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Abstract -A numerical simulator has been developed to investigate the effects of 
coupled processes on heat and mass transport in semipermeable media. The governing 
equations on which the simulator is based were derived using the thermodynamics of 
irreversible processes. The equations are nonlinear and have been solved numerically 
using the n-dimensional Newton's method. As an example of an application, the 
numerical simulator has been used to investigate heat and solute transport in the 
vicinity of a heat source buried in a saturated clay-like medium, in part to study 
solute transport in bentonite packing material surrounding a nuclear waste canister. 
The coupled processes considered were thermal filtration, thermal osmosis, chemical 
osmosis and ultrafiltration. In the simulations, heat transport by coupled processes 
was negligible compared to heat conduction, but pressure and solute migration were 
affected. Solute migration was retarded relative to the uncoupled case when only 
chemical osmosis was considered. When both chemical osmosis and thermal osmosis 
were included, solute migration was enhanced. 

INTRODUCTION 

1 

Coupled transport processes, when they occur, cause heat and mass flows in addition to those caused 
by the direct processes of heat conduction, advection and diffusion. The effects of coupled processes 
such as osmosis and ultrafiltration have been observed in geologic settings and have been used to explain 
anomalous pressure and salinity data. Numerous laboratory experiments have been performed to study 
the effects of coupled processes on transport through clay and shale samples. CARNAHAN and JACOBSEN 
(1990) discuss some of the recent literature on field and experimental evidence for the occurrence of 
coupled processes in geologic media. 

The goal of this work has been to develop a numerical simulator based on thermodynamically 
correct equations that describe heat and mass transport through a saturated porous medium by coupled 
processes. The simulator is intended to be a research tool to study transient heat and mass transport 
within the geologic membrane in contrast to most experimental studies that measure conditions outside 
the membrane after a steady state has been reached. The equations, on which the simulator is based, 
were derived by CARNAHAN and JACOBSEN (1990) using the thermodynamics of irreversible processes. 
The equations relate the rate of change of temperature, pressure and composition to heat, volume and 
solute fluxes. In the following section of this paper, simplified versions of the equations are presented 
along with the assumptions used to simplify them. 

The governing equations for temperature and pressure, together with a conservation equation for 
solute concentration, form a system of coupled, nonlinear partial differential equations. Because of 
the nonlinear terms and the complexity of the system, the governing equations could not be solved 
analytically, but were solved numerically. The details of the numerical solution and the capabilities of 
the computer program that implements the numerical method are described. The program was verified 
by comparing the results of numerical simulations to analytical solutions of the linearized system of 
equations. The analytical solutions were derived by JACOBSEN and CARNAHAN (1990). 

As an application of the underlying theory and the numerical simulator, the effects of the coupled 
processes of chemical osmosis, thermal filtration, thermal osmosis and ultrafiltration on heat and solute 
transport in the vicinity of a heat source buried in a saturated, clay-like material were considered. 
The results of simulations show the effects of the coupled processes on temperature, pressure, solute 
concentration and solute flux. Other potential applications include studying the transport of chemical 
and low-level radioactive waste contaminants in low-permeability formations and the effect of high salt 
concentrations on the movement of water in irrigated soils. 
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NOTATION 

specific heat capacity ~t constant pressure of phase k, k = f, j, n, J /(K kg). 
specific heat capacity at constant volume ofphase k, k = f,j,n, J/(Kkg). 
concentration of solvent, kg/m3 . 

concentration of solutes, kg/m3
. 

average concentration of solute s, kgfm3 . 

subscript denoting fluid phase. 
solvent flux (laboratory frame of reference), kg/m2 s. 
flux of heat, W /m2 • 

flux of solute s in the laboratory frame of reference, kg/m2 s. 
flux of solute s defined relative to motion of solvent, kg/m2 s. 
flux of volume, m3 /(m2 s). 
coefficient of heat conduction (Fourier's law), W /m. 
coefficient of thermal filtration, m2 /s. 
coefficient of Dufour effect, kg/ms. 
coefficient of thermal diffusion, kg/ms. 
coefficient of mass diffusion (Fick's law), kg2 /J ms. 
coefficient of ultrafiltration, kg m2 /J s. 
coefficient of thermal osmosis, m2 /s. 
coefficient of chemical osmosis, kg m2 /J s. 
coefficient of direct advection (Darcy's law), m4 /(N s). 
molecular weight of solutes, kg/mole. 
subscript denoting nonreactive solid phase. 
pressure, Pa. 
radial distance, m. 
universal gas constant, 8.314 J /K mole. 
subscript denoting solute. 
partial specific entropy of solute i, J /(K kg). 
time, s. 
temperature, K. 
average temperature, k. 
partial specific volume of solute, m3 /kg. 
distance, m. 
elevation above an arbitrary datum, m. 
coefficient ofthermal expansion of phase k, k = f,j,n, K- 1. 

symbol defined by (5a). 
volume fraction of phase k, k = f, j, n. 
coefficient of isothermal compressibility of phase k, k = f, j, n, m2 /N. 
thermal conductivity, W /(K m). . 
symbol defined by (5b). 
composition-dependent part of chemical potential of solute s, J /kg. 
density of phase k, k = f, j, n, kg/m3

. 

natural logarithm of concentration of solute s. 
natural logarithm of temperature. 
specific potential energy of solute s, J fm3 . 
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GOVERNING EQUATIONS 

As an example of a physical system in which coupled transport processes arise, we consider the 
special case of heat and mass transport in the vicinity of a heat source buried in a semipermeable 
medium. For simplicity, only a single solute, denoted by a subscript s, in a one-dimensional linear or 
axisymmetrical (radial) coordinate system will be considered, and the following assumptions will be 
made: 

there are no chemical reactions in the system; 

gravitational and electrical forces are ignored; 

the solution is ideal. 

In addition, we assume that the macroscopic porosity ( fJ ), partial specific volumes and entropies (S3 

and V 3 , respectively), heat capacities, (cp,J, Cv,J, Cv,n), and the coefficients of isothermal compressibility 
(,;,1 and ,;,n) and thermal expansion (f3J and f3n) are all constant. Though many of these parameters are 
known to vary with temperature, pressure or composition, there are not enough data available to treat 
them generally as continuous functions of temperature, pressure or composition. 

Assuming that the macroscopic porosity, f 1, is constant and that there are no chemical reactions 
in the system, the general equation for mass conservation, (4a) in CARNAHAN AND JACOBSEN (1990), 
simplifies to 

(1) 

where c. is the mass density of the solute, and J. is the solute flux in the laboratory frame of reference. 

Simplification of the governing equations for temperature and pressure, (37) and (38) in ibid., 
(1990), requires application of all of the assumptions. By the first assumption all terms involving 
chemical reactions may be dropped. If gravitational and electrical forces in the system are ignored, then 
terms involving the gradient of the specific potential energy cp., defined by (39) in ibid., (1990), are zero. 
Assuming that the solution is ideal, the gradient of the compositional part of the chemical potential, 
"\1 J.L~, may be written in terms of the gradient of composition: 

(2) 

where M. is the molecular weight of solute s, R is the universal gas constant, and Tis the temperature. 
By the fourth assumption, the gradients of s. and V • are zero. Employing these assumptions yields the 
following governing equations for temperature T and pressure P, 

(3) 

(4) 

In the equations above, Jq is the heat flux, Jv. is the volume flux, and J: is the flux of solute s defined 
relative to the motion of the solvent. The symbols F1 and A1 are defined by 

(5a) 
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(5b) 

The mass density of the fluid phase, PJ, is the sum of the concentrations (mass densities) of the solvent 
and solute, 

P! =Co+C,. (6) 

In the present work, water is the solvent, and its mass density is calculated from an equation of state 
involving the temperature and pressure (KELL, 1972). 

The most general form of the fluxes that appear in (3) and ( 4) are defined by the phenomenological 
equations, (69), together with (70) in ibid., (1990). Assuming that there are no gravitational forces in 
the system and that the solution is ideal, i.e., that (2) is valid, leads to the following simplified forms of 
the phenomenological equations, 

(7) 

(8) 

(9) 

where the Lij, the phenomenological coefficients, are defined m the list of notation. The Onsager 
reciprocal relations for the phenomenological equations are 

(10) 

The solute flux in the laboratory frame of reference, J,, is related to J~ by 

J, = c, Jv + (1- c. v,) J:, (11) 

and therefore, 

J, =- [C, Lvq + (1- C, V,) L,q] ",J- [C, Lvv + (1- C, V,) L,v] 'V P 

(12) 

Both mathematical and thermodynamic coupling exist in the physical system described by equations 
(1), (3), (4), (7), (8) and (9). It is important to note that mathematical coupling exists in the governing 
equations irrespective of thermodynamic coupling. Because each governing equation involves temper­
ature, pressure and solute concentration, even in the absence of thermodynamic coupling of transport 
processes, a change in temperature will affect the pressure distribution. 
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Thermodynamic coupling is introduced into the governing equations through the phenomenological 
equations (7, 8, 9), which explicitly account for the coupled processes by expressing the fluxes as sums of 
both direct and coupled processes. The three terms in the expression for the heat flux J9 , (7), represent 
the effects of 

heat conduction, 

thermal filtration, 

diffusive-thermal effect, 

'VT 
-LqqT; 

- L9v'VP; 

The expression for the volume flux Jv, (8), contains three terms representing the effects of 

thermal osmosis, 

advection, - Lvv'VP; 

chemical osmosis, _ Lv• RT'VC •. 
M. C. 

The solute flux in the laboratory frame of reference J., (12), is comprised of six terms: 

thermal diffusion, 

thermal osmosis, 

ultrafiltration, -(1-C.V.)L.v'VP; 

advection, - C.Lvv'VP; 

chemical osmosis, 

h . al - ) RT 'V C. 
c ernie diffusion, - (1- C. V. Lu M. c;· 
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NUMERICAL METHOD OF SOLUTION 

The equation set that is solved is obtained by substituting the phenomenological equations (7, 8, 9) 
and (12) into the governing equations (1, 3, 4). Before making the substitution, the following identities 
are used in the phenomenological equations: 

T = lnT, (13a) 

lT8 =lnC8. (13b) 

Therefore, 

'VT 
(14a) 'Vr=-

T' 

'VC8 
\7(T8 = C:' (14b) 

where in the case of a one-dimensional coordinate system with space variable x, 

(15) 

and in the case of a radial coordinate system with space variable r, 

(16) 

The result of substituting the phenomenological equations into the governing equations is a system of 
coupled, nonlinear partial differential equations in which the unknowns are the logarithm of temperature, 
pressure and the logarithm of solute concentration: 

R ( ) Lvq + M
8 

L8v + Lv• 'VlT, 'V P + T 'V P'Vr, (17) 
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(18) 

au, [ ( 1 - ) ] 2 [ ( 1 - ) ] 2 f 1 7Jt = Lvq + C, - V 3 L,q V' T + Lvv + C, - V • L,., V' P 

( - )RT 2 + L.,,- V, L.. M, (V'u,) . (19) 

The temperature and solute concentration are· calCulated using (13). 

Each space derivative in (17), (18) and (19) is replaced by a finite-difference approximation centered 
in space. For example, for a finite difference grid with variable spacing in x, the first and second 
derivatives of pressure are approximated as follows: 

(20) 

(21) 

In the equations above, the subscripts refer to nodes of the finite-difference grid: Xi is the value of x at 
the ith node, and I{ is the pressure at Xi. Note that in the case of uniform grid spacing, Xi+t -Xi = 
Xi - Xi-l = Ax, and the finite-difference expressions in (20) and (21) reduce to the familar centered 
difference forms. 

The time derivatives in (17) through (19) are replaced by finite-difference approximations that are 
projected forward in time: 

where the time step size At is given by 

aP pi+l _pi 
-~ 
at At 

At= ti+1 -ti, 

and the superscripts are the indices of the time steps. 

(22) 

(23) 
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After the partial derivatives are replaced by finite-difference approximations, the system of governing 
equations becomes a set of nonlinear algebraic equations. The nonlinearities in the governing equations 
are of two types: products of first derivatives and factors of temperature or solute concentration or both 
multiplying derivative terms. Because of the nonlinearity of the governing equations, an iterative method, 
the n-dimensional Newton's method (NDNM) (ORTEGA and RHEINBOLDT, 1970) was chosen to solve 
the system of equations. The NDNM, also known as the Newton-Raphson method, is a generalization of 
Newton's method, which is used to find the root (or roots) of a one-dimensional nonlinear equation. The 
NDNM iteratively determines a vector of values that satisfy a system of homogeneous equations known 
as the residue equations. In this work, the elements of the vector of unknowns are the values of T, P 
and u$ at different locations in space, and the residue equations are the finite-difference approximations 
of the governing equations rewritten as homogeneous equations. 

The NDNM can be written as 

(24) 

where u is the vector of unknowns, F(uk) is the vector of residue equations and F'(uk) is the Jacobian 
matrix. The elements of the Jacobian matrix are determined by differentiating each residue equation 
with respect to all of the unknowns. In practice the inverse of the Jacobian matrix in (24) is not 
computed, but rather the linear system, 

(25) 

is solved for w, and then the ( k + 1 )-th iterate is calculated from 

(26) 

For one-dimensional flow, the Jacobian matrix in (25) is block tridiagonal in structure. Therefore, the 
linear system in (25) can be solved easily and accurately using the method of L-U factorization, which 
has been specialized by HINDMARSH (1977) to factor a block tridiagonal matrix. 

The NDNM was chosen because it is widely used to solve nonlinear systems of equations (MILLER 
and BENSON, 1983; ABRIOLA and PINDER, 1985; CARNAHAN, 1987), conceptually easy to implement 
and second-order convergent (DAHLQUIST and BJORCK, 1974, p. 224). Other numerical methods were 
considered. For example, the NDNM was chosen over Steffensen's method (IsAACSON and KELLER, 
1966), which is also second-order convergent, because the NDNM takes fewer operations. Steffensen's 
method is a der~vative-free method, that is, it does not involve the Jacobian matrix, but instead requires 
two evaluations of the set of residue equations at each iteration. The NDNM requires one evaluation 
of the set of residue equations and one evaluation of the Jacobian matrix. There are, however, fewer 
operations involved in evaluating the Jacobian matrix than in evaluating the set of residue equations. 
Ideally, one would like to be able to apply more than one method to a problem in order to see which 
method performs better, since the performance of an algorithm is problem-dependent. CUYT and RALL 
(1985) used Newton's method and another iterative method named Halley's method to solve two systems 
of nonlinear equations and found that Newton's method performed better for one of the systems and 
Halley's method (CUYT and RALL, 1985) performed better for the other. Unfortunately, time and 
budget constraints rarely allow the researcher the luxury of comparing different numerical methods of 
solution. 

For the NDNM to be second-order convergent, the elements of the Jacobian matrix must be de­
termined analytically by differentiating the residue equations. If the elements of the Jacobian matrix 
are calculated numerically, using divided differences for example, then the order of convergence is less 
than second-order (IsAACSON and KELLER, 1966, pp. 98, 101). A great deal of effort was involved in 
determining the Jacobian elements analytically and coding the expressions for them, but the effort was 
made in order to decrease computation time and achieve second-order convergence. 
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Computation time could also be decreased by implementing acceleration methods such as an n­
dimensional version of Aitken's 62 method (ISAACSON and KELLER, 1966) or by constructing hybrid 
methods, which combine computationally inexpensive methods such as the secant method with more 
powerful methods like Newton's method. A simpler way to decrease the computation time of the NDNM 
is to not evaluate the Jacobian matrix at every iteration. Because such a change would decrease the 
order of convergence as well, it could conceivably increase the total computation time. In the present 
application of the NDNM, the method converges within a few iterations at each time step, so the possible 
trade-off between decreased computation time and a slower rate of convergence does not seem worth 
pursuing. 

DESCRIPTION OF THE NUMERICAL SIMULATOR 

The numerical method of solution described above has been incorporated into a computer program 
named TIP, which is an acronym for the thermodynamics of irreversible processes. TIP was developed 
at Lawrence Berkeley Laboratory except for a set of subroutines, written by A. HINDMARSH (1977), 
used to perform the L-U factorization and solve the linear system in (25). The TIP program is written 
in FORTRAN and was developed to run on the Cray X-MP computer at the National Magnetic Fusion 
Energy Computer Center at Lawrence Livermore National Laboratory. The program was carefully coded 
in order to utilize the high-speed vector and fl9ating-point functional units of the Cray X-MP. 

Capabilities of TIP 

At this time the TIP program can handle transport in only one dimension, though the geometry 
of the system may be either linear or radial. The spacing of the finite difference grid may be either 
constant or may increase with distance. The latter choice allows for a very fine grid spacing near the 
inner boundary where the gradients of temperature, pressure and solute concentration are the largest 
and a coarse grid spacing at the outer boundary where the gradients are much smaller. The variable 
grid spacing makes simulation of a semi-infinite medium possible: the outer boundary can be placed 
far enough from the inner boundary to minimize the effects of the outer boundary conditions on the 
solutions without greatly increasing the number of nodes in the finite difference grid. 

The TIP program can handle a variety of initial and boundary conditions. The initial condition 
for a variable can be constant value, constant gradient or the values at the inner and outer boundary 
can be specified and the program will determine the gradient. Only constant-flux (Neumann) boundary 
conditions are allowed at the inner boundary. At the outer boundary, either a constant-value (Dirichlet) 
or zero-gradient (Neumann) condition may be imposed. Implementation of the constant-flux boundary 
condition is described in Appendix A. 

Limitations of TIP 

Some of the limitations of the TIP program result from assumptions made when deriving the 
governing equations. Limitations that could be overcome by modifying the computer program are that 
the medium is assumed to be homogeneous, the boundary conditions are constant in time and only 
one solute is allowed. Though there is a scarcity of data on how the material properties of a medium 
vary with temperature and composition, constant material properties for more than one medium could 
be used to simulate layered media. The addition of time-dependent boundary conditions is important 
in order to be able to simulate mass transport away from a heat source in the presence of an already 
established temperature field. Allowance for more than one solute is needed in order to eventually 
incorporate chemical reactions. 

There are several problems involved in using an equation of state to calculate the solvent concen­
tration. First, the equation of state in use (KELL, 1972) is for pure water, and therefore, is a good 
approximation only for low solute concentrations*. In addition there are temperature and pressure lim­
its on the present equation of state. It is valid only for temperatures in the range of 0 to 150°C and for 

* An equation of state for aqueous sodium chloride has been developed by RoGERS and PITZER ( 1982) 
(see also PITZER, PEIPER and BUSEY, 1984) and may be implemented in the TIP program in the future. 
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pressures less than 1 kbar (108 Pa). Finally, the amount of solvent in the system is not conserved, that is, 
there is no direct link between the amount of solvent calculated by the equation of state and an increase 
in the solvent concentration that would result from a release of solvent at the boundary. This is not a 
serious shortcoming, however, because the solvent concentration enters into the governing equations ( 4, 
5) only through PJ, the fluid density, defined by (6). For the values of the input parameters used (see 
Table 3 in the following section), variations in PJ have a small effect on the magnitude of the factors Ft 
in ( 4) and At in (5). The effect of variations in Ft and At on the results of the numerical simulations is 
even smaller. 

Verification of TIP 

The TIP program has been verified by comparing the results of numerical simulations in which 
the nonlinear governing equations, (17), (18) and (19), are solved to analytical solutions derived for the 
system of linear governing equations. To make the equations linear, all products of derivatives were 
omitted, and factors of temperature and solute concentration were replaced by average values, C,,m and 
Tm: 

oT (Lqq f3J ) 2 ( f3JTm ) 2 Ft !l = - +- Lvq "il T + Lqv + -- L"" "il P 
ut Tm Kj Kj 

(27) 

RTm (L Cp,j PJ L ) M2C + q,+-!3, "' v ,, C,,m M, 
(28) 

(29) 

Solutions to these equations were derived for a one-dimensional geometry in a semi-infinite domain for 
the uncoupled and all of the coupled cases. At the inner boundary, nonzero heat, solute and solvent fluxes 
were imposed. At the outer boundary, i.e., at infinity, all of the variables were set equal to their initial 
values. For a radial geometry, solutions in the Laplace transform space were derived for the uncoupled 
and all coupled cases for the same boundary conditions as those of the one-dimensional geometry. It 
is possible to analytically invert the solutions in the Laplace transform space, but because the inverted 
solutions involve infinite integrals of Bessel function cross products, it is computationally more efficient 
to invert them numerically. An algorithm given by H. STEHFEST (1970) can be used to numerically 
invert them. The solutions for the one-dimensional geometry and the solutions in the Laplace transform 
space for the radial geometry are available in a separate report (JACOBSEN and CARNAHAN, 1990). 

Agreement between the analytical solutions and the numerical solutions to the governing equations 
(17), (18) and (19) is excellent at early simulated times for both linear and radial geometries. As examples 
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of this, Figs. 1 and 2 compare temperature, pressure and solute profiles, calculated using the analytical 
and numerical solutions, at simulated times of one and ten years in an annulus of semipermeable material 
surrounding a source of heat and solute. (The system being simulated and the parameters used in the 
simulations are the same as those described in more detail in the following section.) Figures 1a, 1b and 
1c compare the analytical and numerical simulations for the case in which coupling has been neglected. 
Figures 2a, 2b and 2c show results for the case when chemical osmosis, ultrafiltration, thermal osmosis 
and thermal filtration have been included. For the system simulated in Figs. 1 and 2, at times later than 
ten years there are discrepancies between the analytical and numerical solutions because the magnitudes 
of the nonlinear terms in the governing equations that are solved numerically increase with time in 
comparison to the linear terms. 

The analytical solutions also have been useful in predicting the maximum temperature rise for a 
given incoming heat flux and in determining how large to make the finite difference grid. A large heat 
flux could cause the temperature to increase above the upper limit for the equation of state thereby 
invalidating the simulation results. Changes in pressure propagate very quickly through the system; the 
pressure front is always far ahead of both the temperature and solute fronts. It is important, therefore, 
to be able to estimate for the maximum simulation time the smallest distance at which the pressure 
remains undisturbed. 

The performance of the TIP code is checked also during each simulation by examining the solute 
mass balance at every time step for which results are printed. The amount of solute in the system 
is calculated using the trapezoidal rule (DAHLQUIST and BJORCK, 1974) and compared to the sum of 
the amount of solute initially in the system and that introduced by the flux boundary condition. For 
most simulations, the discrepancy between the calculated and predicted amounts of solute is less than 
three percent, even at simulated times of 1000 years representing several thousand iterations. Larger 
discrepancies have been observed in simulations where boundary effects were caused by finite difference 
grids too small in extent or where large heat fluxes caused the temperature to increase outside of the 
range of validity of the equation of state. 

RESULTS FROM NUMERICAL SIMULATIONS 

Table 1 lists the driving forces and the fluxes that may be significantly affected by the coupled 
processes when the coefficients of chemical osmosis and ultrafiltration are nonzero, which hereafter will 
be referred to as the chemical osmosis case. Note that the reciprocal relations (10) require the coupled 
processes to occur in pairs. 

Table 1. Effects of Chemical Osmosis and Ultrafiltration (Chemical Osmosis Case) 

coupled effect 

chemical osmosis 
ultrafiltration 

force 

solute gradient 
pressure gradient 

flux( es) affected 

volume and solute fluxes 
solute flux 

The forces and fluxes corresponding to the coupled effects arising from nonzero values of the coefficients 
of thermal osmosis and thermal filtration, the thermal osmosis case, are listed in Table 2. 

Table 2. Effects of Thermal Osmosis and Thermal Filtration (Thermal Osmosis Case) 

coupled effect force flux( es) affected 

thermal filtration pressure gradient heat flux 
thermal osmosis temperature gradient volume and solute fluxes 

In the thermal osmosis case, the temperature, pressure and solute distributions may differ from those of 
the case without coupling. In the chemical osmosis case, the pressure distribution and solute concentra­
tion may differ from those of the uncoupled case. 
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years. (a) temperature, (b) change in pressure, (c) solute concentration. 
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The heat flux is not listed as one of the fluxes affected by chemical osmosis. The temperature 
distribution for the chemical osmosis case could, nevertheless, differ from that of the uncoupled case not 
as a result of thermodynamic coupling, but of the mathematical coupling that exists in the governing 
equations. This distinction points out the difficulty in trying to determine the effect of a thermodynam­
ically coupled process on one of the quantities of interest. The heat, solute and volume fluxes are the 
most direct measures of the effects of coupled processes on the system and should be examined when 
trying to understand the effects of coupled processes on heat and solute transport. 

The magnitudes of the effects of coupling depend on the phenomenological coefficients and on 
the gradients of temperature, pressure and solute concentration. The gradients partly depend on the 
incoming heat, solute and solvent fluxes. Large values of the incoming fluxes may, depending on the 
properties of the medium, produce large gradients of temperature, solute concentration and pressure. 
Because of the flux boundary conditions imposed on the simulations discussed here, the heat, solute and 
solvent fluxes for all of the uncoupled and coupled cases are the same at the inner boundary regardless 
of the magnitudes of the individual driving forces (gradients). Differences in the fluxes due to coupled 
processes are apparent at short distances from the boundary. 

The objectives of the numerical simulations are to assess the effects of coupling on distributions 
of temperature, pressure and solute concentration and on solute fluxes. The effects are assessed by 
comparison with results of simulations without coupling. Effects of varying the magnitudes of the 
coupling coefficients are examined also. In this work only chemical osmosis and thermal osmosis were 
considered because these are likely to be the two most important coupled processes in the vicinity of a 
heat source buried in a saturated, semipermeable medium. 

Phenomenological Coefficients 

The parameters used in the simulations are given in Table 3, except where noted in the text. The 
values of the phenomenological coefficients were taken from published data on bentonite (LETEY and 
KEMPER, 1969; Moss and MoLECKE, 1983) and on kaolinite (SRIVASTAVA and AVASTHI, 1975). Values 
of Lvv and Lv 3 (= L 3 v) were calculated from the values of similar coefficients measured by LETEY 
and KEMPER (1969). Values of Lvv and Lvq (= Lqv) were calculated from the data of SRIVASTAVA 
and AVASTHI (1975) on kaolinite. The correspondence between the phenomenological coefficients used 
in this work and those of the authors mentioned above may be determined by comparing LETEY and 
KEMPER's equations (6) and (7) to equations (8) and (9) in this paper and SRIVASTAVA and AVASTHI'S 
equations (2) and (3) to (8) and (7), respectively. A value of Lvq for bentonite was estimated using the 
value of Lvv for bentonite from LETEY and KEMPER'S data and assuming that the ratio of Lvq to Lvv 
is approximately the same for bentonite as for kaolinite. The value of Lqq used in the simulations was 
estimated from Lqq ~ >.Tusing measurements of thermal conductivity(>.) of bentonite made by Moss 
and MOLECKE (1983). 

Initial and Boundary Conditions 

Constant value initial conditions were used for all of the variables. The initial temperature was 
325 K, the initial pressure was 107 Pa, and the initial solute concentration was 0.4 kgfm3 • At the outer 
boundary, all variables were fixed at their initial values during the simulations. The finite difference 
grid was designed to be large enough to simulate transport in an axisymmetrical, semi-infinite medium: 
a grid radius of 1500 m was used. The size of the grid was estimated using the analytical solution for 
the pressure distribution, since changes in pressure propagate far more rapidly than changes in either · 
temperature or solute concentration. A variable grid spacing, with finer spacing near the flux boundary 
located at r = 0.15 m, was used in order to preserve solution accuracy near the inner boundary and to 
limit the number of grid points. Constant flux boundary conditions were imposed at the inner boundary: 
a value of 10 W /m2 was used for the heat flux, 10-11 kgfm2 ·s for the solute flux, and the solvent flux 
was zero. While flux boundary conditions are more realistic in this case than constant temperature and 
constant concentration boundary conditions, they are simplistic because the heat output of a nuclear 
waster canister would decrease in time due to radioactive decay, and chemical reactions taking place in 
the waste form would control the rate of solute release. 
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Table 3. Parameter Values Used in Numerical Simulations 

initial conditions: 

Co = 103 kg/m3 

c. = 0.4 kg/m3 

P = 107 N/m2 

T = 325 K 

flux conditions at inner boundary: 

Jo = 0 kg/m2 s 
Jq = 10 W /m2 , radial geometry 
J. = 10-11 kg/m2 s 

phenomenological coefficients: 

Lqq = 2.6 x 102 W/m 
Lqv - varied (see text and figures), m2 /s 
Lqs - varied (see text and figures), kg/ms 
L 8 q -varied (see text and figures), kg/ms 
L .. = 6.8 X 10-17 kg2 /J ms 
L 8 v - varied (see text and figures), kgm2 /J s 
Lvq - varied (see text and figures), m2 /s 
Lv 8 - varied (see text and figures), kgm2 /J s 
Lvv = 2.4 X 10-16 m5 /J s 

other parameters: 

Cp.J = 5.0 X 103 JjkgK 
Cv,J = 4.2 X 103 JjkgK 
Cv,n = 1.3 X 103 JjkgK 
M. = 5.844 x I0- 2 kg/mole 

R = 8.314 J/Kmole 
V 8 = 2.9 X 10-4 m3 /kg 
131 = 4.7 x 10-4 K- 1 

f3n = 3.0 X 10-5 K- 1 

iJ = 0.3 
in = 0.7 
,, = 44 X 10- 10 m 2 /N 
Kn = 2.8 X 10- 11 m 2 /N 
P! - calculated, kgfm3 

Pn = 2.5 X 103 kg/m3 

15 
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Comparison of Uncoupled and Coupled Cases 

This section compares the temperature, pressure and solute concentrations calculated for the un­
coupled case and three cases of coupling: chemical osmosis, thermal osmosis and combined chemical 
osmosis and thermal osmosis. All results are shown at a simulated time of 1000 years. 

Temperature and Gradient of Temperature. Thermal filtration is the only coupled process considered 
that directly affects the transport ofheat. For the times simulated, 1000 years or less, the temperature 
profiles for the uncoupled and all of the coupled cases coincide (Fig. 3). For the choice of parameters 

and incoming heat flux used, this result shows that in the coupled cases considered, the transport of heat 
is unaffected by coupling, and in particular, that thermal filtration is negligible relative to the direct 

process of heat conduction. 

That the transport of heat is unaffected by coupling for the set of parameters in Table 3 can be 
understood in part by looking at the expression for the heat flux. Ignoring thermal diffusion (Lq 6 = 0), 

(7) becomes 

(30) 

The second term contributes to Jq only when thermal osmosis is included. Comparing the magnitudes 
of Lqq and Lqv, Lqq = 2.6 x 102 W /m and Lqv = 3.8 X 10-lO m2 /s, it can be seen that the pressure 
gradient must be extremely large for the second term to contribute to Jq. Based on simulation results, 
it appears that for all cases the dominant term in ( 4) is the second derivative of temperature. Though 
the temperature is unaffected by coupling in the present cases, it is possible that a change in material 
properties, phenomenological coefficients or incoming heat flux could result in temperature differences­
between the uncoupled and coupled cases. 

Pressure and Gradient of Pressure. Unlike the temperature, the pressure distribution is sensitive to 
the effects of coupling. Figure 4 shows the change in pressure from an initial pressure of 107 Pa. The 
pressure profiles show obvious, but small, differences. The differences are largest near the inner boundary 
where the pressure profiles for each case are distinct. After a distance of about 2 m, the pressure profiles 
for the uncoupled and chemical osmosis cases coincide and those for the thermal osmosis and combined 
chemical osmosis and thermal osmosis cases coincide. The difference between the two pairs of profiles 
continues for a distance of nearly 100 m. 

Though the differences in the pressure distributions for the uncoupled and coupled cases are quite 
small, the resulting differences in the pressure gradients vary in sign and by several orders of magnitude 
(Fig. 5). The pressure gradients for the thermal osmosis and combined chemical osmosis and thermal 
osmosis cases are positive and similar in magnitude near the inner boundary. The pressure gradients 
for the uncoupled and chemical osmosis cases are negative, but nearly four orders of magnitude apart. 
Differences in the pressure gradients are important because the pressure gradient is the driving force 
for the advective solute flux in all uncoupled and coupled cases and for additional heat and solute 
fluxes in the coupled cases. Thermal filtration causes an additional heat flux when Lqv is nonzero, 
and ultrafiltration causes an additional solute flux when L 6 v is nonzero. In the cases presently being 
considered, the differences in the pressure gradients are large enough to be significant in some coupled 
cases, but not others. 

Solute Concentration. The coupled processes affect the movement of solute and cause differences 
among the solute concentrations for the uncoupled and coupled cases. The solute profiles for the uncou­
pled, chemical osmosis and combined chemical osmosis and thermal osmosis cases are distinct near the 
inner boundary (Fig. 6). The profile for the thermal osmosis case coincides with the uncoupled case in 
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Figure 3. Temperature distribution at a simulation time of 1000 years with and with­
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Figure 4. Change in pressure at a simulation time of 1000 years with and without 
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Figure 5. Pressure gradient at a simulation time of 1000 years with and without coupling. Initial 
pressure of 107 Pa, Lqv = Lvq = 3.8 X 10-10 m2 /s, Lvs = Lvs = -8 X 10- 17 kgm2 /J s. nc­
no coupling, co - chemical osmosis and ultrafiltration included, to - thermal osmosis and 
thermal filtration included, ct - all coupled processes included in co and to cases. 
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Figure 6. Solute concentration at a simulation time of 1000 years with and without coupling. Initial 
solute concentration of 0.4 kg/m3 , incoming solute flux of lQ- 11 kg/m2 s, Lqv = Lvq = 
3.8 x 10-10 m2 fs, Lv$ = Lvs = -8 x 10-17 kg m2 fJ s. nc - no coupling, co - chemical 
osmosis and ultrafiltration included, to - thermal osmosis and thermal filtration included, 
ct - all coupled processes included in co and to cases. 
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this region, and thereafter all of the profiles converge. Near the flux boundary, the concentration for the 
chemical osmosis case is about 50% larger than that for the uncoupled case. The concentration for the 
combined chemical osmosis and thermal osmosis case is about 20% less than that of the uncoupled case 
or about 50% of the chemical osmosis case. 

Given that the pressure gradients, and hence the advective fluxes, for the uncoupled and thermal 
osmosis cases differ in sign (Fig. 5), it is surprising that the concentration profiles for those cases are 
the same. In the governing equation for solute for the thermal osmosis case, the larger terms involving 
the pressure gradient are offset by thermal osmosis terms resulting in identical concentration profiles for 
the uncoupled and thermal osmosis cases. 

A second unexpected but important feature of the concentration profiles is the magnitude of the 
concentration in the combined chemical osmosis and thermal osmosis case relative to those for the other 
coupled cases. As noted above the profiles for the uncoupled and thermal osmosis cases coincide implying 
that thermal osmosis (for the set of parameters used) does not affect solute tranport. This is clearly not 
the case when chemical osmosis has been included also. Near the flux boundary, the concentration for the 
combined chemical osmosis and thermal osmosis case is only 50% of the concentration for the chemical 
osmosis case. Whereas chemical osmosis results in a larger solute concentration than that predicted 
by the uncoupled case, when chemical osmosis and thermal osmosis are both included, the combined 
coupled processes result in a smaller solute concentration implying faster solute migration away from 
the boundary than predicted by the direct processes of advection and. diffusion. 

Solute Fluxes. The solute flux is the most direct measure of solute migration. The concentration 
profile shows how much solute is in the system, but the solute flux shows the rate of movement of the 
solute. Furthermore, looking at the individual solute fluxes that contribute to the total solute flux shows 
the forces that cause the solute to migrate. When chemical osmosis and thermal osmosis are included, 
the total solute flux in the laboratory frame of reference is given by 

thermal 
osmosis 

advection ultrafiltration chemical 
osmosis 

chemical 
diffusion 

(31) 

The advective flux and diffusive flux contribute to the total solute flux in all of the coupled cases. 
In the uncoupled case, the total flux is comprised of only those two fluxes. When chemical osmosis 
is included, there are additional contributions to the total flux by the chemical osmotic flux and the 
ultrafiltrative flux. When thermal osmosis is included, the thermal osmotic flux also adds to the total 
flux. 

Looking at the solute fluxes for the uncoupled and thermal osmosis cases, Figs. 7 and 8, the diffusive 
fluxes, which are proportional to the solute gradients, are identical because the concentration profiles 
for the two cases are the same. The advective fluxes are dissimilar because the pressure gradients differ 
as described earlier. Within a radius of two meters of the flux boundary, the total flux in the uncoupled 
case is approximately equal to the diffusive flux (Fig. 7). In the thermal osmosis case (Fig. 8), three 
fluxes contribute to the total flux: the thermal osmotic flux, the advective flux and the diffusive flux. 
The thermal osmotic flux is of the same order of magnitude and sign as the diffusive flux, but the 
advective flux, which is negative, opposes the thermal osmotic flux and cancels its contribution to the 
total flux. In the chemical osmosis case, Fig. 9, the advective and chemical osmotic fluxes cancel, and 
within a two-meter radius, the total flux is equal to the sum of the (positive) diffusive and (negative) 
ultrafiltrative fluxes. 
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Figure 7. Individual and total solute fluxes at a simulation time of 1000 years. Coupled processes not 
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Figure 8. Individual and total solute fluxes at a simulation time of 1000 years. Thermal osmosis and 
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m2 /s. 
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Figure 9. Individual and total solute fluxes at a simulation time of 1000 years. Chemical osmosis and 
ultrafiltration included. Incoming solute flux of I0- 11 kg/m2 s, Lvs = Lvs = -8 x 10- 17 

kgm2/Js. 
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The solute fluxes for the combined chemical osmosis and thermal osmosis case, Fig. 10, are difficult 
to sort out. The total flux in this case is composed of all of the fluxes named in (31). The advective 
and chemical osmotic fluxes are negative for all or most of the region shown. The rest of the fluxes 
are positive, the thermal osmotic flux being the largest individual flux. For distances greater than two 
meters, the absolute values of the thermal osmotic, advective and ultrafiltrative fluxes are all of the same 
order of magnitude, but the advective flux is negative. 

An important point to note is that the incoming solute flux is constant, and therefore the total solute 
flux at and near the boundary must be the same for all of the cases. This is a constraint imposed by the 
flux boundary condition. After a distance of about one meter, the total solute flux for the uncoupled and 
coupled cases differ in magnitude and shape (Fig. 11). Solute migration in the chemical osmosis case is 
retarded relative to the uncoupled case and is the same as the uncoupled case when only thermal osmosis 
is considered. When both chemical osmosis and thermal osmosis are included, the solute migrates away 
from the flux boundary faster than in the uncoupled case and faster than when either coupled effect is 
considered alone. 

Effects of Thermal Osmosis Only 

As discussed in an earlier section, there was no difference between the temperature profiles (Fig. 3) 
or solute distributions (Fig. 6) for the uncoupled and thermal osmosis cases when values of Lqv = Lvq = 
3.8 x 10-10 m2 fs were used. To obtain the results discussed in this section, the coefficients of thermal 
filtration and thermal osmosis were increased two orders of magnitude to 3.8 x 10-8 m2 fs. The upper 
limit on Lqv and Lvq based on the constraint, LqqLvv- LqvLvq > 0 (KATCHALSKY and CURRAN, 1967, 
p. 91), where Lqv = Lvq, is approximately 2.5 X w-7 m2 fs, but using values larger than 3.8 X w-8 

m 2 fs led to nonphysical results: the pressure near the flux boundary became negative. All of the other 
parameter values listed in Table 3 were kept constant, and all results are shown at a simulated time of 
1000 years. 

Temperature. The temperature profiles for Lqv = Lvq = 3.8 X w-8 and 3.8 X 10-10 m 2 /s differ very 
little as shown by Fig. 12. The profiles for Lqv = Lvq = 0 and 3.8 X 10-10 m2 /s coincide. The largest 
difference between the temperatures for the nonzero values of Lqv and Lvq is less than one tenth of one 
percent of the temperature in the uncoupled case. The finding of the previous section, that the transport 
of heat is unaffected by thermal filtration, is also valid for values of Lqv and Lvq between 3.8 x 10-10 

and 3.8 X lQ-8 m 2 js. 

Pressure and Gradient of Pressure. The pressure distribution is sensitive to changes in the coefficient 
of thermal osmosis (Fig. 13). For values of Lqv and Lvq greater than 3.4 X lQ-9 m2 /s, the change in 
pressure is negative for part of the range shown; for values equal to 3.8 x lQ- 10 m2 fs, the change 
in pressure is positive. For all values of Lqv and Lvq, the pressure gradient is positive and varies in 
magnitude as the two coefficients vary (Fig. 14). The pressure gradient corresponding to Lqv = Lvq = 
3.8 X w-8 m2 /sis two orders of magnitude larger than the pressure gradient for Lqv = Lvq = 3.8 X w- 10 

m 2 fs for most of the range of interest. 

Solute Concentration and Solute Fluxes. The differences in the pressure gradients, and therefore 
advective solute fluxes, are significant suggesting that the solute distributions may also vary with the 
coefficient of thermal osmosis. This is not the case, however, because the thermal osmotic flux also varies 
with Lvq· The thermal osmotic flux opposes the advective flux and cancels its contribution to the total 
solute flux. The net result is that varying the coefficient of thermal osmosis has very little effect on the 
solute concentration (Fig. 15). As in the uncoupled case, near the flux boundary the total solute flux 
is approximately equal to the diffusive flux. After a distance of two meters, the total solute flux (not 
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Figure 10. Individual and total solute fluxes at a simulation time of 1000 years. Thermal osmosis, 
thermal filtration, chemical osmosis and ultrafiltration included. Incoming solute flux of 
10-ll kg/m2 s, Lqv = Lvq = 3.8 X 10-10 m2 /s, Lvs = Lvs = -8 X 10-17 kgm2/J s. 
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Figure 11. Total solute flux at a simulation time of 1000 years with and without cou­
pling. Incoming solute flux of 10-11 kg/m2 s, Lqv = Lvq = 3.8 X 10-10 m2 js, 
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Figure 13. Change in pressure at a simulation time of 1000 years. Thermal osmosis and thermal filtration 
included. Coefficients of thermal filtration (Lqv) and thermal osmosis (Lvq) varied as shown. 
Initial pressure of 107 Pa. (Units of Lqv and Lvq are m2 fs.) 



28 

+o) 107 

0 
Q) 

106 ....... 
"C 
~ - 105 ~ 

~ b1l 
Q) ~ 

104 
~ ~ 
~ 

_.. 
lf1 

103 lf1 
Q) 
~ 
~ 102 

3.8x10-8 

\ --- --- ----- ---'-.... -----
....._ 3.8x10-9 ------

3.8x10- 10 

0 1 2 3 4 5 6 7 8 9 10 

radial distance (m) 

Figure 14. Pressure gradient at a simulation time of 1000 years. Thermal osmosis and 
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Figure 15. Solute concentration at a simulation time of 1000 years. Thermal osmosis 
and thermal filtration included. Coefficients of thermal filtration (Lqv) and 
thermal osmosis (Lvq, Lvq = Lqv) varied as shown. Initial solute concentra­
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plotted) equals the difference between the advective and thermal osmotic fluxes and is of the same order 
of magnitude for values of Lqv and Lvq between 3.8 x 10-10 and 3.8 X 10-8 m2 fs. 

Effects of Chemical Osmosis Only 

As discussed earlier, chemical osmosis results in pressure and solute distributions significantly dif­
ferent than those predicted by the uncoupled case. The t~mperature distributions for the two cases are 
identical. This section describes how the pressure and solute concentration change as L&v and Lv 3 , the 
coefficients of ultrafiltration and chemical osmosis, are varied. 

As with the previous section, all of the parameters in Table 3 were kept constant except for Lsv 
and Lvs, which were varied from ( -8 x 10-18 to -1.2 x 10-16 kg·m2 fJ ·S. (When the uncoupled and 
chemical osmosis cases were compared earlier, a value of -8 x 10-17 kg-m2 /J ·S was used.) The lower 
limit on Lsv and Lvs calculated from LuLvv- L8 vLv 3 > 0 (KATCHALSKY and CURRAN, 1967, p. 91), 
where L8 v = Lv 8 , is approximately -1.28 x 10-16 kg-m2 /J·s. 

Pressure and Gradient of Pressure. The pressure profiles corresponding to different values of Lv• 
vary slightly near the flux boundary (Fig. 16). In contrast, the pressure gradients vary markedly in 
shape and nearly two orders of magnitude in value near the boundary (Fig. 17). The pressure gradient 
is negative for all values of Lv 3 between -8 x 10-18 and-1.2 x 10-16 kg·m2/J·s and becomes more 
negative as Lv• becomes more negative. Therefore, the advective flux, which is positive, increases as 
Lv• decreases, i.e., becomes more negative, and the ultrafiltrative flux becomes more negative as L 8 v 
(= Lv.) decreases. 

Solute Concentration and Solute Fluxes. In contrast to the thermal osmosis case, the solute concen­
tration and fluxes for the chemical osmosis case are sensitive to small changes in L8 v and Lv 3 (Fig. 18). 
The effects of chemical osmosis and ultrafiltration act to retard the migration of solute away from the 
flux boundary. The more negative the values of L8 v and Lv 3 , the greater the retardation. As L 8 v and 
Lv 8 become more negative, the total solute flux decreases and consequently, the solute concentration 
near the flux boundary increases. For values of L,v and Lv• equal to -1.2 X 10-16 kg-m2 /J ·S, the solute 
concentration at the boundary is ten times the concentration calculated for the uncoupled case. Using 
a value of -8 x 10-18 kg-m2 fJ ·S results in a concentration profile that is indistinguishable from the 
uncoupled case. 

When L 3 v and Lv• are made more negative, all of the individual solute fluxes increase in magnitude. 
The chemical osmotic flux and ultrafiltrative flux, both of which are negative and oppose the positive 
advective and diffusive fluxes, decrease resulting in a lower total solute flux away from the flux boundary. 
For values of the coefficients equal to -1.0 x 10-16 and -1.2 x 10-16 kg-m2/J·s, the total solute flux is 
negative at radial distances greater than two meters (Fig. 19). The ultrafiltrative flux is the dominant 
flux at that distance. The point where the total solute flux is zero moves away from the flux boundary 
as the simulation time increases (Fig. 20). For times of 1, 10 and 100 years and values of L 8 v and Lv 8 

equal to -1.2 x 10- 16 kg-m2 /J-s, the point of zero flux is located at 0.2, 0.3 and 0.6 meters, respectively. 

SUMMARY 

Governing equations that describe heat and mass transport by thermodynamically coupled processes 
have been solved numerically u~ing an iterative technique, then-dimensional Newton's method. In order 
to verify the computer program that implements the numerical method, results of numerical simulations 
were compared to analytical solutions derived for linearized approximations of the governing equations 
(JACOBSEN and CARNAHAN, 1990). The agreement between the analytical and numerical solutions is 
excellent at early simulated times when the nonlinear terms are small relative to linear terms. In addition 
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trafiltration (Lv 8 , Lvs = Lvs) varied as shown. Initial pressure of 107 Pa. 
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to providing a check on the numerical method of solution, the analytical solutions may be used to 
estimate the grid size necessary to prevent undesirable boundary effects caused by using a grid too small 

in extent. 

The computer program was used to simulate heat and mass transport in a saturated clay-like 
material surrounding a heat source in order to simulate transport processes that may occur in bentonite, 
which may be used as a packing material around a nuclear waste canister. The only coupled processes 
considered were chemical osmosis, ultrafiltration, thermal filtration and thermal osmosis. The results of 
the simulations for the parameters listed in Table 3 may be summarized as follows. 

• The transport of heat by thermodynamically coupled processes is negligible compared to transport 
by the direct process of heat conduction. For the set of parameters used, and within a range of 
values of the phenomenological coefficients, the temperature calculation could be uncoupled from 
calculations of the pressure and solute concentration distributions. 

• The pressure distribution differs for the uncoupled and coupled cases. The differences are largest 
near the flux boundary and decrease with distance from it. The resulting differences in the pressure 
gradient for the uncoupled and coupled cases lead to differences in the advective flux for each case. 
When chemical osmosis and ultrafiltration are included in the simulation, the advective flux is 
cancelled by the chemical osmotic flux at the flux boundary. When thermal osmosis and thermal 
filtration are included, the advective flux is cancelled by the thermal osmotic flux. Finally, when all 
of these coupled processes are included, the advective flux is cancelled by the sum of the chemical 
osmotic and thermal osmotic fluxes. The result is that the total solute flux near the flux boundary 
is dominated by the diffusive flux in all cases. The only variance from this is that when chemical 
osmosis and therefore also ultrafiltration are included, the diffusive flux is opposed, but not cancelled, 
by the ultrafiltrative flux. 

• The solute concentration profiles for the uncoupled and thermal osmosis cases are nearly identical 
for most values of Lqv and Lvq used. The differences in the profiles increase as Lqv and Lvq 
increase. When only chemical osmosis is included, the solute concentration near the flux boundary 
is larger than the concentration for the uncoupled case, and as L.v and Lv• become more negative, 
the magnitude of the difference increases. When both chemical osmosis and thermal osmosis are 
included, the solute concentration is smaller than that of the uncoupled case. 

• The total solute flux at the inner boundary has been constrained by the flux boundary condition 
imposed there, but differences in the total solute flux for the uncoupled and coupled cases do occur 
at short distances from the boundary. When chemical osmosis is included, the total solute flux 
is retarded relative to the uncoupled case. The total solute flux for the thermal osmosis case is 
the same as that for the uncoupled case. When both chemical osmosis and thermal osmosis are 
included, the solute migration away from the flux boundary is faster than that of the uncoupled 
case. 

The last point above is particularly important in trying to understand and simulate transport 
processes in the vicinity of a nuclear waste canister. Based on the solute profiles for the thermal osmosis 
case (Figs. 6 and 15) and the chemical osmosis case (Figs. 6 and 18), one might conclude that thermal 
osmosis does not affect solute migration and that the only significant coupled process is chemical osmosis, 
which retards the solute migration away from the flux boundary. Figure 11, which is a plot of the total 
solute flux for the uncoupled and all coupled cases, shows that these conclusions are erroneous: when 
both chemical osmosis and thermal osmosis are included, the rate of solute migration away from the flux 
boundary is accelerated relative to the uncoupled case. Because it depends on the material properties, 
phenomenological coefficients, and input heat and solute fluxes used, this result, as well as those stated 
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earlier, cannot be generalized. Nevertheless, these results demonstrate the importance of including 
thermodynamically coupled processes when simulating transport through a clay-like medium. 

The numerical simulator described in this work may be used to investigate heat and mass transport 
through other geologic media possessing the properties of a semipermeable membrane. Examples of such 
applications are water movement in irrigated soils with high salt contents and contaminant transport 
in clay formations. Crucial to understanding transport processes in these cases is the realization that 
because of the properties of the environment in which transport is taking place, processes other than 
the direct processes of advection, diffusion and heat conduction may contribute significantly to heat and 
mass flows. 
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APPENDIX: IMPLEMENTATION OF THE CONSTANT-FLUX CONDITION 

Implementation of the constant-flux condition at the inner boundary is difficult because of the 
coupling of temperature, pressure and solute concentration in the phenomenological equations {7, 8, 9). 

Given constant incoming heat (Jq,inc), solute (Js,inc) and solvent {Jo,inc) fluxes, the incoming volume 

flux (Jv,inc) is calculated from 

lv,inc = Volo,inc + V.J.,inc, (A-1) 

and 1: at the flux boundary is calculated from {11), rewritten as 

JO. = JB,inc- c.Jv,inc 
•,me 1- C. V

8 

(A-2) 

The values of Jq,inc 1 lv,inc and 1:,inc are substituted into the phenomenological equations {7, 8, 9), and 
the partial derivatives are replaced by finite difference approximations centered at node 1 {CRANK, 1975, 
p. 147). For example, in the case of an even grid spacing of ~x, 

(
{)P) P2- Po 
ax node 1 ~ 2~x ' 

{A-3) 

where P; is the pressure at node i. The subscript 0 in the equation above refers to an imaginary node, 
that is, the variable values at node 0 are never explicitly calculated. The equations for Jq,inc, lv,inc 
and 1:,inc are solved for the temperature, pressure and solute concentration at node 0, and the results 
are substituted into the governing equations in which the finite difference approximations replacing the 
space derivatives are centered at node 1 and therefore, involve the variable values at nodes 0, 1 and 
2. Rearranging the governing equations after the substitution yields residue equations for temperature, 
pressure and solute concentration at node 1. These equations involve variable values at only nodes 1 
and 2, but are second order correct in ~x. 
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