k ≤ L and θR = θ∗

when 1− k > L, respectively.

We now move to the choice of r2. Consider first the case when 1 − k ≤ L when

the relevant run threshold is θ. Since ∂θ
∂r2

> 0 and a higher r2 reduces bank’s profits

when no runs occur, it is optimal for the bank to choose the lowest possible r2, which

corresponds to the solution of (8) holding with equality.

Consider now the case when 1 − k > L. In this case, the above argument does

not apply since ∂θ∗

∂r2
< 0 may hold. The derivative ∂θ∗

∂r2
is obtaining differentiating (6)

with respect to r2 and it is given by

∂θ∗

∂r2

=
1

R

qr2 − π1

qr2 − π1
(1−k)
L

− r2

R

qπ1

[
1−k
L
− 1
](

qr2 − π1
(1−k)
L

)2 ,

whose sign is potentially ambiguous. It is easy to see from (7) that Π is strictly

decreasing in r2 when ∂θ∗

∂r2
> 0. Hence, assuming it is consistent with (8) to hold,

banks will always be better off choosing r2 in the range where ∂θ∗

∂r2
< 0 that is, in

other words, ∂θ∗

∂r2
< 0 in equilibrium.

We write the Lagrangian for the bank’s problem as

L = Π|q=q∗ − µ
{

1− α
∫ θ∗

0

L

1− k
dθ − α

∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1

qr2dθ

}
,

where Π is given in (7). The Kuhn-Tucker conditions are

− α∂θ
∗

∂r2

[Rθ∗ − (1− k) r2]− α
∫ 1

θ∗
q∗ (1− k) dθ − (1− α)

∫ 2

1

q∗ (1− k) dθ +
∂Π

∂q

dq∗

dr2

+ αµ

∫ 1

θ∗
q∗dθ

(33)

+ (1− α)µ

∫ 2

1

q∗dθ − αµ
[
∂θ∗

∂r2

+
∂θ∗

∂q

dq∗

dr2

] [
q∗r2 −

L

1− k

]
= 0,

µ

{
1− α

∫ θ∗

0

L

1− k
dθ − α

∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1

qr2dθ

}
= 0,
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µ ≥ 0.

The derivative dq∗

dr2
is obtained using the implicit function theorem.

When µ = 0, 1− α
∫ θ∗

0
L

1−kdθ − α
∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1
qr2dθ > 0, i.e., (8) is not

binding and r2 solves (12) in the proposition. Since 1 − k > L and q∗ ≤ 1, r2 must

be greater than 1 for (8) to be satisfied. When µ > 0, bank profit decreases with r2

and therefore the bank will choose the lowest level of r2 that solves

1− α
∫ θ∗

0

L

1− k
dθ − α

∫ 1

θ∗
qr2dθ − (1− α)

∫ 2

1

qr2dθ = 0.

The solution is again greater than 1 in order for (8) to hold. The Lagrange multiplier

µ is then pinned down by (33) and is equal to

µ =
α∂θ

∗

∂r2
[Rθ∗ − (1− k) r2] + α

∫ 1

θ∗
(1− k) dθ + (1− α)

∫ 2

1
(1− k) dθ

α
∫ 1

θ∗
qdθ + (1− α)

∫ 2

1
qdθ − α

[
∂θ∗

∂r2
+ ∂θ∗

∂q
dq
dr2

] [
qr2 − L

1−k

] .

Hence, the proposition follows. �

Proof of Proposition 3: To characterize the run thresholds θx and θ∗x, we follow

the same steps as in the proof of Proposition 1. We start characterizing the range

of fundamentals in which running is a dominant strategy. The threshold θx is the

solution to

R (θ + x)− (1− k) r2 = 0,

and is equal to

θx =
(1− k) r2

R
− x = θ − x.

For any θ < θx, a depositor expects to receive 0 at date 2 and 1 at date 1 even if no

depositors run, thus, it is always optimal to run in this range. The characterization

of the upper dominance region is as in Section 4: Depositors finds it optimal to wait

until date 2 when θ > θ, with θ → 1.

The key difference relative to the proof of Proposition 1 is that now for θ ∈
[1 − x, θ), the return accrued to the bank at date 2 is R rather than Rθ, which
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matters for the properties of the expected utility differential in the characterization

of the run threshold θ∗x in the case 1− k > L.

Depositors’ withdrawal decisions are fully characterized by the pair {s∗x, θ∗x} as

given by the solution to the following system of equations.

Rθ∗x

(
1− n (θ∗x, s

∗
x) (1− k)

L

)
− (1− n (θ∗x, s

∗
x)) (1− k) r2 = 0, (34)

and

∆x (s∗x, n (.)) = qr2 Pr (θ > θ∗x| s∗x)−1 Pr (θ > θn| s∗x)−
L

(1− k)n (θ, s∗x)
Pr (θ < θn| s∗x) = 0,

(35)

The meaning of the two equations is the same as in the proof of Proposition 1, with

(34) pinning down the bank failure threshold θ∗x and (35) identifying the threshold

signal s∗x at which a depositor’s expected utility differential between withdrawing at

date 2 and date 1, ∆x (si, n (.)), is exactly zero. The function ∆x (si, n (.)) satisfies

the same properties as the corresponding function in the proof of Proposition 1. The

only difference is that when a depositor receives a signal such that he expects θ to be

in the range [1− x, θ), his expected utility differential is non-decreasing rather than

strictly increasing in the signal si for any n. This results from the fact that in that

range, due to the guarantee, the bank accrues R from the loan. Yet, considering a

generic threshold signal s′, the function is negative when s′ < θ (k)−ε, positive when

s′ ≥ θ + ε and strictly increasing in the threshold signal s′ when there is a positive

probability that n < n and s′ < 1− x− ε. Since ∆x (si, n (.)) is constant in s′ when

1 − x − ε ≤ s′ < θ + ε, strictly positive when s′ ≥ θ + ε and continuous, it follows

that it crosses zero for s′ < 1− x− ε, i.e., s∗x < 1− x− ε so that s∗x is unique.

Following the same steps as in the proof of Proposition 1, considering the limit

case ε→ 0, we can specify depositor’s indifference condition as∫ n̂x(θ)

0

qr2dθ = π1, (36)

55



where π1 is given in (32) and n̂x (θ) > n̂ (θ) corresponds to the solution to

R (θ + x)

(
1− n̂x (θ)

(1− k)

L

)
− (1− n̂x (θ)) (1− k) r2 = 0.

After a few manipulations, we obtain θ∗x = θ∗−x. It follows immediately that θ∗x < θ∗

for any x > 0, and ∂θ∗

∂x
= −1 < 0. Condition (14) in the proposition is thus obtained

simply combining together the case when 1− k ≤ L and when 1− k > L.

Using the same argument as in the proof of Proposition 1, we have that θ∗x > θx

and θx is the run threshold when 1− k ≤ L. It is easy to see that
∂θx
∂x

= −1 < 0 and
∂θx
∂k

= − r2
R
< 0. This completes the proof. �

Proof of Proposition 4: To compute the effect of x on qRx ≡
{
q
x
, q∗x

}
, we consider

separately the case when 1− k ≤ L and when 1− k > L. We start from the former.

Differentiating (16) with respect to x we obtain

− α∂θx
∂x

[
R (θx + x)− (1− k) r2 −R (θx + x)

(
1− (1− k)

L

)]
(37)

+ α

∫ θx

0

R

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

Rdθ

= α

[
R (θx + x)

(1− k)

L
− (1− k) r2

]
+ α

∫ θx

0

R

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

Rdθ,

since
∂θx
∂x

= −1. For banks with k such that 1− k = L,
dq
x

dx
> 0 since the expression

above simplifies to α
∫ 1−x
θx

Rdθ > 0. The same applies to banks with k = 1 since (37)

simplifies to

+α

∫ θx|k=1

0

Rdθ + α

∫ 1−x

θx|k=1

Rdθ > 0.

For values of k ∈ (1− L, 1), the expression in (37) can be rearranged as

+α

{
R

[
x

(1− k)

L
+ 1− x

]
− (1− k) r2

}
. (38)

The expression above is linear in k. Hence, since (37) is linear, positive at k = 1 and

k = 1− L, it follows that it must also be positive for any k ∈ (1− L, 1).
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Consider now the case in which 1− k > L. Differentiating (17) with respect to x,

we obtain

− α∂θ
∗
x

∂x
q [R (θ∗x + x)− (1− k) r2] + α

∫ 1−x

θ∗x

Rdθ − α ∂
2θ∗x

∂q∂x
q [R (θ∗x + x)− (1− k) r2]

− α∂θ
∗
x

∂q
q
∂θ∗x
∂x

R− α∂θ
∗
x

∂q
qR.

Since ∂θ∗x
∂x

= −1 and ∂2θ∗x
∂q∂x

= ∂2θ∗x
∂x∂q

= 0, the expression above simplifies to

αq [R (θ∗x + x)− (1− k) r2] + α

∫ 1−x

θ∗x

Rdθ > 0,

and the proposition follows. �

Proof of Proposition 5: When 1− k ≤ L, the relevant run threshold is θPx , which

corresponds to the solution to

R (θ + x)− (1− k) r2 = 0,

since when θ falls below θPx depositors expect to receive

q
Rx

1− k
+ (1− q) Rx

1− k
< 1,

and so prefer to run. Hence, θPx = θx holds.

When 1− k > L, the relevant run threshold is θ∗Px . Following the same steps as

in in the proof of Proposition 3, the threshold θ∗Px is pinned down by a depositor’s

indifference condition, which corresponds to expression (18) in the proposition.

To complete the proof, we need to compute the effect of q, k and x on θ∗Px . We

do this by using the implicit function theorem. Denote as f (x, q, k, θ) = 0 the

indifference condition in (18). Thus,

dθ∗Px
dq

= −
∂f(.)
∂q

∂f(.)
∂θ

,
dθ∗Px
dk

= −
∂f(.)
∂k
∂f(.)
∂θ

,
dθ∗Px
dx

= −
∂f(.)
∂x
∂f(.)
∂θ
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The denominator

∂f (.)

∂θ
=
∂n̂x

(
θ∗Px
)

∂θ
q

r2 −
Rx
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

 > 0,

since n̂x
(
θ∗Px
)

=
R(θ∗Px +x)−(1−k)r2

R(θ∗Px +x)
(1−k)
L
−(1−k)r2

and so
∂n̂x(θ∗Px )

∂θ
=

R−Rn̂x(θ∗Px ) (1−k)
L

R(θ∗Px +x)
(1−k)
L
−(1−k)r2

=
R(1−n̂x(θ∗Px ) (1−k)

L )
R(θ∗Px +x)

(1−k)
L
−(1−k)r2

>

0. Hence, the signs of the effect of q, k and x on θ∗Px are given by the opposite sign

of the respective numerators. We have the following:

∂f (.)

∂q
=

∫ n̂x(θ∗Px )

0

r2dn−
∫ n

0

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

∫ n

n̂x(θ∗Px )

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn > 0,

∂f (.)

∂k
=
∂n̂x

(
θ∗Px
)

∂k
q

r2 −
Rx
(

1− n̂x (θ∗) (1−k)
L

)
(1− n̂x (θ∗)) (1− k)

+

∫ n

n̂x(θ∗Px )

q
Rx

(1− n) (1− k)2dn+

∫ n

0

(1− q) Rx

(1− n) (1− k)2dn−
∫ 1

n

L

(1− k)2 n
dn.

The expression for ∂f(.)
∂k

can be rearranged as

∂f (.)

∂k
=
∂n̂x

(
θ∗Px
)

∂k
qr2 −

∫ 1

n

L

(1− k)2 n
dn−

∂n̂x
(
θ∗Px
)

∂k
q
Rx
(

1− n̂x
(
θ∗Px
)

(1−k)
L

)
(1− n̂x (θ∗Px )) (1− k)

(39)

+

∫ n

n̂x(θ∗Px )

q
Rx

(1− n) (1− k)2dn+

∫ n

0

(1− q) Rx

(1− n) (1− k)2dn,

where
∂n̂x(θ∗Px )

∂k
=

R(θ∗P+x) (1−k)
L
−(1−k)r2

R(1−n̂x(θ∗Px )
(1−k)
L )

> 0.

To establish the sign of (39), first notice that the first two terms sum up to a

positive. This follows directly from the proof of Proposition 3, where we have shown

that θ∗x is decreasing in k. The derivative ∂θ∗x
∂k

can be computed using the implicit

function theorem from (36) as follows:

∂θ∗x
∂k

= −
∂n̂x(θ∗)
∂k

qr2 −
∫ 1

n
L

(1−k)2n
dn

∂n̂x(θ∗)
∂θ

qr2

< 0.
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Given that ∂n̂x(θ∗)
∂θ

> 0, ∂θ∗x
∂k

implies that ∂n̂x(θ∗)
∂k

qr2−
∫ 1

n
L

(1−k)2n
dn > 0. Since θ∗x > θ∗Px

and ∂n̂x(θ∗)
∂k

is increasing in θ∗x, it follows that when ∂n̂x(θ∗)
∂k

qr2−
∫ 1

n
L

(1−k)2n
dn > 0, also

∂n̂x(θ∗Px )
∂k

qr2 −
∫ 1

n
L

(1−k)2n
dn > 0 holds. Hence, the sum of the first two terms in (39)

is positive. A sufficient condition for ∂f(.)
∂k

> 0 and so for ∂θ∗P

∂k
< 0 is that

∂n̂x
(
θ∗Px
)

∂k
q
Rx
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

<

∫ n

n̂x(θ∗Px )

q
Rx

(1− n) (1− k)2dn,

that is

qRx

L (1− k)

∂n̂x (θ∗Px )
∂k

(
1− n̂x

(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

− 1

1− k

∫ n

n̂x(θ∗Px )

1

(1− n)
dn

 < 0.

Substituting the expression for ∂n̂x(θ∗)
∂k

, we can express the sufficient condition simply

as:
1

1− k

[
R
(
θ∗Px + x

) (1−k)
L
− (1− k) r2

R (1− n̂x (θ∗Px ))
−
∫ n

n̂x(θ∗Px )

1

(1− n)
dn

]
< 0.

The inequality above holds because the integral
∫ n
n̂x(θ∗Px )

1
(1−n)

dn is increasing in n

and is greater than 1
1−n̂x(θ∗Px )

and
R(θ∗P+x) (1−k)

L
−(1−k)r2

R
< 1.

Consider now the effect of x on θ∗Px . We have the following:

∂f(.)
∂x

=
∂n̂x(θ∗Px )

∂x
q

[
r2 −

Rx(1−n (1−k)
L )

(1−n)(1−k)

]
+
∫ n
n̂x(θ∗Px )

q
R(1−n (1−k)

L )
(1−n)(1−k)

dn

+
∫ n

0
(1− q) R(1−n (1−k)

L )
(1−n)(1−k)

dn > 0,

and so the proposition follows. �

Proof of Proposition 6: As usual, we consider separately the case when 1−k ≤ L

and 1− k > L. We start from the former. When 1− k ≤ L, the first order condition

with respect to q is given by (57), which implies that the sign of
dq∗P

dx
is equal to the

sign of the expression in (37). As shown in the proof of Proposition 4, this is always

positive.
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Consider now the case when 1− k > L. The first order condition with respect to

q is given in (19). As q∗P is an interior solution, using the implicit function theorem,

the sign of dq∗P

dx
is equal to the sign of the derivative of (19) with respect to x.

Differentiating (19) with respect to x, we obtain

− α∂θ
∗P
x

∂x

[
R
(
θ∗Px + x

)
− (1− k) r2

]
− α∂θ

∗P
x

∂q

∂θ∗Px
∂x

qR (40)

+ α

∫ 1−x

θ∗Px

Rdθ − α∂
2θ∗Px
∂q∂x

q
[
R
(
θ∗Px + x

)
− (1− k) r2

]
− α∂θ

∗P
x

∂q
qR,

which can be further rearranged as follows:

−α
[
∂θ∗Px
∂x

+
∂2θ∗Px
∂q∂x

q

] [
R
(
θ∗Px + x

)
− (1− k) r2

]
−α∂θ

∗P
x

∂q

∂θ∗Px
∂x

qR+α

∫ 1−x

θ∗Px

Rdθ−α∂θ
∗P
x

∂q
qR.

(41)

To establish the sign of the expression above, we need to compute ∂2θ∗Px
∂q∂x

. Recall that

∂θ∗Px
∂x

= −1−
q
∫ n
n̂x(θ∗Px )

R(1−n (1−k)
L )

(1−n)(1−k)
dn

q ∂n̂x(θ∗Px )
∂θ

[
r2 −

Rx(1−n̂x(θ∗Px )
(1−k)
L )

(1−n̂x(θ∗Px ))(1−k)

]− ∫ n
0

(1− q) R(1−n (1−k)
L )

(1−n)(1−k)
dn

q ∂n̂x(θ∗Px )
∂θ

[
r2 −

Rx(1−n̂x(θ∗Px )
(1−k)
L )

(1−n̂x(θ∗Px ))(1−k)

] < 0,

(42)

and

∂θ∗P

∂q
= −1

q

∫ n̂x(θ∗Px )
0 r2dn+

∫ n
n̂x(θ∗Px )

Rx(1−n (1−k)
L )

(1−n)(1−k)
dn−

∫ n
0

Rx(1−n (1−k)
L )

(1−n)(1−k)
dn

∂n̂x(θ∗Px )
∂θ

[
r2 −

Rx(1−n̂x(θ∗Px )
(1−k)
L )

(1−n̂x(θ∗Px ))(1−k)

] < 0. (43)

Since ∂2θ∗Px
∂x∂q

= ∂2θ∗Px
∂q∂x

, we can differentiate (43) with respect to x. Before doing this, in

order to keep the notation compact, denote as Φ the denominator
∂n̂x(θ∗Px )

∂θ

[
r2 −

Rx(1−n̂x(θ∗Px ) (1−k)
L )

(1−n̂x(θ∗Px ))(1−k)

]
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.

∂2θ∗Px
∂x∂q

= −1

q

1

Φ

∫ n

n̂x(θ∗Px )

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

(
∂n̂x

(
θ∗Px
)

∂θ

∂θ∗Px
∂x

+
∂n̂x

(
θ∗Px
)

∂x

)
Φ

∂n̂x(θ∗Px )
∂θ


+

1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∂θ∗Px
∂q

∂Φ

∂θ

∂θ∗Px
∂x
− 1

q

1

Φ

∂θ∗Px
∂q

[
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

]

=
1

q

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

∂θ∗Px
∂x
− 1

q
− 1

q

1

Φ

∂θ∗Px
∂q

[
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

]

with
∂n̂x(θ∗Px )

∂θ
=

∂n̂x(θ∗Px )
∂x

, ∂Φ
∂θ

=
∂n̂2

x(θ∗Px )
∂θ2

[
r2 −

Rx(1−n̂x(θ∗Px ) (1−k)
L )

(1−n̂x(θ∗Px ))(1−k)

]
+

(
∂n̂x(θ∗Px )

∂θ

)2
Rx( 1−k

L
−1)(2−n̂x)

(1−n̂x)2(1−k)
,∂Φ
∂x

=

∂Φ
∂θ
− ∂n̂x(θ∗Px )

∂θ

R(1−n̂x(θ∗Px ) (1−k)
L )

(1−n̂x(θ∗Px ))(1−k)
and

∂2n̂x(θ∗Px )
∂θ2

=
∂2n̂x(θ∗Px )

∂θ∂x
= − 2

∂n̂x(θ∗Px )
∂θ

R
(1−k)
L

R(θ∗Px +x)
(1−k)
L
−(1−k)r2

< 0.

Rearranging ∂θ∗Px
∂x

= −1 + 1
Φ

∫ n̂x(θ∗Px )
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn− 1

q
1
Φ

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn, we can

rewrite the expression for ∂2θ∗Px
∂x∂q

as follows:

∂2θ∗Px
∂x∂q

= +
1

q

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn

+
1

q2

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

)

=
1

q

1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

) .
Hence, the expression in (41) can be written as

− α

−1 +
1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

) [R (θ∗Px + x
)
− (1− k) r2

]
(44)

+ α

∫ 1−x

θ∗Px

Rdθ − α∂θ
∗P
x

∂q
qR

 1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn

 .
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First, given that n > n̂x
(
θ∗Px
)

and q < 1, one can see that

1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

q

1

Φ

∫ n

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn < 0,

which implies that the last term in (44) is negative since ∂θ∗Px
∂q

< 0.

Consider now the terms in the first bracket and denote it as Λ. We want to show

that Λ > 0 that is

Λ = −1 +
1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

(
∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x

)
> 0

Using ∂Φ
∂x

= ∂Φ
∂θ
− ∂n̂x(θ∗Px )

∂θ

R(1−n̂x(θ∗Px ) (1−k)
L )

(1−n̂x(θ∗Px ))(1−k)
, we can rewrite

∂Φ

∂θ

∂θ∗Px
∂x

+
∂Φ

∂x
=
∂Φ

∂θ

∂θ∗Px
∂x

+ 1−
∂n̂x

(
θ∗Px
)

∂θ

R
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

 ,

so that

Λ = −1+
1

Φ

∫ n̂x(θ∗Px )

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn− 1

Φ

∂θ∗Px
∂q

∂Φ

∂θ

∂θ∗Px
∂x

+ 1−
∂n̂x

(
θ∗Px
)

∂θ

R
(

1− n̂x
(
θ∗Px
) (1−k)

L

)
(1− n̂x (θ∗Px )) (1− k)

 .

When x→ 0, ∂Φ
∂θ

=
∂n̂2

x(θ∗Px )
∂θ2

r2 < 0 and ∂θ∗Px
∂q

∂Φ
∂θ

(
∂θ∗Px
∂x

+ 1− ∂n̂x(θ∗Px )
∂θ

R(1−n̂x(θ∗Px ) (1−k)
L )

(1−n̂x(θ∗Px ))(1−k)

)
<

0 since ∂θ∗Px
∂x

< −1.

Furthermore, the first two terms in Λ simplify to

−1+
1

Φ

∫ n̂x(θ)

0

R
(

1− n (1−k)
L

)
(1− n) (1− k)

dn =

∫ n̂x(θ)

0

Rθ∗Px (1−n (1−k)
L )

(1−n)(1−k)
dn

Rθ∗Px (1−n̂x(θ)
(1−k)
L )

(1−n̂x(θ))(1−k)

[
Rθ∗Px

(1−k)
L
− (1− k) r2

]
r2

−1 > 0,

since
∫ n̂x(θ)
0

Rθ∗Px (1−n (1−k)
L )

(1−n)(1−k) dn

Rθ∗Px (1−n̂x(θ)
(1−k)
L )

(1−n̂x(θ))(1−k)

> 1 and
Rθ∗Px

(1−k)
L

r2
− (1− k) = (1−k)

L

[
Rθ∗Px
r2
− L

]
> 1 given

that 1 − k > L and Rθ∗Px > (1− k) r2. It follows that Λ > 0 and overall that the

first and last terms in (44) are negative, while the second one is positive.
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When x → 0, θ∗Px → θ∗. Given that θ∗ → θ, which is arbitrarily close to 1,

as k → 0, it follows that the expression in (44) becomes negative as k → 0 since

θ∗Px → 1. By continuity, it continues to be negative also for k small but strictly larger

than 0. Similarly, given that when 1 − k = L the entire expression is positive. It

follows that in the range k ∈ (0, 1− L), there exists a cutoff k̂Px , such that dq∗P

dx
< 0

for k < k̂Px and dq∗P

dx
> 0 for k > k̂Px . Hence, the proposition follows. �

Proof of Proposition 7: The proof proceeds in steps: First, we characterize

depositors’ withdrawal behavior. Then, we solve for the optimal q and characterize

the effect of the introduction of the guarantees on the bank’s monitoring choice. In

doing so, we distinguish between the case in which the guaranteed amount is lost in

bankruptcy and when it is protected from bankruptcy. We start with the former.

The characterization of depositors’ withdrawal decision follows the same steps as

in the proof of Propositions 3 and 5. Running is a dominant strategy when θ < θy,

which corresponds to the solution to

R [θ + (1− θ) y]− (1− k) r2 = 0,

which gives

θy =
θ − y
1− y

,

with θ = (1−k)r2
R

corresponding to the run threshold when there are no guarantees,

as given in (5).

When 1− k > L, banks are exposed to panic runs. Following the same steps as

in the previous sections, the condition pinning down θ∗y is∫ n̂y(θ)

0

qr2dn = π1,

where π1 is given in (32) and n̂y (θ) solves

R [θ + (1− θ) y]

(
1− n (1− k)

L

)
− (1− n) (1− k) r2 = 0.
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n̂y (θ) = L
r2 −Rθ − kr2 −Ry +Ryθ

(k − 1) (Rθ − Lr2 +Ry −Ryθ)
.

After a few manipulations, we obtain the expression in the proposition,

θ∗y =
θ∗ − y
1− y

,

where θ∗ corresponds to the run threshold when there are no guarantees, as given in

(6). As shown in the proof of Proposition 1, θy and θ∗y are the relevant run thresholds

for banks with high capital (i.e., 1−k ≤ L) and low capital (1−k > L), respectively.

We now move on to the choice of q. When 1−k ≤ L, the bank solves the following

problem:

max
q
αq

∫ θy

0

R [θ + (1− θ) y]

(
1− (1− k)

L

)
dθ + αq

∫ 1

θy

[R [θ + (1− θ) y]− (1− k) r2] dθ

+ (1− α) q

∫ 2

1

[R− (1− k) r2] dθ − cq2

2
,

while when 1− k > L, the objective function is

max
q
αq

∫ 1

θ∗y

[R [θ + (1− θ) y]− (1− k) r2] dθ + (1− α) q

∫ 2

1

[R− (1− k) r2] dθ− cq2

2
.

The first order condition for q is

α

∫ θy

0

R [θ + (1− θ) y]

(
1− (1− k)

L

)
dθ + α

∫ 1

θy

[R [θ + (1− θ) y]− (1− k) r2] dθ

+ (1− α)

∫ 2

1

[R− (1− k) r2] dθ − cq = 0,

when 1− k ≤ L, since
∂θy
∂q

= 0 and

α

∫ 1

θ∗y

[R [θ + (1− θ) y]− (1− k) r2] dθ − α
∂θ∗y
∂q

q
[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
+ (1− α)

∫ 2

1

[R− (1− k) r2] dθ − cq = 0, (45)
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when 1− k > L, with
∂θ∗y
∂q

= 1
1−y

∂θ∗

∂q
< 0.

To compute the effect of y on the optimal q, we use the implicit function theorem.

Thus, the sign of dqy
dy

is equal to the sign of ∂FOCq
∂y

. When 1− k ≤ L, ∂FOCq
∂y

is equal

to:

α

∫ θy

0

R (1− θ)
(

1− (1− k)

L

)
dθ+α

∫ 1

θy

R (1− θ) dθ+α
∂θy
∂y

R
[
θy +

(
1− θy

)
y
](

1− (1− k)

L

)
.

The first two terms are positive, while the last one is negative since
∂θy
∂y

= −1−θy
1−y .

When 1−k = L, ∂FOCq
∂y

simplifies to α
∫ 1

θy
R (1− θ) dθ > 0. As k → 1, then θy → 0 for

any y > θ, and so
∂θy
∂y

= 0, while for y < θy and y → 0, the term θy +
(
1− θy

)
y → 0.

It follows that ∂FOCq
∂y

> 0 for all k ∈ (1− L, 1), so that
dq
y

dy
> 0 holds.

Consider now the case when 1− k > L: ∂FOCq
∂y

is given by

α

∫ 1

θ∗y

R (1− θ) dθ − α
∂θ∗y
∂y

[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
− α

∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y)

− α
∂θ∗y
∂q

qR
(
1− θ∗y

)
− α

∂2θ∗y
∂q∂y

q
[
R
[
θ∗y +

(
1− θ∗y

)
y
]
− (1− k) r2

]
,

where
∂2θ∗y
∂q∂y

=
∂2θ∗y
∂y∂q

= 1
1−y

∂θ∗y
∂q

< 0. All terms in the expression above are positive

except

−
∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y) < 0.

Recall that
∂θ∗y
∂y

= −1−θ∗y
1−y < 0. Then, we can write

−
∂θ∗y
∂q

q
∂θ∗y
∂y

R (1− y)−
∂θ∗y
∂q

qR
(
1− θ∗y

)
= −

∂θ∗y
∂q

qR
[
−
(
1− θ∗y

)
+
(
1− θ∗y

)]
= 0,

and it follows that
dq∗y
dy

> 0 when 1− k > L.

We now move on to the case when the guarantee amount is protected from

bankruptcy. The threshold for fundamental runs is still given by θy as specified

above. The threshold for panic runs θ∗Py , instead, now solves:∫ n̂y(θ)

0

qr2dn+

∫ n

n̂y(θ)

q
R (1− θ) y

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+

∫ n

0

(1− q)
Ry
(

1− n (1−k)
L

)
(1− n) (1− k)

dn = π1,

(46)
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where π1 and n̂y (θ) are as above and n is still equal to L
1−k .

As we perform our analysis for the case in which y → 0, the expression in (46) is

increasing in θ and decreasing in n, so the usual derivations to characterize the panic

run threshold θ∗Py apply. Using the implicit function theorem, we can compute

∂θ∗Py
∂q

= −

∫ n̂y(θ)

0
r2dn+

∫ n
n̂y(θ)

R(1−θ)y(1−n (1−k)
L )

(1−n)(1−k)
dn−

∫ n
0

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

∂n̂y(θ)

∂θ
q

[
r2 −

R(1−θ)y(1−n̂y(θ)
(1−k)
L )

(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

< 0,

and

∂θ∗Py
∂y

=

−∂n̂y(θ)

∂y

[
qr2 − q

R(1−θ)y(1−n̂y (1−k)
L )

(1−n̂y)(1−k)

]
− q

∫ n
n̂y(θ)

R(1−θ)(1−n (1−k)
L )

(1−n)(1−k)
dn− (1− q)

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn

∂n̂y(θ)

∂θ
q

[
r2 −

R(1−θ)y(1−n̂y(θ)
(1−k)
L )

(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

< 0.

Starting from
∂θ∗Py
∂y

, we can compute
∂2θ∗Py
∂q∂y

=
∂2θ∗Py
∂y∂q

as follows:

∂2θ∗Py
∂q∂y

= −

∂n̂y(θ)

∂y

[
r2 −

R(1−θ)y(1−n̂y(θ)
(1−k)
L )

(1−n̂y(θ))(1−k)

]
+
∫ n
n̂y(θ)

R(1−θ)(1−n (1−k)
L )

(1−n)(1−k)
dn−

∫ n
0

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

∂n̂y(θ)

∂θ
q

[
r2 −

R(1−θ)y(1−n̂y(θ)
(1−k)
L )

(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

−
∂θ∗Py
∂y

∂n̂y(θ)

∂θ

[
r2 −

R(1−θ)y(1−n̂y(θ)
(1−k)
L )

(1−n̂y(θ))(1−k)

]
−
∫ n
n̂y(θ)

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

∂n̂y(θ)

∂θ
q

[
r2 −

R(1−θ)y(1−n̂y(θ)
(1−k)
L )

(1−n̂y(θ))(1−k)

]
− q

∫ n
n̂y(θ)

Ry(1−n (1−k)
L )

(1−n)(1−k)
dn

> 0.

When y = 0, the expression above simplifies to

∂2θ∗Py
∂q∂y

= − 1
∂n̂y(θ)

∂θ
qr2

∂n̂y (θ)

∂y
r2 +

∫ n

n̂y(θ)

R (1− θ)
(

1− n (1−k)
L

)
(1− n) (1− k)

dn


−
∂θ∗Py
∂y

1

q
,

from which we can see that
∂2θ∗Py
∂q∂y

>
∂θ∗Py
∂y

when y = 0.
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The FOCq is still given by (45), so that the expression for ∂FOCq
∂y

when y = 0 is

given by

α

∫ 1

θ∗Py

R (1− θ) dθ − α
∂θ∗Py
∂y

[
Rθ∗Py − (1− k) r2

]
− α

∂θ∗Py
∂q

q
∂θ∗Py
∂y

R− α
∂2θ∗Py
∂q∂y

q
[
Rθ∗Py − (1− k) r2

]
− α

∂θ∗Py
∂q

qR
(
1− θ∗Py

)
.

Again, all terms are positive except −α∂θ
∗P
y

∂q
q
∂θ∗Py
∂y

R < 0. When 1− k = L, we know

that ∂FOCq
∂y

> 0 and so
dq∗Py
dy

> 0. Recall that θ∗ → θ, which is arbitrarily close to

1, as k → 0. Hence, we can extend the argument to the case when y = 0, so that

θ∗Py → θ∗ and conclude that when k → 0, θ∗Py → θ∗ → θ, which is arbitrarily close

to 1. Making use of this assumption, the expression for ∂FOCq
∂y

evaluated at y = 0

simplifies to

−α
∂θ∗Py
∂y

[R− (1− k) r2]− α
∂2θ∗Py
∂q∂y

q [R− (1− k) r2]− α
∂θ∗Py
∂q

q
∂θ∗Py
∂y

R.

Since
∂2θ∗Py
∂q∂y

>
∂θ∗Py
∂y

when y = 0, the expression above is negative, which implies that
dq∗Py
dy

< 0. Using the same argument as in the proof of Proposition 6, we can establish

that there exists a cutoff k̂Py ∈ (0, 1− L) such that
dq∗Py
dy

< 0 for k < k̂Py and
dq∗Py
dy

> 0

for k > k̂Py , so that the proposition follows. �

Proof of Proposition 8: Given the expressions for GDx and GDy in (21) and (22)

and evaluating (22) at y = y = x
1−max(θ−x,0)

, the expression that determines which

guarantee scheme is more costly is

Rx− Rx2

2
−Rx (θ − x)

1− k
L
≷

Rx

2 (1−max (θ − x, 0))
− Rx

(1−max (θ − x, 0))
(θ − x)

1− k
L

+
Rx

2 (1−max (θ − x, 0))

1− k
L

(θ − x)2 ,

which can be simplified as

Rx

2

[
(2− x)− 1

(1−max (θ − x, 0))
− (θ − x)

1− k
L

(
2− 2− (θ − x)

(1−max (θ − x, 0))

)]
≷ 0.

(47)
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When (47) equals zero, the two guarantee schemes are equally costly. Note that this

is the case for x = 0 and x = 1. When x = 1, max (θ − x, 0) = 0 and θx = θ−x = 0,

so that the expression above simplifies to R
2

[1− 1] = 0.

We need now to check whether GDx ≷ GDy for any x ∈ (0, 1). Differentiate (47)

with respect to x:

R

2L (xθ − 1)2

(
L− x2θ3 + 2x3θ2 + 2xθ2 − 3x2θ − 2Lx+ 2Lx2θ2 − 2Lx3θ2 (48)

+kx2θ3 − 2kx3θ2 − 4Lxθ + 4Lx2θ − 2kxθ2 + 3kx2θ
)
.

Evaluating (48) at x = 0 gives L
L

= 1 > 0, so that, while the difference in the two

loan guarantee schemes is zero at x = 0, it becomes positive as soon as x becomes

positive.

We now show that the difference in (47) is concave everywhere, which implies

that GDx > GDy for any x ∈ (0, 1). Start by differentiating (48) with respect to x

again to obtain

2

L (xθ − 1)3 (L− (1− k))
(
1 + θ + 3x2θ2 − x3θ3 − 3xθ

)
+ (1− k) . (49)

Since (xθ − 1)3 < 0, to show that GDx−GDy is concave for any x ∈ (0, 1), we need

to show that the expression in parentheses is positive.

For x = 0, the expression is clearly positive, meaning that the difference GDx −
GDy is concave around x = 0. A sufficient condition for the expression to be positive

for any x ∈ (0, 1) is

1 + θ + 3x2θ2 − x3θ3 − 3xθ > 0.

This is equivalent to showing that

1 + θ

xθ
> −

(
3xθ − x2θ2 − 3

)
. (50)

Rewrite the LHS in (50) as 1
xθ

+ 1
x
. From this, we can see that for any x, the value

of the LHS is minimal at θ = 1, and equal to 2
x
.
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Consider now the RHS in (50). Differentiating it with respect to θ gives:

2x2θ − 3x

This derivative is positive if 2x2θ − 3x > 0 ⇔ 2xθ > 3 ⇔ xθ > 3
2
, which can

never happen since both x and θ are less than 1. Hence, the RHS must be strictly

decreasing in θ, and is maximized at θ = 0. For θ = 0, the RHS equals 3. The same

thing is true for x: the RHS is decreasing in x, so the maximum value the RHS can

take is 3, which occurs for either x = 0 or θ = 0.

Now consider the LHS. The lowest value it can take, as a function of x, is 2
x
. For

this expression to become smaller than 3, i.e., the largest the RHS can be, we need

x > 2
3
. Note now that x can only be greater than 2

3
if θ is also greater than 2

3
. Since

the RHS is decreasing in x and θ, the most the RHS can be if 2
3
≤ x ≤ θ is(

2

3

)2(
2

3

)2

− 3

(
2

3

)(
2

3

)
+ 3 = 1.8642

which is less than the LHS.

Fix now x = 1. The lowest value that the LHS can take when x = 1 is 2. This

is bigger than the value that the RHS takes when x = 2
3
. Thus, since both the LHS

and the RHS are monotonically decreasing in x, it follows that the LHS is greater

than the RHS for any x > 0. This implies, in turn, that the difference GDx −GDy

is concave for any x ∈ (0, 1) and so it is always positive as stated in the proposition.

To complete the proof we need to determine the effect of the two guarantees

schemes on q. To do so, we compare FOCq under GSx and GSy. The former is equal

to

α

∫ θx

0

R (θ + x)

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ

+ α

∫ 1

1−x
[R− (1− k) r2] dθ + (1− α)

∫ 2

1

[R− (1− k) r2] dθ − cq = 0, (51)
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while the latter is equal to

α

∫ θy

0

R (θ + y − θy)

(
1− (1− k)

L

)
dθ + α

∫ 1

θy

[R (θ + y − θy)− (1− k) r2] dθ

+ (1− α)

∫ 2

1

[R− (1− k) r2] dθ − cq = 0, (52)

since under GSy the bank accrues a (per unit return) on the non-liquidated units

equal to Rθ +R (1− θ) y = R (θ + y − θy) and
∂θy
∂q

=
∂θx
∂q

= 0.

We now compare (51) and (52) evaluated at y = y so that θy = θx. Given that

qx and qy are interior solutions, for qx > qy, it must be that

α

∫ θx

0

R (θ + x)

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
[R− (1− k) r2] dθ

−α
∫ θy

0

R (θ + y − θy)

(
1− (1− k)

L

)
dθ − α

∫ 1

θy

[R (θ + y − θy)− (1− k) r2] dθ

∣∣∣∣∣
y=y

> 0.

After a few manipulations, we can rearrange the expression on the LHS of the in-

equality above as follows:

α

∫ θx

0

R

(
x− x

1 + x− θ
+ θ

x

1 + x− θ

)(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

R

(
x− x

1 + x− θ
+ θ

x

1 + x− θ

)
dθ

+ α

∫ 1

1−x
R

(
1− x

1 + x− θ

)
(1− θ) dθ

= α

∫ θx

0

Rx2

1 + x− θ

(
1− (1− k)

L

)
dθ + α

∫ 1−x

θx

Rx2

1 + x− θ
dθ

+ α

∫ 1

1−x

R

1 + x− θ
(1− θ) (1− θ) dθ > 0.

Hence, since FOCqx > FOCqy , it follows that qx > qy, as desired. �

Proof of Lemma 1: Substituting the expressions for θBL and θSPL from (23) and

(24), respectively, it is easy to see that for any 0 ≤ k < 1 and 0 < q < 1, θBL < θSPL

holds as
L− (1− q)(1− k)r2

qR
<

L

qR
.
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The rest of the Lemma follows since θBL increases with k, while θSPL does not depend

on k. �

Proof of Lemma 2: Although depositors anticipate the bank’s liquidation decisions,

the run thresholds are still given by θR = {θ, θ∗} as in Section 5. To see this, we

consider low and high capitalized banks separately. Let’s start with the former. The

bank’s liquidation threshold θBL falls in the lower dominance region since 1− k > L.

Thus, the bank’s liquidation decision does not influence depositors’ payoffs in the

intermediate region of fundamentals, so that the derivation of θ∗ is unaffected.

For highly capitalized banks, in contrast, comparing θLB with θ we have that

θBL < θ ⇐⇒ r2(1− k) > L.

Given that the LHS in the inequality above is decreasing in k and that θBL < θ when

k = 1 − L and θBL > θ when k = 1, there exists a cutoff value kL ∈ (1 − L, 1)

solving θBL = θ. This implies that the bank’s liquidation decision still does not

affect depositors’ withdrawal decisions for k ≤ kL. For k > kL, depositors anticipate

that the bank is going to liquidate but the liquidation proceeds are nevertheless

enough to repay the promised repayment of 1 at date 1 and r2 at date 2 since

L− (1− k)r2 > q[Rθ − (1− k)r2] > 0. The rest of the lemma follows. �

Proof of Proposition 9: When 1 − k ≤ L, the bank is exposed to fundamental

runs only. The introduction of the loan guarantee reduces θx and θBLx, while it does

not affect the planner’s threshold θSPL . Hence, θSPL −max
{
θBLx, θx

}
strictly decreases

with x.

When 1 − k > L, the bank is exposed to panic runs and the run threshold θ∗x

strictly decreases with x and k. Since θx < θ and they are both decreasing in k,

θSPL = θx when k = kSPLx ≡ 1 − L
qr2
− x

r2
< 1 − L. Hence, since θ∗x > θx, there exists

a cutoff value 0 < k̃L < kSPLx < 1− L such that θSPL ≤ θ∗x when k ≤ k̃L and θSPL > θ∗x

when k > k̃L. The cutoff k̃L solves θSPL = θ∗x and the proposition follows. �
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Proof of Lemma 3: Denote as kSPL the cutoff value of capital for which θ = θSPL .

This is equal to

kSPL = 1− L

qr2

≥ 1− L,

for any qr2 ≥ 1. Given that ∂θ
∂k

< 0, while
∂θSPL
∂k

= 0, it follows that θ > θSPL for

k < kSPL and θ ≤ θSPL for k ≥ kSPL . From Proposition 2, we know that qr2 = 1 when

1−k ≤ L. Hence, it follows that kSPL = 1−L and, in turn, θ ≤ θSPL when k ≤ 1−L,

while θ∗ > θ > θSPL when k > 1 − L. Using the result from Lemma 2 that θBL > θR

for k > kL and θBL ≤ θR for k ≤ kL, we obtain the result in the lemma. �

Proof of Proposition 10: Since we are allowing the bank to choose to liquidate the

project early if it finds it profitable to do so, we must first characterize the optimal

degree of underwriting effort. This is obtained by maximizing bank profits with

respect to q, and is given by

max
q
α

∫ θBLx

0

[L− (1− k) r2] dθ + α

∫ 1−x

θBLx

q [R (θ + x)− (1− k)r2)] dθ + α

∫ 1

1−x
q [R− (1− k) r2] dθ

+ (1− α)

∫ 2

1

q [R− (1− k) r2] dθ − cq2

2
,

which implies that qBLx is the solution to

α

∫ 1−x

θBLx

[R (θ + x)− (1− k)r2)] dθ+α

∫ 1

1−x
[R− (1− k) r2] dθ+(1− α)

∫ 2

1

[R− (1− k) r2] dθ = cq.

We can now calculate the change in total output resulting from an increase in x,

which is given by

dTOx

dx
= α

∂θBLx
∂x

(
L− qBLxRθBLx

)
− αqBLxR (1− x) + αqBLxR (1− x)

+
dqBLx
dx

(
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

)
,

which simplifies to

dTOx

dx
= α

∂θBLx
∂x

(
L− qBLxRθBLx

)
+
dqBLx
dx

(
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

)
.
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Recall that
∂θBLx
∂x

= −1 and θBLx =
L−(1−qBLx)(1−k)r2

qBLxR
− x. Then, the expression above

can be rearranged as

dTOx

dx
= −α

(
L− qBLxR

(
L− (1− qBLx)(1− k)r2

qBLxR
− x
))

+
dqBLx
dx

[
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

]
= −α

[
(1− qBLx)(1− k)r2 + qBLxRx

]
+
dqBLx
dx

[
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

]
. (53)

At k = 1 this is

dTOx

dx
= −αqBLxRx+

dqBLx
dx

[
α

∫ 1−x

θBLx

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

]
,

which is positive when x→ 0 since
dqBLx
dx

> 0 from the expression above for qBLx:

dqBLx
dx

= −
−α∂θ

B
Lx

∂x

[
R
(
θBLx + x

)
− (1− k) r2

]
+ α

∫ 1−x
θBLx

Rdθ

−α∂θ
B
Lx

∂q
[R (θBLx + x)− (1− k) r2]− c

> 0.

Hence, by continuity (53) is also positive for k close to but strictly less than 1.

Consider now the other extreme case when k = kL, which solves 1 − k = L
r2

. In

this case,

dqBLx
dx

∣∣∣∣
x=0,k=kL

=
α
∫ 1
L
R
Rdθ

c
= α

(R− L)

c
,

and the expression for dTOx
dx

becomes

dTOx

dx
= −α

(
(1− qBLx)L+ qBLxRx

)
+
dqBLx
dx

[
α

∫ 1−x

L
R

Rθdθ + α

∫ 1

1−x
Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

]
.

As x→ 0, this converges to

dTOx

dx
= −α(1− qBLx)L+ α

(R− L)

c

(
α

∫ 1

L
R

Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

)
.
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Since

qBLx
∣∣
x=0,k=kL

=
α
(
R
2

+ L2

2R
− L

)
+ (1− α) (R− L)

c
.

we can write

dTOx

dx
= −α

1−
α
(
R
2

+ L2

2R
− L

)
+ (1− α) (R− L)

c

L

+ α
(R− L)

c

(
α

∫ 1

L
R

Rθdθ + (1− α)

∫ 2

1

Rθdθ −
(
α

(
R

2
+
L2

2R
− L

)
+ (1− α) (R− L)

))
=

1

2Rc
α
(
−4L2R + 3LR2 + 3L3α−R3α +R3 − 2L2Rα− 2LRc

)
.

From this, we obtain that for

c <
R3 (1− α) + 3LR2 + 3L3α− 2L2R (2 + α)

2LR
,

we have that dTOx
dx

> 0. Hence, by continuity, dTOx
dx

> 0 for k larger but close to kL.

We now move on to show that dTOx
dx

> 0 is also positive in the range k ∈ (kL, 1).

Evaluating (53) at x→ 0 gives

dTOx

dx
= −α(1− qBLx)(1− k)r2 +

dqBLx
dx

[
α

∫ 1

θBLx

Rθdθ + (1− α)

∫ 2

1

Rθdθ − cqBLx

]
.

As c decreases, qBLx increases and can come arbitrarily close to 1. Suppose c is

sufficiently small that qBLx = 1 − δ, for δ > 0 but small. This makes the first term

arbitrarily close to zero, of order −O (δ):

dTOx

dx
= −O (δ) +

dqBLx
dx

[
α

∫ 1

θBLx

Rθdθ + (1− α)

∫ 2

1

Rθdθ − c (1− δ)

]
.

The term inside the brackets is strictly positive. Therefore, dTOx
dx

will be positive if
dqBLx
dx

remains bounded away from zero for qBLx close to 1 but not strictly equal to 1.

Recall that
dqBLx
dx

is given by

dqBLx
dx

= −
−α∂θ

B
Lx

∂x

[
R
(
θBLx + x

)
− (1− k) r2

]
+ α

∫ 1−x
θBLx

Rdθ

−α∂θ
B
Lx

∂q
[R (θBLx + x)− (1− k) r2]− c

> 0.
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As x→ 0, this becomes

dqBLx
dx

= −
−α∂θ

B
Lx

∂x

[
RθBLx − (1− k) r2

]
+ α

∫ 1

θBLx
Rdθ

−α∂θ
B
Lx

∂q
[RθBLx − (1− k) r2]− c

> 0,

with
∂θBLx
∂x

= −1. Therefore, even for c small,
dqBLx
dx

remains strictly positive, as long

as qBLx < 1 and that the second order condition continues to be satisfied, meaning

that the denominator, −α∂θ
B
Lx

∂q

[
RθBLx − (1− k) r2

]
− c, remains negative.

Hence, for small enough c, dTOx
dx

> 0 for any k ∈
(
kL, 1

)
. Since we know it is

positive for k = 1 and k = kL, this establishes that dTOx
dx

> 0 for all k in
[
kL, 1

]
. �

Proof of Proposition 11: When 1 − k ≤ L, the deposit rate r2 is pinned down

from depositors’ participation constraint, (8), with the small modification to adjust

the limits of integration, θR, to be θR = θ − x. Relative to the case of x = 0,

the introduction of a loan guarantee introduces slack in depositors’ participation

constraint. Keeping its underwriting effort q constant, the bank can now reduce r2

and still satisfy depositors’ participation constraint. Together with the direct effect

of the guarantee, the reduction in r2 would lead to a further increase in q. But

the consequent anticipated increase in q would again make depositors’ participation

constraint slack, allowing for a yet greater reduction in r2, etc. Hence, r2 decreases

in equilibrium as a result of the introduction of the loan guarantee x.

When instead 1− k > L, r2 is pinned down either again by (8), or by the bank’s

first order condition, where the run threshold is given by θ∗x = θ∗ − x. In the case

where 1− k > L, bank profits are given by

max
q
α

∫ 1−x

θ∗x

q [R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
q [R− (1− k) r2] dθ

+ (1− α)

∫ 2

1

q [R− (1− k) r2] dθ − cq2

2
.
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The derivative with respect to r2 is

− α∂θ
∗
x

∂r2

q [R (θ∗x + x)− (1− k) r2]− α
∫ 1−x

θ∗x

q (1− k) dθ − α
∫ 1

1−x
q (1− k) dθ−

(1− α)

∫ 2

1

q (1− k) dθ

= −α∂θ
∗
x

∂r2

q [R (θ∗x + x)− (1− k) r2]− α
∫ 1

θ∗x

q (1− k) dθ − (1− α)

∫ 2

1

q (1− k) dθ

Since θ∗x = θ∗ − x, the expression above can be further rearranged as follows:

−α∂θ
∗

∂r2

q [Rθ∗ − (1− k) r2]− α
∫ 1

θ∗−x
q (1− k) dθ − (1− α)

∫ 2

1

q (1− k) dθ

The first term, which is positive, is exactly the same as for the case where x = 0,

given by (12), while the second term, which is negative, is larger because of the

larger region of integration. Hence, the bank should respond to the introduction of

the guarantees by reducing r2 and the proposition follows. �

Proof of Proposition 12: Since δ < 1, the threshold for fundamental runs is the

same as in the case without guarantees. This is due to the fact that when the bank

is insolvent depositors receive δ < 1, but this is not enough to convince them not to

run. Hence, for highly capitalized banks, when 1− k ≤ L, θδ is still given by (5).

Applying the same arguments as in the proof of Proposition 1, for banks with

1− k > L, the relevant crisis threshold θ∗δ corresponds to the solution to∫ n̂(θ)

0

qr2dn+

∫ 1

n̂(θ)

qδdn+

∫ 1

0

(1− q) δdn = π1,

or, equivalently,

q

∫ n̂(θ)

0

(r2 − δ) dn+

∫ 1

0

δdn = π1,

where both n̂ (θ) and π1 are the same as in the case without guarantees. Following

the same steps as in the proof of Proposition 1, we obtain the expression (26) in the

proposition.
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To complete the proof, we need to compute

∂θ∗δ
∂q

=
θ (r2 − δ)[(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
)]2
[

1− (qr2 − π1) + δ (1− q)(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L
− q
)] (54)

= − (r2 − δ) θ(
qr2 − π1

1−k
L

)
+ δ

(
1−k
L
− q
) (π1 − δ)

(
1− k
L
− 1

)
< 0,

and

∂θ∗δ
∂δ

=
θ(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
) [(1− q)− (qr2 − π1) + δ (1− q)(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
) (1− k

L
− q
)]

(55)

= −
qθ (r2 − π1)

(
1−k
L
− 1
)(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
) < 0,

since π1 > L > δ and 1− k > L and the proposition follows. �

Proof of Proposition 13: The bank’s optimal choice of q solves

α

∫ θδ

0

Rθ

(
1− 1− k

L

)
dθ+α

∫ 1

θδ

[Rθ − (1− k) r2] dθ+(1− α)

∫ 2

1

[R− (1− k) r2] dθ−cq = 0,

when 1− k ≤ L and

α

∫ 1

θ∗δ

[Rθ − (1− k) r2] dθ+(1− α)

∫ 2

1

[R− (1− k) r2] dθ−α∂θ
∗
δ

∂q
q [Rθ∗δ − (1− k) r2]−cq = 0,

(56)

when 1 − k > L, which are obtained differentiating (27) with respect to q. When

1− k ≤ L, the run threshold θδ is not affected by the deposit insurance δ as shown

in the proof of Proposition 12. Hence, q
δ

is not affected by δ.

Consider now the case where 1 − k > L. In this case, the run threshold is θ∗δ as

characterized in (26). We use the implicit function theorem to compute
dq∗δ
dδ

. Denote

the expression in (56) as FOCq∗δ = 0. It follows that:

dq∗δ
dδ

= −
∂FOCq∗

δ

∂δ
∂FOCq∗

δ

∂q

.
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The denominator
∂FOCq∗

δ

∂q
< 0 as q∗δ is an interior solution. Hence, the sign of

dq∗δ
dδ

is

equal to the sign of

∂FOCq∗δ
∂δ

= −α∂θ
∗
δ

∂δ
[Rθ∗δ − (1− k) r2]− α ∂

2θ∗δ
∂q∂δ

q [Rθ∗δ − (1− k) r2]− α∂θ
∗
δ

∂q
q
∂θ∗δ
∂δ

R

All terms in the expression for
∂FOCq∗

δ

∂δ
are negative except the first one. We show

next that the first term is dominated by the second, so that overall
∂FOCq∗

δ

∂δ
< 0.

To do so, we need to show that q
∣∣∣ ∂2θ∗δ∂q∂δ

∣∣∣ > ∣∣∣∂θ∗δ∂δ ∣∣∣. Recall that
∂θ∗δ
∂q

is given in (54).

Differentiating
∂θ∗δ
∂q

with respect to δ, we obtain:

∂2θ∗δ
∂q∂δ

=
∂A

∂δ
θ

[
1− (qr2 − π1) + δ (1− q)(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
)]

− Aθ

[
(1− q)− (qr2 − π1) + δ (1− q)(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
) (1− k

L
− q
)]

,

where A ≡ r2−δ
(qr2−π1 1−k

L )+δ( 1−k
L
−q)

and so

∂A

∂δ
=
−
(
qr2 − π1

1−k
L

)
− δ

(
1−k
L
− q
)
− r2

(
1−k
L
− q
)

+ δ
(

1−k
L
− q
)[(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
)]2

=
−
(
qr2 − π1

1−k
L

)
− r2

(
1−k
L
− q
)[(

qr2 − π1
1−k
L

)
+ δ

(
1−k
L
− q
)]2 < 0.

Using (55) and (54), the expression above can be rearranged as follows:

∂2θ∗δ
∂q∂δ

=
∂A

∂δ

∂θ∗δ
∂δ

1

A
− A∂θ

∗
δ

∂δ
> 0,

since
∂θ∗δ
∂δ

< 0, ∂A
∂δ
< 0 and

∂θ∗δ
∂δ

< 0. It is easy to see that qA > 1 since π1 > δ. Hence,

q
∂2θ∗δ
∂δ∂q

>
∣∣∣∂θ∗δ∂δ ∣∣∣ and so

dq∗δ
dδ
< 0 as desired. �

Proof of Proposition 14: The proof follows the same steps as the proof of Propo-

sition 12. Consider first the case when 1 − k ≤ L. Since δ < 1 and Rx
1−k < 1, the
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threshold θδx under which withdrawing at date 1 is a dominant strategy is still given

by θPx = θ − x, as characterized in Section 6.2.

Consider now the case when 1− k > L. Following the same steps as in the proof

of Proposition 12, the threshold θ∗δx corresponds to the solution to∫ n̂x(θ)

0

qr2dn+

∫ 1

n̂(θ)

qδdn+

∫ 1

0

(1− q) δdn = π1.

This is the same as the expression in the proof of Proposition 12, with the only

difference that we have now n̂x (θ) = R(θ+x)−(1−k)r2

R(θ+x)
(1−k)
L
−(1−k)r2

instead of n̂ (θ). Substituting

in the expression above n̂x (θ) and solving with respect to θ, we obtain the expression

(28) in the proposition. It is easy to see that the comparative statics with respect to q

and δ is the same as in the proof of Proposition 12. Furthermore, it is straightforward

that
∂θ∗xδ
∂x

= −1, which completes the proof. �

Proof of Proposition 15: We consider separately the case when 1 − k ≤ L and

when 1− k > L. We start from the former. From Proposition 14, the run threshold

when 1 − k ≤ L is the same as in the economy without deposit insurance. Since

deposit insurance only affects bank profits via the run threshold, the FOC for q is

the same as (16), thus implying that
dq
δx

dx
is the same as the one characterized in

Proposition 6.

Consider now the case when 1 − k > L. Again, as the deposit insurance only

affects bank profits via the run threshold, q∗δx is given by the solution to (17), but

with θ∗xδ instead of θ∗x. As in the proof of Proposition 6, the sign of
dq∗δx
dx

is given by

the sign of the derivative of the FOC for q with respect to x, which is equal to:

−α
[
∂θ∗δx
∂x

+
∂2θ∗δx
∂q∂x

q

]
[R (θ∗δx + x)− (1− k) r2]+α

∫ 1−x

θ∗δx

Rdθ−α∂θ
∗
δx

∂q
qR

[
∂θ∗δx
∂x

+ 1

]
.

From Proposition 14, we know that
∂θ∗δx
∂x

= −1, which, in turn, implies that
∂2θ∗δx
∂q∂x

=
∂2θ∗δx
∂x∂q

= 0. Then, the expression above simplifies to

−α∂θ
∗
δx

∂x
[R (θ∗δx + x)− (1− k) r2] + α

∫ 1−x

θ∗δx

Rdθ > 0.
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Hence,
dq∗δx
dx

> 0 and the proposition follows. �

11. Appendix B: Alternative bankruptcy cost assumptions

In this section, we modify our assumption concerning the application of bankruptcy

costs. Specifically, we consider two polar cases. First, we consider an economy in

which full bankruptcy costs are also present at date 1. Second, we replicate the

analysis in the absence of bankruptcy costs, which implies that depositors receive a

pro-rata share of the bank available resources both at date 1 and 2.

11.1. Bankruptcy costs at date 1 and 2

In this section, we are going to introduce bankruptcy costs at date 1 so that,

whenever the bank is not able to repay the promised repayment r1 = 1 to all with-

drawing depositors, they get a zero repayment. This modification alters the expected

payoff at date 1, which we denoted as π1 in the main text as follows:

πB1
1 =

∫ n= L
(1−k)r1

0

r1dn+

∫ 1

n

0dn =
L

1− k
.

We consider separately the case in which the guarantees is lost in the bankruptcy

procedure and that in which it is instead bankruptcy protected. We start from the

former.

11.1.1. First-loss guarantee scheme

In this section, we consider the scenario in which the guarantees is lost in the

bankruptcy procedure. The derivations of the run thresholds θx and θ∗x are as in the

main text, with the only difference that in the expression for θ∗x, we have πB1
1 instead

of π1. The same applies to the choice of the underwriting effort, which is still given

by q
x

as a solution to

1

2

∫ θx

0

R (θ + x)

(
1− (1− k)

L

)
dθ +

1

2

∫ 1−x

θx

[R (θ + x)− (1− k) r2] dθ

+
1

2

∫ 2

1−x
[R− (1− k) r2] dθ − cq = 0 (57)
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when 1− k ≤ L and q∗x when 1− k > L as a solution to

1

2

∫ 1−x

θ∗x

[R (θ + x)− (1− k) r2] dθ+
1

2

∫ 2

1−x
[R− (1− k) r2] dθ−1

2

∂θ∗x
∂q

q [R (θ∗x + x)− (1− k) r2]−cq = 0.

(58)

Since θx is not affected by the introduction of bankruptcy costs at date 1, the results

concerning the effect of the introduction of the guarantees on q
x

go through as in

the main text whenever (1− k) r1 ≤ L.

Consider now the case in which 1− k > L, for which the relevant run threshold

θ∗x is now slightly different from the one in the main text since it includes πB1
1 instead

of π1. Differentiating (58) with respect to x, we obtain

− 1

2

∂θ∗x
∂x

q [R (θ∗x + x)− (1− k) r2] +
1

2

∫ 1−x

θ∗x

Rdθ − 1

2

∂2θ∗x
∂q∂x

q [R (θ∗x + x)− (1− k) r2]

− 1

2

∂θ∗x
∂q

q
∂θ∗x
∂x

R− 1

2

∂θ∗x
∂q

qR.

Yes, it is easy to see that the change in depositors’ expected repayment at date 1 does

not affect the properties of the run threshold θ∗x since ∂θ∗x
∂x

= −1 and ∂2θ∗x
∂q∂x

= ∂2θ∗x
∂x∂q

= 0.

Hence, the expression above simplifies to

+
1

2
q [R (θ∗x + x)− (1− k) r2] +

1

2

∫ 1−x

θ∗x

Rdθ > 0,

which is the same we have in the main text. Hence, the result that ∂q∗x
∂x

> 0 holds

true also in the case with bankruptcy costs at date 1.

11.1.2. Bankruptcy-protected guarantee scheme

In this case, we consider the scenario in which the guarantees x is protected from

bankruptcy. As no guarantee is paid at date 1, the introduction of the bankruptcy

costs in case the bank is unable to repay r1 = 1 only alters the expected payoff

at date 1 and does not directly interact with the guarantee. This implies that the

run risk in the presence of a first-loss guarantee x whose transfers are protected in
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bankruptcy is still given by θPx = θx when 1 − k ≤ L, which, in turn, implies that

the result still goes through as in the main text for well-capitalized banks.

Consider now the case when 1−k > L. The run threshold θ∗Px is given by solution

to

πB1
1 =

∫ n̂x(θ)

0

qr2dn+

∫ n

n̂x(θ)

q
Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn+

∫ n

0

(1− q)
Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn.

(59)

It is easy to see that, since the introduction of bankruptcy costs at date 1 only

affects depositors’ expected payoff at date , as given by the LHS in the expression

above, the properties of the run threshold are the same as in the main text, i.e.,
∂θ∗Px
∂x

,∂θ
∗P
x

∂q
and ∂2θ∗Px

∂x∂q
are as in the baseline model. Using the same arguments as in

the previous section, it follows that the results of our baseline model go through also

when introducing bankruptcy costs at date 1.

11.2. No bankruptcy costs at either date

In this section, we assume that, contrary to the main text, there are no bankruptcy

costs at either date 1 or at date 2. This implies that depositors receive a pro-rata

share of the bank’s available resources when the bank is unable to repay the promised

payment both at dates 1 and 2. As we show below, while this modification compli-

cates the analysis substantially, all the main results go through. In what follows, we

proceed in steps. First, we characterize the thresholds when the bank either experi-

ences a run or goes bankrupt at date 2. Then, we characterize the effect of a loan

guarantee on bank underwriting incentives.

In the absence of bankruptcy costs at date 2, bank profits depend on whether the

bank faces a run (either fundamental or panic driven) or whether it goes bankrupt

at date 2. The following lemma describes the thresholds characterizing these three

different cases.
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Lemma 4. Denote θBx as the threshold below which the bank is unable to repay the

promised date 2 payment to depositors, and θx and θ∗x as the run thresholds when

1− k ≤ L and 1− k > L, respectively. Then, we have the following:

1. The solvency threshold θBx solves R (θ + x)− (1− k) r2 = 0 and is equal to

θBx =
(1− k) r2

R
− x. (60)

2. The fundamental run threshold θx solves qR(θ+x)
1−k = 1 and is given by

θx =
(1− k)

qR
− x. (61)

3. The panic run threshold θ∗x solves

∫ n̂x(θ)

0

qr2dn+

∫ n

n̂x(θ)

q
R (θ + x)

(
1− n (1−k)

L

)
(1− n) (1− k)

dn+(1− q)
∫ n

0

Rx
(

1− n (1−k)
L

)
(1− n) (1− k)

dn−π1 = 0,

(62)

where n̂x (θ∗) and n are defined in the proof and π1 =
∫ n

0
dn+

∫ 1

n
L

(1−k)n
dn.

Proof. 4: The proof proceeds in steps.

Step 1: Characterization of the solvency threshold θBx and the funda-

mental run threshold θx: The characterization of the solvency threshold θBx is

straightforward and follows directly from the condition R (θ + x) − (1− k) r2 = 0.

As in the baseline model, we pin down the fundamental run threshold as the upper

bound of the lower dominance region, i.e., the region where running is a dominant

strategy. Under the assumption that no one else runs, a depositor never finds it

optimal to run when θ > θBx as in this case he expects to receive qr2 ≥ 1. This

implies that running can only be a dominant strategy for lower values of θ, i.e.,

θ < θx < θBx . When θ < θBx , a depositor expects to receive the pro-rata share qR(θ+x)
1−k

at date 2. Running is then optimal when the pro-rata share falls below the date 1

repayment. At the threshold θx, the date 1 and 2 repayments are identical as given

by the condition qR(θ+x)
1−k = 1.
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Step 2: Characterization of the panic run threshold θ∗x: We follow the same

steps as in the main text, starting with the characterization of the two conditions

pinning down {s∗x, θ∗x}:

R (θ∗x + x)

(
1− n (θ∗x, s

∗
x) (1− k)

L

)
− (1− n (θ∗x, s

∗
x)) (1− k) r2 = 0 (63)

and

qr2 Pr (θ > θ∗x| s∗x) + qRE[θ∗x < θ > θn| s∗x]
(1−n(θ,s∗x)

(1−k)
L )

(1−n(θ,s∗x))(1−k)

+ (1− q) Rx(1−n(θ,s∗x)
(1−k)
L )

(1−n(θ,s∗x))(1−k)
Pr (θ < θn| s∗x) = 1 Pr (θ > θn| s∗x) + L

(1−k)n(θ,s∗x)
Pr (θ < θn| s∗x) ,

(64)

where θn = s∗x + ε− 2ε L
1−k represents the level of θ for which the bank liquidates the

entire portfolio at date 1 and, thus, is equal to the solution to

n (θn, s
∗
x) (1− k) = L.

Condition (63) identifies the level of fundamentals, θ∗x, at which the bank is at the

brink of insolvency at date 2 when n (θ∗x, s
∗
x) > 0 depositors run, for given s∗x. Con-

dition (64) is depositors’ indifference condition: the LHS represents a depositor’s

expected utility from withdrawing at date 2, while the RHS represents the expected

utility from withdrawing at date 1. This condition pins down s∗x given θ∗x (s∗x) from

(63), so that together the two equations characterize the equilibrium withdrawal

decisions {s∗x, θ∗x}. To obtain the expression (62) in the proposition, where n̂x (θ∗x)

solves (63) and n solves

(1− k)n = L,

we perform a change of variable by defining θ∗x (n) = s∗x + ε (1− 2n) and then take

the limit when ε→ 0, so that θ∗x (n)→ s∗x.

Having characterized the two run thresholds θx and θ∗x, we can follows the same

steps as in the baseline model to establish that the relevant threshold is θx when
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1− k ≤ L and θ∗x when 1− k > L. To this end, we start assuming 1− k = L. In this

case π1 ≡
∫ n

0
dn+

∫ 1

n
L

(1−k)n
dn = 1 and (63) simplifies to

(1− n) [Rθ − (1− k) r2] ,

which is positive for θ > θBx and negative for θ < θBx for any n < 1. It follows that

running is optimal when θ < θx, irrespective of n. This implies that the relevant

run threshold is θx when 1 − k = L. Since θx is decreasing in 1 − k, condition (63)

becomes less binding for any n when 1− k falls below L. This implies that θx is still

the relevant run threshold when 1− k < L.

Consider now the case when 1 − k > L. Since (63) is increasing in θ, it follows

that θ∗x > θx when 1− k > L. However, as 1− k → L, we know that qr2 → 1 from

depositors’ participation constraint being satisfied with equality. This completes the

proof and the lemma follows. �

The lemma shows that, unlike in the baseline model, a depositor’s decision to run

is no longer driven by the bank’s solvency condition when 1 − k ≤ L. This occurs

because, when the bank is unable to repay the promised r2 at date 2, depositors

receive a pro-rata share of the bank’s available resources. This implies that, relative

to the baseline model, they have less incentives to run and, as a result, θx < θBx .

When 1− k > L, depositors find it optimal to run when θ falls below θ∗x. Again,

since depositors receive a pro-rata share if the bank goes bankrupt at date 2, the

panic run threshold is now lower than in the baseline model. It is also potentially

lower than the solvency threshold θB. Whether θBx ≷ θ∗x depends on the level of bank

capital. In the limiting case when k → 0 and x→ 0, θ∗x → 1, while θBx << 1. Hence,

θ∗x > θBx in that case. At the other extreme, when 1 − k → L, both θ∗x → θx and

θBx → θx since, in this case, qr2 → 1. This means that θ∗x → θBx . For intermediate

values of k, there exist parameters consistent with θ∗x > θBx and with θ∗x < θBx .

We thus proceed to analyze the effect of the loan guarantee on bank underwriting

standards in either case.
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As in the baseline model, the bank chooses q so as to maximize expected profits.

When 1− k ≤ L, the bank sets qx as the solution to

max
q

Π = α

∫ θx

0

qR (θ + x)

(
1− 1− k

L

)
dθ + α

∫ 1−x

θx

q [R (θ + x)− (1− k) r2] dθ

+ α

∫ 1

1−x
q [R− (1− k) r2] dθ + (1− α)

∫ 2

1

q [R− (1− k) r2] dθ − cq2

2
. (65)

When 1− k > L, the bank chooses qx as the solution to

max
q

Π = α

∫ 1−x

max{θBx ,θ∗x}
q [R (θ + x)− (1− k) r2] dθ + α

∫ 1

1−x
q [R− (1− k) r2] dθ

+ (1− α)

∫ 2

1

q [R− (1− k) r2] dθ − cq2

2
(66)

We have the following result.

Proposition 16. The impact of a first-loss guarantee x on bank underwriting effort

when there are no bankruptcy costs is as follows:

a) When 1−k ≤ L, introducing x increases bank underwriting effort, i.e., dqx
dx

> 0;

b) When 1 − k > L, the bank fails if θ < max
{
θBx , θ

∗
x

}
. There exists a value of

k denoted as k̂x < 1−L such that introducing x reduces bank effort for k < k̂x, while

increasing it as k → 1− L: dqx
dx

< 0 for k < k̂x and dqx
dx

> 0 for k → 1− L.

Proof. 16: We consider separately the three cases, starting from the case when

1− k ≤ L. Differentiating (65) with respect to q, we obtain the FOCqx as follows:

α
∫ θx

0
R (θ + x)

(
1− 1−k

L

)
dθ + α

∫ 1−x
θx

[R (θ + x)− (1− k) r2] dθ + α
∫ 1

1−x [R− (1− k) r2] dθ

+ (1− α)
∫ 2

1
[R− (1− k) r2] dθ + α

∂θx
∂q
qR (θx + x)

(
1− 1−k

L

)
− cq = 0

,

where
∂θx
∂q

= − (1−k)
q2R

. The effect of x on qx can be computed using the implicit

function theorem, i.e., dqx
dx

= −
∂FOCqx

∂x
∂FOCqx

∂q

. Given that qx is an interior solution and
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so ∂FOCqx
∂q

< 0, the sign of dqx
dx

is equal to the sign of ∂FOCqx
∂x

. This is equal to the

following expression:

∂FOCqx
∂x

=α

∫ θx

0

R

(
1− 1− k

L

)
dθ + α

∫ 1−x

θx

[R− (1− k) r2] dθ + α
∂θx
∂x

R (θx + x)

(
1− 1− k

L

)
+ α

∂θx
∂q

qR
∂θx
∂x

(
1− 1− k

L

)
+ α

∂θx
∂q

qR

(
1− 1− k

L

)
= α

∫ θx

0

R

(
1− 1− k

L

)
dθ + α

∫ 1−x

θx

[R− (1− k) r2] dθ − αR (θx + x)

(
1− 1− k

L

)
= α

∫ 1−x

θx

(R− (1− k) r2) dθ − αRx
(

1− 1− k
L

)
.

Using θx = (1−k)
qR
− x, the expression above can be further rearranged as follows:

∂FOCqx
∂x

= αR

[
1− x− (1− k)

qR
+ x− x+

(1− k)

L

]
− α (1− k) r2

[
1− x− (1− k)

qR
+ x

]
= αR

[
1− x− (1− k)

qR
+

(1− k)

L

]
− α (1− k) r2

[
1− (1− k)

qR

]
,

where 1 − x − (1−k)
qR

+ (1−k)
L

> 1 − (1−k)
qR

> 0 for all x < (1−k)
L

. Since we restrict our

analysis to the case where x < 1−k
R
, and since 1−k

R
< 1−k

L
, it follows that ∂FOCqx

∂x
> 0

and so dqx
dx

> 0 when 1− k ≤ L.

Consider now the case when 1− k > L. We start by assuming that θ∗x > θBx . In

this case, the FOCq is equal to

α
∫ 1−x
θ∗x

[R (θ + x)− (1− k) r2] dθ + α
∫ 1

1−x [R− (1− k) r2] dθ + (1− α)
∫ 2

1
[R− (1− k) r2] dθ

−α∂θ
∗
x

∂q
q [R (θ∗x + x)− (1− k) r2]− cq = 0.

Then, differentiating the expression above with respect to x, we obtain

− α∂θ
∗
x

∂x
[R (θ∗x + x)− (1− k) r2] + α

∫ 1−x

θ∗x

Rdθ − α∂θ
∗
x

∂q

∂θ∗x
∂x

qR− α∂θ
∗
x

∂q
qR

− α ∂
2θ∗x

∂q∂x
q [R (θ∗x + x)− (1− k) r2] ,
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which can be further rearranged as

−α
[
∂θ∗x
∂x

+
∂2θ∗x
∂q∂x

q

]
[R (θ∗x + x)− (1− k) r2]−α∂θ

∗
x

∂q

∂θ∗x
∂x

qR+α

∫ 1−x

θ∗x

Rdθ−α∂θ
∗
x

∂q
qR.

(67)

Rearranging the terms, we obtain:

−α
[
∂θ∗x
∂x

+
∂2θ∗x
∂q∂x

q

]
[R (θ∗x + x)− (1− k) r2]− αqR∂θ

∗
x

∂q

(
∂θ∗x
∂x

+ 1

)
+ α

∫ 1−x

θ∗x

Rdθ

(68)

As in the case of bankruptcy-protected guarantees, we consider the limiting case

when k → 0 and x → 0. Given the indifference condition pinning down θ∗x, we

compute ∂θ∗x
∂x

as follows:

∂θ∗x
∂x

= −
∂n̂x(θ∗x)

∂x
q

[
r2−

R(θ∗x+x)(1−n̂x(θ∗x) (1−k)
L )

(1−n̂x(θ∗x))(1−k)

]
+
∫ n
n̂x(θ∗x) q

R(1−n (1−k)
L )

(1−n)(1−k) dn+(1−q)
∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k) dn

∂n̂x(θ∗x)
∂θ

q

[
r2−

R(θ∗x+x)(1−n̂x(θ∗x) (1−k)
L )

(1−n̂x(θ∗x))(1−k)

]
+
∫ n
n̂x(θ∗x) q

R(1−n (1−k)
L )

(1−n)(1−k) dn

−1− 1−q
q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k) dn∫ n
n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k) dn

< −1

since r2−
R(θ∗x+x)(1−n̂x(θ∗x)

(1−k)
L )

(1−n̂x(θ∗x))(1−k)
= 0 from the definition of n̂x (θ∗x) and ∂n̂x(θ∗x)

∂x
≡ ∂n̂x(θ∗x)

∂θ

being equal to

∂n̂x (θ∗x)

∂x
=

R

R (θ∗x + x) (1−k)
L
− (1− k) r2

[
1− n̂x (θ∗x)

(1− k)

L

]
> 0.

Similarly, we can compute

∂θ∗x
∂q

= −

∫ n̂x(θ)

0
r2dn+

∫ n
n̂x(θ)

R(θ+x)(1−n (1−k)
L )

(1−n)(1−k)
dn−

∫ n
0

Rx(1−n (1−k)
L )

(1−n)(1−k)
dn

∂n̂x(θ∗x)
∂θ

q

[
r2 −

R(θ∗x+x)(1−n̂x(θ∗x)
(1−k)
L )

(1−n̂x(θ∗x))(1−k)

]
+
∫ n
n̂x(θ∗x)

q
R(1−n (1−k)

L )
(1−n)(1−k)

dn

< 0,

which is similar to what is obtained in the baseline model.

Since ∂θ∗x
∂x

< −1 and ∂θ∗x
∂q

< 0, the second term in (68) is negative. The third

term, which is positive, goes to zero as θ∗x → 1. This only leaves the first term to
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sign, which requires to compare the cross partial, ∂2θ∗x
∂q∂x

q to ∂θ∗x
∂x

. A sufficient condition

for the negative effect of the introduction of the guarantees on bank underwriting

incentives, in line with the baseline model with the case of the bankruptcy-protected

guarantee scheme, is that ∂θ∗x
∂x

+ ∂2θ∗x
∂q∂x

q > 0. To this end, we compute ∂θ∗x
∂x∂q

as follows:

∂2θ∗x
∂x∂q

= −−q − 1 + q

q2

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn∫ n

n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn

−
(1− q)

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn

q

[∫ n
n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn

]2

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x)
(1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

=
1

q2

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn∫ n

n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn
− 1− q

q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn[∫ n

n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn

]2

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x)
(1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

> 0.

Hence, to prove that dq∗x
dx

< 0 when k → 0 and x→ 0, we only need to establish that∣∣∣ ∂2θ∗x∂x∂q

∣∣∣ > ∣∣∣∂θ∗x∂x ∣∣∣. From the expression for ∂θ∗x
∂x

, we can write −1−q
q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k) dn∫ n
n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k) dn

=

+1 +
∂θ∗xNB
∂x

and 1
q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k) dn∫ n
n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k) dn

= − 1
1−q

∂θ∗x
∂x
− 1

1−q , which allows us to rewrite the

expression above as

∂2θ∗x
∂x∂q

= −1

q

1

1− q
∂θ∗x
∂x
− 1

q (1− q)
+
∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x)
(1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

+
∂θ∗x
∂x

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x)
(1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

.

Now, we substitute the expression for ∂2θ∗x
∂x∂q

into the
[
∂θ∗x
∂x

+ ∂2θ∗x
∂q∂x

q
]

in (68) and obtain

− q

1− q
∂θ∗x
∂x
− 1

(1− q)
+ q

∂n̂x (θ∗x)

∂θ

∂θ∗x
∂q

R
(

1− n̂x (θ∗x)
(1−k)
L

)
(1− n̂x (θ∗x)) (1− k)

[
1 +

∂θ∗x
∂x

]
.
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The first and last terms are positive since ∂θ∗x
∂x

< −1. A sufficient condition for the

whole expression above to be positive is that∣∣∣∣∂θ∗x∂x
∣∣∣∣ < 1

q
⇐⇒ −∂θ

∗
x

∂x
− 1

q
> 0,

which implies that the first and second term sum up to a positive. Recall that

∂θ∗x
∂x

= −1− 1− q
q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn∫ n

n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn
.

Hence we need to show that

1 +
1− q
q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn∫ n

n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn
− 1

q
> 0⇐⇒ 1− q

q

∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k)
dn∫ n

n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k)
dn

>
1− q
q

.

The inequality above holds true since
∫ n
0

R(1−n (1−k)
L )

(1−n)(1−k) dn∫ n
n̂x(θ∗x)

R(1−n (1−k)
L )

(1−n)(1−k) dn

> 1. Then, it follows that

∂θ∗x
∂x

+ ∂2θ∗x
∂q∂x

q > 0 as desired and the rest of the proof for the case k → 0 and x → 0

follows as in the case with bankruptcy- protected guarantees.

The final case is when θBx > θ∗x, which, as argued above, can only be true for

k >> 0. In this case, the FOCq is equal to

α

∫ 1−x

θBx

[R (θ + x)− (1− k) r2] dθ+α

∫ 1

1−x
[R− (1− k) r2]+(1− α)

∫ 2

1

[R− (1− k) r2] dθ−cq = 0,

since the derivatives of the extremes of the integrals cancel out based on the definition

of θBx . Taking the derivative with respect to x, we obtain

−α∂θ
B
x

∂x

[
R
(
θBx + x

)
− (1− k) r2

]
dθ + α

∫ 1−x

θBx

Rdθ > 0,

since
[
R
(
θBx + x

)
− (1− k) r2

]
= 0 from the definition of θBx . Hence, x increases

underwriting standards in this case and the proposition follows. �
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The results in Proposition 16 shows that the results in the main text are robust

to the absence of bankruptcy costs. Specifically, the results in Proposition 16 mirror

the ones in the main text for the case of bankruptcy-protected guarantees, which

state that the introduction of the guarantees generally leads to an improvement

in bank underwriting standards, except for those banks with a low level of capital

for which the probability of a panic run is significant. Furthermore, the analysis in

Proposition 16 also shows that the general beneficial effect of loan guarantees on

bank underwriting incentives continue to hold also when the relevant threshold for

the bank is θBx . This demonstrates overall that assuming full bankruptcy costs at

date 2 does not qualitatively affects the results, while it significantly simplifies the

analysis.

11.3. Comparative statics of θ∗ with respect to L as k → 0

As k → 0, the expression for θ∗ in (6) becomes

θ∗ = θ
qr2 − π1

qr2 − π1
1
L

where θ = r2
R

and

π1 =

∫ L

0

dn+

∫ 1

L

L

n
dn = L

(
1 +

∫ 1

L

1

n
dn

)
.

Recall that θ∗ is bounded above by 1 since θ∗ < θ < 1. This implies that denominator

is bounded below by 0. Formally, we can then rewrite the expression for θ∗ as follows:

θ∗ = θ
qr2 − π1

max
{
qr2 − π1

1
L
, 0
}

Substituting the expressions for θ and π1 into that for θ∗ gives:

θ∗ =
r2

R

qr2 − L
(

1 +
∫ 1

L
1
n
dn
)

max
{
qr2 − L

(
1 +

∫ 1

L
1
n
dn
)

1
L
, 0
} =

r2

R

qr2 − L
(

1 +
∫ 1

L
1
n
dn
)

max
{
qr2 −

(
1 +

∫ 1

L
1
n
dn
)
, 0
}
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We now take the limit of the above expression as L → 0, starting with the de-

nominator. As L → 0, 1 +
∫ 1

L
1
n
dn → ∞. Hence, the denominator goes to zero as

L→ 0.

Consider now the numerator. It is useful to rearrange the second term as

L

(
1 +

∫ 1

L

1

n
dn

)
=

(
1 +

∫ 1

L
1
n
dn
)

1
L

.

Using L’Hopital’s rule, the limit is equal to

lim
L→0

(
1 +

∫ 1

L
1
n
dn
)

1
L

= lim
L→0

− 1
L

− 1
L2

= lim
L→0

L = 0.

This implies that as L → 0, the numerator goes to qr2 ≥ 1, while the denominator

goes to 0. Since r2
R

is bounded below by 1
R
> 0, the entire expression approaches to

+∞. Hence, for L small enough θ∗ = 1.
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