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Abstract 
 

Improved Methods for Polarizable Classical Molecular Dynamics Simulations 
 

by 
 

Alex Todd Albaugh 
 

Doctor of Philosophy in Chemical Engineering 
 

Designated Emphasis in Computational and Data Science and Engineering 
 

University of California, Berkeley 
 

Professor Teresa Head-Gordon, Chair 
 

Polarization is the ability of a molecule’s electron density to respond to and 
influence its environment and is the leading order many-body interaction for advanced 
electrostatics used in classical molecular simulation.  It has proven to be an important 
interaction that is necessary to accurately simulate certain molecular systems.  
Polarization helps to capture intermolecular interactions of ligand-macromolecule 
complexes, heterogeneity at interfaces, electric field environments of heterogeneous 
systems such as proteins, and structure and dynamics of peptide-water solutions.  In 
general, systems that can benefit most from the inclusion of polarization effects are 
heterogeneous, non-bulk systems that give rise to asymmetric environments. 
Additionally, polarization has been shown to be more transferable across the phase 
diagram beyond regions where the force field was initially parameterized. 

 The main drawback of including polarization in molecular simulation, however, 
is the computational expense of calculating explicit polarization interactions.  The most 
common approach is to approximate the polarization solution using an iterative self-
consistent field (SCF) method, which accounts for about half the cost of a polarizable 
simulation.  Another approach is that of extended Lagrangians (EL), which treat 
polarization degrees of freedom dynamically and do not require iterations.  EL methods, 
however, suffer from instability and require prohibitively small simulation time steps. 

The focus of this dissertation is the reduction of the computational cost of 
polarizable classical molecular simulations while maintaining the high level of accuracy 
associated with these simulations.  I present several new methods that combine the 
stability of SCF methods with the iteration-free dynamics of EL methods into a hybrid 
EL/SCF framework.  The key to these EL/SCF methods is the introduction of auxiliary 
polarization degrees of freedom, which can be dynamically integrated and drive the real 
polarization degrees of freedom.  The first approach is a relatively simple method for 
polarization that reduces the number of iterative cycles required for an SCF solution.  
This method also introduces thermostat control of auxiliary variables and is called 
iEL/SCF.  A more sophisticated approach that eliminates the need for SCF iteration 
altogether, iEL/0-SCF, is also presented. This method is developed for both induced 
dipole and Drude polarization models.  I also present a generalized and complete theory 
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for classical iteration-free polarizable EL/SCF dynamics and explore combining iteration-
free dynamics with other advanced high efficiency methods such as RESPA multi-time 
stepping and stochastic-isokinetic integration, which work complementarily with EL/SCF 
to further increase computational efficiency. 

In summary, the developments presented in this dissertation are methods and 
theories that significantly reduce the cost of classical polarizable molecular dynamics 
without sacrificing accuracy.   This work represents an important step in moving the 
scientific community toward the broader adoption of advanced potential energy surfaces 
embodied by polarizable force fields. 
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1. 
Introduction 

 
Polarization is the ability of a molecule’s electron density to respond to and 

influence its environment and is the leading order many-body interaction for advanced 
electrostatics used in classical molecular simulation1-4.  It has proven to be an important 
interaction that is necessary to accurately simulate certain molecular systems.  
Polarization helps to capture intermolecular interactions of ligand-macromolecule 
complexes 5-6, heterogeneity at interfaces7-8, electric field environments of heterogeneous 
systems such as proteins9-13, and structure and dynamics of peptide-water solutions14-15.  
In general, systems that can benefit most from the inclusion of polarization effects are 
heterogeneous, non-bulk systems that give rise to asymmetric environments4, 16-18. 
Additionally, polarization has been shown to be more transferable across the phase 
diagram of liquid water beyond the regions where the force field was initially 
parameterized19. 

 The main drawback from including polarization in molecular simulation, 
however, is the computational expense of calculating explicit polarization interactions. In 
principle this calculation can be done exactly by matrix inversion or Cholesky 
factorization, but this becomes prohibitively expensive for systems larger than tens of 
atoms4.  The most common approach is to approximate the solution using an iterative 
self-consistent field (SCF) method20-21, which accounts for about half the cost of a 
polarizable simulation22.  The focus of this dissertation is the reduction of the 
computational cost of polarizable classical molecular simulations while maintaining the 
high level of accuracy associated with these simulations.  Chapter 2 presents an initial, 
relatively simple method for polarization that reduces the number of iterative cycles 
required for an SCF solution23.  Chapter 3 presents a more sophisticated approach that 
eliminates the need for SCF iteration altogether for an induced dipole polarization 
model22 and Chapter 4 extends this approach to a Drude polarization model24.  Chapter 5 
presents a generalized and complete theory for classical iteration-free polarizable 
dynamics25.  Finally, Chapter 6 explores combining iteration-free dynamics with other 
advanced high efficiency methods such as RESPA multi-time stepping26 and stochastic-
isokinetic integration27.  The following sections of this introduction give an introduction 
to polarizable models (Section 1.1), polarizable force fields used in this study (Section 
1.2), and current polarizable methods including a brief introduction to the methods 
presented in this work (Section 1.3).   

In summary, the developments presented in this dissertation are methods and 
theories that significantly reduce the cost of classical polarizable molecular dynamics 
without sacrificing accuracy, all at the cost of only the chosen level of the permanent 
electrostatic model.   This work represents an important step toward moving the scientific 
community toward the broader adoption of advanced potential energy surfaces embodied 
in polarizable potentials2. 
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1.1 Polarizable Models 
Polarization can be described in classical electrostatics through three models: 

induced dipoles17, 19, 28-39, Drude oscillators40-46, and fluctuating charges47-53.  Each of 
these models will be introduced below along with a brief discussion of its benefits and 
drawbacks.  This dissertation makes use of all three models at various points, but the 
main model used is the induced dipole model because of its strong theoretical grounding 
as the first-order response with respect to an applied external electric field54 and also its 
efficient implementation when combined with multipolar electrostatics4. 

 
1.1.1 Induced Dipole Model 

The induced dipole model has a history that goes back to Warshel and Levitt’s 
Nobel Prize-winning work studying enzyme-substrate dynamics via simulation in 197628.  
More recently induced dipoles have found a place in the AMOEBA polarizable force 
field19, 31, 33-34, a force field used extensively in this work and discussed in Section 1.2.1, 
and other state of the art potentials, as well2. 

A point induced dipole is a dipole created by the electric field experienced by an 
atom in order to minimize potential energy.  Specifically, an induced dipole is 
proportional to the total electric at an atomic center with the constant of proportionality 
called the polarizability, as shown in Eq. (1.1). 

 

!! = !!!!!"! = !!!! + !! !!"! !!
!

!!!
 (1.1) 

 
In Eq. (1.1) !! is the induced dipole at the i-th atomic center, !!!"! is the total 

electric field contribution at the i-th atomic center, and !! is the atomic polarizability of 
the i-th atom.  The total electric field can be broken down into contributions due to other 
permanent (non-polarizable) electrostatic moments (like fixed charges, fixed dipoles, 
fixed quadrupoles, etc.) and the electric field created by other induced dipoles in the 
system, as the second right-hand side of Eq. (1.1) shows.  Here !! is the electric field due 
to permanent electrostatic moments in the system and !!"!  is the dipole interaction matrix 
between atomic centers i and j (its elements consist of derivatives of 1/!!" Coulomb 
interaction terms).  From Eq. (1.1) we can begin to see why a polarization model is 
expensive.  The induced dipole terms appear on both the right- and left-hand sides and 
need to be self-consistent.  This equation can be written in super matrix form, where 
induced dipoles for every atomic center in the system can be represented with a single 
equation, given in Eq. (1.2). 

 
!′! = ! (1.2) 

 
In Eq. (1.2) !′  is a 3N by 3N matrix whose blocks are defined by !′!" =

(!!!!!!" − !!"! ) between atomic centers i and j for N total atomic centers in the system.  
The ! and ! matrices are then 3N by 3 where the i-th row is given by the transpose of the 
i-th induced dipole or permanent electric field, respectively.  The self-consistent solution 
for the induced dipoles is then given by Eq. (1.3). 
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!!"# = !′!!! (1.3) 

 
Inverting the !′ matrix is computationally expensive and scales as !(!!) so 

direct inversion is not practical for condensed phase simulation where systems of tens of 
thousands of atoms are common, but it does mathematically define the true ground state 
electronic solution.  With these self-consistent dipoles the potential energy due to 
polarization is defined by Eq. (1.4). 

 

!!"#$% =  − 12!!"#
! ! (1.4) 

 
The induced dipole model is arguably the most robust polarizable model because 

its foundation arises from an expansion of the electric potential about an applied electric 
field and therefore it can be systematically generalized to higher-order moments like 
induced quadrupoles, induced octupoles, etc.54 

 
1.1.2  Drude Model 

The Drude model was first introduced by Paul Drude in 1900 to study the optical 
properties of materials55-56 and actually predates the advent of quantum mechanics. The 
model was first introduced into classical molecular simulation in 197440 and is sometimes 
known as the shell model40-41. 

In the Drude model an additional particle, known as the Drude particle, is bound 
to each atomic center with a harmonic spring whose equilibrium position is its parent 
atom’s position with a force constant of !!.  Each Drude particle also carries a charge so 
polarization is included via an approximate induced dipole created by charge separation 
between the Drude particle and atomic center.  The position of the i-th atom is then !!, 
the position of the corresponding i-th Drude particle is !!,! , and their relative 
displacement is !! = !!,! − !!.  If the i-th atomic center usually carries a charge of !!!"# 
then in the Drude model the parent atom will now carry a charge of !! and the Drude 
particle will carry a charge of !!,! such that !!!"# = !! + !!,! .  It can be shown that the 
relationship between the charge partitioned to the Drude particle, !!,!, the Drude spring 
constant, !!, and the atomic polarizability, !!, is given by Eq. (1.5)	 43.  If we know the 
atomic polarizability of an atom then we only need to introduce one new parameter as the 
Drude charge and force constant are not independent. 

 

! = !!!
!!

 (1.5) 

 
The Drude model then requires two modification of the potential energy.  The 

first of which is the inclusion of a potential energy term due to the harmonic bonding of 
the Drude particle to its parent atom, shown in Eq. (1.6). 

 

!!"#$% = 1
2 !! !! − !!,!

!

!
 (1.6) 
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The second modification of the potential energy is that the electrostatic energy 
must include interactions between not just atomic centers and other atomic centers, but 
also atomic centers and Drude particles and Drude particles and other Drude particles, as 
given by Coulombic interactions in in Eq. (1.7). 

 
!!"!#$%&'$($)# = !!!!

!! − !!!!!!
+ !!!!,!

!! − !!,!!!
+ !!!!,!

!!,! − !!,!!!!!
 (1.7) 

 
As with the induced dipole model we can define a ground state, self-consistent 

solution for the positions of Drude particles by !!!! = !!,!!!,!, where !!,! is the electric 
field at the i-th Drude particle.  This is also a difficult to solve equation as !!,! is 
dependent on the other displacements, !!, and can be thought of as analogous to Eq. 
(1.1). 

The main advantage of the Drude model is that it is relatively straightforward to 
implement.  Most molecular dynamics codes and force fields incorporate Coulombic 
(charge-charge) interactions already so adding a Drude model amounts to simply 
doubling the number of particles in the system and implementing the harmonic springs of 
Eq. (1.6).  One disadvantage of the Drude model is that Drude particles are typically 
treated with extended Lagrangian schemes (described in Section 1.3.2) where the Drude 
particles carry part of the parent atom’s mass.  This mass repartitioning between parent 
and Drude can cause numerical instability as the Drude mass must be small to properly 
follow electronic dynamics, leading to either instability or the need for intractably small 
time steps. 

  
1.1.3  Fluctuating Charge Model 

The fluctuating charge model introduces polarization by allowing the charges on 
each atom in the system to change value in order to minimize the potential energy of the 
system, subject to the constraint that the net charge in the system remains unchanged.  
Eq. (1.8) gives the combined electrostatic/polarization potential energy for a fluctuating 
charge model47. 

 

!!"!#$%&'$($)# = !!!+ 12!
!!" (1.8) 

 
In Eq. (1.8) ! is a vector of all the electronegativities of the ! atoms in the 

system, !!; ! is a vector of the fluctuating partial charges of the ! atoms, !!; and ! is a 
symmetric interaction tensor whose off-diagonal terms describe Coulombic interactions 
between charges !!  and !!  (!!" = 1/!!"  for ! ≠ ! in atomic units) and whose diagonal 
terms are twice the electronegative hardness of the i-th atom (!!! = 2!!).  The self-
consistent fluctuating charges for a given atomic configuration are the set of charges that 
minimize this potential energy and are given by Eq. (1.9). 

 
!!"# =  −!!!! (1.9) 

 
Similar to the case of induced dipoles in Eq. (1.3) the self-consistent ground state 

fluctuating charges are given by a matrix inversion that becomes expensive for all but the 
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smallest systems.  In practice this equation is solved with iterative methods or other 
methods described in Section 1.3.  In a sense the fluctuating charge model can be thought 
of as a reduced dimensional induced dipole model.  In such an analogy fluctuating charge 
electronegativities, !!, parallel induced dipole permanent electric field, !!; the ! matrix 
of the fluctuating charge model is a charge-charge interaction matrix and the !′ matrix of 
the induced dipole model is a dipole-dipole interaction matrix; and finally, the fluctuating 
charges, !!, are analogous to the induced dipoles, !!.  This dimensionality reduction, 
however, is one of the drawbacks of the fluctuating charge model.  Induced dipoles and 
Drude particles can account for out-of-plane polarization because of the directional 
nature of induced dipole vectors and Drude particle displacements.  The polarization 
response of fluctuating charges, however, is constrained to the lines or planes along 
which charges lie in molecular geometry.  For example, for a carbon dioxide molecule a 
fluctuating charge model can only polarize along the oxygen-carbon-oxygen axis, 
whereas induced dipoles or Drude displacements can point away from this axis.  Because 
of this the fluctuating charge model is a more restrictive polarization model than induced 
dipoles or Drude particles. 

 
 

1.2 Polarizable Force Fields 
A force field, in the molecular mechanics sense, is a specific set of functional 

forms and parameterizations for those functional forms that define the potential energy 
for a configuration of atoms.  In short, a force field is a function that turns atomic 
coordinates into potential energy, !(!).  Polarizable force fields include a polarizable 
model from Section 1.1 and a corresponding parameterization for that model, as well as 
terms to describe bonded valence interactions and other non-bonded interactions like 
permanent electrostatics and van der Waals interactions.  The bulk of this dissertation is 
performed with the AMOEBA (atomic multipole optimized energetics for biomoleular 
simulation) force field 19, 31, 33-34 and work with the Drude model was performed with the 
PSPC (polarizable simple point charge) force field for water42-43. 
 
1.2.1  AMOEBA Force Field 

The AMOEBA force field is a general-purpose biomolecular force field with 
parameters for water, ions, small molecules, proteins, and DNA.  The AMOEBA 
classical functional form is broken into several components, given in Eq. (1.10). 

 
!!"#$%! = !!"#$ + !!"#$% + !!"#$!!"#$% + !!"#!!"!!"#$% + !!"#$%"&'(

+ !!"# + !!!"#$%&'$($)# + !!"#$%&'$(&") 
(1.10) 

 
The first five terms of Eq. (1.10) describe bonded interactions that keep the 

internal geometry of a molecule close to its equilibrium conformation.  Respectively, 
these are bond stretching, angle bending, bond-angle stretch/bend cross terms, out-of-
plane bending, and torsional rotation.  The first four of these are described by high-order 
anharmonic springs with equilibrium positions corresponding to the equilibrium bond 
lengths and angles of a molecule.  The torsional potential is given by cosine terms that 
describe energy barriers associated with rotating atoms separated by three bonds about a 
common axis.  The final three terms of Eq. (1.10) describe through-space non-bonded 
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interactions.  The first are the van der Waals interactions, which include long-range 
dispersion and short-range repulsion.  For the AMOEBA model these are described by a 
buffered 14-7 functional form57.  The electrostatic contribution comes from fixed (non-
inducible) multipole moments58 in the system.  The AMOEBA force field includes fixed 
electrical monopoles (charges), dipoles, and quadrupoles for each atom in the system.  
Finally, the polarization is implemented using an induced dipole model described in 
Section 1.1.1.  One notable side effect of any classical polarizable model is that if two 
atoms come close together they may mutually polarize without bound, a problem known 
as the polarization catastrophe.  This is avoided in the AMOEBA force field by using 
short-range polarization damping30. 

 
1.2.2  PSPC Force Field 

The PSPC force field has a relatively simple functional form given by Eq. (1.11). 
 

!!"!# = !!"# + !!"!#$%&'$($)# + !!"#$% (1.11) 
 
Unlike the AMOEBA force field, the PSPC force field has no bonded terms.  For 

the PSPC model the intramolecular geometry is constrained to be in its equilibrium 
configuration and does not use spring-like potentials that allow this geometry to deform, 
like the AMOEBA force field.  The rigid model constraint enforcement is satisfied with a 
SHAKE/RATTLE algorithm59.  Non-bonded forces then define the potential energy and 
the van der Waals interactions are described by simple a Lennard-Jones potential.  The 
polarization is implemented using a Drude model so the electrostatics include sums over 
the Drude positions and charges, Eq. (1.7), and we must account for the harmonic binding 
of Drude particles to parent atoms, Eq. (1.6).  The fixed electrostatics of the PSPC force 
field only include fixed charges and not higher-order multipoles like AMOEBA. 
 

 
1.3 Polarization Solutions 

There are two standard approaches to treating polarization, which are self-
consistent field iterative solvers (SCF) and extended Lagrangian (EL) dynamics.  This 
dissertation lays out a third new hybrid approach by combining favorable aspects of EL 
and SCF, which I term EL/SCF. This section will give background on SCF and EL 
approaches as well as a very brief introduction to the EL/SCF that are the subject of this 
dissertation.  Other novel alternative approaches to treating polarization will also be 
briefly reviewed.  For simplicity most approaches will be discussed in the context of an 
induced dipole polarization model (Section 1.1.1). 

 
1.3.1  Self-Consistent Field Iteration 

As mentioned previously, the solution to a polarizable system given in Eq. (1.2) is 
almost always solved through a self-consistent solution with an iterative optimizer.  One 
simple example of such an SCF iterative approach is successive over-relaxation (SOR)	60, 
given by Eq. (1.12). 
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!!!!! = (1− !)!!! + ! !!! + !! !!"! !!
!

!!!
 (1.12) 

 
In Eq. (1.12) the n-th iteration of the induced dipole !! is updated to the n+1-th 

iteration using a linear mixing of the n-th iteration and a combination of the n-th iteration 
and the mutual response of the n-th iteration.  Here the linear mixing is controlled by the 
relaxation parameter, !.  After enough iteration, the dipoles will eventually converge to a 
ground state solution.  The convergence threshold is given by the root-mean-square 
change between the induced dipoles from one iteration to the next and once enough 
iterations are performed to reach this threshold the iterative procedure is stopped and the 
dipoles of the final iteration are declared close enough to the true solution, !!!"# .  
Convergence thresholds are typically around 10-6 RMS Debye (D). 

The SOR method is illustrative, but not practically efficient.  Typically more 
sophisticated SCF solvers are employed such as the preconditioned conjugated gradient 
(PCG)	 20 or direct inversion of the iterative subspace (DIIS)	 21, 61.  Another recent 
development along these lines is the truncated conjugate gradient (TCG) method, which 
minimizes the number of matrix-vector multiplications and is amenable to scaling on 
modern high-performance computing platform62.  To give an idea of scale, simulating 
bulk water with the AMOEBA force field typically requires around 10-12 iterations per 
time step with SOR and 5-8 iterations per time step with PCG. Each iteration comes at 
significant expense because the cost of calculating the !!"! !!!

!!!  term in Eq. (1.12) (or 
its equivalent) is non-negligible.  The more efficient methods developed in this 
dissertation will compare against the PCG iterative solver as a baseline. 

One common addition to an SCF solver is a predictor63, which takes a linear 
combination of previous solutions of the induced dipoles during a simulation and uses the 
result as an initial guess for the SCF solver, Eq. (1.13). 

 

!!! ! =  !!!!!"# ! − !"#
!

!!!
 (1.13) 

 
In Eq. (1.13) the initial guess for the SCF solver at the current time t, !!! ! , is a 

linear combination of the ! previous iterative solutions at times ! − !"#, where !" is the 
time step of the simulation.  The constants !! then give the exact form of this linear 
combination.  The use of predictors can accelerate SCF solvers, but leads to overall 
degradation in energy conservation and a more detailed discussion of their use is 
presented in Chapter 2. 

In general, self-consistent iterative solution parallels the Born-Oppenheimer 
approximation64 in ab initio (quantum) molecular simulation.  Under the Born-
Oppenheimer approximation time scale separation between the motions of the nuclear 
and electronic degrees of freedom allows for the latter to be solved iteratively to self-
consistency at each time step for a fixed atomic configuration during a molecular 
dynamics trajectory. 
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1.3.2  Extended Lagrangian Dynamics 
Extended Lagrangian methods typically appear in molecular simulation in order 

to simulate in various thermodynamic ensembles.  The natural ensemble for molecular 
simulation is constant particle, constant volume, and constant energy (NVE).  By 
including additional thermostat degrees of freedom coupled to particle velocities65-66 one 
can move to an NVT ensemble.  By further treating the simulation box sides as dynamic 
degrees of freedom we can move to the NPT ensemble.  The Lagrangian is defined as the 
kinetic energy minus the potential energy of a system.   When additional degrees of 
freedom (thermostats, barostats, and as I will show, auxiliary polarization variables) are 
included in a simulation corresponding kinetic energies are added to and corresponding 
potential energies are subtracted from the Lagrangian, hence extended Lagrangian. 

Electronic degrees of freedom, such as induced dipoles for polarization, can also 
be treated dynamically in an extended Lagrangian approach.  For such a method we first 
define the extended Lagrangian, where we now include the induced dipoles as dynamic 
degrees of freedom as given in Eq. (1.14). 

 

ℒ = 1
2 !!!!!

!

!!!
+ 12 !!

!!!!
!

!!!
− ! ! + 12!!"#

! ! (1.14) 

 
In Eq. (1.14) the first term represents the kinetic energy of the particles, the 

second term represents kinetic energy associated with the now dynamic induced dipoles, 
which now have associated masses !!

!, the third term represents the non-polarization 
potential energy (the potential energy not dependent on the induced dipoles), and the final 
term is the potential energy associated with the induced dipoles from Eq. (1.4).  We can 
derive equations of motion from a Lagrangian by using the Euler-Lagrange equation, Eq. 
(1.15), where ! is a general coordinate. 

 
!
!"
!ℒ
!! =

!ℒ
!" (1.15) 

 
Applying Eq. (1.15) on Eq. (1.14) with respect to the induced dipoles and 

leveraging Eq. (1.1) gives an induced dipole equation of motion, Eq. (1.16). 
 

!!
!!! = !!!"! − !!!!!! (1.16) 

 
Using Eq. (1.16) we can now numerically integrate this equation of motion for the 

induced dipoles, just as we numerically integrate the equations of motion of the atomic 
degrees of freedom.  In this way we have replaced SCF iteration with a much more 
efficient dynamic integration in time.  We should note that if the definition of the ground 
state induced dipoles in Eq. (1.1) is satisfied then the right-hand side of Eq. (1.16) is zero 
and there is no force on the induced dipoles.  In this way the induced dipoles are driven 
towards and fluctuate about the ground state solution, but do not necessarily (and in 
practice rarely ever exactly) match the true solution. 

One may think that extended Lagrangians are the ideal solution, however, to 
achieve realistic dynamics the dipole mass parameter !!

! must be small.  Due to this 
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small mass the time step of the simulation must also be small to accurately follow the 
dynamics, so what is gained in not doing iteration is lost in the cost of a smaller time step.  
In practice EL methods are not popular due to their unstable nature except at 
prohibitively small time steps. 

The use of extended Lagrangians to treat polarization is directly analogous to and 
a product of Car and Parrinello’s seminal work in 198567 where they treated the orbitals 
of density functional theory (DFT) as dynamic degrees of freedom in an extended 
Lagrangian approach.  Their work was an attempt to alleviate the computationally 
restrictive nature of Born-Oppenheimer dynamics.  Since then such approaches have been 
applied to all models of polarization- induced dipoles (described above)68, Drude 
particles43, and fluctuating charges47, 50, 69. 
 
1.3.3  Extended Lagrangian/Self-Consistent Field Methods 

The ideal method for treating polarization would combine the stability of SCF 
solutions to the Born-Oppenheimer condition with the iteration-free efficiency of 
extended Lagrangians used in methods such as Car-Parrinello.  Recently Niklasson and 
colleagues have pursued just such an approach for ab initio method70-81, which forms the 
inspiration and groundwork for this dissertation.  By combining aspects of EL and SCF 
into a single, fundamental framework for classical polarization I have developed methods 
that can reduce the number of required SCF iterations using a relatively simple approach 
(Chapter 2)	 23, eliminate the need for SCF iteration altogether while maintaining SCF 
stability and accuracy (Chapter 3 for the induced dipole model, Chapter 4 for the Drude 
model)	 22, 24, described the theoretical framework that binds all of these approaches 
together (Chapter 5)	 25, and paired these approaches with other advanced molecular 
dynamics acceleration approaches to achieve truly remarkable efficiency (Chapter 6).  
Using these methods now guarantees that polarization is now no more computationally 
expensive than the underlying permanent electrostatic model of the system.  What will 
follow is a very brief outline of the approach, which is developed more extensively in 
subsequent chapters.   

The main insight is to build an extended Lagrangian, but instead of using the 
electronic degrees of freedom directly in the Lagrangian (induced dipole in this example), 
we introduce an auxiliary set of electronic degrees of freedom, !.  Here !! is an auxiliary 
induced dipole corresponding to the real induced dipole !!.  The extended Lagrangian we 
build then takes the form of Eq. (1.17). 

 

ℒ = 1
2 !!!!!

!

!!!
+ 12 !!

!!!!
!

!!!
− ! ! − !!"! −  12!

! !!
!

!

!!!
!! − !! ! (1.17) 

 
In Eq. (1.17) !!"# is left in a general form because depending on the flavor of the 

method it may need to be modified.  We have also introduced a separate harmonic term 
into the Lagrangian, the final term on the right-hand side of Eq. (1.17), to maintain each 
auxiliary close to its corresponding real dipole with frequency parameter !.  By applying 
the Euler-Lagrange equation along with the limit that the auxiliary mass parameter !! 
goes to 0, we obtain equations of motion for the real and auxiliary degrees of freedom, 
given in Eq. (1.18). 



10 

 

!!!! =  −!(! ! + !!"#)
!!! !

 (1.18a) 

!! =  !! !! − !!  (1.18b) 
 
If we want to simply reduce the number of iterations required for an SCF solver 

we could use the auxiliary dipole, !, s at each time step as an initial guess for the SCF 
solver and use the standard form of !!"#.  Using the auxiliaries as an initial guess is 
superior to a predictor because the auxiliaries are integrated time reversibly, as will be 
discussed in Chapter 2.  To achieve iteration-free dynamics we need to modify the form 
of !!"# and estimate the true SCF solution using linear mixing, which modifies the 
auxiliary equation of motion, which is discussed in Chapters 3 and 4.  In general, though, 
we are using an extended Lagrangian for an auxiliary set of polarization degrees of 
freedom while maintaining key aspects of SCF, leading to the family of EL/SCF 
methods.   

 
1.3.4  Alternative Polarizable Methods 

Other approaches whose aim is to reduce the cost of polarization have been 
developed, as well.  Presented here is a brief overview of notable methods along with 
discussion of their benefits and drawbacks. 

The iAMOEBA approach19, which is based on a reparameterization of the 
AMOEBA force field, only accounts for direct polarization, which is the polarization 
response due to fixed electrostatics in the system, and ignores the mutual dipole response.  
Mathematically this equates to truncating the second right-hand side of Eq. (1.1) to just 
the first term.  One can clearly see then that no iteration is necessary to find the 
polarization response, it is simply proportional to the fixed electrostatic field.  While 
eliminating the need for iteration this approach requires force field reparameterization 
and does not account for the full polarization response, thus being less accurate in 
principle. 

Extrapolated perturbation theory (ExPT) is a method that expands the polarization 
energy as a series of perturbations, truncates the series at low order, and then statistically 
extrapolates to infinite order to recover an approximation of the true, fully converged 
SCF solution82-83. The cost of this method is on the order of 2-3 iteration cycles, which is 
excellent, but suffers from inaccuracy due to the nature of statistically extrapolating a 
polarization response that must be fitted. 

Polarization, being inherently a many-body or N-body effect, can be written as an 
infinite expansion of one-body, two-body, three-body, four-body, etc. terms.  A method 
taking advantage of this fact explores the possibility of treating polarization by truncating 
this expansion to the three-body term, thus evaluating polarization as the sum of exact 
one-, two-, and three-body interactions84-85.  This is, of course, an approximation to the 
true polarization response, but was found to be accurate for some systems and realized 
computational gains, albeit with major code restructuring to efficiently calculate three-
body interactions. 

While solving for the polarization response using direct inversion, Eq. (1.3), is 
computationally intractable for large systems, it may be done efficiently for very small 
systems.  Taking advantage of this is the coupled polarization-matrix inversion and 
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iteration (CPII) scheme86.  This approach does direct inversion to find the intramolecular 
polarization response, which is feasible for small molecules, and then uses that result to 
solve for the overall intermolecular response iteratively.  This approach can reduce the 
number of iterations required, but not completely. 
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2. 
iEL/SCF: 

Reducing the Cost of Self-Consistent 
Iteration for Polarization 

 
2.1  Introduction 

Polarizable empirical force fields offer a clear and systematic improvement over 
current generation fixed charge force fields by including many-body effects that allow for 
a molecular response to evolving heterogeneous environments2, 4, 6, 11, 16-17, 42. However, 
the primary computational expense of a classical polarization model for large systems 
resides in the solution of a linear system of equations for the induced dipoles.  One choice 
is to implement a self-consistent field (SCF) iterative scheme such as a preconditioned 
conjugate gradient approach (PCG)20 or direct inversion in the iterative subspace 
(DIIS)21, 87 along with a predictor to accelerate the convergence of the SCF problem.  
However, predictors use information from previous steps and are time irreversible, 
leading to an inevitable degradation in energy conservation. Another approach is to 
replace the SCF step with an extended Lagrangian (EL) formulation to avoid any iterative 
SCF costs16-17, 67-68. However, this approach can be plagued with problems of accuracy 
since EL formulations allow the induced dipoles to fluctuate around an average 
orientation that does not strictly conform to the true electric field vector.  Moreover, this 
approach can suffer from problems of stability and energy conservation in the context of 
a MD trajectory that forces the time step to be unacceptably short.  

Recently, Niklasson and co-workers70-81 have introduced a hybrid extended 
Lagrangian self-consistent field (EL/SCF) scheme in the context of Born-Oppenheimer 
molecular dynamics (BOMD) wherein an extended set of auxiliary electronic degrees of 
freedom serve as an initial guess for the SCF solver.  This allows less strict convergence 
of the ground state electron density due to the benefits of a time reversible Verlet 
algorithm that realizes excellent energy conservation.  In this chapter I present an adapted 
EL/SCF approach for the problem of classical polarization. In this context the initial 
guess for the induced dipole SCF calculation is given by auxiliary induced dipole 
variables evolved via a time-reversible velocity Verlet scheme88. The benefit to such an 
approach is that one can now integrate reversible equations of motion of the auxiliary 
dipole initial guess at the same large time step as the atomic positions, while maintaining 
superior energy conservation since the polarization response stays near the true solution 
(Born-Oppenheimer surface) at looser convergence levels relative to standard SCF 
solvers.  

However, like the original hybrid EL/SCF approach used in BOMD for the 
electron density matrix, I find that the set of auxiliary induced dipoles also exhibit a 
similar problem in numerical stability. This is manifested as a continued (and likely 
boundless) increase in the number of SCF cycles to meet even loose (10-1 D) convergence 
tolerances over the course of a 1.0 ns trajectory of the AMOEBA14 water model34.  I 
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have diagnosed the problem in the hybrid EL/SCF scheme applied to classical 
polarization as arising from resonances in the equations of motion27, 89-90 that manifests as 
a buildup of inertia for the auxiliary dipoles. Although in principle I could address the 
resonance problem with a smaller integration time step, instead I have formulated a new 
restrained inertia EL/SCF (iEL/SCF) method that for all intents and purposes controls for 
the resonance problem, analogous to other isokinetic approaches27, such that the 
equations of motion of the auxiliary dipoles remain stable and time reversible.  This 
inertial restraining is implemented with a thermostatting scheme, illustrated using 
Berendsen weak coupling91 and Nosé-Hoover chain thermostats65-66, applied to the 
auxiliary dipole velocities.  

This iEL/SCF approach is a clear improvement over standard SCF approaches to 
classical mutual induction calculations.  The results on the AMOEBA polarization model 
show that the iEL/SCF method exhibits excellent energy conservation and 
thermodynamic and dynamic properties in both the NVE and NVT ensembles, but at 
greatly relaxed real dipole convergence tolerances, which reduce the number of SCF 
cycles relative to standard SCF solvers used for the classical polarization solution. As 
such, the iEL/SCF scheme clearly offers a better choice for classical mutual induction 
calculations compared to many EL and SCF and hybrid alternatives.  iEL/SCF is also 
straightforward to implement, as it requires no modification of potential energy functions 
or previously implemented SCF solvers.  Additionally this iEL/SCF approach has been 
proven to be useful for ab initio molecular dynamics, as well92. 

 
 

2.2  Methods 
 
2.2.1  Polarizable Model 

In this work we develop our approach on the classical polarizable force field 
AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications)31-34. 
In addition to fixed multipole electrostatics, the AMOEBA model provides a consistent 
treatment of intramolecular and intermolecular polarization, and uses a physically 
motivated Thole damping scheme for local polarization effects to avoid the well-known 
polarization catastrophe that results when mutually inducible sites polarize each other to 
infinity at short inter-site separation30, 93. AMOEBA’s many-body polarization energy, 
!!"#$%, is given by Eq. (2.1a) with the SCF (ground state) dipoles given by Eq. (2.1b). 
 

!!"#$% =  − 12 !!"#,!
!!!

!

!!!
= − 12 !!"#,!

! !!"!!
!!!

!

!!!
 (2.1a) 

!!"#,!  = !! !!"!!
!!!

+ !!"! !!"#,!  
!!!

 (2.1b) 

 
In Eq. (2.1) !!"#,!  is the inducible dipole at atom site i, αi is the isotropic 

polarizability of atom i, !!" is the rank-two interaction tensor between atoms i and j 
containing derivatives of 1/rij according to the permanent multipole expansion, !!"!  is the 
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corresponding interaction tensor for dipole-dipole interactions, and !! are the permanent 
multipole moments.  The T and (rank-one) M tensors encompass the 13 permanent 
multipole moments for the AMOEBA potential (q, µx, µy, µz, Qxx, Qxy, Qxz, Qyx, Qyy, Qyz, 
Qzx, Qzy, Qzz).  The AMOEBA force field uses special scaling factors used for 
intramolecular electrostatic interactions33 and in practice this involves treating two sets of 
induced dipoles for an SCF or EL calculation and an additional set of auxiliary dipoles 
for EL/SCF methods.  Details on this complexity are discussed in Appendix C. 
 
2.2.2  Self-Consistent Field Method 

The SCF method for AMOEBA implemented in TINKER software package is a 
preconditioned conjugate gradient SCF method (PCG) using a predictor20, while other 
AMOEBA implementations have used direct inversion of the iterative subspace21, 61, 87, 94. 
These more advanced SCF solvers are more efficient iterative methods that converge in 
fewer steps compared to more naïve methods like successive over-relaxation (SOR)60. In 
my comparisons to the various mutual induction calculation approaches such as EL68 and 
hybrid EL/SCF schemes, I used the default TINKER PCG with a predictor.  
 
2.2.3  Extended Lagrangian Method 

I have implemented an extended Lagrangian formalism68 (directly analogous to 
the Car-Parrinello approach67) for AMOEBA in the TINKER package that treats the 
polarization degrees of freedom as additional dynamic variables in the system, allowing 
us to integrate them on the same footing as the atomic positions and avoid using self-
consistent iteration to obtain polarization near the Born-Oppenheimer surface.  The 
extended Lagrangian for point dipoles is given by Eq. (2.2). 
 

ℒ!"#$%& =  12 !!!!!
!

!!!
+  12 !!

!
!

!!!
!!! − ! !,!  (2.2) 

 
In Eq. (2.2) !!  is the mass of atom i, !!  is the position of atomic center i, 

! !,! is the potential energy from the AMOEBA force field with the only difference 
being that the dipoles are now dynamically integrated and not iteratively converged.  As a 
result there is a kinetic energy contribution from the dipoles given as the second term on 
the right hand side of Eq. (2), where !!

! is a fictitious dipole mass given in units of 
ps2/Å3. In addition I also thermostat these extended system degrees of freedom to a very 
low temperature (~1 K)16, 42 to maintain the polarization close to the Born-Oppenheimer 
surface using Nosé-Hoover (NH) thermostats65-66. The complete extended system 
equations of motion for Nosé-Hoover temperature control on both the atomic centers and 
induced dipoles using a single Nosé-Hoover thermostat are given by Eq. (2.3). 

 
!!!! =  !!,! −  !!!!! (2.3a) 
!!
!!! =  !!,! −  !!

!!!!∗ (2.3b) 

!! =  !!!!!
!

!!!
−  !!!!! (2.3c) 
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!∗!∗ =  !!
!!!!

!

!!!
−  !!∗!!!∗ (2.3d) 

 
In Eq. (2.3) the thermostat “position”, !, couples to the physical system to control 

the temperature and the thermostat mass, !, is related to a characteristic time parameter, 
! , by ! =  !!!!!!! . In these equations “*” denotes quantities associated with 
polarization degrees of freedom so !! and ! are the number of degrees of freedom and 
temperature of the atomic coordinates, respectively, and !!∗ and !∗ are the degrees of 
freedom and the temperature of polarization degrees of freedom, respectively, associated 
with a low !∗. It should be noted that !!,! =  !! − !!!!!!, which goes to 0 in the limit of 
a self-consistent solution of the dipoles, !! =  !!!!. 
 
2.2.4  Simulation Details 

All results reported in this chapter are for pure water systems of 512 molecules, 
although all methods described should be generalizable to any molecular system.  I used 
the water parameters of the AMOEBA14 water model34. All simulations started from a 
pre-equilibrated box and long-range electrostatics were treated with particle-mesh 
Ewald95 with a real-space cutoff of 9 Å.  The equations of motion of the atomic degrees 
of freedom were integrated using the velocity Verlet method88 and the Nosé-Hoover 
formalism with a fourth-order chain was used for temperature control66 with a ! of 0.1 ps. 
I used a time step of 1.0 fs for base AMOEBA simulations. For the extended Lagrangian 
simulations, I used a !∗ of 1.0 K and a !∗ of 0.1 ps with 1500 iterations of the thermostat 
per step and the “mass” associated with inducible dipoles was set to 3.6e-9 ps2/Å3.  I 
explored time steps from 0.25 to 1.0 fs, depending on the method used, to solve mutual 
induction.  
 
 
2.3  Theory 

I have adapted the approach developed by Niklasson and colleagues70-81, 
originally formulated for BOMD, to classical mutual induction calculations. In particular, 
this original hybrid EL/SCF method introduced an initial guess for SCF calculations by 
propagating a set of auxiliary electronic degrees of freedom in a time-reversible manner. 
In its original form these auxiliary variables corresponded to the electronic ground state 
density matrix and here I adapt these to the case of classical polarization formulated as 
induced dipoles.  

In the spirit of Niklasson et al.79 one can define an extended Lagrangian given by 
Eq. (2.4) for the induced dipoles. 

 

ℒ!!"#$%!"#$%& =  12 !!!!2
!

!=1
+  12 !!

!
!

!=1
!!2 −! !,!!"# −  12!

! !!
!

!

!!!
!!"#,! − !!

! (2.4) 

 
In Eq. (2.4) !!"# represents the set of all converged real induced dipoles, and we 

introduce another set of auxiliary induced dipoles, !, which are the initial guesses to the 
iterative solution of !!"#. This auxiliary set of induced dipoles is restrained to stay near 
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the true self-consistent values via the final term in Eq. (2.4) using a harmonic function 
where !!

! and ! are the fictitious mass and a universal frequency that determines the 
curvature of the harmonic well, respectively. Applying the Lagrangian equation of 
motion (Euler-Lagrange equation) to Eq. (2.4) in the limit of !!

! ⟶ 0, yields the 
equations of motion for atomic centers and induced dipoles, given by Eq. (2.5). 
 

!!!! =  −!" !,!!"#
!!! !

 (2.5a) 

!! =  !! !!"#,! − !!  (2.5b) 
 

Eq. (2.5a) shows that equations of motion for the atomic centers are propagated in 
the usual way, except that the iterative solution uses an initial guess that is propagated by 
the auxiliary electronic degrees of freedom in Eq. (2.5b).  I now integrate both equations 
of motion using time-reversible velocity Verlet integration88.  To determine !!"# we still 
use PCG, but now the time reversible auxiliary dipoles serve as an initial guess to the real 
dipoles. I chose ! to be 2 ∆!, where ∆! is the time step72, which I set to 1.0 fs.  Overall 
this method is simple to implement in code, simply include an additional integration for 
the auxiliaries, which are then fed into the SCF solver as initial guesses. 

The one drawback of the original hybrid EL/SCF schemeis that over longer 
trajectories the propagated auxiliary dipoles systematically degrade as a reasonable initial 
guess for the subsequent SCF steps using reasonable time steps. Figure 2.1a shows that 
just beyond the 100 fs time scale the original hybrid EL/SCF70-72 method requires an 
increasing number of SCF cycles, eventually reaching up to 5 SCF iterations to meet 
even a loose criteria of 10-1 D after 1.0 ns.  To put that in perspective, the standard PCG 
scheme with a predictor requires 5 SCF cycles to reach a convergence of 10-6 D at all 
timescales. In fact the hybrid EL/SCF scheme starts at 6 SCF steps at this corresponding 
10-6 D convergence level and increases to 8 SCF cycles over the 1.0 ns trajectory.  In an 
attempt to alleviate this problem I considered the use of higher-order symplectic 
integrators, which use multiple force evaluations per time step.  The dotted line in Figure 
2.1a gives the results of a 4th-order integrator96 applied to this hybrid EL/SCF scheme at 
the lowest level of convergence.  These results show that while higher-order integration 
stretches the timescale of the increase of SCF cycles it does not eliminate the problem. 
The number of SCF cycles would be expected to continue to increase based on the data 
shown in Figure 2.1a. 
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Figure 2.1: The standard hybrid EL/SCF scheme without dissipation.  (a) The number of SCF cycles 
needed by the EL/SCF hybrid scheme increases without limit over longer timescales since the initial 
guesses for the auxiliary dipoles are degrading over time.  Also included at the lowest convergence are the 
results from a 4th-order integrator96. (b) The origin of the numerical instability in the standard hybrid 
EL/SCF scheme is that the mean squared auxiliary induced dipole velocities increase without bound, 
especially under loose convergence.  Different curves represent different levels of convergence for the 
induced dipoles, given in terms of the root mean square change in the induced dipoles from one iterative 
step to another.  

 
The reason for this instability is presented in Figure 2.1b which shows that over 

the course of the simulation the ensemble average of the auxiliary dipole velocities 
!!! /3, a “pseudo temperature”, increases continuously throughout the simulation, and 

this inertia eventually swamps the harmonic restoring force that aims to keep the 
auxiliary dipoles close to the real, converged dipoles, ultimately leading to instability in 
the equations of motion (Eq. 2.5b). This seems to be a problem with resonances89 existing 
in the auxiliary dipole equations of motion that are on a faster time scale than that 
experienced by the real induced dipoles through the subsequent SCF solver. As Figure 
2.2 shows, the auxiliary dipoles show high frequency behavior compared to their real 
counterparts owing to the optimal choice for their characteristic frequency, 2 ∆!, and 
their direct coupling in the auxiliary potential (Eq. (2.4)) leads to corruption of the 
dynamics. 

 

(a)	 (b)	
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Figure 2.2: Oxygen auxiliary dipole time correlation function.  The optimal frequency, ! = !

!", of the 
auxiliary dipoles (black) causes the dipoles to move on a much shorter timescale than the real dipoles 
(red). 

 
Niklasson and co-workers attributed this behavior to accumulation of numerical 

errors throughout a simulation and sought to mitigate it with a Langevin-like scheme73 
that introduces an explicit dissipative force on the motion of the electronic degrees of 
freedom. The introduction of a dissipative force will inevitably lead to some time 
irreversibility, and hence an optimization scheme was introduced in that study to 
maximize stability and minimize the undesired time irreversibility that will degrade 
energy conservation. I have implemented the 9th-order version of this scheme and its 
results are given in Figure 2.3. Figure 2.3a shows that the dissipative scheme corrects for 
the increasing number of SCF cycles. However, Figure 2.3b and Table 2.1 show that the 
benefits of small numbers of SCF iterations comes at the cost of unacceptable energy 
drift at loose levels of convergence due to its time irreversibility. This leads to the 
conclusion that dissipation of pseudo kinetic energy is important in achieving a stable 
number of SCF iterations, but that dissipation schemes with acceptable energy 
conservation do not significantly reduce the number of SCF iterations relative to standard 
SCF solvers. 

 

 
Figure 2.3:  Total energy conservation and stability using the adapted EL/SCF method with a 9th-order 
Langevin-like dissipative scheme from Niklasson et al73.  (a) The required number of SCF iterations and (b) 
the total energy in the NVE ensemble.  Different curves represent different levels of convergence for the 

(a)	 (b)	
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induced dipoles, given in terms of the root mean square change in the induced dipoles from one iterative 
step to another. 

 
Table 2.1. Total energy drift rates for CG-SCF with predictor, the standard hybrid EL/SCF scheme with no 
dissipation, the hybrid EL/SCF scheme with Langevin-like dissipation described by Niklasson et al.	 73, and 
a hybrid EL/SCF method which thermostats the auxiliary dipole velocities. Drift rates are fit to the 
simulated data given in Figures 2.3-2.5. 

Convergence  
(RMS Debye) 

Energy Drift (kcal/mol/ps) 
Standard 

SCF 
Hybrid 
EL/SCF 

Hybrid 
EL/SCF with 
Dissipation 

Hybrid 
EL/SCF with 

Berendsen 

Hybrid 
EL/SCF with 
Nosé-Hoover 

10-6 +4.63e-6 -6.09e-8 -4.86e-7 +1.21e-7 +6.20e-8 
10-5 -2.50e-5 +1.87e-7 -6.99e-7 +2.37e-7 -7.96e-8 
10-4 +2.10e-3 -6.62e-7 -2.08e-5 +2.48e-7 +7.96e-8 
10-3 +6.52e-4 -1.05e-6 -3.52e-4 +9.07e-8 -4.13e-7 
10-2 -1.24e-1 +5.16e-6 -1.49e-3 +2.32e-6 +2.75e-6 
10-1 -1.17e-1 +2.83e-4 -1.50e-3 +2.96e-5 +2.76e-5 

 
Here I present a different solution to this instability problem by “thermostatting” 

the auxiliary dipoles through modification of their velocities in the time reversible 
velocity Verlet integration. It is known that corruption of the dynamics due to resonances 
can be controlled using the isokinetic ensemble27, although one cannot formally 
implement an isokinetic scheme due to the  !!

! ⟶ 0 limit that yields Eqs. (2.5). Since 
there are no longer any contributions to the total energy from the auxiliary dipoles, and 
thus their kinetic energy or temperature cannot be formally defined, I nonetheless show 
that by rescaling the auxiliary velocities I can execute control on the mean squared 
velocity (or pseudo temperature), !!! /3, that controls the buildup of this inertial pseudo 
kinetic energy quantity. 

For iEL/SCF I have implemented both a weak coupling Berendsen velocity 
rescaling scheme91 and a fourth-order time-reversible Nosé-Hoover chain (NHC)	 66 to 
control for the inertial accumulation. In this context the distinction between Berendsen 
and NHC is likely unimportant since the auxiliary dipoles are serving as an initial guess 
to the SCF equations. Hence although Berendsen velocity rescaling does not lead to the 
correct limiting canonical ensemble as does the NHC scheme, I note that the primary 
property needed is a damping scheme for the auxiliary variables that can be formally 
proven to be numerically stable, close to the exact solution regardless of convergence 
level, minimally perturbs time reversibility, and keeps the pseudo kinetic energy of the 
auxiliary dipoles constant. More sophisticated schemes for isokinetic integrators would 
perhaps be more desirable27, 90, but I show that the simple velocity rescaling approach is 
sufficient in this case, since I am thermostatting the auxiliary variables whose only role is 
to provide an initial guess to the SCF solver of the real inducible dipoles. 

 Here I define the Berendsen rescaling factor, !, which scales the velocities 
propagated by a reversible velocity Verlet integration at each time step in the weak 
coupling regime in Eq. (2.6). 

 



20 

! =  1+ Δ!!
!!"#
!!! /3

− 1  (2.6) 

 
In Eq. (2.6) !  is a rescaling timescale parameter and !!"#  is the set pseudo 

temperature of the auxiliary induced dipoles that corresponds to the desired value of 
!!!  and has units of !!Å!/!"! . The pseudo temperature chosen for the auxiliary 

dipoles is chosen to approximately conform to equipartition of energy consistent with a 
classical harmonic oscillator given the form of the auxiliary dipole potential given in Eq. 
(2.7). 
 

1
2!"

! !!"#,! − !!
2 + 12! !!! = !!!"# (2.7) 

 
The maximum auxiliary dipole velocity can be estimated by using the square of 

the maximum displacement of the real induced dipole distribution to approximate 
!!"#,! − !!

2
.  Using !!"# = !!! /3 and !! = !

!!! with !!"#,! − !!
2

 ~ (0.2 eÅ)2, 
gives a pseudo temperature of ~105 !!Å!/!"! which is what I use here.  A discussion of 
the numerical stability of the iEL/SCF method is given in Appendix A. 
 
 
2.4  Results  

In what follows I characterize the relative performance of the PCG SCF solver 
with predictor, the standard EL method, the hybrid EL/SCF scheme with no dissipation, 
and my new iEL/SCF scheme over a 1.0 ns simulation of the AMOEBA14 polarizable 
force field for water in the NVE and NVT ensembles. In all cases I use the PCG solver 
with predictor in which dipoles are converged to 10-6 D as the gold standard, with the 
understanding that over longer timescales there will be a noticeable energy drift with the 
PCG approach even at this relatively tight dipole convergence tolerance.  

Figure 2.4 shows energy conservation in the NVE ensemble for a standard PCG 
scheme with predictor, a standard EL scheme, and the original EL/SCF scheme with no 
dissipation. On the nanosecond time scale examined here, one can see a significant 
energy drift for CG-SCF at a convergence level of 10-4 D and a severe lack of energy 
conservation with even looser convergence criteria (Figure 2.4a). Although the energy 
conservation of the SCF scheme looks stable for convergence levels of 10-5 D or tighter 
over the 1.0 ns trajectory, in fact the energy will eventually drift over longer timescales 
due to its one-sided convergence and use of a predictor. The standard EL scheme shows 
poor energy conservation, even for small time steps of 0.25 fs and 0.5 fs for which the EL 
method is stable (Figure 2.4b) and time steps larger than 0.5 fs are numerically unstable. 
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Figure 2.4:  Total energy conservation in the NVE ensemble (a) using a PCG solver with predictor, (b) 
using a basic EL method, and (c) using the standard EL/SCF method with no dissipation. Different curves 
represent different levels of convergence for the induced dipoles, given in terms of the root mean square 
change in the induced dipoles from one iterative step to another.  

 
For the hybrid EL/SCF without dissipation (Figure 2.4c), there is very good 

energy conservation up to a convergence level of 10-3 D, but for looser levels of 
convergence the system energy experiences continual adjustment due to the poor quality 
of the SCF guess generated by the auxiliary dipoles. These deviations do not appear to be 
divergent and/or large in magnitude compared to the standard SCF and EL methods, and 
eventually settle down at the end of the 1.0 ns trajectory. However, although there is 
some improvement in energy conservation for hybrid EL/SCF without dissipation 
compared to the standard PCG with predictor and EL schemes at a given level of 
convergence of the mutual induction, it comes at the cost of increasing numbers of SCF 
cycles due to the accumulated inertia over time (Figure 2.1a). In fact, the rebounding 
energy profile at the lowest level of induced dipole convergence for the no dissipation 
scheme corresponds exactly to a systematic bump up in the number of SCF cycles as the 
accumulated pseudo kinetic energy in the initial SCF guess gets worse over time (Figure 
2.1a). Even so, the hybrid EL/SCF without dissipation outperforms the standard EL and 
SCF approaches when we fit the energy conservation profile to derive total energy drift 
rates (Table 2.1). 

Figure 2.5 shows energy conservation for iEL/SCF using weak coupling 
Berendsen velocity rescaling and Nosé-Hoover chains (NHC) for controlling !!! /3, for 
which mutual induction tolerances less than 10-2 D using either thermostatting method 
show superior energy conservation compared to PCG at tight tolerances greater than 10-5 
D, with the significant additional benefit that fewer SCF steps are required.  Using the 

(a)	 (b)	

(c)	
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iEL/SCF method only 4 SCF steps are needed for 10-2 D and 3 SCF steps for 10-1 D, 
compared to the 5 SCF steps needed by PCG for a convergence level of 10-6 D. Both 
velocity attenuation methods show superior energy conservation compared to all methods 
over the full range of induced dipole convergence (Table 2.1), and corrects for the 
“rebounding” energy behavior seen in the non-dissipative EL/SCF method at low 
convergence levels (Figure 2.4c).  I note that both thermostatting methods begin to show 
systematic energy drift at 10-1 D levels of convergence.  Since the NHC thermostat is 
formally formulated as a time reversible scheme, I conclude that an inherent limit to how 
low the convergence tolerance in the SCF solutions can be set, although the energy drift 
is at least one, if not many, orders of magnitude better than any other possible scheme at 
3 SCF steps for 10-1 D. 

 

 

 
Figure 2.5:  Total energy conservation and stability of the adapted EL/SCF method with pseudo 
temperature control of the auxiliary dipoles. (a) Total energy in the NVE ensemble using Berendsen 
control, (b) total energy conservation in the NVE ensemble using Nosé-Hoover control, and (c) the number 
of SCF cycles needed by the EL/SCF hybrid scheme for a given convergence level. Different curves 
represent different levels of convergence for the induced dipoles, given in terms of the root mean square 
change in the induced dipoles from one iterative step to another. It is evident that the effective thermostats 
make even the 10-1D level of convergence using the hybrid EL/SCF scheme superior to any known method 
for the classical mutual induction calculation, requiring only 3 SCF cycles to reach reasonable energy 
conservation. 
 

Next I consider in detail how the induced dipole polarization is accounted for in 
each method within an NVT simulation at 298.0 K. Figure 2.6 shows the probability 
density function for the induced dipole magnitude and Figure 2.7 shows the normalized 
dipole autocorrelation function at short times (< 1 ps) for the AMOEBA14 water model. 
Appendix B provides the probability density of the in-plane and out-of-plane induced 

(a)	 (b)	

(c)	
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dipole angle as well. One can see that PCG with a predictor shows significant deviations 
from the gold standard (10-6 D) starting at convergence levels of the induced dipoles at 
10-3 D. Whereas the standard EL method shows good agreement with the SCF converged 
result for time steps of 0.25 fs and 0.5 fs, it fails completely at larger time steps due to 
numerical instability. By contrast, the hybrid EL/SCF scheme without dissipation 
reproduces correct polarization probability distributions and the dipole autocorrelation 
well, even at 10-1 D, although, again, this comes at the cost of increasing numbers of SCF 
cycles. The iEL/SCF approach developed here also reproduces all polarization properties 
well at loose convergence and uses the fewest number of SCF cycles to do so. All of the 
methods show some degradation in the range of polarization properties at a given level of 
convergence when utilized in the NVE ensemble (Figures B.3, B.4, B.5, B.6, and Table 
B.1 in Appendix B), which is not unexpected since thermostatting of the real system 
variables can mask underlying numerical problems in integrators and/or poorly 
converged energy and forces. However, the hybrid EL/SCF schemes are superior to the 
standard EL and SCF at any dipole convergence tolerance. 

 

 

 

(a)	 (b)	

(c)	 (d)	 
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Figure 2.6:  Comparison of the ensemble averaged probability distributions for induced dipole magnitude. 
Using (a) standard PCG solver with predictor (SCF), (b) basic EL method, (c) the adapted EL/SCF method 
with no dissipation (hybrid), (d) the adapted EL/SCF method with pseudo temperature control of the 
auxiliary dipoles using Berendsen (Ber.) rescaling, and (e) the adapted EL/SCF method with pseudo 
temperature control of the auxiliary dipoles using a Nosé-Hoover thermostat (NHC). The continuous 
curves give the data obtained using base AMOEBA at a level of 10-6 RMS Debye convergence.  
 

 

(e)	 

(a)	 (b)	 
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Figure 2.7:  Comparison of the normalized induced dipole time autocorrelation function. Using (a) 
standard PCG solver with predictor (SCF), (b) basic EL method, (c) the adapted EL/SCF method with no 
dissipation (hybrid), (d) the adapted EL/SCF method with pseudo temperature control of the auxiliary 
dipoles using Berendsen (Ber.) rescaling, and (e) the adapted EL/SCF method with pseudo temperature 
control of the auxiliary dipoles using a Nosé-Hoover thermostat (NHC). The continuous curves give the 
data obtained using base AMOEBA at a level of 10-6 D convergence.  
 

Table 2.2 reports the average potential energy and molecular dipole which were 
calculated from a single NVT simulation at 298.0 K, as well as the diffusion coefficient, 
calculated by taking independent snapshots from the 298.0 K NVT simulation and 
calculating the molecular mean squared displacement in the NVE ensemble. The SCF 
scheme gives correct average potential energies and molecular dipoles down to a 
relatively loose convergence of 10-2 D, a benefit of thermostatting in regards 
thermodynamic quantities, but gives incorrect diffusion coefficients starting at a much 
tighter tolerance of 10-4 D. For the EL method, even using a smaller time step than the 
other two approaches, we see more significant differences between the average potential 
energies and molecular dipoles compared to the best converged SCF result, and poor 
results for the diffusion coefficient. Across all convergence levels all EL/SCF schemes 
reproduce the thermodynamic and kinetic data quite well, even producing a diffusion 
coefficient within error bars of the gold standard at much looser convergence levels. 

(c)	 (d)	 

(e)	 
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Although ultimately the computational cost of the increasing number of SCF cycles is 
early evidence for eventual numerical instability in the non-dissipative EL/SCF, the 
iEL/SCF method retains excellent property performance with a stable algorithm that 
conserves energy at loose convergence and minimizes the number of SCF cycles relative 
to the standard PCG with predictor method. 

 
Table 2.2. Average potential energy, average molecular dipole moment, and diffusion coefficients as a 
function of mutual induction convergence for PCG with predictor (standard SCF), standard EL, the hybrid 
EL/SCF scheme with no dissipation (standard EL/SCF), and a hybrid EL/SCF method that thermostats the 
auxiliary dipole velocities. Average potential energy and molecular dipole were calculated from NVT 
simulations at 298.0 K. Diffusion coefficients were averaged over multiple NVE simulation using 
independent snapshots from 298.0 K NVT simulations as the initial condition. 

Standard SCF 
Convergence  
(RMS Debye) 

Average Potential 
Energy (kcal/mol) 

Average Molecular 
Dipole (Debye) 

Diffusion Coefficient  
(105 cm2/s) 

10-6 -8.84±0.09 2.742±0.014 2.22±0.29 
10-5 -8.83±0.08 2.742±0.012 2.26±0.14 
10-4 -8.84±0.08 2.744±0.013 3.45±0.28 
10-3 -8.83±0.09 2.743±0.013 2.71±0.22 
10-2 -8.84±0.09 2.743±0.013 0.0019±0.00021 
10-1 -8.67±0.09 2.703±0.013 0.0020±0.00025 

Standard EL 
Time step (fs) Average Potential 

Energy (kcal/mol) 
Average Molecular 

Dipole (Debye) 
Diffusion Coefficient 

(105 cm2/s) 
0.25 -8.97±0.08 2.753±0.012 1.28±0.14 
0.50 -8.92±0.08 2.746±0.012 1.22±0.17 

Standard EL/SCF 
Convergence  
(RMS Debye) 

Average Potential 
Energy (kcal/mol) 

Average Molecular 
Dipole (Debye) 

Diffusion Coefficient 
 (105 cm2/s) 

10-6 -8.83±0.08 2.742±0.013 2.39±0.21 
10-5 -8.84±0.09 2.743±0.013 2.25±0.17 
10-4 -8.83±0.09 2.742±0.014 2.16±0.18 
10-3 -8.83±0.09 2.742±0.013 2.23±0.16 
10-2 -8.83±0.09 2.743±0.013 2.25±0.13 
10-1 -8.84±0.09 2.743±0.013 2.09±0.12 

Hybrid EL/SCF with Berendsen 
Convergence  
(RMS Debye) 

Average Potential 
Energy (kcal/mol) 

Average Molecular 
Dipole (Debye) 

Diffusion Coefficient 
 (105 cm2/s) 

10-6 -8.84±0.09 2.744±0.013 2.17±0.15 
10-5 -8.84±0.09 2.743±0.013 2.25±0.15 
10-4 -8.83±0.09 2.742±0.013 2.21±0.16 
10-3 -8.83±0.09 2.743±0.013 2.28±0.13 
10-2 -8.84±0.08 2.743±0.013 2.17±0.13 
10-1 -8.83±0.08 2.742±0.013 2.28±0.13 

Hybrid EL/SCF with Nosé-Hoover 
Convergence  
(RMS Debye) 

Average Potential 
Energy (kcal/mol) 

Average Molecular 
Dipole (Debye) 

Diffusion Coefficient 
 (105 cm2/s) 

10-6 -8.83±0.09 2.742±0.013 2.36±0.14 
10-5 -8.83±0.09 2.743±0.013 2.30±0.14 
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10-4 -8.84±0.08 2.743±0.013 2.27±0.15 
10-3 -8.84±0.09 2.743±0.013 2.43±0.18 
10-2 -8.83±0.08 2.742±0.013 2.37±0.20 
10-1 -8.84±0.08 2.744±0.013 2.17±0.11 

 
 
2.5  Conclusions 

I have presented a new adaptation of a hybrid EL/SCF scheme applied to induced 
dipole polarization in classical simulations that overcomes numerical instability problems 
that were also observed in the equations of motion for the auxiliary electronic degrees in 
BOMD simulations73. However, instead of using a dissipative force that can compromise 
time reversibility of the auxiliary induced dipole initial guess, I have introduced the use 
of thermostats applied to the auxiliary dipole velocities to control for the accumulation of 
a pseudo kinetic energy due to resonances. This approach simultaneously preserves 
energy conservation and numerical stability at loose real dipole convergence values of 10-

1 D, thereby requiring fewer SCF cycles to describe polarization and system properties 
accurately when compared to a typical SCF convergence of 10-5 to 10-6 D. For the 
AMOEBA14 water model this also translates to an overall decrease in the required 
number of SCF iterations per time step from 5 to 3, resulting in some computational 
savings. 

I have addressed a problem that arises from the fact that the dynamics of the 
auxiliary dipoles evolve on a faster timescale than the time evolution of the real induced 
dipoles, and that resonances arise due to their coupling through the potential energy term 
in Eq. (2.4). This leads to a build up of inertia in the auxiliary dipoles that can be solved 
by either reducing the time step for their equation of motion or by controlling it through 
pseudo temperature control as I have done here. My iEL/SCF approach is a simple 
velocity attenuation scheme that effectively removes the effect of these resonances while 
still maintaining time-reversibility (within that allowed by the numerical integration 
scheme) depending on the thermostat method chosen.  I am thus able to have better 
energy conservation and can reproduce molecular properties, even at very loose levels of 
convergence with only a small number of SCF iterations required.  The method is also 
simple to implement, require few modifications to existing code structures.   

While the iEL/SCF method has been demonstrated on a classical inducible dipole 
model AMOEBA (and is available in the TINKER program), it has also been proven to 
be useful in the context of ab initio molecular dynamics. The inertial restraining approach 
of applying thermostats to auxiliary degrees of freedom has been applied to the density in 
a linear scaling density functional theory (DFT) implementation in the ONETEP software 
package92.  In that work it was shown that using an iEL/SCF approach, as described in 
this chapter, and a Langevin-like friction dissipative approach for EL/SCF73 provide 
enhancements over standard SCF solutions for ab initio molecular dynamics. One of the 
interesting outcomes in comparing the dissipative iEL/SCF approaches when applied to 
classical electric dipoles versus the quantum electron density is that while both schemes 
perform equally well in the latter, only the iEL/SCF method works in the case of classical 
polarization. More specifically, the small amount of broken time reversibility is 
negligible compared to the error in the DFT forces, whereas classical polarization forces 
are close to exact so that the undesirable dissipative forces that destroy time reversibility 
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are much more prominent. The primary point is that new approaches to solving for 
mutual polarization are held to a high level of stringency when implemented for classical 
polarization and suggest that what works classically should perform well in the context of 
the quantum electron density. 
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3. 
iEL/0-SCF:  Eliminating Iteration for 

Polarization 
 
3.1  Introduction 

In this chapter I present a solution for classical polarization that does not require 
any self-consistent field iterations22, the aspect of classical polarization that makes it 
computationally expensive.  The method builds upon a time-reversible extrapolation 
scheme for an auxiliary set of dipoles that drives the evolution of the set of real induced 
dipoles, iEL/SCF presented in Chapter 2, to achieve truly SCF-less dynamics.  I therefore 
call the method iEL/0-SCF (inertial extended Lagrangian/no iteration self-consistent 
field).  While iEL/SCF, presented in Chapter 2, is simple to implement it merely reduces 
iterations required for standard SCF procedures.  The iEL/0-SCF method presented in 
this chapter is more sophisticated, as it requires more code modification, but eliminates 
the need for an SCF solver completely.   

Both methods are fundamentally based on work by Niklasson and colleagues70-79, 

81, which starts from the broken time-reversal symmetry problem in Born-Oppenheimer 
molecular dynamics (BOMD) to derive a time-reversible extrapolation scheme for the 
electronic degrees of freedom. Equivalently, it can be formulated in the form of an 
extended Lagrangian in which an additional set of auxiliary electronic degrees of freedom 
are propagated alongside the nuclei with the purpose of generating either good quality 
time-reversal guesses for the SCF calculations, or as a stand-alone SCF-free extended 
Lagrangian formulation of BOMD.  It is known that the numerical error in the SCF 
solutions (which are never exact due to incomplete convergence and/or an approximate 
numerical algebra) will leak back to the auxiliary degrees of freedom and give rise to 
instabilities in their equations of motion. To address this problem Niklasson and co-
workers proposed a dissipative integration scheme for the equations of motion of the 
electronic degrees of freedom using a modified form of the Verlet algorithm that controls 
the numerical instability at the expense of a small amount of broken time-reversibility66, 

73. In Chapter 2 I presented an alternative method that couples the auxiliary velocities to a 
thermostat to prevent buildup of inertia, thus preserving time-reversibility through the use 
of a time-reversible solution to Nosé-Hoover thermostat variables for the auxiliary 
degrees of freedom23.  For condensed phase simulation this thermostatting approach 
proves to be superior92.  This same technique is applied in this chapter for the iEL/0-SCF 
method.  

I find that the iEL/0-SCF approach is as accurate as standard SCF approaches for 
pure water, dilute to concentrated salt solutions, and small peptides and large proteins in 
water.  In the TINKER implementation of the iEL/0-SCF approach I show that it also 
scales better under OpenMP (shared memory) parallelization than the standard SCF 
solvers and offers significant computational savings over more expensive SCF 
calculations based on traditional single time scale 1.0 fs time step integration using 
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symplectic integrators, and is as fast as and more accurate than a reversible reference 
system propagator (RESPA) algorithm with an outer 2.0 fs time step. 

 
 

3.2  Theory 
To achieve a polarization scheme that does not require self-consistent field (SCF) 

iterations, one can start with a Lagrangian for a classical system of N atoms and examine 
how self-consistently iterated induced dipoles on each atom contribute to the potential, 
given in Eq. (3.1). 

 

ℒ !, ! =  12 !!!!!
!

!!!
− ! !  (3.1) 

 
In Eq. (1) !! and !! are the position and velocity of the i-th atom, respectively, 

and !(!) is the potential energy for the current atomic configuration. Here the potential 
energy can be broken into both a many-body polarization energy contribution, !!"#$% ! , 
and all other contributions, !!"!!" ! , which can include non-bonded terms such as 
permanent electrostatic and van der Waals interactions and bonded valence terms like 
bond-stretching, angle-bending, torsionals, and others, as shown in Eq. (3.2). 

 
! ! = !!"!!" ! + !!"#$% !  (3.2) 

 
The component of the potential energy that depends on polarization is then given 

by Eq. (3.3). 
 

!!"#!"!"# ! =  − 12!!"#
! ! (3.3) 

 
Eq. (3.3) assumes complete SCF convergence, which meets the condition given 

by Eq. (3.4). 
 

!!"#,! = !!!! + !! !!"! !!"#,!
!

!!!
 (3.4) 

 
In Eq. (3.4) !!  is the electric field contribution at site i due to permanent 

electrostatics in the system (fixed charges, dipoles, quadrupoles, etc.), !!"!  is the dipole-
dipole interaction matrix between sites i and j, and !!, is the atomic polarizability of the i-
th atom. Here Eq. (3.4) can be recast into Eq. (3.5), which uses a super matrix !. 
 

!!"# = !!!! (3.5) 
 

In Eq. (3.5) the blocks of the super matrix ! are given by !!" = (!!!!!!" − !!"! ). 
While the induced dipoles can be solved exactly through matrix inversion, as is done for 
three-body interactions in the 3-AMOEBA model84-85, in practice it is prohibitively 
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expensive to perform this calculation for all but the smallest systems as it involves 
inverting the 3N by 3N C super matrix.  

Usually Eq. (3.5) is solved iteratively to obtain the set of self-consistent field 
induced dipoles, !!"# , through standard self-consistent methods to some tolerance, 
usually with a predictor to accelerate the convergence of the SCF problem. However, 
predictors that use information from previous steps break time reversibility in the context 
of molecular dynamics, leading to an inevitable degradation in energy conservation. An 
alternative to solving for the many-body electronic problem that avoids a self-consistent 
solution was originally addressed by Car and Parrinello67. In their seminal work they 
formulate an extended Lagrangian (EL) to evolve the electronic degrees of freedom 
dynamically by introducing fictitious masses, and the EL approach was extended to 
induced dipole polarization by Wodak and co-workers68. Overall, standard EL solutions 
to both quantum67 and classical42-43 electronic degrees of freedom are found to be stable 
and conserve energy, but only for reduced and sometimes very small time steps that 
precludes their practical use in molecular simulation23.  

Niklasson et al. tackled the problem of broken time-reversibility of the electronic 
dynamics through a distinct formalism70 that can also be expressed in a Lagrangian 
formulation73, 79, which was adapted for classical polarization in Chapter 223, as shown in 
Eq. (3.6). 

 

ℒ! !, !,!,! =  12 !!!!!
!

!!!
+  12 !!

!
!

!!!
!!! − ! !,!!"# −  12!

! !!
!

!

!!!
!!"#,! − !!

!
 (3.6) 

 
In Eq. (3.6) !! and !! are the auxiliary induced dipole and corresponding velocity 

for atom i, each of which has a fictitious mass associated with it, !!
!. The additional 

terms in the Lagrangian are now a kinetic energy associated with the auxiliary dipoles 
and a harmonic potential that aims to keep the auxiliary dipoles close to the true SCF 
dipoles, which in turn is determined by the steepness of this harmonic well and 
characterized by a frequency !. It has been shown that for a time-reversible Verlet 
integration algorithm with a finite integration time step ∆!, the maximum stable value of 
! is 2 ∆!79. These auxiliary variables then serve as good initial guesses to the SCF 
solution for the real dipoles to reach the final solution, !!"#,! , and with notable 
improvements in energy conservation23, 72. However, in practice the iterative solution of 
the induced dipoles never reaches the exact solution, as the iteration is stopped at some 
convergence threshold. This error couples to the auxiliary degrees of freedom through the 
potential (last term in Eq. (3.6)), which corrupts the auxiliary dynamics such that they 
become more and more poor initial guesses for the real degrees of freedom, and the 
number of SCF cycles increases without bound, as demonstrated in Chapter 223.  

Niklasson proposed the introduction of dissipation for this numerical error that 
achieves only a small amount of broken time-reversibility since it is introduced at an 
order commensurate with the integration error73.  Unfortunately when the dissipative 
force is combined with the accurate classical polarization force, the dissipation scheme 
unambiguously exhibits energy drift. An alternative approach taken in Chapter 2 
introduced a simple thermostatting scheme, illustrated using both Berendsen weak 
coupling91 and Nosé-Hoover chain thermostats65-66, applied to the auxiliary dipole 
velocities23. The latter case was shown to provide superior energy conservation with less 
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stringent convergence thresholds and a correspondingly small number of SCF cycles, to 
reproduce all properties of the classical polarization model in the NVT and NVE 
ensembles accurately.  
 Now turning to the problem of achieving iteration-free dynamics for the 
electronic degrees of freedom, given this background, I will introduce modifications to 
the Lagrangian in Eq. (3.6) in two important ways. Although for completely converged 
induced dipoles the requirement that !"− ! = ! must be met, I introduce a general form 
for the polarization potential energy that does not assume convergence of the real induced 
dipoles, given in Eq. (3.7)	82-83. 
 

!!"#$% !, ! =  
1
2!

!!"− !!! (3.7) 
 

This means that if the real dipole differs from the exact self-consistent solution by 
a small amount !, ! = !!"# + !, the polarization potential differs from the exact self-
consistent solution by an order of the square of the error, |!|!. To see this one can 
substitute ! = !!"# + ! into Eq. (3.7), yielding Eq. (3.8). 
 
!!"#$% = !

! !!"# + ! !! !!"# + ! − !!"# + ! !! = − !
!!!"#

!!+ !
!!

!!"          (3.8) 
 

Eq. (3.8) makes use of the requirement that for completely converged induced 
dipoles !!!"# − ! = !. The difference between the general potential and the exact 
solution is given by Eq. (3.9). 
 

!!"#$% − !!"#!"#$% = !
!!

!!" = !( ! !)   (3.9) 
 

Eq. (3.9) implies that for any small errors in the induced dipoles that result from 
no iteration, the error in the potential is pushed to second order. The same analysis 
applies to the gradient of this potential, which affects the forces for dynamics and is what 
is relevant in molecular dynamics. After differentiating Eq. (3.8) one obtains Eq. (3.10). 
 

!"!"#$%
!! = !

!!!"#
! !!
!! !!"# − !!"#

! !!
!! +

!
!!

! !!
!! !   (3.10) 

 
Taking the gradients of the fully converged potential and SCF condition yields 

Eqs. (3.11a) and (3.11b), respectively. 
 

!"!"#
!"#$%

!! = !
!!!"#

! !!
!! !!"# − !!!"

! !!
!!    

(3.11a) 
!!
!! !!"# + !

!!!"#
!! − !!!! = ! (3.11b) 

 
One can now confirm that errors in the forces are also second order by combining 

Eq. (3.10) and (3.11). 
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!"!"#$%
!! − !"!"#

!"#!"

!! = 1
2!

! !!
!! ! = !( ! !) (3.12) 

 
Like the iEL/SCF procedure, the real induced dipoles will depend explicitly on 

using the auxiliary dipoles as an initial guess, given by Eq. (3.13). 
 

!! = !!!! + !! !!!! !!
!

!!!
 (3.13) 

 
But in this case no SCF cycles are performed and instead !!"#,! is estimated from 

simple linear mixing of the real and auxiliary induced dipoles via a local kernel 
approximation, given by Eq. (3.14)	79. 
 

!!"#,!  ≈  !!! + 1−  ! !!  (3.14) 
 

In Eq. (3.14) ! is an adjustable mixing parameter that will need to be tuned. This 
is similar in spirit to a predictor-corrector scheme63 in which Eq. (3.13) gives a prediction 
of the converged induced dipoles from the auxiliary dipoles, and then Eq. (3.14) serves as 
a correction by mixing the time reversible zeroth iteration solutions corresponding to the 
auxiliary variables with the first iteration solution for the real dipoles. While more 
complicated forms of approximating the SCF dipole are possible, such as a non-local 
kernel method63, I find that this simple approximation works well for all cases shown in 
the Results (Section 3.4). To be clear Eq. (3.14) is not used for the calculation of the true 
polarization energy and forces, but only applies to the derivation of the auxiliary equation 
of motion as we show below. 

By applying the Euler-Lagrange equation to the Lagrangian in Eq. (3.6) for both 
the real coordinates ! and the auxiliary dipoles ! one can obtain equations of motion for 
each, given by Eq. (3.15) and (3.16), respectively. 

 

!!!! =  −!"(!,!)!!! !
 (3.15) 

!!
!!! = !!!!

! !!"#,! − !! +  !!!!!!" − !!"! (!! − !!)
!

!!!
 (3.16) 

 
Eq. (3.15) is the familiar statement of Newton’s law for the nuclei where the 

gradients of the various forms of the potential energy on the right hand side remain in 
their usual forms, except for the polarization potential energy, which now depends on the 
auxiliary dipoles directly as seen in form of Eq. (3.7).  Eq. (3.17) gives the equation of 
motion for the auxiliary dipoles, which I note has an extra term proportional to (!− !).  
It can be formally shown that by assuming !!

!~1/!2, and in the limit that !!
! → 0 and 

! → ∞ such that !!!
! is a constant, one recovers an adiabatic Born-Oppenheimer-like 

approximation of the auxiliary dipole moment79. In practice I will show a posteriori that 
indeed this term is negligible and can (and will be) ignored. When Eq. (3.14) is 
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substituted into the auxiliary equation of motion in Eq. (3.16), one obtains the final form 
given by Eq. (3.17). 
 

!! = !!! !! − !!  (3.17) 
 

Of course for dynamics one will also need the forms of the gradient to calculate 
forces. In this case the complete polarization gradient, Eq. (3.18), is used. 

 
!!!"# !!

!! = !!!"# !!
!! + !!

!"# !!
!!

!!
!! (3.18) 

 
The first term on the right hand side of Eq. (3.18) is the nuclear term and the 

second term is the dipole response term, which goes to 0 in the limit of perfectly 
converged induced dipoles82-83. In practice, although perfect convergence can never be 
achieved, the dipole response term is typically not explicitly calculated with the 
understanding that this is a good approximation for a tight level of SCF convergence. 
With the iEL/0-SCF approach, however, the dipole response term is needed, since the 
analytical polarization potential requires it, unlike the iterative SCF solvers. Since there is 
have an explicit position dependence of our dipoles, defined by Eq. (3.13), it is 
straightforward to calculate these dipole response terms with no additional algorithmic 
expense.  Substituting Eq. (3.7) and (3.13) into Eq. (3.18) the final form of the gradient 
used for dynamics is obtained, Eq. (3.19). 

 
!!!"# !!

!! =  − !
!!

! !!!
!! ! − [ !!"

!+ !! !  −!!] !!
!

!! ! − [ !!"
!+ !! !] !!"!!              (3.19) 

 
Finally, the AMOEBA force field has additional features of electrostatic and 

polarization scaling that are further discussed in Appendix C, knowledge that would be 
required to reproduce the results shown subsequently. 
 
 
3.3  Methods 

The modifications to the polarization potential and gradient and the addition of 
auxiliary induced dipoles were introduced into the TINKER software package. For pure 
water systems I used the AMOEBA14 force field34 which used Force Balance97 to 
optimize the AMOEBA parameters for better description of water properties. For other 
systems, such as three concentrations of magnesium chloride salt solutions and the 
solvated dihydrofolate reductase (DHFR) protein, I used the AMOEBABIO0932-33 force 
field, a general-purpose biomolecular parameterization of the AMOEBA functional form. 
For the solvated zwitterionic glycine peptide (+NH3-CαH-COO–), I used the AMOEBA 
parameters derived from recent work comparing its decomposed THz spectra with ab 
initio molecular dynamics98.  

Unless otherwise noted simulations were started from pre-equilibrated structures 
to achieve correct densities and temperatures at 298.0 K.  The water system was 
comprised of a box of 512 water molecules with a 24.83 Å box length that conforms to 
1.0 g/cc density. Magnesium chloride solutions were performed at concentrations of 0.30 
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M, 1.21 M, and 4.66 M, which had 2175, 2133, and 2013 atoms with box lengths of 
28.18 Å, 28.00 Å, and 28.35 Å, respectively.  For the zwitterionic glycine simulations I 
used 256 water molecules with an isotropic box with side length of 19.73 Å. A velocity 
Verlet integration scheme88 was used to propagate the nuclear coordinates and velocities 
with a 1.0 fs time step. Production simulations were performed in the NVT ensemble 
with temperature control using a 4th-order Nosé-Hoover chain thermostat66 for the nuclear 
degrees of freedom. Particle-mesh Ewald (PME) was used to evaluate polarization and 
electrostatic interactions with a real-space cutoff of 7.0 Å.  Neighbor lists were employed 
for electrostatic, polarization, and van der Waals (vdW) interactions. Shared memory 
multi-core parallelism available in the TINKER software package was used.   

The primary difference investigated in this work is how mutual polarization is 
treated. The iEL/0-SCF simulations were initiated with real and auxiliary dipoles that 
were solved to an excessively tightly converged solution of 10-9 RMS Debye. A velocity 
Verlet integration scheme was then used to propagate the auxiliary induced dipoles and 
dipole velocities with a 0.5 fs time step in the NVE ensemble and with a 1.0 fs time step 
in the NVT ensemble. To determine an optimal ! for a given system, short (~100 ps) 
NVE trajectories were run over the range of possible ! values (0 to 1.0) and the ! of the 
trajectory with the lowest energy drift was selected for production. For the NVT 
ensemble, auxiliary dipoles were thermostatted using a 4th-order Nosé-Hoover chain, like 
the nuclear degrees of freedom, as described in Chapter 2.  The set point of the auxiliary 
dipole pseudo temperature was 5.3 e2Å2/ps2, which I found to be the natural temperature 
of well-integrated, stable iEL/0-SCF simulations at small time steps. For comparison 
purposes, simulations performed with a standard preconditioned conjugate gradient SCF 
(PCG)	20 iterative procedure were calculated using an SCF convergence threshold of 10-6 
RMS Debye, which is an order of magnitude tighter than the TINKER default in order to 
absolutely ensure accurate data for comparison purposes.  

 
 

3.4  Results 
To test whether the iEL/0-SCF approach reproduces all properties of any system 

when compared to the default PCG method used in TINKER, I have examined four 
different physical systems: (1) homogeneous bulk water, (2) heterogeneous MgCl2 salt 
solutions, at three different concentrations of MgCl2 in water: 0.30 M, 1.21 M, and 4.66 
M, (3) a small biomolecule, a zwitterionic glycine peptide in water, and (4) a larger 
protein, DHFR, in water. As I show in what follows, the iEL/0-SCF method can 
reproduce all of aspects of polarization compared to the standard SCF approach, and thus 
all energetic, structural, and dynamical properties of these four very different cases.  
Additional validation data for iEL/0-SCF can be found in Appendix D. 
 
3.4.1  NVE and NVT Conservation Properties 

Figure 3.1a shows the results when optimizing for the one free parameter ! that is 
needed to estimate the !!"#,! solution using Eq. (3.14), examined by running the iEL/0-
SCF method in the NVE ensemble with a range of ! values from 0 to 1. From this 
analysis I determined that the maximum stable value of ! is 0.92, with values greater than 
that yielding unstable trajectories, and values of !  < 0.5 yielding poor energy 
conservation. The best value of ! = 0.9 gives energy drifts that are commensurate with 
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the standard PCG method. Figure 3.1b reports the ‘pseudo-temperature’ of the auxiliary 
dipoles in these simulations, defined as !!"# = 1/3 !!!  since these dipoles do not have a 
mass, in which we see increases in inertia throughout the simulation, regardless of ! 
value. The rate of buildup of the auxiliary inertia degrades the real dipole dynamics 
through resonances as we have shown previously23, therefore in the NVE ensemble we 
are restricted to time steps of 0.5 fs to realize good energy conservation for the real 
degrees of freedom.  

For the NVT ensemble simulations a thermostat must be applied to both real and 
auxiliary degrees of freedom, and thus there is a new conservation law that depends 
directly on the extended system variables66.  Although formally the fictitious auxiliary 
mass parameter, !!, is 0 from our derivation, this quantity can be fit a posteriori to see 
what its value would be to minimize the drift of the extended conserved quantity.  Figure 
3.1c shows that this extended system quantity is well conserved for the pure water system 
when using a fitted fictitious mass of the auxiliary dipoles of 0.0103 g/mol/e2 and which 
corresponds to a real temperature of 0.0656 K for the auxiliary dipoles, giving a natural 
separation of energy scales between the real and auxiliary degrees of freedom and 
allowing for an increased time step of 1.0 fs. The NVT energies and fluctuations for the 
real nuclear degrees of freedom of water for the iEL/0-SCF method is in perfect accord 
with the standard SCF benchmark over 3.0 ns (Table 3.1 and Figure D.1) and additional 
tests run out to tens of nanoseconds show that SCF and iEL/0-SCF solutions remained in 
quantitative agreement for all systems for long time scales. 

 

 
Figure 3.1: Energy conservation in the NVE and NVT ensembles for water. (a) Energy along trajectories 
of the iEL/0-SCF method for a range of ! values. (b) The auxiliary pseudo-temperature, !!"# = 1/3 !!! , 

(a) 

(b) 

(c) 
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of the simulations from (a). In (a) and (b) all NVE simulations used a time step of 0.5 fs. (c) Real energy for 
iEL/0-SCF and standard PCG-SCF methods and extended energy for iEL/0-SCF, as well. We calculated 
the conserved energy of the extended system in the NVT ensemble (blue), along with the energy for the real 
degrees of freedom in the NVT ensemble of 512 water molecules using the iEL/0-SCF approach (red) and 
standard SCF approach (black). For the NVT simulations we used a time step of 1.0 fs, ! was set to 0.9, 
while the SCF solution used a PCG-SCF method with a convergence threshold of 10-6 RMS Debye.  
 
Table 3.1:  Ensemble average total energy and polarization energies for bulk water, salt solutions, and 
glycine dipeptide in water. Average total potential energy, ! , and average polarization potential energy, 
!!"# , for both a standard SCF method and the iEL/0-SCF approach. Data is generated from 3.0 ns 

trajectories in the NVT ensemble at 298.0 K.  
Bulk Water Method !   (kcal/mol) !!"#  (kcal/mol) 

iEL/0-SCF -4610+/-40 -2590+/-50 
SCF -4620+/-40 -2570+/-50 

Glycine in 
Water 

iEL/0-SCF -2420+/30 -1290+/-40 
SCF -2430+/-30 -1300+/-30 

0.3M MgCl2  iEL/0-SCF -8830+/-50 -4010+/-60 
SCF -8850+/-50 -4040+/-70 

1.21M MgCl2 iEL/0-SCF -15690+/-50 -5100+/-70 
SCF -15710+/-50 -5070+/-70 

4.66M MgCl2 iEL/0-SCF -43220+/-50 -9640+/-100 
SCF -43220+/-50 -9490+/-90 

 
3.4.2  Polarization Properties  

For bulk water I found that the average molecular dipole moment for a condensed 
phase water molecule yields a value of 2.81 Debye with both the SCF and iEL/0-SCF 
methods. The corresponding probability distribution of real induced dipoles generated 
from the iEL/0-SCF solutions is in excellent agreement with the standard SCF solutions, 
regardless of system, as shown in Figure 3.2 and Figure D.2. 

 

 

(b) 
(a) 
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Figure 3.2: Comparison of induced dipole probability distributions using the iEL/0-SCF and standard SCF 
methods. (a) Hydrogen in bulk water, (b) the glycine carbonyl oxygen, and (c) Mg2+ for all MgCl2 salt 
concentration for a standard SCF method (dashed) and our iEL/0-SCF method (solid).  For plots (a) and 
(b) we consider the x, y, and z dipole components. For plot (c) we consider three different MgCl2 salt 
concentrations of 0.30 M (black), 1.21 M (red), and 4.66 M (blue). The induced dipole distributions for 
water and glycine use an internal coordinate frame; see17 for details on the internal coordinates.   

 
3.4.3  Dynamic Properties.  

Using the NVE ensemble simulation, I calculated the self-diffusion constant of 
water to be 1.90 +/- 0.13 using the iEL/0-SCF approach and 2.02 +/- 0.20 for the standard 
SCF procedure. I also reported the Mg2+ and Cl– ion diffusion constants for the 4.66M 
concentration in Table D.1 that show the two methods are in quantitative agreement. A 
particularly stringent time-dependent property in the NVT ensemble, the autocorrelation 
function for induced dipoles, demonstrates that the iEL/0-SCF method does not suffer 
from any loss of accuracy, regardless of system (Figure 3.3 and Figure D.3). One can see 
that for both hydrogen and oxygen atoms for bulk water, Mg2+ and Cl– for the salt 
solution (shown for 1.21M), and the backbone carbonyl carbon, carbonyl oxygen, 
nitrogen, and α-carbon of glycine dipeptide, that the iEL/0-SCF method reproduces the 
autocorrelations well, especially at the critical short time scale range less than about 0.2 
ps over which there can be rapid changes in dipole direction (especially for bulk water).  

 

(c) 
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Figure 3.3: Comparison of dynamic polarization properties using the iEL/0-SCF and standard SCF 
methods. Autocorrelation function of real dipole for (a) bulk water, (b) solvated glycine, and (c) Mg2+ and 
Cl- for 1.21M salt concentrations with a standard SCF method (dashed) and our iEL/0-SCF method (solid). 
The induced dipole distributions for water and glycine used an internal coordinate frame; see17 for details 
on the internal coordinates. All data is based on 30 ps trajectories in the NVT ensemble at 298.0 K.   

 
3.4.4  Structural Properties 

The iEL/0-SCF method also reproduces structural properties for all systems.  
Figure 3.4 and Figure D.4 present the radial distribution functions for atom correlations 
of bulk water, the water oxygen and hydrogen correlations with the anion and cation of 
the salt solutions, and finally the water oxygen and hydrogen radial distribution functions 
with the glycine peptide backbone atoms. In summary, there is excellent agreement 
between the iEL/0-SCF method and the standard SCF solver.  

 

(b) 

(a) 

(c) 
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Figure 3.4: Comparison of intermolecular structure using the iEL/0-SCF and standard SCF methods. 
Radial distrubtion functions for (a) oxygen-hydrogen for bulk water, (b) water oxygen-backbone nitrogen 
and water hydrogen-backbone nitrogen of glycine dipeptide, and (c) water oxygen-Mg2+ and water 
hydrogen- Mg2+ for the 0.30 M salt concentrations for a standard SCF method (dashed) and our iEL/0-SCF 
method (solid). The induced dipole distributions for water and glycine used an internal coordinate frame; 
see17 for details on the internal coordinates. All data is based on 3.0 ns trajectories in the NVT ensemble at 
298.0 K.   
 
3.4.5  Timing Comparisons 

The iEL/0-SCF method was implemented in the TINKER software package and 
takes advantage of the shared-memory parallelism of that code. While I have shown that 
the iEL/0-SCF method can reproduce the property results for any of the above systems 
when compared to the standard PCG SCF solver in the TINKER code, I now examine the 

(a) 
(b) 

(c) 
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computational efficiency of the iEL/0-SCF method in the same code and on the same 
hardware platform.  

 

   
Figure 3.5:  Timing comparisons between iEL/0-SCF and standard iteration methods. Simulation speed-up 
in nanoseconds per day for (a) weak scaling as a function of the number of cores for a box of 512 water 
molecules in the NVT ensemble at 298.0 K and (b) strong scaling for increasing system size with the 
number of cores fixed at 16. The methods that are compared include the iEL/0-SCF method at a time step 
of 1.0 fs (red), a preconditioned conjugate gradient solver integrated with Verlet at a time step of 1.0 fs 
(blue), and with a RESPA method using an outer time step of 2.0 fs (black). The real dipoles of the standard 
SCF methods in (b) were converged to 10-5 RMS Debye (solid), the standard default in TINKER.  

 
Figure 3.5a shows the weak scaling results in units of ns/day of the SCF and 

iEL/0-SCF methods applied to bulk water in which both use the same Verlet integration 
scheme with a time step of 1.0 fs. For 8 cores one sees that the iEL/0-SCF method is 40% 
faster than the standard SCF solution, and since the iEL/0-SCF method also scales better 
to larger numbers of cores it rises to ~70% faster than the default polarization solution. In 
fact, when compared to a multi-time step reversible reference system propagator 
algorithms (RESPA)	 26, which uses a 2.0 fs outer time step, the iEL/0-SCF method is 
slightly faster at 16 cores, although it uses Verlet integration with a 1.0 fs time step. 
Figure 3.5b shows the strong scaling results (as system size grows while holding the 
number of cores constant at 16 cores) for the standard SCF polarization result using either 
a RESPA integration scheme with a 2.0 fs outer time step, the Verlet integration with a 
1.0 fs time step, and the iEL/0-SCF approach that uses the Verlet integration scheme with 
a time step of 1.0 fs. It is seen that the iEL/0-SCF approach is not only as fast as the 
RESPA scheme in timings, the iEL/0-SCF method is also more accurate as I show below 
for DHFR and for bulk water results in Figure D.1. 

 
 

3.5  Discussion  
In general, energies, dynamical properties, and polarizability and structural 

correlations, are accurately reproduced by my iEL/0-SCF method when compared to the 
standard SCF solver for a diverse set of simple systems ranging from bulk water, dilute to 
concentrated salt solutions, and a small peptide in water. I also providde an additional 
stress test for our new iEL/0-SCF solution to the polarization equations by simulating a 

(b) (a) 
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much larger biomolecular system, DHFR in water, the so-called Joint AMBER-
CHARMM benchmark. Table 3.2 gives the average potential energy and average 
polarization energy for the aqueous DHFR system when I used a single ! value for both 
the protein and the water solvent when defining the local kernel approximation for !!"#,! 
in Eq. (3.9). For ! values greater than 0.7 I found that the aqueous DHFR simulations 
became unstable (which also happened for the other water-based systems when ! > 0.92), 
and ultimately ! = 0.7 was the best value that we found from numerical testing. In this 
case the differences between the iEL/0-SCF and SCF energy values are on the order of 
1.0%, although this small difference is nonetheless outside numerical error bars. However 
this error is much smaller than that found from simulations with the RESPA algorithm, as 
shown in Figure 3.6 which displays the time evolution of the DHFR-water system real 
total energy. 

 
Table 3.2: Average total potential energy, ! , and polarization energy, !!"# , for the iEL/0-SCF method 
for a protein in water using different values of !! !"# !! for the local kernel definition for solvent and 
protein. Data is generated from 300 ps trajectories in the NVT ensemble at 298.0 K. 

Local Kernel  !  (kcal/mol) !!"#  (kcal/mol) 
!! = !! = 0.7 -66060+/-170 -31160+/-150 

!! = 0.9;  !! = 0.1 -66310+/-180 -31440+/-160 
SCF -66670+/-160 -31850+/-150 

 
While this suggests that the iEL/0-SCF method is sensitive to the local kernel 

definition for !, I found that I can use the same ! value for water of 0.9 (now referred to 
as !! with ‘s’ for solvent) that I determined for all previous aqueous systems considered, 
and allow the protein to independently optimize to a new value of !! = 0.1 (Table 3.2). It 
is clear that basic properties of the protein system are reproduced; the protein remains 
stable as measured by its root mean square deviation (RMSD) over the course of the 
simulation. While the local kernel definition has proven reliable across a large diversity 
of systems, and the same ! values are resuseable across systems, it does motivate a 
generalization of Eq. (3.14) to a ‘non-local’ kernel79 to improve the iEL/0-SCF method in 
future work, provided such methods do not add significantly to the computational cost.  

 

 
Figure 3.6: Simulations of the DHFR protein in water using the iEL/0-SCF, standard SCF, and 
standard SCF with RESPA method. The real total energy (potential and kinetic) (a) and RMSD 
(b) as a function of simulation time. The values of  !! = 0.9 and !! = 0.1  were used for the local 

(a) (b) 
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kernel definition for solvent and protein. The SCF method (black) uses a Verlet with a 1.0 fs time 
step and PCG with 10-6 RMS Debye convergence, and the SCF method with RESPA (dashed 
gray) with a 2.0 fs outer time step and PCG with 10-5 RMS Debye convergence. 
 
 
3.6  Conclusions 

I have developed a new solution to classical polarization for molecular dynamics 
simulations that does not require any SCF iteration. The iEL/0-SCF method I have laid 
out here builds upon our iEL/SCF scheme of Chapter 2 in that it continues to use an 
auxiliary set of induced dipoles that are dynamically integrated in a time-reversible 
manner, and which again serve as an initial guess for the real induced dipoles, but for the 
iEL/0-SCF method no further SCF cycles are required. Across all relevant systems 
typically studied in molecular simulation: a homogeneous fluid, ionic solutions, and 
small and large solutes in aqueous media, all ensemble averages over polarization 
properties are in good agreement between the SCF and iEL/0-SCF methods, and 
therefore by extension all physical properties of any system examined here are 
reproduced accurately. The iEL/0-SCF method is numerically stable over long simulation 
times, and I offered a qualitative explanation as to why the iEL/0-SCF scheme works as 
well as it does. I speculate that, since the autocorrelation function for the dipoles decay 
on a 100 fs timescale (Figure D.3), then the repeated application of real dipole and 
auxiliary dipole updates every 1.0 fs, is effectively doing SCF iterations on the fly. The 
iEL/0-SCF approach also realizes significant computational speedups when compared to 
an SCF method that uses a single 1.0 fs time step Verlet integration, and is as fast and far 
more accurate than that obtained by using RESPA with a 2.0 fs outer time step. Since the 
method saves about 50% in computational effort by avoiding all SCF cycles, and the fact 
that standard SCF implementations do not scale well in TINKER the 100% factor 
improvement in timings make perfect sense. 
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4. 
iEL/0-SCF for Drude Polarization 

 
4.1  Introduction 

The induced dipole model is arguably a more robust approach to polarization than 
the Drude model, since its foundation arises from an expansion of the electric potential 
about an applied electric field, and thus it can be systematically generalized to higher-
order moments like induced quadrupoles, induced octupoles, etc.	 54 By contrast, the 
Drude oscillator offers the advantage of simplicity, since it only requires additional point 
charge Coulombic interactions that are straightforwardly incorporated into existing 
molecular dynamics codes in conjunction with Ewald summation99-101.  Due to its 
inherent simplicity the Drude model is still a popular choice as a polarization model44, 52, 

102, so in this chapter I expand the theoretical framework of the inertial extended 
Langrangian, self-consistent field iteration-free method (iEL/0-SCF), introduced for 
induced dipoles in Chapter 3, to the polarization model of a Drude oscillator. 
 Historically the polarization solution for the induced dipole model is solved 
through self-consistent field (SCF) iterative solvers, such as successive over-relaxation 
(SOR)	60, preconditioned conjugate gradient (PCG)	20, or direct inversion in the iterative 
subspace (DIIS)	21, 61 methods.  By contrast, Drude models for polarization are typically 
solved through an extended Lagrangian (EL) formulation to treat polarization with 
negligible cost compared to the SCF approaches42-43, 67.  In the case of Drude oscillators 
the EL equation of motion is based on a mass repartitioning between the parent atom and 
its Drude oscillator, with the goal of making the Drude mass small enough to obey some 
facsimile of the Born-Oppenheimer condition. Even so, a basic EL approach using 
thermalized “hot” Drude oscillators can be plagued with problems of accuracy since the 
effective polarization vector fluctuates around an average orientation that does not 
conform to the true electric field vector, and/or problems of stability in the context of a 
molecular dynamics trajectory that forces the reduction of the time step to be 
unacceptably short. To combat this problem, Sprik developed an EL approach whereby 
the polarization degrees of freedom are kept cold at a temperature T* relative to the 
temperature of the real degrees of freedom, T, such that T* << T69.  The dual temperature 
EL approach, EL(T,T*), has become a standard approach for treating Drude polarization 
due to its low cost, but can still exhibit unwanted instability. 
 In this chapter I present the theory that extends the iEL/0-SCF approach to Drude 
polarization, in which the need for any mass repartitioning is eliminated, greater stability 
is realized, and the correct thermodynamic ensembles are achieved.  The advantages of 
iEL/0-SCF for Drude are illustrated with simulations for bulk water using the polarizable 
simple point charge (PSPC) Drude force field42-43.  I show that the iEL/0-SCF method for 
Drude polarization is as stable as a tightly converged SCF calculation and more stable 
than the EL(T,T*) approach. This greater stability allows us to take molecular dynamics 
timesteps as large as 6.0 fs while still preserving the properties of the PSPC model in the 
NVT ensemble.    
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4.2  Theory 

The PSPC model is a simple rigid water model42-43, with partial charges on both 
hydrogens and oxygen, and a Lennard-Jones site and a Drude particle that is 
harmonically bound to each oxygen atom. The total energy of the PSPC model is then 
given by Eq. (4.1). 

 
! ! = !!" ! + !!!!

!! − !!!!!!
+ !!!!,!

!! − !!,!!!
+ !!,!!!,!

!!,! − !!,!!!!!
+ 12 !! !! − !!,!

!

!
 (4.1) 

 
In Eq. (4.1) !!! !  is the standard Lennard-Jones term, the second through fourth 

terms are the electrostatic energy broken down into charge-charge, charge-Drude, and 
Drude-Drude interactions, respectively. The final term is the harmonic spring between 
Drude particles and their parent oxygen atom, where a Drude spring force constant, !!, 
of 1000 kcal/mol/Å is employed in the PSPC model.  
 The relationship between the Drude spring force constant, !!, polarizability, !, 
and Drude charge, !!, can be easily derived and is given by Eq. (4.2)43. 
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The energy minima with respect to Drude displacements from their parent atom, 

!! = !!,! − !!, is given by Eq. (4.3). 
 

!"
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In Eq. (4.3) !! !!  is the electric field at site i due to the other atomic charges 

and Drude particles in the system.  Eq. (4.3) states that the system’s polarization energy is 
minimized when there is no net force on the Drude particles, and it defines the iterative 
equation that must be solved to determine the SCF solution for the Drude model. 
 Following generalized time reversible Born-Oppenheimer dynamics79 and its 
application to classical dipolar polarization presented in previous chapter22, I begin by 
defining a new extended Lagrangian for the Drude PSPC polarization model, given by 
Eq. (4.4). 
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(4.4) 

	
	

The first six terms (kinetic energy, Lennard-Jones potential, Coulombic terms, 
and harmonic force between the Drude and parent atom) largely recapitulate Eq. (4.1), 
but with several important exceptions when formulated within the iEL/SCF hybrid 
approach. First I introduce an extended system of auxiliary Drude positions, !!,!, as 
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dynamic degrees of freedom that have an associated fictitious mass, !!
!.  Second, these 

auxiliaries in turn give rise to a positional dependence of the real Drude particles on these 
auxiliary degrees of freedom, !!,! !! .  Third, a new kinetic energy term for the 
auxiliary degrees of freedom is included in the Lagrangian.  Finally, a harmonic coupling 
between the auxiliary positions and the true SCF converged position, !!,!!"# is introduced, 
as well. The strength of this coupling is controlled by the parameter !, which should be 
as high as possible.  It has been shown that the highest stable value of ! for a Verlet 
integration scheme is 2/!", where !" is the time step79.  

One can now recognize that the most general form of the potential energy for the 
original Drude model from Eq. (4.4) is given as Eq. (4.5). 
 

! !,!! = !!" ! + !!!!
!! − !!!!!!

+ !!!!,!
!! − !!,! !!!!!

+ !!,!!!,!
!!,!(!!!) − !!,!(!!!)!!!!

+ 12 !! !! − !!,! !!!
!

!
 

(4.5) 

 
Since the Drude positions depend explicitly on the auxiliary Drude positions, 

there is no assumption that the potential energy ! !,!!  is at the ground state solution as 
per Eq. (4.3). The positional dependence of the real Drude particles on the auxiliary 
degrees of freedom, !!,! !! , is formulated by making one evaluation of the electric field 
using the auxiliary positions as the positions of the Drude particles, as shown in Eq. (4.6). 

 
!!,! !! = !!,!

!!
!!,! !! + !!  (4.6) 

 
In terms of the PSPC model, specifically, Eq. (4.6) can be expanded into Eq. 

(4.7). 
 

!!,!(!!) = − !!,!!!
!!(!!,! − !!)
!!,! − !!

!
!

+ !!(!!,! − !!,!)
!!,! − !!,!

!
!

+ !!  (4.7) 

 
 It is important to emphasize why the Drude oscillator model is different than an 
induced dipole model in an SCF process. For the induced dipole model, the electric field 
due to other permanent charges or multipoles in the system is defined at an atomic center. 
This direct component of the electric field will not change throughout an iterative 
procedure because the atomic positions do not change.  It is only the field due to other 
induced dipoles in the system that will change throughout an iterative procedure. This is 
not true of a Drude model. In a Drude model, the electric field at the Drude particles due 
to both the permanent multipoles and other Drude particles will change because the 
position where the electric field is evaluated (the Drude position) itself changes 
throughout the iterative process.  This can be seen explicitly in Eq. (4.7) where the first 
term in the bracket can be thought of as a direct electric field and the second term as a 
mutual electric field, but for both terms they show that the optimized Drude positions 
depend specifically on the auxiliary Drude positions.  
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 One can now use Eq. (4.5) to compress the description of the Lagrangian in Eq. 
(4.4), now given as Eq. (4.8). 
 
ℒ !, !,!! ,!! = 1

2 !! !! !
!

+ 12 !!
! !!,!

!

!
− 12!

! !!
! !!,!!"# − !!,!

!

!
− ! !,!!  (4.8) 

 
Eq. (4.8) can now be used to generate equations of motion by applying the Euler-

Lagrange equation to both the real coordinates ! and the auxiliary dipoles !!.  
 For the original iEL/SCF approach, the auxiliary positions would be used as an 
initial guess for a subsequent SCF calculation to the converged solution. This is 
undesirable especially for the Drude formulation since now the direct part of the electric 
field has to be evaluated at each iteration, as described above. In the iEL/0-SCF 
approach, SCF is avoided altogether by introducing a linear mixing of real and auxiliary 
Drude positions as an approximation to the ground state solution, as shown in Eq. (4.9). 
 

!!,!!"# ≈ !!!,! + 1− ! !!,!  (4.9) 
 

Eq. (4.9) is then used to derive the first equation of motion for the auxiliary 
degrees of freedom when taking the limit of !!

! → 0, given by Eq. (4.10). 
 

!! = !!!(!!,! − !!,!) (4.10) 
 
Two points are worth mentioning at this juncture. First, the predictor-corrector 

form of the converged solution in Eq. (4.9) is not used for the calculation of the true 
polarization energy and forces, but only applies to the derivation of the auxiliary equation 
of motion in Eq. (4.10)	22.  Second, the Drude degrees of freedom now have no mass and 
thus there is no mass repartitioning in our approach.  
 The equation of motion for the auxiliaries is straightforward, simply taking the 
form of harmonic motion about the real Drude positions. This introduces one free 
parameter, !, which controls the mixing of the real and auxiliary Drude positions, and 
can be easily determined as we show in the Methods (section 4.3) and Appendix E, which 
contains additional iEL/0-SCF Drude material. The equation of motion for the atomic 
centers looks like the usual real particle equation of motion and is given by Eq. (4.11). 
 

!!!! =  −!" !,!!
!!! !!

 (4.11) 

 
In examining Eq. (4.11) note again that unlike the usual EL schemes the atomic 

mass !!  has not been reduced through repartitioning. The total potential derivative with 
respect to position is shown in Eq. (4.12). 

 
!" !,!!

!!!
= !" !,!!

!!!
+ !" !,!!

!!!,!
!!!,!
!!!!

 (4.12) 
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In Eq. (4.12) the first term corresponds to the usual gradient terms for a standard 
EL scheme and the second term is a Drude ‘response’ term, which is normally not 
evaluated under an SCF approach since it goes to 0 in the limit of complete convergence. 
However, since the form of the potential, ! !,!! , is now general, in the sense that it 
does not assume complete convergence, this response term must be explicitly evaluated 
to ensure that the potential and potential gradient are commensurate. Since there are no 
iterations this is just a small cost overhead. 
 The force vectors !" !,!!

!!!
 and !" !,!!

!!!,!
 are already evaluated in a standard Drude 

oscillator EL simulation, so it is easy to calculate these force vectors.  The new additional 
term, 

!!!,!
!!!

, when expanded, is shown in Eq. (4.13). 
 

!!!,!
!!!

= − !!,!!!
!
!!!

!! !!,! − !!
!!,! − !!

!
!

+ !
!!!

!! !!,! − !!,!
!!,! − !!,!

!
!

+ !!!
!!!

= !!,!
!!

!!
!
!!!

− !!,! − !!
!!,! − !!

!
!

+ !!"! 
(4.13) 

 
One can recognize that the derivative term within the sum of Eq. (4.13) is actually 

the definition of a dipole-dipole interaction tensor, !′, between the k atomic center, !!, 
and the i-th auxiliary Drude position, !!,!.  Using this fact Eq. (4.13) can be simplified to 
yield Eq. (4.14a), where Eq. (4.14b) gives the definition of the dipole-dipole interaction 
tensor. 
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!
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!

3 !!,!! − !!
! !!,!! − !!!

!!,! − !!
!

3 !!,!! − !!!
!

!!,! − !!
! − 1

!!,! − !!
!

 (4.14b) 

 
Substituting Eq. (4.14) into Eq. (4.12) one can obtain Eq. (4.15). 
 
!" !,!!

!!!
= !" !,!!

!!!
+ !" !,!!

!!!,!
!!,!!!
!!

!′!!!,! + !!"!
!

 (4.15) 

 
Eq. (4.15) is the working definition of the atomic center gradients that are used to 

drive the molecular dynamics updates of positions and velocities for the atomic and 
Drude particles. It should be noted that the introduction of the dipole interaction tensor, 
!′, that follows from our theory is not always available from community codes that are 
currently restricted to point charges and point charge-only Ewald calculations. For this 
work we modified the TINKER software package to use Drude polarization instead of its 
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usual induced point dipole formalism.  TINKER already has code to handle the dipole 
interaction tensor and higher-order multipolar Ewald sums101, 103, meaning that much of 
the software infrastructure to properly evaluate Eq. (4.15) is already in place. 
 
  
4.3  Methods 

Three different methods for solving the Drude polarization condition in Eq. (4.3) 
were then implemented for comparison purposes- an SCF solver, the iEL/0-SCF method 
described above, and the EL(T,T*) method based on the dual temperature NVT,T* 
ensemble described by Lamoureux and Roux for the PSPC model43. The SCF solver is a 
naïve successive over-relaxation (SOR) method60 that iterates Eq. (4.3) to within some 
defined tolerance in terms of the root mean square change in force on the Drude particles 
between successive iterations. A range of tolerances were tested with the tightest being 
10-6 RMS kcal/mol/Å, which I define as the ‘gold standard’ for accuracy in this study.  
 The EL(T,T*) method for polarization was originated by Sprik69, and was used by 
Wodak and colleagues for point induced dipoles68 and by Lamoureux and Roux for 
Drude polarization43. Under the EL(T,T*) scheme the Drude particles themselves are 
given a portion of the mass of their parent atom, !!,!, and to conserve mass the parent 
atom now has a mass of !! −!!,!.  The Lagrangian of the system then becomes Eq. 
(4.16). 
 

ℒ !, !, !! , !! = 1
2 (!! −!!,!) !! !

!
+ 12 !!,! !!,!

!

!
− !!" ! − !!!!

!! − !!!!!!

− !!!!,!
!! − !!,!!!

− !!,!!!,!
!!,! − !!,!!!!!

− − 12 !! !! − !!,!
!

!
 

(4.16) 

 
In Eq. (4.16) the last five terms give the potential energy of the system and the 

Lagrangian can be simplified as shown in Eq. (4.17). 
 

ℒ !, !, !! , !! = 1
2 (!! −!!,!) !! !

!
+ 12 !!,! !!,!

!

!
− !(!, !!) (4.17) 

 
Applying the Euler-Lagrange equation of motion one can now obtain equations of 

motion for atomic centers and Drude particles in Eqs. (18a) and (18b), respectively. 
 

(!! −!!,!)!! = − !"
!!!

 (4.18a) 

!!!!,! = − !"
!!!,!

 (4.18b) 

 
In short, the dynamics of the atomic centers are driven by their usual forces, but 

with a smaller mass, and a net force now drives the dynamics of the Drude particles given 
by the harmonic spring attaching it to its parent atom and an electrostatic force through 
interactions with its charge and the charges of the rest of the system.  
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 In the NVT,T* or NPT,T* ensemble of the EL(T,T*) method, the atomic 
temperature T is defined by the total atomic mass !! and the center of mass velocity of 
the Drude-parent atom pair i, !!. 
 

! = 1
3!!!!"#$

!!!! +!!,!!!,!
!

!!!∈!"#$
= 1
3!!!!"#$

!!!!!
!∈!"#$

 (4.19) 

 
In Eq. (4.19) Natom is the number of atomic centers. The Drude particles are kept 

at a lower temperature T*, defined by the reduced mass and the relative velocity of the 
Drude-parent atom pair, !!

! and !!, respectively. 
 

!∗ = 1
3!!!!"#!"

!! 1−!!
!!

!!,! − !!
!

!∈!"#$%
= 1
3!!!!"#$%

!!
!!!!

!∈!"#$%
 (4.20) 

 
In Eq. (4.20) NDrude is the number of Drude centers. By keeping the Drude 

temperature low, kinetic energy is bled out to better satisfy the Born-Oppenheimer 
condition. 
 For the iEL/0-SCF and EL(T,T*) methods the Drude positions and auxiliaries 
were initialized to those of a tight SCF solution, and all production simulations were 
started from pre-equilibrated restart files.  Unless noted otherwise all simulations (NVT 
or NVE) are initialized at 298.0 K. For all methods all equations of motion were 
integrated with a velocity Verlet scheme88 and I used particle-mesh Ewald summation to 
treat all electrostatic interactions101, 103 with a real-space cutoff of 9.0 Å. Non-bonded 
interactions were evaluated using neighbor lists and intra-molecular geometry of the 
PSPC model was constrained using the RATTLE algorithm59. When thermostats are 
used, either to perform NVT simulations or to couple to auxiliaries (for iEL/0-SCF) or 
relative Drude-parent atom harmonic motion (for EL(T,T*)), a time-reversible 4th-order 
Nosé-Hoover chain65-66 was used with a thermostat time scale parameter of 0.005 ps 
(expect for the EL method at a time step of 4.0 fs, which uses a time scale parameter of 
0.01 ps, as 0.005 ps is unstable at that condition) . All three methods were tested over a 
range of time steps, ranging from 0.5 fs to 6.0 fs depending on method. 
 The iEL/0-SCF method requires the determination of an optimal value of !, the 
mixing parameter that allows us to approximate a ground state polarization solution.  In 
Chapter 3 I showed the iEL/0-SCF is numerically stable over long simulation times 
because the general form of the polarization energy and forces (Eqs. (4.5) and (4.12) for 
the Drude model) ensures that small deviations from the converged solution only give 
rise to errors on the order of !(!!) in energy and forces, as discussed in Chapter 322. 
Thus the linear mixing parameter ! will control the level of accuracy of the polarization 
solution and corresponding stability of the equations of motion.  
 In Chapter 3 I determined ! by looking for a value that best conserved the real 
system energy while minimizing the auxiliary pseudo temperature drift rate that arises 
from resonances.  For AMOEBA, I found an optimal ! = 0.9 value for water using a 0.5 
fs time step in the NVE ensemble, with values of the time step greater than 0.5 fs and 
! > 0.9 displaying unstable trajectories, and values of ! < 0.5  yielding very poor real 
system energy conservation regardless of time step. As shown in Figures E.1-E.3, the 
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Drude model allows for a far greater range of ! values and a time step of up to 2.0 fs for 
which the NVE trajectory is both stable and exhibits good energy conservation 
comparable to or better than the SCF solution. I adopted a value of ! = 1.0 for all 
simulations reported in the Results (section 4.4). 
 
 
4.4  Results 

For the iEL/SCF methods, the equations of motion of the Drude particles given in 
Eq. (4.10) are defined in the limit !!

! → 0, so there are no contributions to the real 
system energy due to the kinetic energy of the Drude particles. This is equivalent to an 
SCF scheme under tight convergence (which I take to be 10-6 RMS kcal/mol/Å), but is 
unlike an EL method where there is mass repartitioning between the Drude particle and 
its parent atom. For EL, the assignment of small Drude masses are preferred for energy 
conservation by minimizing the Drude kinetic energy (the Born Oppenheimer condition) 
but the simulation is restricted to short time steps due to their higher frequency 
oscillations (since ! = !!/!!). By contrast larger masses in the EL scheme that allow 
for longer time steps tend to conserve energy more poorly due to the increasing Drude 
kinetic energy contribution. In what follows I report results in the EL method using the 
lowest stable Drude mass, !!, for a given time step (see Fig. 4.3a).   
 In the NVE ensemble, since I am not enforcing temperature control through 
thermostats, the two extended Lagrangian approaches simplify to just the equivalent of 
EL/0-SCF (no inertial restraints) and EL methods, as opposed to iEL/0-SCF and 
EL(T,T*), respectively. Figure E.4 shows that the system energy, which is the sum of all 
kinetic and potential energy of atomic and Drude particle contributions, for both EL 
approaches is as well conserved as the SCF gold standard at a time step of 1.0 fs over a 
2.0 ns timescale. Figure 4.1a shows that while the EL/0-SCF method also conserves 
energy using a 2.0 fs time step (in fact better than the SCF method over the 2.0 ns 
trajectory) the EL method conserves energy poorly after ~250 ps at the lowest Drude 
mass where stable trajectories are possible. By restricting to the first several hundred 
picoseconds for the EL method, I can collect values of the diffusion constant at 298.0 K 
that are in good agreement between the methods, 4.00 x10-5 cm2/s (± 0.08, SCF), 4.06 
x10-5 cm2/s (± 0.08, EL/0-SCF), and 3.99 x10-5 cm2/s (± 0.23, EL), and all of which are in 
agreement with previous reported results for the PSPC model42-43. 
 

 

(a) (b) 
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Figure 4.1:  NVE energy properties of the iEL/0SCF and EL(T,T*=0) method for the Drude PSPC model 
compared to the SCF reference. All simulations were performed with a time step of 2.0 fs on a test system 
of 512 water molecules with no thermostats. (a) Total real system energy for SCF (black), iEL/0-SCF (red), 
and EL (blue) (b) auxiliary variables pseudo temperature for iEL/0-SCF (red, left axis) and temperature of 
the Drude-parent atom motion of the EL method (blue, right axis). Temperature is placed on a log scale. 
  

The energy instability of EL after about 250 ps arises from the fact that even for 
small values of !!,! the Drude particles will eventually reach thermal equilibrium with 
the rest of the system, and the kinetic energy of the Drude particles (which is formally 
zero for the SCF and EL/0-SCF methods) will increase over time for the EL method. To 
show this, Figure 4.1b reports the Drude temperature for the relative Drude-parent atom 
motion for the SCF and EL methods and the ‘pseudo temperature’ of the auxiliary 
dipoles, defined as !!"# = 1/3 !!! , for the EL/0-SCF method at the same 2.0 fs time 
step and simulated over 2.0 ns. The EL method shows exponential degradation, rising 
from near 0.0 K at the beginning of a simulation to almost the atomic temperature after 
2.0 ns.  This will be the case for the EL method even for smaller time steps where the 
same kinetic energy change will be evident but on a longer simulation time scale. By 
contrast the EL/0-SCF and SCF methods show linear increases in inertia throughout the 
simulation due to accumulation of integration error. Of course the point of the EL(T,T*) 
approach is to arrest this energy redistribution by keeping the Drude thermostat cold to 
stay near the Born-Oppenheimer surface. But the NVE results are instructive as they are a 
harbinger for the fact the EL/0-SCF is intrinsically more stable than the EL method at a 
given time step and length of simulation, and comparable in quality to a well converged 
SCF solution. 

 

 
Figure 4.2:  NVT energy properties of the EL, SCF and iEL/0-SCF method for the Drude PSPC water 
model. All simulations were performed with a time step of 2.0 fs on a test system of 512 water molecules. 
(a) The conserved quantity for the NVT extended system for the three methods, (b) the real system energy in 
the NVT ensemble at 298.0 K for SCF (black), EL(T*,T) (blue), and iEL/0-SCF (red). The system energy is 
the sum of the atomic kinetic and potential energies.  
 
 I show that this continues to hold in the NVT ensemble by next considering the 
polarization properties of the PSPC model, where the atomic degrees of freedom are 
coupled to a Nosé-Hoover thermostat to maintain a temperature of 298.0 K. Figure 4.2a 
shows the extended system conserved energy quantity, which differs for the three 
methods, using a 2.0 fs timestep. The conserved quantity for the SCF gold standard 
corresponds to all potential and kinetic energy terms of the atomic degrees of freedom 

(a) (b) 
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and the atomic thermostats66. For the EL(T,T*) method the ensemble is NV(T,T*), since 
a cold T* thermostat of 1.0K is coupled to the Drude-parent atom relative motion, and 
thus its conserved energy quantity now includes both sets of thermostats. The iEL/0-SCF 
method also couples the pseudo temperature of the auxiliaries to a thermostat.  So there is 
an extended system energy that includes the potential energy and kinetic energies of all 
the particles in the system, all of the auxiliary variable contributions, and the potential 
and kinetic energy of all the thermostats (atomic and auxiliary).  To make the 
contributions from auxiliary terms commensurate with the real terms we can fit an 
effective fictitious auxiliary mass, !!,!"", although it is formally 0 from the derivation of 
the method.  In essence the extended system energy conservation is enforced by 
construction with errors only associated with uncertainty in the linear fit.  It should be 
noted that these fitted auxiliary masses are purely for analysis purposes and do not 
contribute to the actual simulations, which formally partition no mass to the Drude or 
auxiliary Drude particles. 
 Table 4.1 shows that the EL(T,T*) method has more drift in the conserved energy 
than does the SCF solution, although the real system energy and molecular dipole 
properties among the three methods are well reproduced at a 2.0 fs time step. However, 
the greater drift in the conserved energy quantity for EL(T,T*) indicates that it is 
becoming more sensitive to integration errors and thus limitations on allowed time steps 
compared to the SCF and iEL/0-SCF approaches.  
 
Table 4.1. Conserved extended energy drift, average system potential energy, and average molecular 
dipole of the PSPC model in the NVT ensemble for the SCF, EL and iEL/0-SCF methods at different 
integration time steps (fs). !  is the average system potential energy in kcal/mol, !!"#  is the average 
molecular dipole in units of Debye, and !" /!" is the extended system conserved energy quantity in 
kcal/mol/ps. For iEL/0-SCF the conserved quantity is enforced by construction. Results are from 1.0 ns 
simulations of 512 water molecules at 298.0 K.  

 SCF EL(T,T*) iEL/0-SCF 
!" !!"#  !  !" /!" !!"#  !  !" /!" !!"#  !  
1.0 2.71 ± 0.01 -4110 ± 35 -0.0011 2.71 ± 0.01 -4110 ± 35 -0.0023 2.71 ± 0.01 -4110 ± 35 
2.0 2.71 ± 0.01 -4100 ± 35 -0.0017 2.71 ± 0.01 -4100 ± 35 -0.014 2.71 ± 0.01 -4100 ± 35 
3.0 2.71 ± 0.01 -4090 ± 35 -0.0037 2.71 ± 0.01 -4080 ± 35 -1.8 2.71 ± 0.01 -4080 ± 35 
4.0 2.71 ± 0.01 -4070 ± 35 -0.0014 2.70 ± 0.01 -4070 ± 35 -81 2.70 ± 0.01 -4050 ± 35 
5.0 2.70 ± 0.01 -4040 ± 35 -0.0027 --- --- --- 2.70 ± 0.01 -4020 ± 35 
6.0 2.69 ± 0.01 -4010 ± 35 +0.057 --- --- --- 2.69 ± 0.01 -3990 ± 30 
7.0 2.69 ± 0.01 -3970 ± 35 +1.0 --- --- --- 2.69 ± 0.01 -3950 ± 35 

 
 This is confirmed in Figure 4.3a which plots the minimum Drude mass required to 
maintain a stable simulation as a function of increasing time step from 1.0 fs to 4.0 fs for 
the EL(T,T*) method where T = 298.0 K and using a Drude-parent atom relative motion 
temperature T*= 1.0 K; beyond 4.0 fs the EL(T,T*) approach becomes unstable under 
any amount of mass repartitioning. As the integration time step increases, the 
repartitioned Drude mass must also increase, thereby becoming more and more untenable 
for accurately preserving the Born-Oppenheimer condition, which would manifest as 
evident degradation in polarization properties. This is seen in Figure 4.3b and 4.3c (as 
well as Figures E.11 and E.12), which report the induced dipole distributions and induced 
dipole autocorrelation function at the 4.0 fs time step (in which about 25% of the mass of 
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the parent oxygen atom is partitioned to the Drude oscillator) are in significant 
disagreement with the SCF result.  
 

 

 
Figure 4.3:  Molecular dynamics trajectory stability and polarization properties of the PSPC model using 
the EL(T,T*) method. (a) the minimum Drude mass required to maintain a stable MD simulation as a 
function of time step using a Drude-parent atom relative motion temperature set point of T* = 1.0 K; the 
EL(T,T*) method is unstable above 4.0 fs. (b) probability density distributions and (c) autocorrelation 
function for the oxygen induced dipole, !! = !!,!(!!,! − !!) from the EL(T,T*) method compared to SCF at 
a 4.0 fs time step. All simulations were performed in the NVT ensemble at 298.0 K.  All calculations 
presented in this figure use an internal coordinate system where the z-direction is given by the H-O-H 
bisector, the y-direction is out of the H-O-H plane, and the x-direction is orthogonal to z and y (see31 for 
details). 
 
 By contrast, Figure 4.4a shows that the effective, fitted mass of the auxiliary 
Drude centers for the iEL/0-SCF method is about an order of magnitude smaller than the 
repartitioned masses of the EL(T,T*) method, such that the effective temperature of the 
auxiliary degrees of freedom remain cold (< 10.0 K) for up to a 6.0 fs time step. Figures 
4.4b and 4.4c show that the iEL/0-SCF method tracks the SCF result accurately for the 
induced dipole distributions and induced dipole autocorrelation function at the 4.0 fs time 
step, unlike the EL(T,T*) method. In fact, polarization properties are as well reproduced 
as the SCF solution all the way up to the 6.0 fs time step (Figure E.10 and E.11) and other 
properties generated by iEL/0-SCF, such as the radial distribution functions of the liquid, 
match the SCF result at this largest time step (Figure 4.5).  
 

(a) (b) 

(c) 
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Figure 4.4: Molecular dynamics trajectory stability and polarization properties of the PSPC model using 
the iEL/0-SCF method. (a) The effective auxiliary mass, !!,!"" (left axis) and the resultant auxiliary mean 
temperatures (right axis) using the effective masses to convert from pseudo temperature to real 
temperature for the iEL/0-SCF method. (b) probability density distributions and (c) autocorrelation 
function for the oxygen induced dipole, !! = !!,!(!!,! − !!) from the iEL/0-SCF method compared to SCF 
at a 4.0 fs time step. See Figure 4.3 for remaining details. 
 

 

(a) 

(b) 

(c) 

(a) (b) 



56 

 
Figure 4.5: Radial distribution functions (RDF) of the PSPC Drude water model using the SCF and iEL/0-
SCF methods. (a) oxygen-oxygen RDF as a function of time step for the SCF method showing small 
changes in the first peak as time step increases. Oxygen-oxygen RDF (b), oxygen-hydrogen RDF (c), and 
hydrogen-hydrogen RDF for the SCF method and iEL/0-SCF method. Simulations were run in the NVT 
ensemble at 298.0 K and were at least 0.5 ns in length. Panels (b), (c), and (d) used a time step of 6.0 fs. 
 
 
4.5  Discussion 
 I would now like to consider why the iEL/0-SCF method is as good as an SCF 
solution although it requires no explicit SCF calculations at each time step.  The 
hypothesis is that the induced dipole updates, or equivalently the position updates of the 
real Drude particles, by making one evaluation of the electric field using the current 
auxiliary positions is performing a tightly converged SCF calculation on the fly. To 
bolster this argument, Figure 4.6a shows the autocorrelation function for the real dipoles 
and the single exponential fit to the initial decay, while Figure 4.6b reports the fitted time 
constant, as a function of the integration time step. Since the decay constant is on the 
order of a couple of hundred femtoseconds, the numerical integration of the auxiliary 
dipoles can “keep up” for adjusting the real polarization degrees of freedom for time 
steps up to 6.0 fs to follow that longer time scale decay. I found that a 7.0 fs time step 
remained stable but properties of the PSPC model were beginning to degrade, and at 8.0 
fs the simulation ultimately developed numerical instabilities after about 1.0 ns. 
 

 
Figure 4.6:  The initial time scales for decay of the oxygen time autocorrelation for the real induced 
dipoles for the iEL/0-SCF method. (a) single exponential fits (dotted lines) to the initial decay of the dipole 
created between the Drude and its parent atom, !!,! = !!,! !!,! − !!  (solid lines), for a range of time 
steps. (b) the time constant of the exponential fit to the initial decay from (a) as a function of time step.  

(d) (c) 
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It is also useful to analyze why the AMOEBA31, 34 polarizable model for water is 

restricted to a time step that is a factor of 6 times smaller than the PSPC model using the 
iEL/0-SCF approach, which I attribute to the following.  First, the PSPC has a rigid and 
not a flexible geometry like AMOEBA.  Second, PSPC does not include a Drude particle 
on the light hydrogen centers, unlike the AMOEBA model, which includes induced 
dipoles on hydrogens.  Third, PSPC has no intramolecular polarization and AMOEBA 
does. Finally, PSPC does not have short range, rapidly varying forces arising from dipole 
and quadrupole permanent electrostatics, as AMOEBA does. Thus the simplicity of the 
PSPC model is better able to conform its motion on the Born-Oppenheimer surface with 
much longer time steps based on a simpler design choice of the polarizable and 
electrostatic model.  

It would also be expected that for a polarizable Drude model for a protein with 
flexible bonds or a 4-site Drude polarizable water model that places Drude particles on 
light hydrogens that the time step of 6.0 fs possible with the PSPC model presented here 
would need to decrease. However, there is a possibility that a time reversible integration 
of an auxiliary system could nonetheless help boot strap the real degrees of freedom 
toward larger time steps even for these cases. 
 
 
4.6.  Conclusions 

In this chapter I have presented a Drude implementation of the iEL/0-SCF 
method, which proves to be as accurate and stable for both dynamic and thermodynamic 
properties for the PSPC water model when compared to a tightly converged SCF 
solution, and a significant improvement over the two temperature EL(T,T*) approaches 
by increasing the allowable integration time step by a factor of 2-3 with recommended 
time steps as large as 6.0 fs. For iEL/0-SCF the better stability likely comes from the 
exact analytical agreement between the energy and gradients compared to SCF, and the 
avoidance of any mass repartitioning when compared to EL so that the Born-
Oppenheimer condition is easily satisfied. I therefore conclude that using iEL/0-SCF for 
Drude gains the benefits of the minimal computational expense of an EL approach but 
with greatly increased time steps and the accuracy and robustness of an SCF method. As I 
noted in the Theory section (section 4.2), the addition of the iEL/0-SCF method to 
community codes would need to handle the dipole-dipole interaction tensor (Eq. (4.15)) 
and higher-order multipolar Ewald sums. Given that Amber and CHARMM have 
implemented the AMOEBA model, the software to implement the iEL/0-SCF approach is 
largely in place in these community codes. 
 
 
 
 
 
 
 
 
 



58 

5. 
General-Order Potentials, Integration, 

and Dissipation for iEL/0-SCF Methods 

 
5.1  Introduction 

Under the Born-Oppenheimer approximation64 the time scale separation between 
the motions of the nuclear and electronic degrees of freedom allows for the latter to be 
solved iteratively to self-consistency at each time step for a fixed nuclear configuration 
during a molecular dynamics trajectory.  Over the last decade Niklasson and colleagues70-

81 have introduced and developed a more generalized extended Lagrangian Born-
Oppenheimer molecular dynamics approach (XLBOMD), in which an auxiliary set of 
electronic degrees of freedom are used as either a time reversible initial guess for a self-
consistent solver or as part of a well designed approximate potential, which is termed a 
“shadow potential” (which conceptually is closely related to a shadow Hamiltonian104). 
The shadow potential is derived as a variationally fully minimized approximate 
functional for which exact forces can be calculated at low cost. With the right functional, 
one can obtain truly iteration-free dynamics by exactly integrating an approximate 
potential, as opposed to approximately integrating the exact potential. This idea of a 
backward error analysis is frequently used in applied mathematics and it is a key concept 
behind the construction of geometric integration schemes in classical dynamics105. 
Fundamentally these XLBOMD approaches form the basis for the iEL/SCF and iEL/0-
SCF methods presented in Chapters 2, 3, and 4.  While all such methods can be hindered 
by resonance or accumulating numerical errors in the integration of the auxiliary 
equations of motion, the inclusion of dissipation into the integration of the extended 
electronic degrees of freedom in the form of a Langevin-like friction has proven very 
effective for small systems at short time-scales that are more typical in ab initio 
molecular dynamics (AIMD)	 73. Alternatively, and more effectively for large classical 
systems92, one can use the auxiliary thermostatting scheme presented in Chapter 2 to 
tackle this issue, as well. 
 In this chapter I show that the iEL/0-SCF approach introduced in Chapter 3 is part 
of a general class of approaches whose success rests on the proper formulation of a 
shadow potential functional, that is a potential energy functional that is at its variationally 
optimized solution, and is a close approximation to the reference potential, for which 
exact forces can be evaluated. Although the general theoretical requirements in the 
construction of the shadow potential, in principle, are fairly well understood79, 81 previous 
approaches to building such potentials tended to be ad hoc22, 79, 81 as per the iEL/0-SCF 
method.  However, in contrast to previous theoretical formulations, the electronic degrees 
of freedom will not be used as auxiliary dynamical variables and instead an 
approximation to the interaction operator acting on the electronic or polarizable degrees 
of freedom is used as an extended dynamical degree of freedom. Furthermore, I combine 
the shadow potential formalism with Langevin-like friction73-75 introduced through 
higher-order integration schemes that increase the accuracy and stability of the molecular 
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dynamics and better minimize the energy drift. While this has previously been found to 
be difficult75, in this chapter I develop a general structure for systematically increasing 
the order of integration and dissipation to better satisfy time reversibility and energy 
conservation. I will show that by combining the systematic improvements in the shadow 
potential formulation with increasing order in the intrinsic integration error with 
commensurate order of dissipation, there are synergistic effects on accuracy and stability 
in the iEL/0-SCF formalism, as illustrated on a simple fluctuating charge model, but 
trivially extensible to induced formalism for polarization. Finally, I will show how the 
iEL/0-SCF method fits within this general framework, whose success is an interplay of an 
optimal shadow potential and a time-reversible auxiliary temperature control on the 
auxiliary equation of motion that mimics higher order dissipation.  
 
 
5.2 Theory 

Here I present a systematic way of constructing the ‘shadow potential energy 
functional’, that satisfies both an adiabatic separation of the time scales between the 
electronic and the nuclear degrees of freedom, while also delivering an accurate 
approximation of the underlying exact potential that is given through an iteration-free 
exact optimization. This is coupled to the formulation of the equations of motion that 
drive the dynamics of the nuclear and electronic degrees of freedom using higher order 
integration schemes with comparable order in friction-like dissipation. The combination 
of all aspects then yields a general framework for classical polarization whereby one can 
choose or construct shadow potentials, dissipation, and integration, each to any order, 
allowing one to control accuracy and energy drift to an arbitrary degree. I present the 
theory in terms of a fluctuating charge model, for which I have formulated numerical 
experiments in the Results (section 5.3), as well as the small variations needed to 
formulate the same theory for an inducible dipole model described in Appendix F. 
 
5.2.1  Higher Order Shadow Potentials.  

The exact electrostatic potential energy surface for a fluctuating charge model is 
given from the constrained charge optimization given in Eq. (5.1).  

 

!!"(!,!) = !!!+ 12!
!!" (5.1) 

 
In Eq. (5.1) ! is a vector of all the electronegativities of the ! atoms in the system 

(! = !!…!! ! ), !  is a vector of the fluctuating partial charges of the !  atoms 
(! = !!… !! !), ! denotes the positions of the ! atoms in the system, and ! = !(!) is 
a symmetric interaction tensor whose off-diagonal terms describe Coulombic interactions 
between charges !!  and !!  (!!" = 1/!!"  for ! ≠ ! in atomic units) and whose diagonal 
terms are twice the electronegative hardness of the !-th atom (!!! = 2!!)47. Ignoring 
enforcement of charge neutrality for simplicity, the set of charges that minimizes the 
potential surface in Eq. (5.1) is thus the ground state Born-Oppenheimer solution for the 
system as given by Eq. (5.2). 
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!!!"
!! = 0 = !! + !"     ⟹      !!"# =  −!!!! (5.2) 

 
The potential energy surface is then given as the variationally optimized 

equilibrated charge minimum, that is !!" !! = !!"(!! ,!!"#) from Eq. (5.2). Note that 
solving for !!! through matrix inversion or via an SCF procedure is the costly step that 
needs to be avoided. 

I now introduce a dynamical auxiliary variable !, which is designed to be a good 
approximation to !!!. Next a ‘shadow’ potential functional is built around ! using some 
function ! !  that is required to give a better approximation of !!! than ! itself, and for 
which one can control the degree to which this shadow potential matches the reference 
potential of Eq. (5.1).  This is presented in Eq. (5.3). 

 

!!!!"#$!" !,!,! = !!!+ 12!
! ! ! !!! (5.3) 

 
Eq. (5.4) is a method for approximating the inverse of the ! matrix such that 

! ! → !!! in the limit that ! → ∞ whose general form was introduced by Niklasson106 
as a generalization of the Schulz method originally derived for the case of ! = 2107.  

 
! ! = !!![!− !− !" !] (5.4) 

 
 The set of charges ! that minimizes this new form of the shadow potential 
functional can be determined by substituting Eq. (5.4) into Eq. (5.3) and differentiating, 
as shown in Eq. (5.5). 
 

!!!!!"#$!" !! ,!,!
!! = 0 = !! + ! ! !!!       

⟹  !!"# = −! ! ! = −!!! !− !− !" ! ! 
(5.5a) 

!!!!"#$!" !! ,! = 1
2!

!!!"# = − 12!
!!!! !− !− !" ! ! = − 12!

!!(!)! (5.5b) 

 
From Eq. (5.5a) one can see that the set of charges that minimize the shadow 

potential functional are given by the negative action of any choice for ! !  acting on the 
electronegativities, a straightforward operation, guaranteeing the variationally optimized 
minimum condition. Eq. (5.5b), then, gives various equivalent forms of this shadow 
potential energy surface at the variationally optimized minimum described by Eq. (5.5a) 
for different values of m. Note that while !!! does appear explicitly in Eq. (5.5) it is 
annihilated when multiplied into the expansion and does not appear when writing ! !  
for some finite ! (Table 5.1).   

Following the previous work of Niklasson and colleagues79, 81 one can now define 
an extended Lagrangian for a system with the shadow potential of Eq. (5.5b). Instead of 
introducing auxiliary degrees of freedom that represent the electronic degrees of freedom 
themselves (auxiliaries representing !) we now build the extended Lagrangian with the 
auxiliary ! matrix, which should dynamically follow the behavior of the !!! operator 



61 

matrix, as a dynamic degree of freedom with a fictitious mass, !! . This extended 
Lagrangian is given by Eq. (5.6).  

 

ℒ !! , !! ,!,! = 1
2 !!!!!

!

!!!
+ 12!!tr !! − ! !! + 

1
2!

!!(!)!− 12!!!!tr !!! − ! !  

(5.6) 

 
In Eq. (5.6) ! !  are other non-electrostatic potential energy functions that may 

be in the system such as bonds, angles, van der Waals interactions, etc. that are 
independent of the fluctuating charges. The final term in Eq. (5.6) is a harmonic oscillator 
with frequency ! that seeks to keep the auxiliary ! close to the ground state solution. 
This oscillator fluctuates about !!!, which is given as a general placeholder for !!!.  
!!! can explicitly be !!!, which is not practical as inverting the ! matrix is what is to be 
avoided, so !!!  can be any approximation to !!! , as long as !!!  is a better 
approximation to !!! than ! itself.  

 
Table 5.1:  The mth-order !(!), and the corresponding variationally minimized set of atomic partial 
charges, !, for that order along with the shadow potential, !!!!"#$!" , and equations of motion for the 
nuclear degrees of freedom and the auxiliary matrix, !!!! and !!!, respectively.   

! 2 3 4 

!(!) 2! − !"! 3! − 3!"! + !"!"! 4! − 6!"! + 4!"!"!
− !"!"!"! 

! − 2! − !"! ! − 3! − 3!"! + !"!"! ! − 4! − 6!"! + 4!"!"!
− !"!"!"! ! 

!!!!"#$!"  − 12!
! 2! − !"! ! − 12!

! 3! − 3!"! + !"!"! ! − 12!
! 4! − 6!"! + 4!"!"!

− !"!"!"! ! 

!!!!
= − !" !!

!!!
+⋯ − 12!

!!! !!!!!
!" 

− 12!
!!! 3 !!!!!

− !!
!!!

!"

− !" !!
!!!

!" 

− 12!
!!! 6 !!!!!

− 4 !!!!!
!"

+ !!
!!!

!"!" − 4!" !!
!!!

+ !"!" !!
!!!

+ !" !!
!!!

!" !" 

! = !! ! − !"!  !!(2! − 3!"! + !"!"!) !!(3! − 6!"! + 4!"!"!
− !"!"!"!) 

  
Applying the Euler-Lagrange equation to the Lagrangian of Eq. (5.6) one can 

derive the equations of motion for the system where Eq. (5.7a) is the equation of motion 
for the i-th real particle and Eq. (5.7b) for the auxiliary matrix, !. 

 

!!!! = −!" !!
!!!

+ 12!
! !" !
!!!

!−!!!!(!!! − !)!!
!!

!!!
 (5.7a) 

!!! =
1
2
!
!! !!! ! ! +!!!! !!! − ! −!!!!(!!! − !)!!

!!

!!  (5.7b) 

 
From the equations of motion in Eq. (5.7) one can assume a classical adiabatic 

separation between the time scales of the particle and auxiliary motion where 
!
!! !!! ! !  decays as !!! or faster. With this assumption and taking the limit !! → 0 
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and ! → ∞, the resulting equations of motion are given by Eq. (5.8), where !" !
!!!

 has 
been explicitly evaluated and Eq. (5.4) is used for ! ! . 

 

!!!! = − !" !!
!!!

− 12!
!!!! !!

!!!
!!! ! − ! − !" ! − ! − !" ! !!

!!!

!!!

!!!
! ! − !" !!!!! ! (5.8a) 

! = !! !!! − ! = !! !!![!− !− !" !]− !      (5.8b) 
 

Eq. (5.8a) gives the particle equation of motion, whose electrostatic force (second 
term on the right hand side) is now explicitly dependent on the auxiliary variable !.  Eq. 
(5.8b) defines an equation of motion that will propagate the auxiliary !, choosing 
!!! = !(!), and guarantees that the energy is variationally minimized by construction 
with a shadow potential that matches the exact reference potential from Eq. (5.1) to an 
increasing degree of accuracy as ! increases. Notice that for both Eq. (5.8a) and (5.8b), 
the equations of motion that drive this system no longer depend on an auxiliary mass 
parameter, !!. One may note, again, that !!! appears explicitly in Eq. (5.8), but this 
inverse is annihilated in the expansions of these equations for finite !, as seen in Table 
5.1. Table 5.1 also gives explicit expressions for the equations of motion (Eq. (5.8)), 
! ! , !!!!"#$!" , and ! for several values of !. Finally, at the beginning of a simulation ! 
is initialized to !!! (or a close approximation), but this expensive operation only needs to 
be calculated once. 
 Using Eq. (5.8) one can now build iEL/0-SCF based schemes that are time 
reversible, have exact analytical agreement between forces and energies, and yield 
ground state fluctuating charges that minimize the potential energy at every time step 
using a potential energy function that can be made arbitrarily close to the reference 
energy function by choosing higher values of !.  One can see that this approach is 
similar to that of Brooks and colleagues82-83 who build the polarization energy as a 
perturbation of the electrostatics truncated at a certain order, then statistically 
extrapolating to an infinite order to, in principle, recover the true energy minimized 
mutual polarization response. By contrast, here I obtain an exact minimization of an 
approximate potential energy, which matches the true potential energy to an arbitrary 
degree. 
 
5.2.2  Higher Order Dissipation.  

In practice the equation of motion of the auxiliary degree of freedom (Eq. (5.8b)) 
can suffer from resonance effects or instabilities caused by its coupling to the real degrees 
of freedom or due to numerical noise in the integration23, 73, discussed extensively in 
Chapter 2. These numerical artifacts need to be dissipated away lest the auxiliary matrix 
! drift too far from !!! and cause the simulation to become unstable or energy to drift. 
To combat this problem Niklasson and colleagues73 introduced a modified Verlet 
integration scheme for the auxiliary equation of motion, which has an additional 
dissipative term similar to the friction term used in Langevin dynamics. In Chapter 2 I 
introduced a method whereby the auxiliaries are coupled to thermostat control to alleviate 
this issue.  Here I will take a different tack and introduce some amount of dissipation into 
the Verlet integration of the auxiliary equation of motion, Eq. (5.8b), this is introduced 



63 

with a friction-like term that is dependent on the history of the auxiliary matrix !, as 
given in Eq. (5.9). 

 

! ! + !! = 2! ! − ! ! − !! + ! !!! ! − ! − !" ! ! − ! ! + ! !!!(! − !"#)
!

!!!
 (5.9) 

 
In Eq. (5.9) !" is the time step of the simulation, ! controls the strength of the 

dissipation, and ! is the order of the dissipation. I have also introduced ! = !!!!!, a 
dimensionless parameter that now controls the frequency of the auxiliary harmonic 
oscillation. While Eq. (5.9) does break time reversibility, the coefficients of the friction 
term, !!, are designed to only break time reversibility up to !(!!!!!!) by removing odd-
order terms in !" from an expansion of the equation of motion73. These coefficients are 
reproduced for several orders governed by ! in Table 5.2. 
 
Table 5.2:  Coefficients for friction-like dissipation73. 
! !! !! !! !! !! !! !! !! !! !! 

3 -2 3 0 -1       
4 -3 6 -2 -2 1      
5 -6 14 -8 -3 4 -1     
6 -14 36 -27 -2 12 -6 1    
7 -36 99 -88 11 32 -25 8 -1   
8 -99 286 -286 78 78 -90 42 -10 1  
9 -286 858 -936 364 168 -300 184 -63 12 -1 

                   
5.2.3  Higher Order Integrators 

 The integration of the equation of motion given in Eq. (5.8), and combined with 
dissipation, is typically done by Verlet integration, shown in Eq. (5.9). While Verlet 
integration is generally robust, being symplectic, time-reversible, and energy conserving, 
one may want to use higher-order geometric integration schemes in order to realize a 
higher degree of accuracy or to use larger time steps. Such higher-order integrators have 
a general multi-step form (! = 1,2,… , !) described by Eq. (5.10). 

 

! ! + !!!"
!

!!!
= ! ! + !!!"

!!!

!!!
+ !!!"! ! + !!!"

!!!

!!!
,    ! = 1,2,… , ! (5.10a) 

! ! + !!!"
!

!!!
= ! ! + !!!"

!!!

!!!
+ !!!"! ! + !!!"

!

!!!
,    ! = 1,2,… , ! (5.10b) 

 
For an integrator with ! intermediate integration steps, Eq. (5.10) represents the 

!!! update of the velocity and position where the overall time step !" is divided into ! 
segments. The coefficients !! and !! are specific to the integrator and are subject to the 
condition !!!

!!! = !!!
!!! = 1. Previously the use of friction-like dissipation when 

integrating the auxiliary equation of motion, Eq. (5.8b), was not well-defined in the 
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context of higher-order integrators of the form of Eq. (5.10) due to the use of velocities as 
intermediates for higher order integrators75.  
 Here I define a generalization of the friction-like dissipation terms of the modified 
Verlet integration scheme, Eq. (5.9), to the higher order integrator schemes of Eq. (5.10). 
As a general integration scheme this combination of friction-like dissipation and general 
order integration takes the form of Eq. (5.11). Eq. (5.11) introduces dissipation as a 
friction-like force term as the last term in Eq. (5.11a), thus only appearing in the velocity 
updates.  The key insight is that ! sets of ! previous positions are stored, and during the 
calculations of friction terms of the !!! velocity update only the positions at integer 
multiples, k, of the full integration time step, Δt, from previous !!! integration steps are 
considered. Position updates stay the same and do no require any special consideration. 
 

! ! + !!!"
!

!!!
=  ! ! + !!!"

!!!

!!!
+ ! ! + !!!"

!!!

!!!
+ !!!!" !!! ! − !"# + !!!"

!!!

!!!

!

!!!
 (5.11a) 

! ! + !!!"
!

!!!
= ! ! + !!!"

!!!

!!!
+ !!!"! ! + !!!"

!

!!!
 (5.11b) 

 
Applying the general integration of Eq. (5.11) to the auxiliary equation of motion, 

Eq. (5.8b), then takes the following form of Eq. (5.12). 
 

! ! + !!!"
!

!!!
=   ! ! + !!!"

!!!

!!!
+ !!!!" !!! ! − ! − !" ! + !!!"

!!!

!!!

!

− ! ! + !!!"
!!!

!!!

+ !!!!" !!! ! − !"# + !!!"
!!!

!!!

!

!!!
 

(5.12a) 

! ! + !!!"
!

!!!
= ! ! + !!!"

!!!

!!!
+ !!!"! ! + !!!"

!

!!!
 (5.12b) 

 
Table 5.3 gives the optimal integration parameters !! and !! to minimize the error 

of the integration for a velocity Verlet method88 and also several optimal higher-order 
methods as described by McLachlan and Atela96. 
 
Table 5.3:  Integration schemes of various order and their parameters96. Note that the 5th-order optimal 
method requires a time step to be broken down into six velocity and position updates, ! = 6 .  In 
nomenclature for the remainder of this paper ! = 2, ! = 3, ! = 4, and ! = 6 will refer to the 2nd-order, 
3rd-order, 4th-order, and 5th-order optimal methods, respectively. 
Integrator Name ! !! !! 

velocity Verlet 2 !! = 1 
!! = 0 

!! =
1
2 

!! =
1
2 

2nd–order optimal 2 !! =
1
2 

!! = 1 − !! 

!! = !! 
!! = !! 

3rd–order optimal 3 !! = 0.919661523017399857 !! = !! 
!! = !! 
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!! =
1
4!!

− !!2  

!! = 1 − !! − !! 

!! = !! 

4th–order optimal 4 

!! = 0.5153528374311229364 
!! = −0.085782019412973646 
!! = 0.4415830236164665242 
!! = 0.1288461583653841854 

!! = 0.1344961992774310892 
!! = −0.224819030794208058 
!! = 0.7563200005156682911 
!! = 0.3340036032863214255 

5th–order optimal 6 

!! = 0.339839625839110000 
!! = −0.088601336903027329 
!! = 0.5858564768259621188 
!! = −0.603039356536491888 
!! = 0.3235807965546976394 
!! = 0.4423637942197494587 

!! = 0.1193900292875672758 
!! = 0.6989273703824752308 
!!
= −0.1713123582716007754 
!! = 0.4012695022513534480 
!! = 0.0107050818482359840 
!!
= −0.0589796254980311632 

 
5.2.4  Combining Shadow Potentials, Dissipation, and Integration of Varying Order  

Using the methods proposed in previous sections one can now construct a shadow 
potential to match the reference potential for any order, selecting from Table 5.1 and 
driving the equations of motion in Eq. (5.8). One can also select a dissipative scheme that 
will only break time reversibility up to some chosen order by selecting from Table 5.2. 
Finally one can choose an integration scheme that is correct to some order in !" by 
integrating with Eq. (5.12) and choosing a method from Table 5.3. This sets forth a 
general framework for extended Lagrangian Born-Oppenheimer dynamics for classical 
polarization. While here I have illustrated this formalism with a classical fluctuating 
charge model I also present the formalism adapted for an induced dipole model in 
Appendix F.  

 
Table 5.4:  Optimal ! and ! values for a combination of dissipative and integration orders, ! and !, 
respectively.  The value of the dissipation for each combination, [!(!)]!"#, is also given.  Details on the 
derivation of these values are given in Appendix G. 

Integrator Name ! ! ! ! [!(!)]!"# 

velocity Verlet 

2 3 1.776 0.112 0.5785 
2 4 1.738 0.0655 0.8278 
2 5 1.752 0.0248 0.9084 
2 6 1.769 0.00825 0.9487 
2 7 1.790 0.00250 0.9708 
2 8 1.802 0.000750 0.9833 
2 9 1.818 0.000212 0.9906 

2nd-order optimal 

2 3 2.183 0.190 0.7315 
2 4 2.279 0.0712 0.7487 
2 5 2.271 0.0292 0.8597 
2 6 2.281 0.0101 0.9150 
2 7 2.295 0.00320 0.9469 
2 8 2.311 0.000958 0.9665 
2 9 2.327 0.000276 0.9787 

3rd-order optimal 

3 3 3.856 0.403 0.9178 
3 4 4.025 0.155 0.8727 
3 5 4.172 0.0475 0.8290 
3 6 4.312 0.0125 0.7792 
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3 7 4.376 0.00349 0.7644 
3 8 4.350 0.00117 0.8326 
3 9 4.323 0.000382 0.8735 

4th-order optimal 

4 3 3.891 0.363 0.9154 
4 4 4.061 0.139 0.8704 
4 5 4.187 0.0430 0.8259 
4 6 4.292 0.0116 0.7731 
4 7 4.332 0.00340 0.7646 
4 8 4.298 0.00121 0.8296 
4 9 4.288 0.000384 0.8703 

5th-order optimal 

6 3 3.973 0.358 0.9206 
6 4 4.133 0.139 0.8781 
6 5 4.255 0.0434 0.8366 
6 6 4.361 0.0117 0.7895 
6 7 4.424 0.00316 0.7425 
6 8 4.385 0.00115 0.8167 
6 9 4.371 0.000371 0.8602 

  
5.2.5  Optimal Parameters 

 The integration described by Eq. (5.11) is dependent on two key parameters not 
yet discussed, ! and !, which are given in Table 5.4. The parameter ! describes the 
frequency of the auxiliary harmonic and should be as high as possible to drive ! to the 
ground state solution and to enforce an adiabatic decoupling to the nuclear motion. We 
want ! to be as high as possible as well, to give the maximum possible amount of 
dissipation to stay close to the ground state solution and to dampen resonance and 
numerical noise. With these conditions in mind, Appendix G examines what the optimal 
sets of ! and ! parameters are (summarized in Table 5.4), which rounds out the necessary 
information to build a general iEL/0-SCF method. 
 
 
5.3  Results 

To give a clear illustration of the general approach allow me to choose the lowest 
order of shadow potential, dissipation, and integration by selecting ! = 2 from Table 
5.1, ! = 3  from Table 5.2, and ! = 2  (second-order optimal) from Table 5.3. The 
equations of motion become Eq. (5.13a) for the particles and Eq. (5.13b) for the 
auxiliary, !. 

 

!!!! = −!" !!
!!!

− 12!
!!! !!!!!

!" (5.13a) 

! = !! !− !"!  (5.13b) 
 
If Eq. (5.13) is now integrated with 2nd-order optimal integration and 3rd–order 

dissipation, a single full integration time step would look like Eq. (5.14). 
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! ! + !!!" = ! ! + !!!!" ! ! − ! ! !" !

+ !!!!" !!! ! + !!! ! − !" + !!! ! − 2!" + !!! ! − 3!"  
(5.14a) 

! ! + !!!" = ! ! + !!!"! ! + !!!"  (5.14b) 

! ! + !" = ! ! + !!!" + !!!!" ! ! + !!!" − ! ! + !!!" !" ! + !!!"

+ !!!!" !!! ! + !!!" + !!! ! + !!!" − !"
+ !!! ! + !!!" − 2!" + !!! ! + !!!" − 3!" 	

(5.14c) 

! ! + !" = ! ! + !!!" + !!!"! ! + !" 	 (5.14d) 
 
For brevity the time dependence of the ! matrices has been dropped, but these 

need to be updated with the positions, !. The particle equation of motion should be 
integrated using the corresponding 2nd-order optimal integration scheme as the auxiliary 
!, but without the dissipative force term. In this case the integration of the particles 
would therefore be given by Eq. (5.15), which would be interleaved with Eq. (5.14) at 
equal time intervals. 

 

!! ! + !!!" = !! ! + !!
!!!"

−!" !! !
!!! !

− 12!
!!!(!) !!!!!

!(!)!  (5.15a) 

!! ! + !!!" = !! ! + !!!"!! ! + !!!"  (5.15b) 
!! ! + !" = !! ! + !!!"

+ !!
!!!"

− !" !! ! + !!!"
!!! ! + !!!"

− 12!
!!! ! + !!!"

!!
!!!

! ! + !!!" ! 	 (5.15c) 

!! ! + !" = !! ! + !!!" + !!!"!! ! + !" 	 (5.15d) 
  

I next test the theory presented above using a dimensionless charge equilibration 
model, involving three particles with electrostatic interactions described by Eq. (5.1) 
along with a harmonic restraining potential for each particle, which constitutes the 
entirety of the system. For further simplicity the system was confined to a single 
dimension. This basic system allows for efficient testing of the potentials, integrators, and 
dissipation schemes. Furthermore, the simple charge equilibration model does not exhibit 
a well-defined statistical temperature, and if successful, the higher-order dissipative 
integration schemes should therefore be applicable also to first-principles Born-
Oppenheimer molecular dynamics92. 
 
5.3.1  Dissipation 

To illustrate why the iEL/0-SCF schemes require dissipation, I introduce a 
perturbation after 1000 time steps into the simulation, by swapping the auxiliary matrix, 
!, with its value from three time steps previous. This modeled perturbation simulates a 
spike in numerical noise or a resonance instability one may encounter in a more complex 
system. Figure 5.1 shows the scaled energy deviation from the initial system energy over 
the course of a simulation.  For good energy conservation one would expect this quantity 
to stay close to 0 with little drift. In Figure 5.1 it can be seen that this perturbation is 
quickly corrected when a dissipative scheme is used (red curve), however, when no 



68 

dissipation is used the auxiliary variables have no way to remove the momentary 
disturbance and their equation of motion quickly becomes unstable.  

 
Figure 5.1:  The response of the scaled energy deviation to a perturbation for a dissipative (red) and non-
dissipative (black) integration scheme. Both schemes used a 3rd-order optimal integrator (! = 3) and a 7th-
order dissipative scheme (! = 7). The introduced perturbation (dotted blue line) is a swap of the ! matrix 
at the 1000th time step with its previous value at the 997th time step.  
 

One downside to the friction-like dissipative schemes described is that they break 
time reversibility, which can lead to energy drift. So while dissipation is necessary to 
account for numerical noise or resonance effects if a dissipative scheme is used as 
described in section 5.2.2 one can achieve low energy drift rates by using higher order 
dissipation, where the dissipative !! (! = 0, 1,… ,!) coefficients are designed to only 
break time reversibility up to some order ! in the time step73, 75.  In Figure 5.2a I give an 
example of the energy drift over the course of a trajectory for a specific integration order 
and shadow potential order where it can be seen that the energy drift decreases as the 
dissipative order increases. This trend is then replicated for many combinations of 
integration order and shadow potential order in Figure 5.2b, where I report the fitted 
energy drift rates as a function of dissipative order.  

  

 
Figure 5.2: Energy conservation properties as a function of dissipation. (a) The scaled energy deviation 
from the total initial energy over trajectories using the second order optimal integration method (! = 2) 
and various dissipative orders, !. (b) The fitted energy drifts as a function of dissipative order, !, for 
various combinations of integration order, !, and shadow potential order, !.  In (b) line color denotes 
shadow potential order and line and symbol shape denote integration order. The time step has been 
increased by a factor of 5 to clearly demonstrate the effect of dissipative order on energy drift. The energy 

(a) (b) 
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drift is calculated by taking a linear fit of the energy over total simulation time, !!/! , and non-
dimensionalized by the time step and initial energy. 
 

I note that the dissipation schemes presented here in section 5.2.2 are not the only 
way to introduce dissipation into the auxiliary integration. One can also define an 
auxiliary temperature and use a thermostat to control that temperature, essentially 
ensuring that the inertia of the auxiliaries does not diverge, as introduced an proven in 
Chapter 2. While this method works well for large systems where the temperature better 
manifests as a macroscopic quantity, it has been shown that it does not perform well if 
system sizes are too small92, where the temperature becomes quite variable and hard to 
control, such as in this test system. However, for larger systems the amount of 
information that needs to be stored increases as !(!!), as !~!!, and the highest order 
dissipative methods required for excellent energy conservation can become very memory 
intensive. Hence for larger systems, auxiliary temperature control may be the more 
attractive option, since it does not require storing any history and relies only on 
information in the current time step.  Auxiliary temperature control also performs better 
for classical condensed phase simulation than dissipation discussed in this Chapter. 

 
5.3.2  Integration 

Using the formulation I developed in Eq. (5.11) one can now use general order 
dissipative methods with general order integrators. While a higher order integration 
scheme requires more force evaluations per time step  (which can be expensive), the 
benefit that is derived is a more stable simulation and more accurately calculated 
properties, such as energy shown in Figure 5.3 for a second order (! = 2) shadow 
potential. Figures 5.3a and 5.3b show that for the same time step, and more force 
evaluations, the higher order integrators give a lower deviation in the energy along a 
trajectory. If instead a fixed cost is maintained (higher order integrators use larger time 
steps so that the number of force evaluations per total simulated time is fixed) then the 
higher the order the integrator, the greater the deviation that is seen for a second order 
shadow potential. 

Figure 5.3c shows the interplay of integration order with the order of the shadow 
potential. For this particular system the benefits of going to fourth (! = 4) and fifth 
(! = 6) order optimal integration are marginal when using just a second order shadow 
potential, but I can achieve ever greater accuracy by increasing the integration order with 
higher order shadow potentials. Whereas for a second order shadow potential the energy 
deviation became worse with increasing integration order for fixed cost, by using third 
and fourth order shadow potentials now a fixed cost simulation can yield a greater 
accuracy by using a higher integrator order. This demonstrates that the more accurate 
integration is able to reveal the adequacy of the approximation of the shadow potential to 
the true solution.  

As Figures 5.3d and 5.3e show, the difference between the potential energies and 
forces with respect to an exactly converged reference potential scale as !!!!  and 
!!!(!!!), respectively. This means that higher order shadow potentials will scale more 
rapidly in their deviation from the reference potential as the time step increases and will 
therefore require more accurate (higher order) integration to realize this greater 
agreement with the reference potential.  
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5.3.3  Shadow Potentials 
Since the potential is variationally optimized at each time step by construction 

with Eq. (5.5b), with no explicit matrix inversion, this system is at the ground state of the 
shadow potential at every time step. Similar to integrator order, in the limit of high 
shadow potential order the true self-consistent solution to the reference potential is 
obtained, which is the highest possible level of accuracy one could obtain in terms of 
potential energy convergence.   

 

 

 
Figure 5.3:  Scaled energy deviation and standard deviation over the course of a trajectory using fifth 
order dissipation (! = 5) with a second order shadow potential (! = 2) for various integration orders (!) 
and scaling of errors in potential energy and forces with time step.  (a) For each order of the integrator the 
same time step is used, but differ in the number of force evaluations used. (b) The time steps are adjusted so 
that each order of integrator uses the same number of force evaluations per time so that the higher order 
the integrator the larger the time step. (c) Standard deviation using fixed time step or fixed number of force 
evaluations (fixed cost) over the course of a trajectory for different orders of the shadow potential for 
various optimal integration orders. The color and line style denotes the shadow potential order (black 
dashed is second order, ! = 2; red dotted is third order, ! = 3; blue red/dotted is fourth order, ! = 4) 
and symbol denotes same time step (solid square) or same cost (hollow circle). The difference (L2 norm) 
between the potential energy (d) and forces (e) compared to the exactly converged reference potential as a 
function of time step and for various orders of the shadow potential.  Fitted dependencies on time step, !", 

(a) (b) 

(c) (d) 

(e) 
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are plotted as solid lines for comparison.  Note that the limit of machine precision here is ~10!!", which is 
why the ! = 4 curve in (e) does not scale to !" = 0.01. 
 

Figure 5.4a gives an example of this, where I present the energy trajectory over 
the course of a simulation for a specific value of integration and dissipation order, but 
with varying orders of the shadow potential. Figure 5.4b shows that one can reach 
complete convergence of the simple fluctuating charge model with just a third order 
shadow potential for integration schemes up to fourth order (! = 4). For a fifth order 
integration (! = 6) a fourth order shadow potential (! = 4) is needed to achieve a level 
of convergence akin to the fully converged reference potential. Therefore, one can choose 
exactly how closely we need to match the reference potential for a given application. In 
practice, the necessary order of the shadow potential could be dictated by time scale of 
decay of the true ground state solution. If the electronic degrees of freedom decay on a 
time scale much longer than the time step, as we have shown for classical polarization 
models24, as discussed in Chapter 4, then the shadow potential may not need to be of a 
high order to accurately follow the dynamics. 

 

 
Figure 5.4:  (a) Scaled energy deviation and (b) standard deviation over the course of a trajectory using 
fifth order dissipation (! = 5) with a second order optimal integration (! = 2) for various shadow 
potential orders (!). In both plots the ‘exact’ dynamics are given as a point of comparison where the ! 
matrix is inverted directly and used with the reference potential, Eq. (1) to drive the dynamics for a given 
integrator order. 
 

Figure 5.5 gives a succinct summary of the interplay between the shadow 
potential order, order of the integration scheme, and order of dissipation in terms of the 
energy deviation from the initial energy over the course of each type of simulation. For 
the simulation that uses a low dissipative order, low integration order, and low shadow 
potential order, the energy exhibits large fluctuations and energy drift. Upon increasing 
the dissipative order, the energy drift has been corrected since the time irreversibility of 
the dissipation is pushed out to a higher order in the time step. By increasing the 
integration order the underlying shadow potential is more accurately integrated and the 
energy deviations decrease. Finally, increasing the order of the shadow potential gives a 
better approximation to the underlying fully converged reference potential and the 
deviations decrease even further. 

 

(a) (b) 
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Figure 5.5:  Scaled energy deviations for selected combinations of dissipation order, !; integration order, 
!; and shadow potential order, !.  The combinations are low dissipation, low integration, low shadow 
potential (black); high dissipation, low integration, low shadow potential (red); high dissipation, high 
integration, low potential (blue); and high dissipation, high integration, and high shadow potential (green). 
 
 
5.4  Discussion 

The methods discussed in this chapter present a generalized starting point from 
which to work with for iEL/0-SCF methods. As discussed, using !(!) in Eq. (5.4) as the 
approximate inverse matrix, !!! , in Eq. (5.7) introduces expensive matrix-matrix 
multiplication into the auxiliary equation of motion. For larger or condensed phase 
systems !!! could instead be approximated by using real space cutoffs and leveraging 
sparse linear algebra techniques for the multiplication in order to improve its scaling. 
Here I show that the iEL/0-SCF method introduced in Chapter 3 formally fits within the 
general framework, and furthermore that it leads to a reduction in cost by replacing the 
matrix-matrix with a matrix-vector calculation.  

Taking the case of a 2nd-order potential (! = 2) and ignoring dissipation for a 
moment, the equations of motion are given in Eq. (5.16)  

 

!!!! = −!" !!
!!!

− 12!
!!! !!!!!

!" (5.16a) 

! = !! 2!− !"!− !  (5.16b) 
 
From a computational efficiency perspective there is no great expense in the 

particle equation of motion, Eq. (5.16a), as one only ever has to perform matrix-vector 
multiplications which are !(!!).  This can easily be seen as !" and !!!! are matrix-
vector operations resulting in vectors and !!!! !!

!!!
[!"] would become a matrix-vector 

operation, as well. The auxiliary equation of motion, Eq. (5.16b), however, has a matrix-
matrix-matrix multiplication, !"!, which is !(!!) and would scale poorly with system 
size. One practical remedy that can be applied for the ! = 2 case is to perform a change 
of variables and actually dynamically integrate ! = −!" instead of !. In this case, the 
dynamical variables correspond to the matrix operator acting on a vector, as opposed to 
the matrix operator itself. This substitution is also convenient for ‘bulk’ simulations 
where periodic boundary conditions or Ewald summations are used and explicitly 
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calculating the interaction matrix operator itself is difficult. Making this substitution the 
equations of motion now become Eq. (5.17). 

 

!!!! = −!" !!
!!!

− 12!
! !!
!!!

! (5.17a) 

! = !! ![!]− !  (5.17b) 
 
In Eq. (17b) I have made use of the identity in Eq. (5.5b), ! = −! ! !.  In this 

specific case, ! is now a vector and costly matrix-matrix multiplication is avoided. The 
new auxiliary, !, can be thought of as an auxiliary variable that will stay close to the 
ground state fluctuating charges, !, and ![!] then becomes an approximation of the 
ground state charges. For ! > 2, ! is not always multiplied into ! like it is in particle 
equation of motion, Eq. (5.16a), so this substitution trick is specific to ! = 2, but does 
represent a special case were integration of the auxiliary equation of motion could be 
made more efficient. 
 This result is now very similar to previously described methods presented in 
Chapters 2, 3, and 4, which can now be seen as a specific type of approximation to the 
general formalism outlined here.  For example, to recover the previously described iEL/0-
SCF method22 the specific form of ![!] used is described by Eq. (5.18a), which is a 
single iteration using ! as an initial guess. A further refinement for the auxiliary equation 
of motion, Eq. (5.18b) is introduced as a corrector-like step with a tunable correction 
parameter, !, which can range from 0 to 1. 
 

![!] = −!!!!−!!!(!+ !)! (5.18a) 
!!"# ! ≈ !! ! − 1− ! ! (5.18b) 

 
In Eq. (5.18) !, !, and ! are the diagonal, lower triangular, and upper triangular 

components of !, respectively. Since the diagonal components, !, are simply fixed 
parameters (the atomic hardness) the inverse !!! is straightforward and need only be 
calculated once at the beginning of a simulation. One further refinement of the iEL/0-
SCF method is that ![!] is used in the particle equation of motion, as opposed to !. 
Since ![!]  is now dependent on particle positions, whereas !  is not as it is an 
independent dynamic degree of freedom, one must account for this additional position 
dependence in the particle equation of motion. Combining all of these refinements we 
recover the iEL/0-SCF equations of motion, Eq. (5.19). 

 

!!!! = −!" !!
!!!

− 12!
![!] !!!!!

![!]+ !! + !![!]! !!! !!
!!!

! (5.19a) 

! = !"! ![!]− !  (5.19b) 
 
This, then, is a specific example of how one might use this general formalism, in 

which the formal methods can be computationally expensive, as a starting point to 
introduce approximations to reduce cost. While the general method of Eq. (5.16) involves 
expensive, poorly scaling matrix-matrix multiplication, subsequent approximations that 
led to Eq. (5.19) gives the iEL/0-SCF method, which was proven effective for large, 
condensed phase systems in Chapters 3 and 4.  It is interesting to note that the dissipation 
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approach described here was not used for the iEL/0-SCF method, since even for the 
higher order dissipation method it does not perform as well as time-reversible auxiliary 
temperature control to the auxiliary equation of motion, as introduced in Chapter 2. 
While the auxiliary thermostatting scheme is arguably the best choice for long time scale 
simulations of systems with many degrees of freedom, for small test systems or small ab 
initio systems the dissipative schemes presented in this chapter may be suitable. 

 
 

5.5  Conclusions 
I have presented a general and flexible framework on which to build iEL/0-SCF 

methods for treating models that require self-consistent optimization at each time step.  
This general framework combines increasing orders of shadow potentials that are 
designed to systematically improve agreement with the reference potential, increasing 
orders of dissipation to correct for unwanted numerical noise or resonance effects, and 
higher order integrators to provide greater accuracy in the simulation of properties of a 
given potential, such as energy conservation. When used together I obtain equations of 
motion for an auxiliary matrix, !, a dynamically driven approximation to the inverse 
interaction operator that would normally solve the true system exactly. Within this 
general framework, then, one can choose a combination of dissipation, integration, and 
shadow potential suitable for a given application and in terms of what is acceptable for 
energy drift and accuracy. In general, greater dissipation order will lead to less energy 
drift and greater integration and shadow potential order will lead to better accuracy. I 
illustrated these results with a small, simple fluctuating charge system. 
 From this chapter there is now a better understanding as to why the previously 
introduced iEL/0-SCF method from Chapters 3 and 4 works as well as it does for larger 
condensed phase systems by casting it within this general framework. First is that by 
proposing an alternative auxiliary integration variable, only applicable to low orders of 
the shadow potential (! = 2), one can avoid the matrix-matrix multiplication by 
integrating a vector auxiliary quantity instead of a matrix, which ultimately recovered the 
iEL/0-SCF equations of motion.  Furthermore, while the cost of the dissipation schemes 
presented here may also prove to be too expensive for larger systems due to the necessity 
of storing matrices that scale as !(!!) from previous time steps, the use of auxiliary 
thermostats23 is largely analogous to implementation of a very high order dissipation 
scheme. 
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6. 
Combining iEL/0-SCF with Stochastic 

Isokinetic Integration 
 

6.1  Introduction 
Recently Tuckerman and colleagues have developed a numerical integration 

scheme for molecular dynamics that allows for longer time steps that would be unstable 
using standard approaches27, 108-109.  The method is stochastic-isokinetic (SI) integration 
and works by constraining the amount of kinetic energy in each degree of freedom in a 
simulation so that unphysical flows of energy between fast and slow modes, known as 
resonance, is prevented.  By combining this type of integration with a reversible replica 
system propagator algorithm (RESPA) method26, which integrates fast and slow modes 
on different time scales, long time steps are possible.  SI combined with RESPA 
increases the efficiency of simulations by increasing the time step and iEL/0-SCF, 
introduced in Chapter 3, increases the efficiency of polarizable simulations by 
eliminating the need for self-consistent field (SCF) iterations22.  Since these methods are 
complementary in their approaches to accelerating molecular dynamics simulations in 
this chapter I will examine how they can be combined to achieve cutting edge speeds for 
classical polarizable simulations. 

In Section 6.2 I present the theoretical foundation for combining iEL/0-SCF with 
SI and RESPA.  In Section 6.3 I show that isokinetic integration of both the atomic and 
iEL/0-SCF auxiliary degrees of freedom is possible with SI.  I further show that by 
combining these methods further with RESPA one can achieve time steps of 9.0 fs, 
compared to a standard time step of 1.0 fs, without sacrificing stability or much accuracy.  
Overall this leads to speed up of 2.6 times relative to standard SCF polarization methods 
and integration. 

 
 

6.2  Methods and Theory 
This chapter is focused on combining several advanced molecular dynamics 

methods- iEL/0-SCF22, SI108-109, and RESPA26.  This section will briefly review these 
approaches and present the modifications necessary for all of these methods to be 
combined. 

 
6.2.1  iEL/0-SCF 

The iEL/0-SCF method for an induced dipole polarization model, presented in 
Chapter 3, introduces a set of auxiliary induced dipoles, !, which are then driven 
dynamically by an equation of motion along with the atomic degrees of freedom.  The 
equations of motion for the atoms and auxiliary dipoles are reproduced in Eqs. (6.1a) and 
(6.1b), respectively. 
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!!!! =  −!"(!,!)!!! !
 (6.1a) 

!! = !!! !! − !!  (6.1b) 
 
In Eq. (6.1) !! is the position of the i-th atom, ! is the set of all these positions, !! 

and !! are the i-th induced dipole and associated auxiliary induced dipole, respectively, ! 
is the set of all the auxiliary dipoles, ! is the frequency of the auxiliary harmonic 
potential and is set to its maximum stable value for Verlet integration √2/!" where !" is 
the simulation time step	Niklasson, 2014 #145}, and ! is a tunable parameter that comes 
from estimating a ground state SCF solution from a simple linear mixing of real and 
auxiliary dipoles.  Eq. (6.1b) drives the auxiliary dipoles according to a harmonic 
potential that seeks to keep the auxiliaries close to a ground state solution.  Eq. (6.1a) is 
the familiar Newtonian equation of motion for the atoms where a general polarization 
potential is used, as is given in Eq. (6.2). 

 

! !,! = !!"!!" ! + !!"#$% !,! = !!"!!" ! +  12 !!!!!"!!
!

!!!

!

!!!
− !!!!!

!

!!!
 (6.2a) 

!! = !!!! + !! !!"! !!
!

!!!
 (6.2b) 

 
Eq. (6.2a) gives the general potential where a distinction is made between the 

polarization potential, which is dependent on the auxiliaries and uses a general form, and 
the other potential terms, !!"!!" ! , which can include bonds, angles, van der Waals, and 
permanent electrostatic terms.  Eq. (6.2b) then gives the relationship between the real 
induced dipoles, !!, and the auxiliary dipoles, !!, where the real dipoles are essentially a 
first pass iteration using the auxiliaries as an initial guess.  In Eq. (6.2) !!  is the 
permanent electrostatic field (the field due to non-inducible moments in the system), !! is 
the polarizability of the i-th atom, !!"!  is the dipole-dipole interaction matrix between sites 
i and j, and !!" = !!−1!!" − !!"′ .  Coupling the integration of the auxiliary dipoles, Eq. 
(6.1a), to an auxiliary thermostat, as described in Chapter 2, such that the auxiliary 
pseudo temperature, !!"# = 1/3 !!! , is controlled to a set point then rounds out the 
iEL/0-SCF method. 

 
6.2.2  Stochastic-Isokinetic Integration 

Stochastic-isokinetic integration works by constraining the total kinetic energy in 
each degree of freedom to be a fixed amount that can then transfer between the real 
degree of freedom and thermostat variables associated with each real degree of freedom.  
The equations of motion are given in Eq. (6.3)109. 

 
!!!,! = !!,!!" (6.3a) 

!!!,! =
!!,! !
!!

− !!,!!!,! !" (6.3b) 

!!!,!,!(!) = −!!,!!!,!,!! !" − !!,!,!! !!,!,!(!) !" (6.3c) 



77 

!!!,!,!(!) = !!(!!,!,! 
! )! − !!!
!!

!" − !!"!!,! ,!! !" + !"!!,!(!) (6.3d) 

 
In Eq. (6.3) i denotes the particular atom from 1 to N and ! ∈ !,!, ! gives the 

particular component, as the stochastic-isokinetic method works on individual degrees of 
freedom.  In this notation then !!,! is the ! component of the i-th atom’s position and !!,! 
and !!,! !  are the associated velocity and force, respectively, and !! is the mass of the 
i-th atom.  In this way positions are updated directly from velocities, as one may expect, 
via Eq. (6.3a).  Velocities are then updated with forces and with respect to an isokinetic 
constraint, as well, as given by Eq. (6.3b).  This isokinetic constraint is enforced using a 
Lagrange multiplier for each degree of freedom, !!,!.  This Lagrange multiplier is given 
in Eq. (6.4).  The integration also introduces two sets of thermostat variables, one that 
couples to directly to the real velocities, !!,!,!(!) , and another set, !!,! ,!! , that couples to the 
first set of thermostat variables and a stochastic process.  These are Nosé-Hoover (NH) 
thermostat variables and a chain of L variables is used65-66 where k goes from 1 to L.  As a 
result there are 6!"  Nosé-Hoover variables, which can represent a significant 
algorithmic overhead.  However, as each degree of freedom is treated independently the 
problem is trivially parallelizable.  In examining the updates for the first set of Nosé-
Hoover variables, Eq. (6.3c), one can see that this set of variables couples to the 
isokinetic constraint and also to the second set of Nosé-Hoover variables.  Eq. (6.3d), the 
equation of motion for the second set of NH variables couples to a driving force created 
by the difference between the actual and set point temperature, T.  They also couple to a 
stochastic Ornstein-Uhlenbeck (OU) process !!!,!(!) to ensure ergodicity, and a friction 
term with friction constant !!".  In these equations the NH masses are defined in the usual 
way, !! = !!!!!!  and !! = !!!!!!  with time scale parameters !!  and !!  and ! =
!!!!!"/!!. 

 

!!,! =
!!,!!!,! ! − !

! + 1 !!(!!,!,! 
! )!!!,!,!(!)!

!!!

!!!!,!! + !
! + 1 !!(!!,!,! 

! )!!
!!!

 (6.4) 

 
The isokinetic constraint given in Eq. (6.5) is then what is enforced by the 

Lagrange multiplier of Eq. (6.4). 
 

!!!!,!! + !
! + 1 !!(!!,!,! 

! )!
!

!!!
= !!!! (6.5) 

 
From Eq. (6.5) one can see that a total amount of kinetic energy, !!!!, is given to 

each degree of freedom !,!, but this kinetic energy can fluctuate between the real 
velocity !!,! and the NH velocities !!,!,! 

! .   
When combining iEL/0-SCF with this stochastic-isokinetic integration the atomic 

degrees of freedom are integrated with the equations of motion of Eq. (6.3) and the 
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auxiliary induced dipoles also need to be integrated in a similar manner.  Adapting Eq. 
(6.3) to the case of auxiliary dipoles yield Eq. (6.6). 

 
!!!,! = !!,!! !" (6.6a) 

!!!,!! = !!!(!!,! − !!,!)− !!,!! !!,! !" (6.6b) 
!!!!,!,!(!) = −!!!!!!,!,!! !" − !!!,!,!! !!!,!,!(!) !" (6.6c) 

!!!!,!,!(!) = !!!!!,!,! 
! ! − !!"#
!!!

!" − !!"! !!!,!,! 
! !" + !"!!

!,!
(!) (6.6d) 

 
Eq. (6.3a) gives the updates of the ! component of the i-th auxiliary dipole !!,! 

according to its respective velocity, !!,!! .  Eq. (6.4a) then gives the update of the auxiliary 
velocity according to its ‘force’ given by the general iEL/0-SCF auxiliary equation of 
motion, Eq. (6.1b), and its isokinetic constraint, enforced with the !,!  degree of 
freedom’s Lagrange multiplier, !!,!! .  The analytic expression for this Lagrange multiplier 
is given by Eq. (6.7).  Two sets of auxiliary NH thermostat variables are introduced for 
each !,! auxiliary degree of freedom, !!!,!,!(!)  and !!!,!,!(!) , each in a chain of order L with k 
running from 1 to L.    The first set, !!!,!,!(!) , is driven by Eq. (6.6c) where they couple to 
the isokinetic constraint and the second set.  The second set, !!!,!,!(!) , is driven by Eq. 
(6.6d) where they couple to a driving force between the actual and set point auxiliary 
temperature !!"#, a friction term, and an OU stochastic process.  Here !!! = !!"# !!! ! 
and !!! = !!"# !!! ! , !!"!  controls the friction, and ! = !!"#!!"!/!! .  The Lagrange 
multiplier used in Eq. (6.6) is given in Eq. (6.7). 

 

!!,!! =
!!,!! !!!(!!,! − !!,!)− !

! + 1 !!!(!!!,!,! 
! )!!!!,!,!(!)!

!!!

!!,!!
! + !

! + 1 !!(!!!,!,! 
! )!!

!!!
 (6.7) 

 
With the Lagrange multiplier the pseudo isokinetic constraint for each auxiliary 

degree of freedom is given by Eq. (6.8), analogous to the case of the atomic constraint, 
Eq. (6.5). 

 

!!,!!
!  + !

! + 1 !!!(!!!,!,! 
! )!

!

!!!
= !!!"# (6.5) 

 
6.2.3  RESPA Multiple Time Stepping 

Stochastic isokinetic integration eliminates unphysical flow of energy between 
fast and slow modes.  To take full advantage of this development one can use a multiple 
time-scale integration like RESPA26.  In RESPA different components of the force field 
potential energy are integrated with different time steps.  In molecular dynamics the 
highest frequency (fastest) components of a force field are the bonded terms, which 
represent fast bond, angle, and other geometric fluctuations.  The non-bonded through-
space components like van der Waals, electrostatic, and polarization components vary 
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more slowly.  The bonded interactions are computationally cheap, whereas the bonded 
interactions are computationally expensive, but RESPA takes advantage of this time scale 
separation to integrate the bonded components of the force field with short time steps and 
the non-bonded components with long time steps, leading to less frequent calculations of 
non-bonded forces and an overall improvement in efficiency.   

In this work I use a three timescale RESPA scheme where the non-bonded forces 
are evaluated at a short time step of !!! with corresponding forces !!.  The non-bonded 
interactions are then partitioned between a medium timescale integrated at a time step of 
!!!, and a longer (outer) time scale with a time step of !", each with corresponding 
forces !! and !!, respectively.  The long time scale time step must be an integer multiple 
of both the intermediate and short time steps and the intermediate time step needs to be 
an integer multiple of the short time step, that is !" = !"!! = !"#!! for integers ! and 
!.  The three non-bonded interactions (polarization, electrostatics, and van der Waals 
interactions) are placed in the intermediate and long time scales in various combinations 
to determine optimum efficiency and accuracy, as discussed in the results in Section 6.3.   

The details of the RESPA algorithms are discussed in Appendix I, but the 
important aspect to note is that the short time scale forces are evaluated !" times per 
long time step !", the intermediate forces are updated ! times per !", and the long 
timescale forces are evaluated once per !".  When the polarization is included in the 
intermediate timescale then the auxiliary equations of motion are updated with an outer 
time step of !!! (so ! = √2/!!!) and when polarization is included with the long 
timescale forces the auxiliary equations of motion have an outer time step of !" (so 
! = √2/!"). 

 
6.2.4  Simulation Details 

The combined iEL/0-SCF, SI, and RESPA methodology was applied to test 
systems of 512 water molecules and a zwitterionic glycine molecule solvated with 256 
water molecules.  The water test case used the latest AMOEBA force field 
parameterization for water34.  The glycine system used a reparameterization of the 
AMOEBA force field98.  The atomic system set point temperature T was 298.0 K and the 
auxiliary set point pseudo temperature was 5.3 e2Å2/ps2.  For the auxiliary stochastic 
isokinetic integration I found that the best auxiliary thermostat time scale parameters 
were 0.1 ps and 0.001 ps for !!! and !!!, respectively.  A mixing parameter, ! of 0.9 was 
used for both test systems, as discussed in Chapter 3.  The auxiliary integration also used 
a friction parameter, !!"! , of 100.0 ps-1.  For the atomic integration a value of 0.1 ps was 
used for !! and !! and a value of 0.01 ps-1 for !!".  For both the atomic and auxiliary 
integrations a 4th-order Nosé-Hoover chain was used, that is ! = 4, and was integrated 
with a 3rd-order Suzuki-Yoshida decomposition110-111.  While the values of the 
intermediate and outer time steps is varied for analysis purposes the short timescale time 
step was fixed to 0.25 fs.  All electrostatics were treated with particle-mesh Ewald 
summation101 with a real space cutoff of 7.0 Å.  Simulations using self-consistent field 
iteration (SCF) for comparison purposes used a preconditioned conjugate gradient (PCG) 
solver20 with a convergence threshold of 10-6 D.  Simulations that do not use SI 
integration for comparison purposes instead use velocity Verlet integration88 and Nosé-
Hoover thermostats for temperature control66.   
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6.3  Results 

I performed simulations with a pure water system and a system of a solvated 
glycine molecule.  In the first set of simulations no RESPA multiple time step integration 
was used so as to validate that integrating the iEL/0-SCF auxiliary equations of motion 
with stochastic isokinetic integration is possible.  Thereafter I introduced RESPA 
multiple time stepping into the scheme to ascertain which combinations of intermediate 
and long time steps and forces optimize the accuracy-computational cost tradeoff.  These 
results are presented in the subsequent sections, respectively. 

 
6.3.1  Validation 

Figure 6.1 gives the polarization properties collected from bulk water simulations 
using a standard method (SCF and velocity Verlet integration), a stochastic isokinetic 
method with SCF, and a stochastic isokinetic method with iEL/0-SCF.  From Figures 
6.1a and 6.1b it is clear that the static induced dipole distributions match well across all 
methods.  Figure 6.1c shows the induced dipole time autocorrelations.  As the time 
autocorrelation is a dynamic property the use of stochastic isokinetic integration deviates 
slightly from the base correlation since stochastic isokinetic integration is only canonical 
in positions, but not velocities108 so one can expect some deviation in dynamic properties.  
In Figure 6.1c, however, it is clear that the use of iEL/0-SCF with SI does not alter the 
results and that iEL/0-SCF can reproduce SI results using a standard SCF procedure.   

 

 
Figure 6.1:  Induced dipole probability distributions for water oxygen (a) and hydrogen (b) and their 
corresponding induced dipole autocorrelations (c).  Three methods are presented- SCF with standard 
velocity Verlet integration, SCF with SI integration, and iEL/0-SCF with SI integration.  All simulations 
were performed with a single 1.0 fs time step and at a temperature of 298.0 K. 
 

(a) (b) 

(c) 
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I also examined a solvated glycine system to determine that SI integration was 
compatible with iEL/0-SCF.  The polarization properties of this system are presented in 
Figure 6.2.  In Figure 6.2a – 6.2c the distributions from the components of the glycine 
carbonyl oxygen show excellent agreement between a standard approach, SI integration 
with SCF, and, most importantly, SI with iEL/0-SCF.  This proves, again, that one can 
safely use iEL/0-SCF with SI.  Again as before, Figure 6.2d shows that the 
autocorrelations of SI integration are slightly offset from those of standard Verlet 
integration, but both SI methods using SCF and iEL/0-SCF are in good agreement.  This 
suggests that iEL/0-SCF performs as well as SCF and is not influenced by the underlying 
integration method.  Further validation data for other atomic species in the glycine system 
are given in Figures J.1 – J.3 in Appendix J. 

 

 
Figure 6.2:  Induced dipole probability distributions for glycine carbonyl carbon x-component (a), y-
component (b), z-component (c), and the corresponding induced dipole autocorrelation (d).  Three methods 
are presented- SCF with standard velocity Verlet integration, SCF with SI integration, and iEL/0-SCF with 
SI integration.  All simulations were performed with a single 1.0 fs time step and a temperature of 298.0 K. 
 

From the data in Figures 6.1, 6.2, and Appendix J it is clear that SI integration and 
iEL/0-SCF are compatible and yield consistent results when used together.  In the 
subsequent section I will examine using this combination along with RESPA multiple 
time stepping to increase the time step of these simulations. 

 
6.3.2  iEL/0-SCF with SI and RESPA 

The purpose of using SI is to eliminate resonances between fast and slow modes.  
Using RESPA to then separate the integration of such modes takes full advantage of the 
benefits of SI in terms of computational efficiency.  As a first pass of using all three 
methods (iEL/0-SCF, SI, and RESPA) together the bonded forces are placed in a short 

(a) (b) 

(c) (d) 
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time scale integrated at a time step of !!! = 1.0 fs.  All of the non-bonded forces 
(electrostatic, polarization, van der Waals) are then treated at a variable long time scale 
time step.  The data for both iEL/0-SCF and SCF using SI and this two time scale RESPA 
implementation are given in Figure 6.3. 

 

 
Figure 6.3:  Two time scale RESPA used in conjunction with SI and iEL/0-SCF (red) and SCF (black) on a 
system of pure water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time 
step, !", is reported (a) along with the error of the average molecular dipole (b) with respect to the vale of 
an SCF simulation with standard Verlet integration at a 1.0 fs time step (2.81 D). 
 

 Now introducing a third time scale to the RESPA method, an intermediate time 
scale with a time step of !!! , components of the non-bonded forces can then be 
partitioned between the long and intermediate time scales.  This then leads to six possible 
algorithmic combinations, given in Table 6.1 

 
Table 6.1:  Possible combinations of non-bonded forces between the intermediate and long time scales 
using RESPA. 

Name Intermediate (!!!) Intermediate (!") 
pol. mid. polarization electrostatics, van der Waals 
pol. long electrostatics, van der Waals polarization 
el. mid. electrostatics polarization, van der Waals 
el. long polarization, van der Waals electrostatics 

vdW mid. van der Waals polarization, electrostatics 
vdW long polarization, electrostatics van der Waals 

 
Results, including computational timings, for the el. mid. and vdW long methods 

are presented in Figures 6.4 and 6.5, respectively.  These methods seem to give the best 
returns in terms of accuracy versus cost.  The results for the remainder of the methods 
can be found in Figures J.4 – J.7 in Appendix J. 

 

(a) (b) 
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Figure 6.4:  Three time scale el. mid. RESPA used in conjunction with SI and iEL/0-SCF on a system of 
pure water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time step, !", 
is reported (a) along with the error of the average molecular dipole (b) with respect to the vale of an SCF 
simulation with standard Verlet integration at a 1.0 fs time step (2.81 D).  Different colored curves 
represent different intermediate time steps, !!!.  Also reported are the computational speed ups with 
respect to standard 1.0 fs Verlet integration (c).  All calculations were performed with 16 CPUs and 
shared-memory parallelization.  The dotted gray line in (b) represents 5% error and all simulations below 
that error in (b) are within the 5% error envelope in (c). 
 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

(c) 
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Figure 6.5:  Three time scale vdW long RESPA used in conjunction with SI and iEL/0-SCF on a system of 
pure water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time step, !", 
is reported (a) along with the error of the average molecular dipole (b) with respect to the vale of an SCF 
simulation with standard Verlet integration at a 1.0 fs time step (2.81 D).  Different colored curves 
represent different intermediate time steps, !!!.  Also reported are the computational speed ups with 
respect to standard 1.0 fs Verlet integration (c).  All calculations were performed with 16 CPUs and 
shared-memory parallelization.  The dotted gray line in (b) represents 5% error and all simulations below 
that error in (b) are within the 5% error envelope in (c). 

 
From Figure 6.4 one can see that using an intermediate time step of 1.0 fs outer 

time steps as large as 18.0 fs can be used while the simulations remain stable and 
accurate (< 5% error).  For this el. mid. method, though, the fastest simulations that are 
also stable and accurate are three combinations !!! = 6.0 fs and !" = 6.0 fs, !!! = 4.0 
fs and !" = 8.0 fs, and !!! = 3.0 fs and !" = 9.0 fs all of which yield speedups of 
about 2.6, which is superior to the reported speed up of only iEL/0-SCF in Chapter 3 of 
about 1.6.  Interestingly, for the case of !!! = 6.0 fs and !" = 6 fs the partitioning of 
non-bonded interactions between the intermediate and long time scales in immaterial 
since the intermediate and long time scale time steps are the same and the intermediate 
and long time scale forces would therefore be evaluated simultaneously and their 
partitioning is the same across all methods in Table 6.1.  This particular time step setting 
is the optimal in terms of accuracy and speed up for the pol. mid., pol. long, el. long, and 
vdW mid. methods, as shown in Figures J.4 – J.7.  From Figure 6.5 one can see that for 
vdW long the optimal setting is !!! = 6.0 fs and !" = 12.0 fs, which has a speed up of 
2.7.  To further demonstrate the accuracy of this significantly more efficient methods, 
their radial distribution functions are given in Figure 6.6. 

 

 

 
Figure 6.6:  Radial distribution functions for iEL/0-SCF with SI and several flavors of RESPA- el. mid. 
with !!! = 6.0 fs and !" = 6.0 fs (red, solid), el. mid. with !!! = 4.0 fs and !" = 8.0 fs (blue, dashed), 

(a) (b) 

(c) 
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el. mid. with !!! = 3.0 fs and !" = 9.0 fs (green, dotted), and vdW long with !!! = 6.0 fs and !" = 1.02 
fs (yellow, dashed-dotted).  These are compared with a standard SCF procedure using Verlet integration 
with !" = 1.0 fs (black, solid).   
 

From Figure 6.6 it is clear that, in general, as the outer time step increases the 
radial distribution functions become less accurate.  For the el. mid. methods the radial 
distribution functions are quite accurate across the board and the graphs are framed to 
show slight differences between the methods around the first solvation shells.  One can 
conclude that using the !!! = 6.0 fs and !" = 6.0 fs method (which is equivalent across 
all RESPA flavors of Table 6.1) gives us excellent accuracy in the radial distribution 
function with a computational speed that is 2.6 times greater than a standard velocity 
Verlet SCF method. 
 
 
6.4  Discussion 

As the data that gives timing results show (Figures. 6.4c, 6.5c, J.4c – J.7c), when 
polarization is included in the long time scale the speed ups improve as the long time 
scale time step increases, but when polarization is in the intermediate time scale the speed 
ups increase much less with increasing long time step.  Polarization is therefore rate 
limiting step for the simulations.  As iEL/0-SCF eliminates the need for SCF iteration the 
cause is likely the 6!" Nosé-Hoover auxiliary thermostat variables that must be updated 
at the same time scale as the polarization.  Even after parallelization this update clearly 
serves as a significant cost.  This revelation argues for the development of global 
isokinetic control, where the overall pseudo kinetic energy of all auxiliary degrees of 
freedom is controlled, instead of massive (local) isokinetic control of the auxiliary 
degrees of freedom.  In the case of global isokinetic control only 6 auxiliary thermostat 
variables would be needed. 

Additionally, to take full advantage of RESPA and SI one can divide non-bonded 
forces into short- and long-range components where the overall potential (be it 
polarization, electrostatics, or van der Waals) is split by a switching function at some 
distance109.  In this way all non-bonded interactions have an intermediate and long range 
time scale component whereas in this work entire non-bonded potentials were placed in 
either the intermediate or long time scales.  By employing such switching functions long 
time scale time steps of 100.0 fs are possible109 and speed ups even greater than those 
presented here would be possible.  This would be a logical next step for the combined 
iEL/0-SCF, SI, and RESPA method. 
 
 
6.5  Conclusions 

In this chapter I have given the theory and methods that would allow one to 
combine iEL/0-SCF, SI, and RESPA.  iEL/0-SCF is a method for treating polarization 
without iteration.  SI is an integration scheme resolves resonances between fast and slow 
modes and RESPA takes advantage of SI to make large time steps possible.  These 
methods are complementary in terms of computational efficiency and I have shown that 
these methods can be combined to give speedups of about 2.6 times relative to a standard 
single time scale Verlet integration with a 1.0 fs time step and SCF iteration to treat 
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polarization.  Such combined methods can realize long scale time steps of up to 9.0 fs, 
while maintaining simulation stability and accuracy.   

As with most simulation protocols the combined method has a cost-accuracy 
tradeoff.  In these analyses I have assumed a 5% error to be acceptable, but using the data 
presented here one could choose simulation parameters (intermediate and long time steps 
and non-bonded force partitioning between them) that can yield lower error with 
correspondingly lower speed ups or greater error with a corresponding greater efficiency.  
Using the data presented here a user could make such a choice based on the needs of a 
given simulation. 

Overall, the combined methodology presented in the chapter brings several 
advanced simulation techniques into compatibility and represents a thrust toward 
remarkable computational efficiency for polarizable classical molecular dynamics.  By 
taking advantage of possible future improvements such as global isokinetic control and 
non-bonded potential splitting with switching functions, one can imagine simulations 
with truly astounding efficiency. 
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Appendix 
 
Appendix A:  iEL/SCF Numerical Analysis 

Following the numerical stability analysis of Niklasson and colleagues73 I have 
developed a Verlet-like recursion of the Berendsen rescaling applied to auxiliary induced 
dipoles, !, for analysis purposes.  First two Taylor series expansions of the auxiliary 
dipole “positions”, given by Eq. (A.1), are added. 
 

!!!! =  !!!! +  !!!!�! +  12!!!!�!
! (A.1a) 

!! =  !!!! −  !!Δ! −  12!!Δ!
! (A.1b) 

 
Combining Eq. (A.1a) and (A.1b), Eq. (A.2) is obtained. 

 

!!!! =  2!!!! − !! +�! !!!! − !! ++  12!!
!(!!!! − !!) (A.2) 

 

!!!! =  !!!![!! +
1
2�! !!!! + !! ] (A.3) 

 
Using a scaled velocity from the velocity Verlet recursion, given by Eq. (A.3) 

where !!!! is a velocity rescaling factor given by Eq. (2.6), one can substitute for !! in 
Eq. (A.2) to obtain Eq. (A.4). 
 

!!!! =  2!!!! − !! +�!!!!! 1− 1
!!!!

+�!!!!!! (A.4) 

 

!!!! =
1

2�! (!!!! − !!) (A.5) 

 
Finally an approximation for !!!! is given by a finite difference, shown in Eq. 

(A.5) and Eq. (2.5b) is substituted for !!!! to obtain the recursion of Eq. (A.6). 
 

1
2 1+  1!!

!!!! = 2!! −  12 3− 1
!!

!!!! +  Δ!!!! !!!"# − !!  (A.6) 

 
In Eq. (A.6) !! = !!(!! + !Δ!)  and !! = !(!! + !Δ!)  is the instantaneous 

velocity rescaling factor.  Note that when there is no pseudo temperature control 
(!! = 1) we recover the Verlet recursion, as expected. To analyze the numerical stability 
of the velocity rescaling scheme Eq. (A.6) has a characteristic equation given by Eq. 
(A.7). 
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1
2 1+ 1

!!
!!!! + Δ!!!! − !Δ!!!! − 2 !! + 12 3− 1

!!
!!!! = 0 (A.7) 

 
In Eq. (A.7) λ corresponds to the roots of the characteristic equation and ! is the 

largest eigenvalue of the iterative response matrix acting on the difference between !! 
and the true solution of the induced dipoles. Thus Eq. (A.7) allows us to explore various 
levels of convergence of the solution of the auxiliary dipoles over the range −1 < ! < 1, 
where in the limit ! → 0 corresponds to the exact solution, while the magnitude of the 
largest root, ! !"#, will determine the stability of the recursion, with ! !"# > 1 giving 
exponentially growing solutions, ! !"# < 1 giving exponentially decaying solutions, 
with an exactly stable solution occurring at ! !"# = 1. I note that ! ≠ 1 corresponds to 
increasing time irreversibility in the equations of motion, which should be avoided when 
possible. Time-reversibility is preserved in the iEL/SCF method when ! = 1, whereas a 
related coupling parameter that multiplies the dissipation force, !!"##, discussed in73 
remains time reversible when !!"## = 0.   

Similarly, I can show that for a Nosé-Hoover chain (NHC) thermostat (taking into 
account rescaling that happens twice per time step now) the Verlet-like recursion is given 
by Eq. (A.8). 

 
1
2 1 +  1

!!!!!!
!!!! =  2!! −  12 3 − 1

!!!!!!
!!!! +  12

1
!!!!

+ 1 Δ!!!! !!!"# − !!

+ 12
1

!!!!
− 1 Δ!!!! !!!!!"# − !!!!  

(A.8) 

 
In Eq. (A.8) !! and !!!! now represent the velocity scaling factors that come 

from a time-reversible Nosé-Hoover method at the end and beginning of the n-th 
recursion. These two !-values mask the complexity of the Nosé-Hoover chains which are 
also a function of additional extended system variables; see Martyna et al. for details66.  
Again, one can construct the characteristic equation of Eq. (A.8) for analysis, given in 
Eq. (A.9). 
 

1
2 1 + 1

!!!!!!
!!!! + 12

Δ!!!!

!!!!
+ Δ!!!! − !Δ!

!!!

!!!!
− !Δ!!!! − 2 !!

+ 12 3 − 1
!!!!!!

+ Δ!
!!!

!!!!
− Δ!!!! − !Δ!

!!!

!!!!
+ !Δ!!!! !!!! = 0 

(A.9) 

 
Figure A.1a gives ! !"# as a function of the SCF convergence, !, for various 

values of !  (assuming !! = !!!!  for the NHC case). Intuitively for ! > 1  then 
! !"# > 1 and the equations of motion are unstable which would correspond to an 

accumulation in the pseudo kinetic energy as observed in Figure A.1b. For ! < 1 the 
increasing dissipation will realize stable solutions ( ! !"# < 1) but at the expense of 
time-reversibility as ! decreases. Thus both the Berendsen weak coupling and NHC 
iEL/SCF schemes have the desirable property that the equations of motion can be made 
stable under incomplete SCF convergence in the full γ interval for ! values that are close 
to that needed for time reversibility.  We would like to note that Eqs. (A.6) and (A.8) are 
presented for analysis purposes only and the method is truly implemented using a 
velocity Verlet scheme with thermostat action being applied at the appropriate points 
within such a scheme. 



94 

 

 
Figure A.1: The use of thermostats for the hybrid EL/SCF scheme using Berendsen weak coupling velocity 
scaling. (a) Roots of the characteristic equation for Berendsen rescaling (Eq. A.7) and Nosé-Hoover 
thermostating (Eq. A.9) as a function of the degree of SCF convergence, !, for various velocity rescaling 
factors, !. Note that for this figure the range of ! is exaggerated with observed ! values ranging from 
0.9997 and 1.0003 in the course of a typical simulation. (b) The time trajectory for the velocity rescaling 
factors, !, for the Berendsen scheme and the Nosé-Hoover scheme.  The Nosé-Hoover scheme scales the 
velocity at the beginning and end of a single step, hence the ‘n-1’ and ‘n’, respectively. 
 

Figure A.1b shows the simulated trajectory of the rescaling parameter ! during 
the course of our weak coupling Berendsen velocity rescaling as well as Nosé-Hoover 
scheme which is shown to range from 0.9997 to 1.0003 with an average of ~0.99999 such 
that the simulations are essentially close to the exact time–reversible solution. While 
velocity rescaling using weak coupling Berendsen formally breaks the time-reversibility 
of the integration scheme, an !-value so close to 1.0 corresponds to only a slight 
disturbance of this reversibility while dissipating the integration error that causes 
divergence in !!! /3 due to resonances. In any event, errors in time reversibility are 
formally circumvented through use of NHC thermostats, also shown in Figure A.1b, 
although, at least for our test system of bulk water, the practical differences are largely 
unimportant. Thus my diagnosis of the problem in the original hybrid EL/SCF scheme 
arises from resonances in the auxiliary equations of motion that can be controlled by a 
simple velocity rescaling scheme that prevents the accumulation of a pseudo kinetic 
energy for these degrees of freedom. 
 
 
 
 
 
 
 
 
 

(a) 
(b) 



95 

Appendix B:  Additional iEL/SCF Validation Data 
 
Table B.1. Average potential energy and average molecular dipole moment, and diffusion coefficients as a 
function of mutual induction convergence for PCG with predictor (standard SCF), standard EL, the hybrid 
EL/SCF scheme with no dissipation (hybrid EL/SCF), and a hybrid EL/SCF method which thermostats the 
auxiliary dipole velocities using either Berendsen rescaling or a Nosé-Hoover thermostat. Average 
potential energy and molecular dipole were calculated from NVE simulations. 

Standard SCF 
Convergence 

 (RMS Debye) 
Average Potential Energy  

(kcal/mol) 
Average Molecular Dipole 

(Debye) 
10-6 -8.78±0.05 2.738±0.011 
10-5 -8.79±0.05 2.739±0.011 
10-4 -7.79±0.25 2.678±0.036 
10-3 -8.27±0.02 2.700±0.012 
10-2 -12.73±0.01 3.019±0.001 
10-1 -12.70±0.01 3.037±0.001 

Standard EL 
Time step (fs) Average Potential Energy  

(kcal/mol) 
Average Molecular Dipole 

(Debye) 
0.25 -9.09±0.16 2.761±0.017 
0.50 -9.41±0.22 2.777±0.024 

Hybrid EL/SCF 
Convergence  
(RMS Debye) 

Average Potential Energy 
 (kcal/mol) 

Average Molecular Dipole 
(Debye) 

10-6 -8.74±0.05 2.735±0.011 
10-5 -8.74±0.05 2.734±0.011 
10-4 -8.74±0.05 2.735±0.011 
10-3 -8.74±0.05 2.734±0.011 
10-2 -8.76±0.05 2.736±0.011 
10-1 -8.89±0.05 2.748±0.012 

Hybrid EL/SCF with Berendsen 
Convergence 

 (RMS Debye) 
Average Potential Energy  

(kcal/mol) 
Average Molecular Dipole 

(Debye) 
10-6 -8.75±0.05 2.735±0.011 
10-5 -8.75±0.05 2.735±0.011 
10-4 -8.75±0.05 2.735±0.011 
10-3 -8.75±0.05 2.735±0.011 
10-2 -8.75±0.05 2.735±0.011 
10-1 -8.74±0.05 2.734±0.011 

Hybrid EL/SCF wth Nosé-Hoover 
Convergence 

 (RMS Debye) 
Average Potential Energy  

(kcal/mol) 
Average Molecular Dipole 

(Debye) 
10-6 -8.75±0.05 2.735±0.011 
10-5 -8.75±0.05 2.735±0.011 
10-4 -8.75±0.05 2.735±0.011 
10-3 -8.75±0.05 2.736±0.011 
10-2 -8.75±0.05 2.735±0.011 
10-1 -8.74±0.05 2.734±0.011 
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Figure B.1:  Comparison of the NVT ensemble averaged probability distributions for in-plane induced 
dipole angle, !, using (a) standard SCF solver (PCG with predictor), (b) basic EL method, (c) the adapted 
EL/SCF method with no dissipation (hybrid), (d) the adapted EL/SCF method with pseudo temperature 
control of the auxiliary dipoles using Berendsen rescaling, and (e) the adapted EL/SCF method with 
pseudo temperature control of the auxiliary dipoles using a Nosé-Hoover thermostat. The continuous 
curves give the data obtained using base AMOEB14A at a level of 10-6 RMS Debye convergence.  The in-
plane angle, !, is defined as 0 at the H-O-H bisector for oxygen and 0 along the O-H axis for hydrogen, 
with +! being in the direction of the H-O-H bisector.  In-plane angles range from -180 to 180 degrees. 
  

(a) (b) 

(c) (d) 

(e) 
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Figure B.2:  Comparison of the NVT ensemble averaged probability distributions for out-of-plane induced 
dipole angle, !, using (a) standard SCF solver (PCG with predictor), (b) basic EL method, (c) the adapted 
EL/SCF method with no dissipation (hybrid), (d) the adapted EL/SCF method with pseudo temperature 
control of the auxiliary dipoles using Berendsen rescaling, and (e) the adapted EL/SCF method with 
pseudo temperature control of the auxiliary dipoles using a Nosé-Hoover thermostat. The continuous 
curves give the data obtained using base AMOEBA14 at a level of 10-6 RMS Debye convergence.  The out-
of-plane angle, !, is defined as 0 perpendicular to the H-O-H plane and ranges from 0 to 180 degrees. 
 

(a) (b) 

(c) (d) 

(e) 
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Figure B.3:  Comparison of the NVE ensemble averaged probability distributions for induced dipole 
properties using standard SCF (PCG with predictor). Normalized induced dipole autocorrelations (a) and 
probability distributions for induced dipole magnitude (b), in-plane angle (c), and out-of-plane angle (d) 
with various levels of SCF convergence for AMOEBA14 water. 

(a) 
(b) 

(c) (d) 
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Figure B.4:  Comparison of the NVE ensemble averaged probability distributions for induced dipole 
properties using standard EL. Normalized induced dipole autocorrelations (a) and probability distributions 
for induced dipole magnitude (b), in-plane angle (c), and out-of-plane angle (d) with various levels of SCF 
convergence for AMOEBA14 water.  A reference SCF result (10-6 RMS Debye) is shown as the solid 
curves. 
 
 
  

(a) 
(b) 

(c) (d) 
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Figure B.5:  Comparison of the NVE ensemble averaged probability distributions for induced dipole 
properties using the hybrid EL/SCF scheme. Induced dipole autocorrelations (a) and probability 
distributions for induced dipole magnitude (b), in-plane angle (c), and out-of-plane angle (d) with various 
levels of SCF convergence for AMOEBA14 water. A reference SCF result (10-6 RMS Debye) is shown as 
the solid curves. 

 
 

 
. 
 
  

(a) (b) 

(c) 
(d) 
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Figure S6:  Comparison of the NVE ensemble averaged probability distributions for induced dipole 
properties using the hybrid EL/SCF scheme with pseudo temperature control of the auxiliary dipoles using 
Berendsen rescaling. Induced dipole autocorrelations (a) and probability distributions for induced dipole 
magnitude (b), in-plane angle (c), and out-of-plane angle (d) with various levels of SCF convergence for 
AMOEBA14 water. A reference SCF result (10-6 RMS Debye) is shown as the solid curves. 
 
 
 
 
 
  
  

(a) (b) 

(c) 
(d) 
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Figure B.7:  Comparison of the NVE ensemble averaged probability distributions for induced dipole 
properties using the hybrid EL/SCF scheme with pseudo temperature control of the auxiliary dipoles using 
a Nosé-Hoover thermostat. Induced dipole autocorrelations (a) and probability distributions for induced 
dipole magnitude (b), in-plane angle (c), and out-of-plane angle (d) with various levels of SCF 
convergence for AMOEBA14 water. A reference SCF result (10-6 RMS Debye) is shown as the solid curves. 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
(b) 

(c) (d) 
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Appendix C: AMOEBA Force Field p- and d-Scaling 
The AMOEBA force field uses scaling to exclude certain electrostatics based on 

bond separation, as these terms are modeled implicitly in bonded valence terms like 
bonds, angles, bond-angle, torsion, etc33. The forms of the electrostatic interactions are 
scaled differently depending on their form and type. Permanent-permanent interactions 
are scaled by a factor known as ‘m-scaling’ and induced-induced interactions are scaled 
by ‘u-scaling’, both of which are determined by the number of bonds separating the 
species to be scaled. Permanent-induced interactions, however, are scaled differently 
depending on whether the calculation is determining the induced dipoles or calculating 
the polarization energy. The former calculation relies on the polarization group the 
species are in and is referred to as ‘d-scaling’ while the latter relies on bond separation 
and is referred to as ‘p-scaling’. For small species like water and ions there is no 
difference between p-scaling and d-scaling because the entire molecule is a single 
polarization group. When this is the case the equations presented in the body of the text 
are sufficient, but when larger molecules with multiple polarization groups are considered 
we need to adapt our equations accordingly.  

For a general case with distinct p- and d-scaling one can start with a general 
definition of the polarization energy in Eq. (C.1). 

 

!!"# !! = 1
2!

!!!! − 12!
!!! − 12!

!!! (C.1) 

 
Here, again, ! is vector of all of the individual induced dipoles, !!, and ! is a 

super-matrix made up of individual matrices !!" = (!!!!!!" − !!"! )  where !!"!  is the 
dipole-dipole interaction tensor between sites ! and ! and !! is the polarizability of site !. 
! represents a vector of all of electric fields at each site, !!, and the superscripts ! and ! 
refer to whether this electric field was calculated with the p-scaled or d-scaled 
permanent-induced interaction tensor !, !! = !!! or !! = !!!, respectively.  The 
two sets of induced dipoles, then, correspond to dipoles calculated with the p- or d-scaled 
permanent fields, !! = !(!! + !!!!) or !! = !(!! + !!!!), respectively.  It should be 
noted that in the completely converged SCF limit !! = !!!!! and !! = !!!!! and Eq. 
(C.1) reduces to the familiar !!"# = − !

!!
!!!.  In practice, then, Eq. (C.1) is used in 

place of Eq. (3.7). 
One also need to evaluate the potential gradient so that we can determine forces. 

Including both the geometric term and dipole response terms yields Eq. (C.2). 
 

!!!"# !!,!!
!! !

= !!!"# !!,!!
!! + !!

!"# !!,!!
!!!

!!!
!!   + !!

!"# !!,!!
!!!

!!!
!!      (C.2) 

 
The full gradient can be evaluated since the real dipoles are evaluated using only a 

single electrostatic field calculation with the auxiliary dipoles as the initial guess whose 
position dependence is known, that is !! = !(!! + !!!!)  and !! = !(!! + !!!!) . 
Substituting this into Eq. (C.2) gives the polarization gradient for the real degrees of 
freedom, Eq. (C.3). 
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!!!"# !! ,!!
!! !

= − 12 [ !
!]! !!

!

!! !
! + 12 [ !

!−!!!! − !!!]! !!
!

!! !
!

− 12 [!!!
! + !!!]! !!

!!
!! + 12 [ !

! − !!!! − !!!]! !!
!

!! !
! − 12 [!!!

! + !!!]! !!
!!
!!      

(C.3) 

 
Again, in the SCF limit, (! → ! → !!"#), Eq. (C.3) reduces to the familiar form 

from the AMOEBA potential and in the limit that p-scaling and d-scaling are identical 
and Eq. (3.19) is recovered. 
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Appendix D:  Additional iEL/0-SCF Validation Data 
 
Table D.1:  Comparison of the diffusion constants using the iEL/0-SCF method and a standard SCF 
approach. Shown for pure water and a 4.66 M MgCl2 solution. Starting points for NVE simulations were 
taken from NVT simulations at 298.0 K and then simulated with no thermostatting or auxiliary 
thermostatting and with time steps of 0.5 fs for both methods. Mean squared displacement of atoms over 
100 ps were fit to determine the diffusion coefficients and then averaged over several independent NVE 
simulations. The SCF method used a convergence of 10-6 RMS Debye.   

System iEL/0-SCF SCF 
Pure Water 
DH2O (cm2/s) 1.90 +/- 0.13 2.02 +/- 0.20 
4.66 M MgCl2 solution 
DH2O (cm2/s) 0.54 +/- 0.08 0.56 +/- 0.08 
DMg2+ (cm2/s) 0.060 +/- 0.035 0.043 +/- 0.028 
DCl- (cm2/s) 0.090 +/- 0.034 0.086 +/- 0.032 

 

 
Figure D.1:  Comparison of ensemble average energy properties using the iEL/0-SCF and standard SCF 
methods. The average energy and fluctuations for the real degrees of freedom in the NVT ensemble of (a) 
glycine dipeptide using the iEL/0-SCF approach (red) and standard SCF approach (black) and (b) water 
using the iEL/0-SCF method (red) and standard SCF with RESPA (black); note the systematic offset for the 
RESPA approach). For iEL/0-SCF the ! value was set to 0.9, while the SCF solution used a PCG method 
with a convergence threshold of 10-5 RMS Debye. All simulations use a time step of 1.0 fs. 

 
 

(a) (b) 
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Figure D.2: Comparison of ensemble averages of the induced dipole probability distributions using the 
iEL/0-SCF and standard SCF methods. Induced dipole probability distributions for (a) oxygen in bulk 
water; the glycine (b) nitrogen, (c) ! -carbon, and (d) carbonyl carbon; and (e) Cl- for MgCl2 salt 
concentrations for a standard SCF method (dashed) and my iEL/0-SCF method (solid).   

 
 

(a) (b) 

(c) (d) 

(e) 
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Figure D.3: Comparison of ensemble average dynamical properties using the iEL/0-SCF and standard 
SCF methods. Autocorrelation function of real dipole for Mg2+ and Cl- for (a) 0.30 M and (b) 4.66 M salt 
concentrations for a standard SCF method (dashed) and our IEL/0-SCF method (solid). Time scale of 
induced dipole moment decay for oxygen and hydrogen in water (c) when fit with a single exponential, 
!"#$ − !

! , when fit to the short time scale (< 0.02 ps).  For water the induced dipole distributions used 
an internal coordinate frame; see17 for details on the internal coordinates. All data is taken from 30 ps 
trajectories in the NVT ensemble at 298.0 K.   

 
 
 

(c) 

(a) (b) 
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(a) (b) 

(c) (d) 

(e) (f) 
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Figure D.4: Comparison of ensemble average structural properties using the IEL/0-SCF and standard 
SCF methods. (a) gOO and (b) gHH for bulk water; water oxygen and hydrogen correlations with the 
backbone (c) carbonyl carbon, (d) carbonyl oxygen, and (e) !-carbon of glycine dipeptide; water oxygen 
and hydrogen correlations with (f) Cl- for 0.30 M salt concentration, and (g) Mg2+ and (h) Cl- for 1.21 M 
salt concentration, and (i) Mg2+ and (j) Cl- for 4.66 M salt concentration, for a standard SCF method 
(black dashed) and our IEL/0-SCF method (red solid). All data is based on 3.0 ns trajectories in the NVT 
ensemble at 298.0 K. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(g) (h) 

(i) (j) 
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Appendix E:  Additional iEL/0-SCF Drude Validation 
Data 

 

 

 
Figure E.1:  NVE energy properties of the iEL/0SCF method for the Drude PSPC model as a function of 
mixing parameter !. All simulations were performed with a time step of 0.5 fs on a test system of 512 water 
molecules with no thermostatting.  (a) Total real system energy (sum of the atomic kinetic and potentials 
energies) for iEL/0-SCF; (b) absolute real energy drift; (c) auxiliary degrees of freedom pseudo 
temperature; (d) drift of the auxiliary variables pseudo temperature.  
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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Figure E.2:  NVE energy properties of the iEL/0SCF method for the Drude PSPC model as a function of 
mixing parameter !. All simulations were performed with a time step of 1.0 fs on a test system of 512 water 
molecules with no thermostatting.  (a) Total real system energy (sum of the atomic kinetic and potentials 
energies) for iEL/0-SCF; (b) absolute real energy drift; (c) auxiliary degrees of freedom pseudo 
temperature; (d) drift of the auxiliary variables pseudo temperature.  
  

(c) (d) 

(b) (a) 



112 

 

 
Figure E.3:  NVE energy properties of the iEL/0SCF method for the Drude PSPC model as a function of 
mixing parameter !. All simulations were performed with a time step of 2.0 fs on a test system of 512 water 
molecules with no thermostatting for 0.5 ns.  (a) Total real system energy (sum of the atomic kinetic and 
potentials energies) for iEL/0-SCF; (b) absolute real energy drift; (c) auxiliary variables pseudo 
temperature; (d) drift of the auxiliary degrees of freedom pseudo temperature.  
 

 
Figure E.4:  NVE energy properties of the iEL/0SCF and EL(T,T*=0) method for the Drude PSPC model 
compared to the SCF reference. All simulations were performed with a time step of 1.0 fs on a test system 
of 512 water molecules with no thermostats. (a) Total real system energy for SCF (black), iEL/0-SCF (red), 
and EL (blue) (b) auxiliary variables pseudo temperature for iEL/0-SCF (red, left axis) and temperature of 
the Drude-parent atom motion of the EL method (blue, right axis). 
 

(a) (b) 

(d) 

(c) 

(a) (b) 
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Figure E.5: NVT energy properties of the SCF, EL, and iEL/0SCF method for the Drude PSPC model 
using a 2.0 fs time step. All simulations were all performed at 298.0 K. For iEL/0-SCF ! = 1.0.  (a) For 
iEL/0-SCF: the real system energy (yellow, sum of the atomic kinetic and potentials energies plus the 
kinetic and potential energies associated to the thermostats controlling the atomic temperature), the 
auxiliary energy (green, sum of the auxiliary kinetic and potential energies plus the auxiliary thermostat 
and potential energies and artificially shifted downward by the time average of the total energy to be on the 
same scale) and their sum which is the conserved quantity (red). The corresponding conserved energy for 
SCF at a convergence of 10-6 RMS kcal/mol/Å (black) and that of the EL method with the minimum stable 
Drude mass, 0.8 g/mol, (blue). (b) The system energy is the sum of the kinetic and potentials energies of the 
atomic and Drude particles. The auxiliary mass used for the conserved iEL/0-SCF quantity is the slope 
value of the auxiliary energy given in (a), which for ! = 1.0 is 0.0017 g/mol at this time step.  
 

 
Figure E.6: NVT energy properties of the SCF, EL, and iEL/0SCF method for the Drude PSPC model 
using a 3.0 fs time step. (a) For iEL/0-SCF: the real system energy (yellow), the auxiliary energy (green), 
and their sum which is the conserved quantity (red). The corresponding conserved energy for SCF at a 
convergence of 10-6 RMS kcal/mol/Å (black) and that of the EL method with the minimum stable Drude 
mass, 2.0 g/mol, (blue). (b) The system energy is the sum of the atomic kinetic and potentials energies. The 
auxiliary mass used for the conserved iEL/0-SCF quantity is the slope value of the auxiliary energy given in 
(a), which for ! = 1.0 is 0.0022 g/mol at this time step. Refer to Figure E.5 for further details. 
 

(a) (b) 

(a) (b) 
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Figure E.7: NVT energy properties of the SCF, EL, and iEL/0SCF method for the Drude PSPC model 
using a 4.0 fs time step. (a) For iEL/0-SCF: the real system energy (yellow), the auxiliary energy (green), 
and their sum which is the conserved quantity (red). The corresponding conserved energy for SCF at a 
convergence of 10-6 RMS kcal/mol/Å (black) and that of the EL method with the minimum stable Drude 
mass, 4.0 g/mol, (blue). (b) The system energy is the sum of the atomic kinetic and potentials energies. The 
auxiliary mass used for the conserved iEL/0-SCF quantity is the slope value of the auxiliary energy given in 
(a), which for ! = 1.0 is 0.0072 g/mol at this time step. Refer to Figure E.5 for further details. 
 

 
Figure E.8: NVT energy properties of the SCF and iEL/0SCF method for the Drude PSPC model using a 
5.0 fs time step. (a) For iEL/0-SCF: the real system energy (yellow), the auxiliary energy (green), and their 
sum which is the conserved quantity (red). The corresponding conserved energy for SCF at a convergence 
of 10-6 RMS kcal/mol/Å (black).  (b) The system energy is the sum of the atomic kinetic and potentials 
energies. The auxiliary mass used for the conserved iEL/0-SCF quantity is the slope value of the auxiliary 
energy given in (a), which for ! = 1.0 is 0.0097 g/mol at this time step. EL is unstable at this time step for 
all values of Drude mass.  Refer to Figure E.5 for further details. 
 
 
 

(a) (b) 

(a) 

(b) 
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Figure E.9: NVT energy properties of the SCF and iEL/0SCF method for the Drude PSPC model using a 
6.0 fs time step. (a) For iEL/0-SCF: the real system energy (yellow), the auxiliary energy (green), and their 
sum which is the conserved quantity (red). The corresponding conserved energy for SCF at a convergence 
of 10-6 RMS kcal/mol/Å (black).  (b) The system energy is the sum of the atomic kinetic and potentials 
energies. The auxiliary mass used for the conserved iEL/0-SCF quantity is the slope value of the auxiliary 
energy given in (a), which for ! = 1.0 is 0.0128 g/mol at this time step. EL is unstable at this time step for 
all values of Drude mass.  Refer to Figure E.5 for further details. 
 
 
 
 
 
 
 
 
 

 

(a) 

(b) 

(a) (b) 

(c) (d) 
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Figure E.10:  The oxygen induced dipole, !! = !!,!(!!,! − !!), probability density distributions for the 
PSPC model using the SCF, EL(T,T*) and iEL/0-SCF methods at different time steps. (a) 2.0 fs, (b) 3.0 fs, 
(c) 4.0 fs, (d) 5.0 fs, (e) 6.0 fs, and (f) 7.0 fs. All simulations were performed in the NVT ensemble at 298.0 
K.  All calculations presented in this figure use an internal coordinate system where the z-direction is given 
by the H-O-H bisector, the y-direction is out of the H-O-H plane, and the x-direction is orthogonal to z and 
y (see31 for details). 
 
 
 
 
 
 
 
 
 
 

 

 

(e) (f) 

(a) (b) 

(c) (d) 
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Figure E.11:  The oxygen induced dipole, !! = !!,!(!!,! − !!), time autocorrelation for the PSPC model 
using the SCF, EL(T,T*) and iEL/0-SCF methods at different time steps. (a) 2.0 fs, (b) 3.0 fs, (c) 4.0 fs, (d) 
5.0 fs, (e) 6.0 fs, and (f) 7.0 fs. All simulations were performed in the NVT ensemble at 298.0 K.  All 
calculations presented in this figure use an internal coordinate system where the z-direction is given by the 
H-O-H bisector, the y-direction is out of the H-O-H plane, and the x-direction is orthogonal to z and y 
(see31 for details). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(e) (f) 
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Appendix F:  General-Order Shadow Potentials for 
Induced Dipole Polarization 

While the dissipation and integrations schemes laid out in the Chapter 5 are 
generally applicable, the shadow potentials were illustrated with a classical fluctuating 
charge model. One could, in principle, adapt the discussion of higher order shadow 
potentials to a range of models and simulation techniques. Here I present the 
development of higher order shadow potentials for a classical dipole polarization model. 
For the most part the details mirror those already laid out in Chapter 5 (section 5.2) so I 
will focus on brevity here. 
 The potential energy surface for an inducible dipole model is given by the 
constrained minimization of Eq. (F.1). 
 

!!"# = 1
2!

!!"− !!! (F.1) 

 
In Eq. (F.1), ! represents a set of ! inducible dipoles on the ! atoms of the 

system. ! is the permanent electrostatic field created by any fixed electric multipoles in 
the system, and ! = !!! − !′ where ! is a diagonal matrix with the values of atomic 
polarizability for each atom, !!, on the diagonal and !′ is the dipole-dipole interaction 
matrix. The ground state (self-consistent field) solution of Eq. (F.1) is the set of induced 
dipoles that minimizes the polarization energy, which is given in Eq. (F.2). 

 
!!!"#
!! = 0 = −!+ !"     ⟹      !!"# =  −!!!! (F.2) 

 
As before we can now introduce a dynamically driven auxiliary matrix, !, which 

should follow the behavior of !!! and build a shadow potential functional around this 
auxiliary matrix as shown in Eq. (F.3). 

 

!!!!"#$!"# !,!,! = 1
2!

! ! ! !!!− !!! (F.3) 

 
Here !(!) is the same as given in section 5.2 and is reproduced in Eq. (F.4). This 

form, again, will produce a better estimate of !!! from !. 
 

! ! = !!![!− !− !" !] (F.4) 
 
One can also show that the shadow potential functional that is constructed in Eq. 

(F.3) is necessarily minimized for the set of induced dipoles given in Eq. (F.5), which is 
simply the function of Eq. (F.4) dotted into the permanent electrostatic field. 

 
!!!!!"#$!"# !! ,!,!

!! = 0 = !!! !− !− !" ! !!
!− !     ⟹  

!!"# =  !!! !− !− !" ! ! = ! ! !   
(F.5) 
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Making the substitution of Eq. (F.5) into Eq. (F.3) we can now build a Lagrangian 
with this shadow potential and ! as an additional dynamical degree of freedom, shown in 
Eq. (F.6).   

 

ℒ !, !,!,! = 1
2 !!!!!

!

!!!
+ 12!!tr !! − ! !! − 12!

!!(!)! − 12!!!!tr !!! − ! !
 (F.6) 

 
In Eq. (F.6), ! !  gives components of the potential that are independent of the 

induced dipoles, !  and !  are the positions and velocities of the atoms, and !!  is 
introduced as a fictitious mass for the !  degree of freedom. !!!  represents some 
approximation to !!! that is valid as long as !!! is closer to !!! than !. Applying the 
Euler-Lagrange equation to Eq. (F.6) we obtain Eq. (F.7). 

 

!!!! = −!" !!
!!!

+ 12!
! !" !
!!!

!− ! ! !!
!!!

−!!!!(!!! − !)!!
!!

!!!
 (F.7a) 

!!! = − 12
!
!! !!! ! ! +!!!! !!! − ! −!!!!(!!! − !)!!

!!

!!  (F.7b) 

 
 From Eq. (F.7) a classical adiabatic separation between particle and auxiliary 

motion is assumed where !!! !!! ! !  decays as !!! or faster. Then taking the limit 
that !! → 0 and ! → ∞ the resulting equations of motion are given by Eq. (F.8), where 
the derivate !" !

!!!
 has been evaluated explicitly and Eq. (F.4) is used for ! ! . 

 

!!!! = − !" !!
!!!

+ 12!
!!!! !!

!!!
!!! ! − ! − !! ! + ! − !" ! !!

!!!

!!!

!!!
! − !" !!!!! ! (F.8a) 

! = !! !!! − ! = !! !!![!− !− !" !]− !  (F.8b) 
 

I now choose !!! = !(!), as shown in the second right hand side of Eq. (F.8b), 
which guarantees the auxiliary ! oscillates about an approximation to !!! that is better 
than itself. The equations of motion in Eq. (F.8) can be integrated and dissipation can be 
introduced as laid out in section 5.2, as before. One may be concerned that !!! appears 
explicitly in Eq. (F.8), however, for some finite ! the expansion in ! and subsequent 
algebraic simplification removes any !!! terms. Here now is a shadow potential for 
dipole polarization that can match the base potential to an arbitrary degree, yet is 
guaranteed to be minimized via Eq. (F.5) at any point with no iteration.   
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Appendix G: Optimization of Higher-Order Integration 
Parameters 

Under the requirement that !!! gives a better approximation to !!! than ! and 
that !  is close to !!!  one can describe !!!  to be given through an approximate 
linearized optimization process !  acting on ! , !!! = !" 73-74.  For a convergent 
optimization one expects the eigenvalues of ! to be |!| < 1. By replacing ! by its 
maximum eigenvalue, ! , one can examine the stability of the integration under 
incomplete convergence to the ground state reference potential. The equation of motion 
in Eq. (5.8b) of the text then becomes Eq. (G.1)  

 
!(!) = !! ! − 1 !(!) (G.1) 

 
We can now examine the behavior of the integration for a range of convergences 

(! ∈  [−1, 1]  with ! = 0  corresponding to complete convergence, !!! = ! ) and for 
different integration methods.   

We can now integrate the equation of motion, Eq. (G.1), using our combined 
higher order dissipation and integration schemes, given by Eq. (5.11) in the Chapter 5. 
This integration can be described as a mapping of ! and its velocity ! at one time step to 
the next.  Such a mapping is given by Eq. (G.2)   

 
!(! + !")
!(! + !")
!(!)
⋮

!(! − ! + 1 !")

= !

!(!)
!(!)

!(! − !")
⋮

!(! − !"#)

 (G.2) 

 
In Eq. (G.2) ! is a matrix that describes the mapping (integration) process and is a 

function of !!, !!, !, !, and ! (see Appendix H for more specifics). In Eq. (G.2) an 
implicit variable substitution ! → !"! is used so that all elements of the ! matrix are 
dimensionless. If the integration is to be stable then the maximum absolute eigenvalue of 
! (its spectral radius) must be no greater than 1.0, otherwise the mapping corresponds to 
an exponential increase that diverges into instability. Spectral radii less than 1.0, on the 
other hand, represent dissipation in the integration. With this metric one can determine 
the optimal values of ! and ! for a given choice of ! and ! that will maintain integration 
stability while maximizing dissipation.  
 Figure G.1 shows the analysis of the ! matrix for the specific case of ! = 3 and 
! = 2 (2nd-order optimal). Discrete values of ! are chosen and tested over a range of ! 
values. For each set of values of ! and ! the range of ! from -1.0 to 1.0 is tested and the 
maximum spectral radius of ! from that range of ! is recorded, which is shown in Figure 
G.1a. For each value of ! we can determine the maximum possible ! value as the value 
at which the spectral radius becomes greater than 1.0. These values, then, define the 
curve of !!"#  as a function of !  given in Figure G.1c. Using this set of !  and 
corresponding !!"# values one can also look at their specific spectral radius behavior as 
a function of !, shown in Figure G.1b. The lower the spectral radius is the more 
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dissipation that particular combination of !!"#  and !  achieves. The maximum 
dissipation is defined as the spectral radius at ! = 0, which is called [!(!)]!"# and is 
plotted as a function of ! in Figure G.1c, as well.  

While ! needs to be maximized, the dissipation, [!(!)]!"#, needs to maximized, 
as well (lower values of [!(!)]!"# correspond to more dissipation). Figure G.1c shows 
that the maximum possible !  occurs when there is no dissipation ( !!"# = 0 , 
[!(!)]!"# = 1), which is not optimal.  Fortunately, [!(!)]!"# has a local minima near 
the maximum possible value of !.  I choose this point to be the optimal combination of 
large ! and maximum dissipation.  In this specific case I find that for ! = 3 and ! = 2 
(2nd-order optimal) the optimal values for ! and ! are 2.183 and 0.190, respectively, with 
[!(!)]!"# = 0.7315.  An analysis like that described above and shown in Figure G.1 is 
repeated for a wide combination of ! and ! values and the optimal ! and ! for each is 
given in Table 5.4.  

  

 

 
Figure G.1:  Stability analysis of the integration schemes. Analysis of the ! matrix (Eq. G.2) for the 
specific case of ! = 3 and ! = 2. (a) The maximum spectral radius of !, [!(!)]!"#, as a function of ! for 
a range of ! values. (b) The point at which [!(!)]!"# becomes greater than 1.0 defines a pair of ! and 
!!"# and for those sets of points we plot the spectral radius, !(!), as a function of !.(c) We define the 
maximum dissipation as the spectral radius at ! = 0 and call this [!(!)]!"#, which is a function of ! and 
!!"#.  Both !!"# (black) and [!(!)]!"# (red) are given as function of !. 
 
 
 
 
 
 

(a) 

(c) 

(b) 
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Appendix H:  Integration Tensors for Spectral Radius 
Analysis 

As discussed in Appendix G, the integration of Eq. (G.1) can be written in the 
form of Eq. (G.2), where the details of the ! matrix depend on the specific integrator 
being used.  For the general class of integrators described by Eq. (5.11) one can build !, 
the integration that moves from ! to ! + !", as a successive application of velocity and 
position updates for each !!! intermediate update of an ! order integrator, given in Eq. 
(H.1). 
 

! = !!!!!!
!

!!!
 (H.1) 

 
In Eq. (H.1) !!! is the matrix giving the !!! position update and !!! is the matrix 

giving the !!! velocity update. For a 2nd-order integrator (! = 2) and a general dissipative 
order, !, the !!! and !!! matrices are given in Eq. (H.2). 
 

!!! =

1 !!! ! − 1 + !!!!! !!!!! … !!!!!!! !!!!! 0 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 1

 (H.2a) 

!!! =

1 0 0 … 0 0 0 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0
!! 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 ⋱ 0 0
0 0 0 … 0 0 0 0 ⋱ 1 0

 (H.2b) 

!!! =

1 0 0 … 0 0 !!! ! − 1 + !!!!! !!!!! … !!!!!!! !!!!!
0 1 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 1

	 (H.2c) 



123 

!!! =

1 0 0 … 0 0 0 0 … 0 0
!! 0 0 … 0 0 1 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0
⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋱ 0 0 0 0 … 0 0
0 0 0 ⋱ 1 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 1

	 (H.2d) 

 
For a 3rd-order integrator (! = 3) and a general dissipative order, !, the !!! and 

!!! matrices are given in Eq. (H.3). 
 

!!! =

1 !!! ! − 1 + !!!!! !!!!! … !!!!!!! !!!!! 0 0 … 0 0 0 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 1 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 0 0 0 … 0 1

 (H.3a) 

!!! =

1 0 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0 0 0 … 0 0
!! 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 ⋱ 0 0 0 0 … 0 0
0 0 0 … 0 0 0 0 ⋱ 1 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 0 0 0 … 0 1

 (H.3b) 

!!! =

1 0 0 … 0 0 !!! ! − 1 + !!!!! !!!!! … !!!!!!! !!!!! 0 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 1 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 0 0 0 … 0 1

	 (H.3c) 



124 

!!! =

1 0 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 1 0 0 … 0 0
!! 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 1 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 0 0 0 0 ⋱ 0 0
0 0 0 … 0 0 0 0 … 0 0 0 0 ⋱ 1 0

	 (H.3d) 

!!! =

1 0 0 … 0 0 0 0 … 0 0 !!! ! − 1 + !!!!! !!!!! … !!!!!!! !!!!!
0 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
0 0 1 … 0 0 0 0 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 1 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 1 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 0 0 0 … 0 1

	 (H.3e) 

!!! =

1 0 0 … 0 0 0 0 … 0 0 0 0 … 0 0
!! 0 0 … 0 0 0 0 … 0 0 1 0 … 0 0
0 1 0 … 0 0 0 0 … 0 0 0 0 … 0 0
⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋱ 0 0 0 0 … 0 0 0 0 … 0 0
0 0 0 ⋱ 1 0 0 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 0 0 … 0 0
0 0 0 … 0 0 0 1 … 0 0 0 0 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 1 0 0 0 … 0 0
0 0 0 … 0 0 0 0 … 0 1 0 0 … 0 0
0 0 0 … 0 0 1 0 … 0 0 1 0 … 0 0
0 0 0 … 0 0 0 0 … 0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … 0 0 0 0 … 0 0 0 0 … 1 0
0 0 0 … 0 0 0 0 … 0 0 0 0 … 0 1

	 (H.3f) 

 
These ! matrices are then analyzed as described in the section 5.2 and Appendix 

G. Higher order matrices can be constructed in a similar manner keeping in mind that ! 
sets of ! previous positions need to be stored for dissipation and every time the position 
is updated its corresponding history at integer multiples of full previous time steps must 
also be incremented in history. This incrementing process can be seen in the !!! as 
diagonal blocks of 1 that do not lie on the main diagonal. 
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Appendix I:  Three Timescale RESPA with SI 
Integration 

Translating the equations of motion, Eq. (6.3) and Eq. (6.6), into a multiple time 
step integration scheme requires some care and is discussed extensively by Tuckerman 
and colleagues108-109.  A brief overview is presented here.  The constructing of an 
integration algorithm begins by first examining the Liouville operator Eq. (6.3), which 
can be written as Eq. (I.1). 

 
!" = !!! + !!!! + !!!! + !!!! + !!! + !!!" (I.1) 

 
In Eq. (I.1) the velocity component, !!!, is broken into short, medium, and long 

timescales.  Specifically the components of Eq. (I.1) are given by Eq. (I.2), using the 
definitions presented in Chapter 6.  The component !!!" applies a Ornstein-Uhlenbeck 
stochastic process to every !!,!,!! . 
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!

!!!,!,!!
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!

!!!
]

!

!!!
 

(I.2e) 

 
The various decompositions of the Lagrange multiplier used in Eq. (I.2) are given 

in Eq. (I.3). 
 

!!,!! =
!

! + 1 !!(!!,!,! 
! )!!!,!,!(!)!

!!!

!!!!,!! + !
! + 1 !!(!!,!,! 

! )!!
!!!

 (I.3a) 

!!,!! = !!,!!!,!! !
!!!!,!! + !

! + 1 !!(!!,!,! 
! )!!

!!!
 (I.3b) 
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!!,!! = !!,!!!,!! !
!!!!,!! + !

! + 1 !!(!!,!,! 
! )!!

!!!
 (I.3c) 

!!,!! = !!,!!!,!! !
!!!!,!! + !

! + 1 !!(!!,!,! 
! )!!

!!!
 (I.3d) 

 
Many possible Trotter factorizations of the Liouville operator exp(!" !") are 

possible, but for computational efficiency I chose the ‘XO’ factorization109, where the 
deterministic (non-stochastic) Nosé-Hoover variable updates occur at the outer time step 
because this less frequent updating of the NH variables increases the computational 
efficiency.  The factorization for this algorithm is given by Eq. (I.4). 
 

exp(!" !") = exp !!!
!"
2 exp !!!!

!"
2 {exp !!!!

!!!
2    

× exp !!!!
!!!
2 exp !!!

!!!
2 exp !!!"!" exp !!!

!!!
2 exp !!!!

!!!
2

!
 

 

× exp !!!!
!!!
2 }! exp !!!!

!"
2 exp !!!

!"
2  

(I.4) 

 
The process is now repeated for the auxiliary equation of motion, Eq. (6.6).  

Recognizing that there is only one component to the auxiliary acceleration, given by Eq. 
(6.1b), one can see that there is no need to break the auxiliary factorization into separate 
timescales as there is only one possible time scale, yielding Eq. (I.5).  Again !!!"!  applies 
a Ornstein-Uhlenbeck stochastic process to every !!!,!,!! . 

 
!!! = !!!! + !!!! + !!!! + !!!"!  (I.5) 

 
The components of Eq. (I.5) are given in Eq. (I.6). 
 

!!!! = !!,!!
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!!!,!

 (I.6a) 

!!!! =  !!!(!!,! − !!,!)− !!,!! !!,!!
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!!!,!!
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(I.6e) 

 
The various Lagrange multipliers of Eq. (1.6) are then given by Eq. (1.7). 
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!!,!!,! =
!

! + 1 !!!(!!!,!,! 
! )!!!!,!,!(!)!

!!!

!!,!!
! + !

! + 1 !!!(!!!,!,! 
! )!!

!!!
 (I.7a) 

!!,!! = !!,!! !!!(!!,! − !!,!)
!!,!!

! + !
! + 1 !!!(!!!,!,! 

! )!!
!!!

 (I.7b) 

 
Now, if the polarization is evaluated in the outer time step then ! = √2/!" and 

the factorization of the Liouville operator becomes Eq. (1.8). 
 

exp(!!! !") = exp !!!!
!"
2 exp !!!!

!"
2    

× exp !!!!
!!!
2 exp !!!"! !" exp !!!!

!!!
2

!"
exp !!!!

!"
2 exp !!!!

!"
2  

(I.8) 

 
If the polarization is evaluated in the intermediate time step then ! = √2/!!! 

and the factorization of the Liouville operator becomes Eq. (1.9). 
 

exp(!!! !!) = exp !!!!
!"
2 {exp !!!!

!!!
2    

× exp !!!!
!!!
2 exp !!!"! !" exp !!!!

!!!
2
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exp !!!!

!!!
2 }! exp !!!!

!"
2  

(I.9) 

 
Thus when polarization is treated at the intermediate time step there are more 

frequent updates of the auxiliary NH variables, exp !!!! !!!! , leading to a decrease in 
efficiency.  Combining the integration of the atomic and auxiliary degrees of freedom 
yields the full factorization from which a numerical integration is easily built.  For the 
case of polarization in the outer time step the factorization becomes Eq. (I.10). 
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(I.10) 

 
When polarization is treated in the intermediate time step then the algorithm 

factorization is given by Eq. (I.11). 
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128 

Appendix J:  Additional iEL/0-SCF with SI Data 
 

 
Figure J.1:  Induced dipole probability distributions for glycine N-terminus nitrogen x-component (a), y-
component (b), z-component (c), and the corresponding induced dipole autocorrelation (d).  Three methods 
are presented- SCF with standard velocity Verlet integration, SCF with SI integration, and iEL/0-SCF with 
SI integration.  All simulations were performed with a single 1.0 fs time step and a temperature of 298.0 K. 
 

 

 
Figure J.2:  Induced dipole probability distributions for glycine !-carbon x-component (a), y-component 
(b), z-component (c), and the corresponding induced dipole autocorrelation (d).  Three methods are 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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presented- SCF with standard velocity Verlet integration, SCF with SI integration, and iEL/0-SCF with SI 
integration.  All simulations were performed with a single 1.0 fs time step and a temperature of 298.0 K. 

 
Figure J.3:  Induced dipole probability distributions for glycine carbonyl oxygen x-component (a), y-
component (b), z-component (c), and the corresponding induced dipole autocorrelation (d).  Three methods 
are presented- SCF with standard velocity Verlet integration, SCF with SI integration, and iEL/0-SCF with 
SI integration.  All simulations were performed with a single 1.0 fs time step and a temperature of 298.0 K. 
 

 
Figure J.4:  Three time scale pol. mid. RESPA used in conjunction with SI and iEL/0-SCF on a system of 
pure water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time step, !", 
is reported (a) along with the error of the average molecular dipole (b) with respect to the vale of an SCF 

(d) 

(a) (b) 

(c) 

(b) (a) 

(c) 
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simulation with standard Verlet integration at a 1.0 fs time step (2.81 D).  Different colored curves 
represent different intermediate time steps, !!!.  Also reported are the computational speed ups with 
respect to standard 1.0 fs Verlet integration (c).  All calculations were performed with 16 CPUs and 
shared-memory parallelization.  The dotted gray line in (b) represents 5% error and all simulations below 
that error in (b) are within the 5% error envelope in (c). 

 

 
Figure J.5:  Three time scale pol. long RESPA used in conjunction with SI and iEL/0-SCF on a system of 
pure water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time step, !", 
is reported (a) along with the error of the average molecular dipole (b) with respect to the vale of an SCF 
simulation with standard Verlet integration at a 1.0 fs time step (2.81 D).  Different colored curves 
represent different intermediate time steps, !!!.  Also reported are the computational speed ups with 
respect to standard 1.0 fs Verlet integration (c).  All calculations were performed with 16 CPUs and 
shared-memory parallelization.  The dotted gray line in (b) represents 5% error and all simulations below 
that error in (b) are within the 5% error envelope in (c). 
 
 
 
 
 

 

(a) 

(b) 

(c) 

(b) (a) 
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Figure J.6:  Three time scale el. long RESPA used in conjunction with SI and iEL/0-SCF on a system of 
pure water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time step, !", 
is reported (a) along with the error of the average molecular dipole (b) with respect to the vale of an SCF 
simulation with standard Verlet integration at a 1.0 fs time step (2.81 D).  Different colored curves 
represent different intermediate time steps, !!!.  Also reported are the computational speed ups with 
respect to standard 1.0 fs Verlet integration (c).  All calculations were performed with 16 CPUs and 
shared-memory parallelization.  The dotted gray line in (b) represents 5% error and all simulations below 
that error in (b) are within the 5% error envelope in (c). 
 

 
Figure J.7:  Three time vdW mid. RESPA used in conjunction with SI and iEL/0-SCF on a system of pure 
water.  The average molecular dipole of water 〈!!"#〉 as a function of the outer RESPA time step, !", is 
reported (a) along with the error of the average molecular dipole (b) with respect to the vale of an SCF 
simulation with standard Verlet integration at a 1.0 fs time step (2.81 D).  Different colored curves 
represent different intermediate time steps, !!!.  Also reported are the computational speed ups with 
respect to standard 1.0 fs Verlet integration (c).  All calculations were performed with 16 CPUs and 
shared-memory parallelization.  The dotted gray line in (b) represents 5% error and all simulations below 
that error in (b) are within the 5% error envelope in (c). 
 
 

(c) 

(a) (b) 

(c) 




