
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
The NAS Parallel Benchmarks

Permalink
https://escholarship.org/uc/item/7g6632bn

Author
Bailey, David H.

Publication Date
2009-11-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7g6632bn
https://escholarship.org
http://www.cdlib.org/

TITLE: The NAS Parallel Benchmarks

AUTHOR: David H Bailey1

ACRONYMS: NAS, NPB

DEFINITION:
The NAS Parallel Benchmarks (NPB) are a suite of parallel computer per-

formance benchmarks. They were originally developed at the NASA Ames Re-
search Center in 1991 to assess high-end parallel supercomputers [?]. Although
they are no longer used as widely as they once were for comparing high-end sys-
tem performance, they continue to be studied and analyzed a great deal in the
high-performance computing community. The acronym “NAS” originally stood
for the Numerical Aeronautical Simulation Program at NASA Ames. The name
of this organization was subsequently changed to the Numerical Aerospace Sim-
ulation Program, and more recently to the NASA Advanced Supercomputing
Center, although the acronym remains “NAS.” The developers of the original
NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning,
Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson,
Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira
Weeratunga.

DISCUSSION:
The original NAS Parallel Benchmarks consisted of eight individual bench-

mark problems, each of which focused on some aspect of scientific computing.
The principal focus was in computational aerophysics, although most of these
benchmarks have much broader relevance, since in a much larger sense they are
typical of many real-world scientific computing applications.

The NPB suite grew out of the need for a more rational procedure to select
new supercomputers for acquisition by NASA. The emergence of commercially
available highly parallel computer systems in the late 1980s offered an attrac-
tive alternative to parallel vector supercomputers that had been the mainstay
of high-end scientific computing. However, the introduction of highly parallel
systems was accompanied by a regrettable level of hype, not only on the part
of the commercial vendors but even, in some cases, by scientists using the sys-
tems. As a result, it was difficult to discern whether the new systems offered
any fundamental performance advantage over vector supercomputers, and, if
so, which of the parallel offerings would be most useful in real-world scientific
computation.

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, dhbailey@lbl.gov.
Supported in part by the Director, Office of Computational and Technology Research, Division
of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy,
under contract number DE-AC02-05CH11231.

1

In part to draw attention to some of the performance reporting abuses preva-
lent at the time, the present author wrote a humorous essay “Twelve Ways to
Fool the Masses,” which described in a light-hearted way a number of the ques-
tionable ways in which both vendor marketing people and scientists were inflat-
ing and distorting their performance results [?]. All of this underscored the need
for an objective and scientifically defensible measure to compare performance
on these systems.

At the time (1991), the only widely available high-end benchmark was the
scalable Linpack benchmark, which while it was useful and remains useful to
this day, was not considered typical of most applications on NASA’s supercom-
puters or at most other sites. One possible solution was to employ an actual
large-scale application code, such as one of those being used by scientists using
supercomputers at the NAS center. However, due in part to the very large
programming and tuning requirements, these were considered too unwieldy to
be used to compare a broad range of emerging parallel systems. Compounding
these challenges at this time was the lack of a generally accepted parallel pro-
gramming model — note this was several years before the advent of the Message
Passing Interface (MPI) and OpenMP models that are in common usage today.

For these reasons, the NAS Benchmarks were initially designed not as a set
of computer codes, but instead were specified as “paper and pencil” benchmarks
defined in a technical document [?]. The idea was to specify a set of problems
only algorithmically, but in sufficient detail that the document could be used for
a full-fledged implementation complying with the requirements. Even the input
data or a scheme to generate it was specified in the document. Some “reference
implementations” were provided, but these were intended only as aids for a
serious implementation, not to be the benchmarks themselves. The original rules
accompanying the benchmarks required that the benchmarks be implemented in
some extension of Fortran or C (see details below), but otherwise implementers
were free to utilize language constructs that give the best performance possible
on the particular system being studied. The choice of data structures, processor
allocation and memory usage were (and are) generally left open to the discretion
of the implementer.

The eight problems consist of five “kernels” and three “simulated compu-
tational fluid dynamics (CFD) applications.” The five kernels are relatively
compact problems, each of which emphasizes a particular type of numerical
computation. Compared with the simulated CFD applications, they can be
implemented fairly readily and provide insight as to the general levels of perfor-
mance that can be expected on these specific types of numerical computations.

The three simulated CFD applications, on the other hand, usually require
more effort to implement, but they are more indicative of the types of actual data
movement and computation required in state-of-the-art CFD application codes,
and in many other three-dimension physical simulations as well. For example,
in an isolated kernel a certain data structure may be very efficient on a certain
system, and yet this data structure would be inappropriate if incorporated into

2

a larger application. By comparison, the simulated CFD applications require
data structures and implementation techniques in three physical dimensions,
and thus are more typical of real scientific applications.

Benchmark Rules
Even though the benchmarks are specified in a technical document, and

implementers are generally free to code them in any reasonable manner, certain
rules were specified for these implementations. The intent here was to limit
implementations to what would be regarded as “reasonable” code similar to
that used in real scientific applications. In particular, the following rules were
presented, and, with a couple of minor changes, are still in effect today (these
rules are the current version):

• All floating point operations must be performed using 64-bit floating point
arithmetic (at least).

• All benchmarks must be coded in either Fortran (Fortran-77 or Fortran-
90), C or Java, with certain approved extensions. Java was added in a
recent version of the NPB.

• One of the three languages must be selected for the entire implementation
— mixed code is not allowed.

• Any language extension or library routine that is employed in any of the
benchmarks must be supported by the system vendor and available to all
users.

• Subprograms and library routines not written in Fortran, C or Java (such
as assembly-coded routines) may only perform certain basic functions [a
complete list is provided in the full NPB specification].

• All rules apply equally to subroutine calls, language extensions and com-
piler directives (i.e. special comments).

The Original Eight Benchmarks
A brief (and necessarily incomplete) description of the eight problems is

given here. For full details, see the full NPB specification document [?].

EP. As the acronym suggests, this is an “embarrassingly parallel” kernel — in
contrast to others in the list, it requires virtually no interprocessor communi-
cation, only coordination of pseudorandom number generation at the beginning
and collection of results at the end. There is some challenge in computing re-
quired intrinsic functions (which, according to specified rules, must be done
using vendor-supplied library functions) at a rapid rate.

The problem is to generate pairs of Gaussian random deviates and tabulate
the number of pairs in successive square annuli. The Gaussian deviates are to

3

be calculated by the following well-known scheme. First, generate a sequence of
n pairs of uniform (0, 1) pseudorandom deviates (xj , yj) (using a specific linear
congruential scheme specified in the benchmark document). Then for each j
check whether tj = x2

j + y2
j ≤ 1. If so, set Xk = xj

√
(−2 log tj)/tj and Yk =

yj
√

(−2 log tj)/tj , where the index k is incremented with every successful test;
if tj > 1, then reject the pair (xj , yj). In this way, the resulting pairs (Xk, Yk)
are random deviates with a Gaussian distribution. The sums S1 =

∑
kXk and

S2 =
∑
k Yk are each accumulated, as are the counts of the number of hits in

successive square annuli.
The verification test for this problem requires that the sums S1 and S2 each

agree with reference values to within a specified tolerance, and also that the ten
counts of deviates in square annuli exactly agree with reference values.

MG. This is a simplified multigrid calculation. This requires highly structured
long distance communication and tests both short and long distance data com-
munication.

The problem definition is as follows. Set v = 0 except at the twenty specified
points, where v = ±1. Commence an iterative solution with u = 0. Each of the
four iterations consists of the following two steps, in which k = 8:

r := vAu (evaluate residual)
u := u+Mkr. (apply correction)

Here Mk denotes the following V-cycle multigrid operator: zk := Mkrk, where
if k > 1 then

rk−1 := Prk (restrict residual)
zk−1 := Mk−1rk−1 (recursive solve)
zk := Qzk−1 (prolongate)
rk := rkAzk (evaluate residual)
zk := zk + Srk, (apply smoother)

else

z1 := Sr1. (apply smoother)

The coefficients of the P , M , Q and S arrays, together with other details, are
given in the benchmark document.

The benchmark problem definition requires that a specified number of itera-
tions of the above V-cycle be performed, after which the L2 norm of the r array
must agree with a reference value to within a specified tolerance.

CG. In this problem, a conjugate gradient method is used to compute an ap-
proximation to the smallest eigenvalue of a large, sparse, symmetric positive

4

definite matrix. This kernel is typical of unstructured grid computations in
that it tests irregular long distance communication, employing unstructured
matrix vector multiplication.

The problem statement in this case is fairly straightforward: Perform a
specified number of conjugate gradient iterations in approximating the solution
z to a certain specified large sparse n × n linear system of equations Az = x.
In this problem, the matrix A must be used explicitly. This is because after
the original NPB suite was published, it was noted that by saving the random
sparse vectors x used in the specified construction of the problem, it was possible
to reformulate the sparse matrix-vector multiply operation in such a way that
communication is substantially reduced. Therefore this scheme is specifically
disallowed.

The verification test is that the value γ = λ+1/(xT z) (where λ is a parameter
that depends on problem size) must agree with a reference value to a specified
tolerance.

FT. Here, a 3-D partial differential equation is solved using FFTs. This per-
forms the essence of many “spectral” codes. It is a rigorous test of heavy
long-distance communication performance.

The problem is to numerically solve the Poisson partial differential equation
(PDE)

∂u(x, t)
∂t

= α∇2u(x, t),

where x is a position in three-dimensional space. When a Fourier transform is
applied to each side, this equation becomes

∂v(z, t)
∂t

= −4απ2|z|2v(z, t),

where v(z, t) is the Fourier transform of u(x, t). This has the solution

v(z, t) = e−4απ2|z|2tv(z, 0).

The benchmark problem is to solve a discrete version of the original PDE by
computing the forward 3-D discrete Fourier transform (DFT) of the original
state array u(x, 0), multiplying the results by certain exponentials, and then
performing an inverse 3-D DFT. Of course, the DFTs can be rapidly evaluated
by using a 3-D fast Fourier transform (FFT) algorithm.

The verification test for this problem is to match the checksum of a certain
subset of the final array with reference values.

IS. This kernel performs a large integer sort operation that is important in
certain a“particle method” codes. It tests both integer computation speed and
communication performance.

5

The specific problem is to generate a large array by a certain scheme and
then to sort it. Any efficient parallel sort scheme may be used. The verification
test is to certify that the array is in sorted order (full details are given in the
benchmark document).

LU. This performs a synthetic computational fluid dynamics (CFD) calculation
by solving regular-sparse, block (5× 5) lower and upper triangular systems.

SP. This performs a synthetic CFD problem by solving multiple, independent
systems of non diagonally dominant, scalar, pentadiagonal equations.

BT. This performs a synthetic CFD problem by solving multiple, independent
systems of non diagonally dominant, block tridiagonal equations with a (5× 5)
block size.

These last three “simulated CFD benchmarks” together represent the heart
of the computationally-intensive building blocks of CFD programs in most com-
mon use today for the numerical solution of three-dimensional Euler/Navier-
Stokes equations using finite-volume, finite-difference discretization on struc-
tured grids. LU and SP involve global data dependencies. Although the three
benchmarks are similar in many respects, there is a fundamental difference with
regard to the communication-to-computation ratio. BT represents the compu-
tations associated with the implicit operator of a newer class of implicit CFD
algorithms. This kernel exhibits somewhat more limited parallelism compared
with the other two.

In each of these three benchmarks, the same high-level synthetic problem is
solved. This synthetic problem differs from a real CFD problem in the following
important aspects:

1. Absence of realistic boundary algorithms.

2. Higher than normal dissipative effects.

3. Lack of upwind differencing effects.

4. Absence of geometric stiffness introduced through boundary conforming
coordinate transformations and highly stretched meshes.

5. Lack of evolution of weak solutions found in real CFD applications during
the iterative process.

6. Absence of turbulence modeling effects.

Full details of the these three benchmark problems are given in the bench-
mark document, as are the verification tests.

Evolution of the NAS Parallel Benchmarks

6

The original NPB suite was accompanied by a set of “reference” implemen-
tations, including implementations for a single-processor workstation, an Intel
Paragon system (using Intel’s message passing library) and a CM-2 from Think-
ing Machines Corp. Also, the original release defined three problem sizes: Class
W (for the sample workstation implementation), Class A (for what was at the
time a moderate-sized parallel computer), and Class B (for what was at the
time a large parallel computer). The Class B problems were roughly four times
larger than the Class A problems, both in total operation count and in aggregate
memory requirement.

After the initial release of the NPB, the NASA team published several sets
of performance results, for example [?, ?], and in the next few years numerous
teams of scientists and computer vendors submitted results.

By 1996, several of the original NPB team had left NASA Ames Research
Center, and, for a while, active support and collection of results lagged. For-
tunately, some other NASA Ames scientists, notably William Saphir, Rob Van
der Wingaart, Alex Woo and Maurice Yarrow, stepped in to continue support
and development. These researchers produced a reference implementation of
the NPB with MPI constructs, which, together with a few minor changes, was
designated NPB 2.0. Then a Class C problem size was defined as part of NPB
2.2.

Another enhancement was the addition of the “BT I/O” benchmark. In
this benchmark, implementers were required to output some key arrays to an
external file system as the BT program is running. Thus, by comparing the
performance of the BT and BT I/O benchmarks, one could get some measure
of I/O system performance. This change, together with the definition of Class
D problem sizes, was released in 1997 and designated NPB 2.4.

In 1999, NASA Ames researchers Haoqiang Jin, Michael Frumkin and Jerry
Yan released NPB 3.0, which included an OpenMP reference implementation of
the NPB.

In 2002, Rob van der Wingaart and Michael Frumkin released a grid version
of the NPB. In the next year or two several additional minor improvements and
bug fixes were made to all reference implementations, and Class E problem sizes
were defined. Reference implementations were released in Java 3.0 and High-
Performance Fortran, and a “multi-zone” benchmark, reflective of a number of
more modern CFD computations, was added. These changes were designated
NPB 3.3, which is the latest version on the NASA website.

Full details of the current version of NPB, as well as the actual documents
and reference implementations, are available at:
http://www.nas.nasa.gov/Resources/Software/npb.html

RELATED REFERENCES:
The Linpack benchmark
The HPC Challenge benchmarks

7

References

[1] D. H. Bailey, “Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers,” Supercomputing Review, Aug. 1991, pg.
54–55. Also published in Supercomputer, Sep. 1991, pg. 4–7. Available at
http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L.
Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The NAS Parallel
Benchmarks,” Intl. Journal of Supercomputer Applications, v. 5, no. 3 (Fall
1991), pg. 63–73.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L.
Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The NAS Par-
allel Benchmarks,” Technical Report RNR-94-007, NASA Ames Research
Center, Moffett Field, CA 94035, Jan. 1991, revised 1994, available at
http://www.nas.nasa.gov/News/Techreports/1994/PDF/RNR-94-007.pdf.

[4] David H. Bailey, Eric Barszcz, Leo Dagum and Horst D. Simon, “NAS Par-
allel Benchmark Results,” Proceedings of Supercomputing 1992, Nov. 1992,
pg. 386–393.

[5] David H. Bailey, Eric Barszcz, Leo Dagum and Horst D. Simon, “NAS Par-
allel Benchmark Results,” IEEE Parallel and Distributed Technology, Feb.
1993, pg. 43–51.

8

