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Abstract
Habitat loss, flood control infrastructure, and drought have left most of southern 
California and northern Baja California's native freshwater fish near extinction, 
including the endangered unarmoured threespine stickleback (Gasterosteus aculeatus 
williamsoni). This subspecies, an unusual morph lacking the typical lateral bony plates 
of the G. aculeatus complex, occurs at arid southern latitudes in the eastern Pacific 
Ocean and survives in only three inland locations. Managers have lacked molecular 
data to answer basic questions about the ancestry and genetic distinctiveness of 
unarmoured populations. These data could be used to prioritize conservation efforts. 
We sampled G. aculeatus from 36 localities and used microsatellites and whole genome 
data to place unarmoured populations within the broader evolutionary context of G. 
aculeatus across southern California/northern Baja California. We identified three 
genetic groups with none consisting solely of unarmoured populations. Unlike G. 
aculeatus at northern latitudes, where Pleistocene glaciation has produced similar 
historical demographic profiles across populations, we found markedly different 
demographics depending on sampling location, with inland unarmoured populations 
showing steeper population declines and lower heterozygosity compared to low 
armoured populations in coastal lagoons. One exception involved the only high 
elevation population in the region, where the demography and alleles of unarmoured 
fish were similar to low armoured populations near the coast, exposing one of several 
cases of artificial translocation. Our results suggest that the current “management-
by-phenotype” approach, based on lateral plates, is incidentally protecting the most 
imperilled populations; however, redirecting efforts toward evolutionary units, 
regardless of phenotype, may more effectively preserve adaptive potential.

K E Y W O R D S
conservation, historical demography, lagoon, population structure, sequentially Markovian 
coalescent, Southern California Bight
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1  |  INTRODUC TION

Some of the most highly modified habitats in southwestern North 
America include rivers and streams (Benke,  1990; Minckley & 
Marsh,  2009; Pringle et al.,  2000; Propst et al.,  2021; Ricciardi & 
Rasmussen, 1999), particularly in the southern California-northern 
Baja California coast ecoregion, where lowland reaches of major 
rivers are now channelized in concrete and flows are regulated via 
dam releases from artificial lakes and reservoirs (Gumprecht, 1999; 
Orsi, 2004). This infrastructure was developed to protect the rap-
idly growing human population of the mid-20th century from flood 
damage and to store and divert water in a landscape that was largely 
devoid of perennial water (Stephenson & Calcarone,  1999; Van 
Wormer, 1991). However, the effects on the native freshwater fish 
fauna have been dramatic, reducing the amounts of suitable habitat 
(Faber et al., 1989; Stephenson & Calcarone, 1999; Swift et al., 1993), 
eliminating the capacity for gene exchange within and between 
drainage basins (Benjamin et al., 2016; Richmond et al., 2018), and 
altering the dynamics of an ecosystem with historically ephem-
eral and intermittent surface water (Levick et al., 2008; Richmond 
et al., 2018). Climatic stressors that promote oscillating demography 
(e.g., strong seasonal and multiyear variation in amounts of precip-
itation and duration of drought: Levick et al., 2008; Mount, 1995; 
Stephenson & Calcarone, 1999) and other factors may be accelerat-
ing losses of local genetic diversity and pushing these species closer 
to the brink of extinction (Moyle et al., 2015). Because most of the 
region's freshwater fish species lack genetic data to guide manage-
ment (Leidy & Moyle, 2021), more studies are needed to character-
ize their ancestry, population structure, and historical demography 
to provide better snapshots of population dynamics prior to 20th 
century urbanization.

One of the most iconic taxa of this fauna is the unarmoured 
threespine stickleback, which lacks lateral bony plates, or “body ar-
mour”, that typically line the flanks of the G. aculeatus species com-
plex. The complex comprises marine, anadromous, and freshwater 
populations, and is distributed across the mid to high latitude in the 
Northern Hemisphere along the margins of the Pacific, Arctic and 
Atlantic oceans (Bell & Foster, 1994). Morphology varies widely across 
this distribution, with the unarmoured morph being the rarest of four 
recognized plate morphs (i.e., fully armoured, partial, low, and unar-
moured: Bell,  1976; Miller & Hubbs,  1969). Fully armoured morphs 
have a continuous row of 30+ plates per side and predominantly occur 
in marine environments; partially armoured morphs have a discontin-
uous row of 11+ plates per side and occur in brackish water; and low 
and unarmoured morphs occur exclusively in freshwater and have 
fewer than 11 plates per side or no plates at all (Bell & Foster, 1994). 
Diversification of the plate phenotypes is often adaptive (reviewed 
in Bell,  2001; Colosimo et al.,  2005; Hagen & Gilbertson,  1973; 
Reimchen, 1994, 2000). Plates are associated with greater piscivorous 
predation, while their absence is hypothesized to confer advantages 
in mobility, buoyancy, calcium availability and faster growth rates 
(possibly in avoidance of insect predators) (Barrett et al., 2008; Bell 
et al., 1993; Bell & Foster, 1994; Bergstrom, 2002).

Unarmoured populations were historically more widespread in 
riverine settings of coastal southern California, but most have be-
come extirpated since the 1940 s (Bell, 1978; Miller, 1961; Miller & 
Hubbs, 1969; Swift et al., 1993). Currently, native populations of un-
armoured stickleback remain in three upstream areas: San Antonio 
Creek on Vandenberg Space Force Base (VSFB, Santa Barbara 
County); the upper Santa Clara River (Los Angeles County); and 
the upper Santa Ana River and Baldwin Lake drainage basin in the 
San Bernardino mountains (San Bernardino County) (USFWS, 2021; 
Figure 1). Gasterosteus aculeatus williamsoni (Girard, 1854) was de-
scribed on the basis of specimens collected in the upper Santa Clara 
River in Soledad Canyon (Figure 1: nos. 25–26, type-locality). It was 
listed as endangered by the U.S. federal government in 1970 (35 
Federal Register 16,047) and the state of California (https://wildl​ife.
ca.gov/Conse​rvati​on/CESA) in 1971. Limited habitat and continued 
population decline are described in a recovery plan for G. a. william-
soni, with status updates conducted every five years to describe cur-
rent research, management efforts, and progress toward recovery of 
this endangered species.

Most conservation management efforts in southern California 
have focused on the unarmoured stickleback population occurring 
near the type locality in the upper Santa Clara River (USFWS, 2021). 
However, such emphasis on the phenotype may be misguided, as 
G. aculeatus is well-known for parallel evolution of different plate 
morphs. This phenomenon was poorly understood at the time 
the taxonomy was developed, but genetic data have since shown 
that transitions from fully armoured marine morphs (with over 30 
plates) to partially or low armoured freshwater morphs (typically 
between 30 and one plate) have occurred repeatedly and inde-
pendently following deglaciation at northern latitudes over the last 
~15,000 years (Deagle et al., 2013; Hohenlohe & Magalhaes, 2020; 
Jones et al., 2012; Reimchen, 1994; Schluter, 2000). Parallel evolu-
tion is widely viewed as a phylogenetic signature of adaptive trait 
evolution (Schluter & Nagel,  1995), as standing genetic variation 
in closely related populations increases the probability that traits 
will evolve in the same way in similar environments (Hendry, 2013; 
Morris et al., 2018; Peichel & Marques, 2017).

In this study, we used microsatellite markers and low coverage 
whole-genome sequencing (lcWGS) to characterize the genetic 
structure and historical demography of G. aculeatus in south-
ern California, with emphasis on a geographic area known as the 
Southern California Bight (SCB; Figure 1). The SCB is formed by a 
685 km arc of coastline along the west coast of the United States 
and Mexico, from Point Conception in California south to Punta 
Colonet in Baja California. Many upstream and now isolated popu-
lations of G. aculeatus occur within the SBC, including extant unar-
moured populations in the upper Santa Clara (Figure 1: nos. 20–22, 
25–26) and in the upper Santa Ana drainage in the San Bernardino 
Mountains (Figure 1: no. 28), while the third native unarmoured pop-
ulation occurs immediately to the north of the SCB in San Antonio 
Creek (no. 8) at VSFB. However, questions about the relationship 
between these unarmoured populations and the low armoured pop-
ulations in the region remain unanswered. In addition, unarmoured 

https://wildlife.ca.gov/Conservation/CESA
https://wildlife.ca.gov/Conservation/CESA
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F I G U R E  1  Map showing (a) sampling localities and (b) estimates of individual assignments (K = 2–3). (a) Red square on the map inset 
highlights the Southern California Bight (SCB). Sample locations (circles) are colour coded according to the assignments at K = 3, and 
numbers highlighted in yellow indicate the sites used for lcWGS. Locations of each sampling point are provided in Table 1. (b) (lnPD|K) and 
ΔK identified three as the best number of clusters, which roughly align with geography: Light blue, upstream Santa Clara River; orange, 
downstream Santa Clara and Ventura Rivers; dark blue, outer coast (OC) group, including the upper Santa Ana River. Cartoon fish lacking 
body armour denote the three extant populations of unarmoured G. aculeatus, which does not form a single cohesive group at any K 
(Figure S1). Lighter dashed lines in the assignment plots indicate upper and lower tributary reaches. Map was made on QGIS 3.16.2 and 
edited in Adobe Illustrator. River data set from the National Weather Service (NOAA)
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fish have been transplanted from the type locality to other areas 
to protect against ecological instability and safeguard the genetic 
integrity of this population. Numerous inadvertent transplants have 
also occurred during trout stocking and many are not well docu-
mented. Given this complex history, comprehensive genetic data can 
help focus conservation efforts where they are needed most.

The broader goal of this work is to use modern genetic ap-
proaches to suggest a management strategy that more accurately 
reflects evolutionary units. Genomic data in this study are part of 
a larger, ongoing whole genome sequencing project on G. aculeatus 
throughout the region that will include more samples with higher se-
quencing coverage and address additional questions related to adap-
tive evolution. However, these current data are sufficient to address 
the following key questions: (1) What is the genetic structure of G. 
aculeatus at multiple geographic scales in southern California?; (2) 
Do unarmoured populations of G. aculeatus form a cohesive group 
when compared to other populations of G. aculeatus across the re-
gion?; (3) Do temporal trends in historical demography vary between 
up- and downstream reaches, and are the same trends mirrored 
across drainages?

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

We obtained tissue samples from monitoring surveys conducted by 
the U.S. Geological Survey (U.S. Federal Recovery Permits TE-045994, 
TE 793644–6 & 7; California State Scientific Collecting Permits SCP-
2679, SCP-90); Mexican federal collecting permit (Permiso de Pesca 
de Fomento) DGOPA 14253.101005.6950, and its extension DGOPA 
06435.210606.2640 issued by the Comisión Nacional de Acuacultura 
y Pesca of the Secretaría de Agricultura, Ganadería, Desarrollo Rural, 
Pesca y Alimentación (SAGARPA); professional colleagues (federal re-
covery and state scientific collecting permits available on request); 
and museum collections. Fish were captured using minnow traps, 
seines, and or dip nets and muscle tissue samples were stored in 95% 
ethanol. The data set included low and unarmoured G. aculeatus from 
34 localities across southern California to what used to be the south-
ernmost extent of the species range at Bocana El Rosario in northern 
Baja California, Mexico. We also included representatives of two fully 
plated populations collected in the San Francisco Bay area (Figure 1, 
Table 1).

We performed DNA extractions using a QIAGEN DNeasy Blood 
& Tissue Kit on muscle tissue and genotyped 470 individuals for 12 
microsatellite loci known to be polymorphic in populations of G. ac-
uleatus in southern California following the approach of Richmond 
et al.  (2015). We then performed low coverage whole genome se-
quencing (lcWGS) on a subset of these samples from six locations 
(two individuals per location; N  =  12). Three of the six locations 
involved each of the upstream, unarmoured populations, and the 
remaining three were from low armoured lagoonal populations 
(Figure 1; yellow highlighted dots). For two drainages, San Antonio 

Creek-VSFB and the Santa Clara River, we could directly compare 
upstream unarmoured fish to low armoured lagoonal fish at the 
mouth. However, because unarmoured stickleback have been extir-
pated from the lower Santa Ana River, we compared the third un-
armoured cohort from the upper part of this drainage at Sugarloaf 
Meadow (elevation 2055 m) to all lagoonal fish, including those from 
El Rosario in Baja California. Sugarloaf Meadow is one of three iso-
lated ponds in the San Bernardino Mountains at ~2000 m elevation 
occupied by unarmoured morphs that are collectively referred to as 
“Shay Creek stickleback” (Haglund & Buth,  1988; Malcolm,  1992; 
Moyle, 2002).

2.2  |  Microsatellites

We amplified microsatellites in sets of 10  μl multiplex reactions 
using a Qiagen multiplex PCR kit and 50–100 ng of DNA. We used 
negative controls in each PCR and ran a subset of the samples as 
repeats to verify the genotyping calls (i.e., positive controls). We 
performed genotyping runs on an ABI 3100 S automated sequencer 
(Applied Biosystems) at the San Diego State University Microbiology 
Core Facility using a LIZ600 size standard (Applied Biosystems) and 
scored alleles using GeneMarker version 1.85 (Softgenetics LLC). 
We obtained a total of 261 alleles with 0.39% missing data.

2.3  |  Population structure

We used STRUCTURE version 2.3.1 (Pritchard et al., 2000) on the 
microsatellite data to assign individuals to natural groups, test 
for admixture across populations, and identify populations that 
were established through artificial transplantation. We performed 
assignment tests using the uncorrelated allele frequencies setting 
for K = 2 through K = 10, running 25 iterations at each K for 500,000 
replicates after a burnin of 500,000 iterations. We used the ∆K 
method (Evanno et al.,  2005) to select the optimal K, but report 
the assignments at other K values in Supporting Information. To 
summarize the results, we generated alignments of the assignment 
coefficient matrices at each K using CLUMPAK (Kopelman 
et al., 2015).

We also used principal component analysis (PCA) as an explor-
atory tool to complement the results of the STRUCTURE analyses. 
We used the function dudi.pca in the adegenet package (Jombart & 
Ahmed, 2011) and ggplot2 in R version 3.6.2 (R Core Team, 2018) 
using RStudio version 2022.02.3 (RStudio Team,  2020) to gener-
ate the final PCA plot. We replaced missing data using the “mean” 
method and retained all axes.

2.4  |  Genome sequencing

We used the sparQ DNA Frag & Library Prep Kit (Quanta Bio) to 
generate the libraries from the purified, extracted DNAs. From 
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TA B L E  1  Location and plate phenotype data

Map ID Population Drainage County
Genetic 
group

Armour 
phenotype Lat Long

1 Bodega Bay Bodega Bay Sonoma OC Fully armoured 38.327 −123.055

2 Bothin Marsh Mill Valley Marin OC Low armoured 37.888 −122.524

3 Toro Creek Toro Creek San Luis Obispo OC Low armoured 35.413 −120.872

4 San Luis Obispo Creek San Luis Obispo 
Creek

San Luis Obispo OC Low armoured 35.209 −120.696

5 Arroyo Grande Creek Arroyo Grande Creek San Luis Obispo OC Low armoured 35.099 −120.628

6 Shuman Lagoon Shuman Canyon Santa Barbara OC Low armoured 34.845 −120.597

7* San Antonio Creek 
Lagoon

San Antonio Creek Santa Barbara OC Low armoured 34.795 −120.621

8* San Antonio Creek-VAFB San Antonio Creek Santa Barbara OC Unarmoured 34.782 −120.530

9 Salsispuedes Creek Santa Ynez River Santa Barbara OC Low armoured 34.621 −120.423

10 Mission Creek Mission Creek Santa Barbara OC-Ad Low armoured 34.466 −119.710

11 Matilija Creek Ventura River Ventura SCB-L Low armoured 34.501 −119.344

12 San Antonio Creek Ventura River Ventura SCB-L Low armoured 34.433 −119.251

13 Seaside Park Ventura River main 
stem

Ventura SCB-L Low armoured 34.282 −119.309

14 Foster Park Ventura River main 
stem

Ventura SCB-L Low armoured 34.352 −119.307

15* McGrath Santa Clara River 
Lagoon

Ventura SCB-L Low armoured 34.230 −119.261

16 Oxnard Santa Clara River 
main stem

Ventura SCB-L Low armoured 34.241 −119.192

17 Upper Sespe Creek Santa Clara River Ventura SCB-L Low armoured 34.558 −119.253

18 Lower Sespe Creek Santa Clara River Ventura SCB-L Low armoured 34.406 −118.932

19 Piru Creek Santa Clara River Ventura SCB-L Low armoured 34.417 −118.790

20 Newhall Ranch Santa Clara River 
main stem

Los Angeles SCB-U Low armoured 34.435 −118.603

21 Valencia Santa Clara River 
main stem

Los Angeles SCB-U Low armoured 34.427 −118.577

22 San Francisquito Creek Santa Clara River Los Angeles SCB-U Unarmoured 34.546 −118.516

23 Upper Bouquet Creek Santa Clara River Los Angeles SCB-L-Ad Low armoured 34.554 −118.416

24 Lower Bouquet Creek Santa Clara River Los Angeles SCB-L-Ad Low armoured 34.510 −118.451

25* Soledad Canyon, Robin's 
Nest

Santa Clara River 
main stem

Los Angeles SCB-U Unarmoured 34.438 −118.277

26 Soledad Canyon, 
Thousand Trails

Santa Clara River 
main stem

Los Angeles SCB-U Unarmoured 34.442 −118.211

27 Big Rock Creek Mojave River Los Angeles SCB-U Low armoured 34.452 −117.856

28* Santa Ana River, 
Sugarloaf Meadow

Santa Ana River San Bernardino OC Unarmoured 34.178 −116.830

29 Apple Valley Mojave River San Bernardino OC-Ad Low armoured 34.524 −117.277

30 San Jacinto River Lake Elsinore Riverside SCB-U Low armoured 33.736 −116.819

31 San Felipe Creek Salton Sea San Diego SCB-U Unarmoured 33.098 −116.473

32 Pine Valley Creek Otay River San Diego SCB-U Unarmoured 32.830 −116.552

33 Sweetwater River Sweetwater River San Diego SCB-U Low armoured 32.885 −116.600

34 Trabuco Creek San Juan River Orange OC Low armoured 33.563 −117.651

35 Bell Creek San Juan Creek Orange OC Low armoured 33.629 −117.555

36* Bocana El Rosario El Rosario River San Quintin,
Baja California

OC Low armoured 30.041 −115.788

Note: Map ID = map number in Figure 1a. Numbers with asterisk (*) represent the 12 individuals selected for the lcWGS analysis. Genetic Groups 
(K = 3).
Abbreviations: Ad, Admixed; L, lower Santa Clara/Ventura; OC, outer coast; SCB, Southern California Bight; U, upper Santa Clara.
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these libraries we generated single-end 100 base-pair sequences 
on an Illumina Hiseq4000 at the Broad Stem Cell Research Center 
(BSCRC) at UCLA. We aligned the sequences to the Bear Paw Lake 
threespine stickleback reference genome (Jones et al.,  2012) using 
BWA-MEM version 0.7.12 (Li, 2013), and performed variant discovery 
using HaplotypeCaller and GenotypeGVCFs from GATK (McKenna 
et al., 2010) using default parameters (Table S1 contains the summary 
quality report of the BAM files). The final VCF file was filtered using the 
GATK standard thresholds (for SNPs: QD <2.0, MQ < 40.0, FS > 60.0, 
MQRankSum < −12.5, ReadPosRankSum < −8.0; for INDELs: QD <2.0, 
FS > 200.0, ReadPosRankSum < −20.0, InbreedingCoeff < −0.8).

2.5  |  Inferring historical demography

We used the multiple sequentially Markovian coalescent method 
(MSMC: Schiffels & Durbin,  2014; an extension of PSMC: Li & 
Durbin, 2011) to reconstruct the historical demography for a sub-
set of populations in the data set. This method tracks coalescence 
across genomic regions and estimates how many coalescent events 
occur within certain time frames across the genome. The inverse of 
the rate of these events within each time frame, the inverse instan-
taneous coalescence rate (IICR: Mazet et al., 2016) serves as a proxy 
for Ne, provided that certain conditions are met. If not, other factors 
influencing the IICR (e.g., nonrandom mating, inbreeding, admixture) 
need to be accounted for when interpreting demography through 
time.

We performed our analyses using the unphased sequences of 
single individuals. Simulations have shown that MSMC on single ge-
nomes (also referred to as PSMC) performs equally well or better 
than multiple genomes under certain conditions and is preferable for 
lower coverage sequencing (Beichman et al., 2017).

We filtered VCF files for indels, missing data, multiallelic loci 
and read depth (DP) before running MSMC using default param-
eters (number of iterations  =  20; recombination rate/mutation 
rate  =  0.25; pattern of fixed time segments  =  10*1 + 15*2; fixed 
recombination rate  =  NO). Filtering for read depth improves the 
ability to characterize demographic change when mean coverage is 
≤10 (Nadachowska-Brzyska et al., 2016). Therefore, we filtered out 
any SNPs with coverage below DP≤8 (GATK: -SelectVariants -select 
“DP≥8”) based on the average coverage of our samples and the per-
centage of missing data after filtering (see Table S3 for number of 
SNPs retained and percentage of missing data for different filter-
ing thresholds). To remove INDELs, multiallelic loci and missing data 
from our VCF files, we used VCFtools (−remove-indels –max–allele 2 
–min-allele 2 –max-missing 1; Danecek et al., 2011).

We used bootstrap replicates (n = 100) to estimate the variance 
around the estimates of IICR. We also explored results using two dif-
ferent mutation rates, 3.7 × 10−8 and 6.6 × 10−8 (Liu et al., 2016), and 
generation times of 1 and 2 years (Liu et al., 2016; Rollins, 2017), as 
neither parameter is known with certainty for populations in south-
ern California or whether they differ between inland and coastal 
localities due to environmental heterogeneity (e.g., higher summer 

temperatures and greater UV exposure at inland sites). These pa-
rameters convert the values calculated by the model to estimates of 
time and population size. Shorter generation time and higher muta-
tion rates yield younger dates and lower population size estimates 
(i.e., curve shifted down and to the left), while the reverse is true for 
longer generation times and lower mutation rates (i.e., curve shifted 
up and to the right). We plotted the results using the R packages 
ggplot2, scales and ggpubr.

As a verification step for our MSMC approach, we reanalysed 
two individuals from our sample from Santa Clara River (lagoon/up-
stream) and two from Alaska (river/lake comparison) from the work 
of Liu et al. (2016). Because their genomes had higher coverage than 
ours (26.7x and 30.2x), we filtered out SNPs with coverage below 
eight and higher than 20, and reran the analysis using 20 autosomal 
chromosomes following Liu et al. (2016).

Lastly, we generated PCA plots using the R package SNPrelate 
(Zheng et al.,  2012) to detect population structure. We filtered 
the data set to include only biallelic SNPs (snpgdsVCF2GDS, 
method = “biallelic.only”) and reduced linkage among sites (snpgd-
sLDpruning, method = “corr”, ld.threshold = sqrt[0.1]).

2.6  |  Comparisons of genetic diversity

For the microsatellite data set, we calculated expected (Hs) and 
observed (Ho) heterozygosity for each population using GenoDive 
version 3.06 (Meirmans, 2020) (except those that had <8 samples: 
Arroyo Grande, Shuman Lagoon, Sweetwater River) and report val-
ues in Supporting Information (Table S4).

For the lcWGS data, we compared heterozygosity between pairs 
of samples from different sites, with each pair involving one of the 
three unarmoured populations and a corresponding low armoured, 
lagoonal population near the coast (Figure 1). To perform this analy-
sis, we used BCFtools version 1.10.2 (Danecek et al., 2021) to calcu-
late numbers of heterozygous and homozygous sites based on SNP 
data only, and then calculated the heterozygosity ratio by dividing 
nHets (RA) / nHom (AA) (R = reference allele; A = alternative/non-
reference allele). We used this index because it is less sensitive to 
density of genotyping (Samuels et al., 2016). The ratio vary between 
0–2, with 2 representing the highest level of genetic diversity based 
on Hardy–Weinberg equilibrium (Guo et al., 2014). We also calcu-
lated the number of singletons (i.e., unique variants) for each indi-
vidual (Table 2).

3  |  RESULTS

3.1  |  Microsatellites

Unarmoured stickleback populations do not form an exclusive group 
at any K, and plots of the estimated ln (log-normal) probability of 
the data (D) at different K values (lnPD|K) and ΔK identified three 
clusters that roughly align with geography (Figure 1a,b). We report 
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the assignments for K = 2–7 in Supporting Information (Figure S1), as 
informative clustering patterns emerged at K > 3.

At K = 2 (north to south), one cluster corresponds to fish from 
Bodega Bay south along the central coast to Salsispuedes Creek (a 
tributary to the lower Santa Ynez River in Santa Barbara County), 
the upper Santa Ana River in the San Bernardino Mountains, San 
Juan Creek (Trabuco Creek and Bell Canyon tributaries), and Bocana 
El Rosario in Baja California. Except for the upper Santa Ana River, 
these coastal populations form what we refer to hereafter as the 
Outer Coast (OC) group. The second cluster consists exclusively 
of populations within the SCB, and includes the Ventura, Santa 
Clara, and San Jacinto rivers, Big Rock Creek, and three drainages 
in San Diego County (San Felipe Creek, Pine Valley Creek, and the 
Sweetwater River).

Further distinction of the upper Santa Clara River, San Jacinto 
River, Big Rock Creek and the three San Diego County drainages 
emerged at K  =  3. The population in Bouquet Creek, a tributary 
to the upper Santa Clara River, is admixed with alleles from both 
the upper and lower sections of the Santa Clara mainstem due to 
contamination during trout stocking (see Discussion). At K = 3, we 
also detected that admixture in Mission Creek (no. 10; Figure 1) and 
Apple Valley (no. 20; Figure 1) reflects shared ancestry between the 
Santa Clara River (upper and lower reaches) and the OC group.

Successive increases in K continued to show strong association 
between low armoured G. aculeatus in the lower Santa Clara and 
Ventura rivers; an affinity between the upstream Santa Ana River 
and San Juan Creek tributaries appeared at K ≥ 4; and distinction of 
the unarmoured population in San Antonio Creek-VSFB from all oth-
ers became evident at K ≥ 6 (Figure S1).

Results of the PCA were consistent with the output from 
STRUCTURE (Figure  1b), with the percent variance explained by 
the first 10 principal components (PC) ranging from 14.64 to 2.15 
(Figure 2). The OC group (plus upstream Santa Ana River) forms its 
own cluster, but with some distinction for San Antonio Creek-VSFB. 
Individuals in the SCB group are distributed along PC1, with the 
Ventura and lower Santa Clara river samples clustered on the lower 
left, and upstream Santa Clara samples clustered in the upper right. 
Admixed fish from Mission Creek and Apple Valley were interme-
diate between the OC and SCB clusters, and individuals from the 
upper part of the Bouquet Creek tributary were associated with fish 
from the lower Santa Clara River (i.e., Figure 2: no. 23).

3.2  |  Genomes

Individuals had an average of ~8x coverage, ranging from 6.2–10x 
(Table  S2). We recovered a total of 8,340,853 SNPs; missing data 
varied from 3.2%–7.0% per individual. We reduced the data set to 
10,308 biallelic SNPs after removing linked loci, with the percent of 
variance explained ranging from 13.14 to 5.07 for the first 11 PCs. 
While the sampling was limited for lcWGS data set, we still detected 
clear separation of the three unarmoured stickleback populations, 
and a general affinity between up- and downstream fish in the same 
drainage regardless of plate morphology (Figure  3). Fish collected 
at the same locations tended to cluster in similar PCA space, with 
partially armoured fish from the lagoon at San Antonio Creek-VSFB 
showing more divergence than all other pairs. The only drainage 
that did not involve a direct up- versus downstream comparison was 
the upper Santa Ana River and Bocana El Rosario (Baja California). 
Paired samples from these two locations were broadly separated 
along PC2, which contrasts with the PCA using microsatellites, 
where both were clustered in the OC group.

3.3  |  Historical demography under the MSMC

We present results for two combinations of mutation rate and gen-
eration time: μ = 3.7 × 10−8; age = two years (Figure 4) and μ = 6.6 
× 10−8; age = one year (Figure S2) and show that the shape of the IICR 
curve remains unchanged regardless of the parameter values used in 
the analysis. For clarity, populations referred to as “upstream” are 
unarmoured, whereas those from “lagoons” are low armoured.

Plots show a general congruence in curve shape between fish 
from the same sampling location, except for the upper Santa Clara 
River, which we attribute to differences in the amount of coverage (a 
more stringent filtering threshold produced curves with less overlap 
between the samples due to a higher percentage of missing data for 
one of the individuals; Figure S3). Bootstrapped data showed little 
variation from the observed data, although there was slightly more 
uncertainty in the IICR curves at the deeper time intervals for up-
stream fish.

Initial population sizes appear larger at upstream sites com-
pared to the lagoons, although estimates of both time and pop-
ulation size for the upstream Santa Ana River are more similar to 

Map ID Locality PCA ID HetRatio
Number of 
singletons

7 San Antonio Ck (lagoon) SAC_L 0.69/0.83 224,330/505,449

8 San Antonio Ck VSFB (upstream) SAC_U 0.19/0.29 47,5461/56,900

15 Santa Clara River (lagoon) SCR_L 0.51/0.55 115,463/157,823

25 Santa Clara River (upstream) SCR_U 0.12/0.15 34,392/40,937

28 Santa Ana River (upstream) SAR_U 0.43/0.51 255,408/323,017

36 Bocana El Rosario (lagoon) ERO_L 0.40/0.44 133,055/121,347

Note: Column shows values for both individuals analysed at each location (lower/higher value).

TA B L E  2  Heterozygosity ratio and 
proportion of singletons for the 12 lcWGS
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lagoonal populations than to either of the upstream populations 
further north.

All fish reveal marked demographic declines from initially large 
population sizes but differed in the general shape of the IICR curves 
depending on whether the fish were from upstream areas or la-
goons. Plots from lagoonal fish have more of a sigmoid shape, with 
an inflection in the middle part of the curve that reflects a transition 
from early, rapid decline to a period of mild “growth” (Figure 4). The 
timing and duration of these “growth” periods is roughly congruent 
across lagoons. In contrast, none of the upstream fish show evi-
dence of a “growth” phase, although the Santa Ana River fish reveal 
a long period of stable demography, expressed as a plateau in the 
IICR plot, that leads to a sigmoid-like curve shape. The chronology of 
this plateau also overlaps with the “growth” phase in lagoonal fish. In 
contrast, plots of the other upstream fish from San Antonio Creek-
VSFB and the Santa Clara River reveal steeper and more continuous 
declines across their histories, with the upper Santa Clara River fish 
showing the steepest trajectory and no inflection in the curves at all.

Our reanalysis of data from G. aculeatus sampled in Alaska re-
covered the same overlap in IICR curves shown in Liu et al.  (2016) 

(Figure S5). We also note that they look distinctively flatter, a pattern 
we attribute to lower depth of sequencing coverage (which is known to 
flatten IICR curve shapes: Nadachowska-Brzyska et al., 2016) and pos-
sibly the use of an updated SMC algorithm (Schiffels & Durbin, 2014). 
These results suggest that the nonoverlapping curves between up- and 
downstream fish in this study is not an artefact of how the data was 
processed and analysed, but rather a result of distinct and divergent 
demographic histories between populations from the same drainage.

3.4  |  Genetic diversity

Measurements of heterozygosity based on SNP data show that up-
stream fish have lower gene diversity (Ho) than lagoonal fish in the 
cases where within-drainage comparisons are made (e.g., San Antonio 
Creek-VSFB and in the Santa Clara River). In the comparison involving 
the upper Santa Ana River, Ho was comparable to lagoonal fish from 
Bocana El Rosario and the lower Santa Clara River, and considerably 
higher than either of the other unarmoured stickleback populations 
(Table 2). Individuals with the highest heterozygosity were from the 

F I G U R E  2  PCA plot of 470 individuals 
in the microsatellite data set. PC1 explains 
14.6% of the variance; PC2 explains 10.0% 
of the variance. The colouring scheme 
follows the assignment plots in Figure 1b 
for K = 3; unarmoured populations = 8, 
20–22, 25–26, and 29. The clustering 
pattern confirms the STRUCTURE 
results (Figure 1b), with three separate 
groups roughly matching the populations' 
geographic distribution. Admixed fish 
from Mission Creek (10) and Apple Valley 
(28) are clustered together in the middle 
of the plot
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F I G U R E  3  PCA plot of the 12 
individuals from the lcWGS analysis. 
PC1 explains 12.62% of variance; PC2 
explains 11.65% of the variance. Although 
sampling was limited for the lcWGS, 
we still detected the separation of the 
three unarmoured populations, and 
drainage-level affinity between lagoonal 
and upstream fish. Fish from Bocana El 
Rosario and upstream Santa Ana River are 
separated along PC2, which differs from 
the microsatellite PCA, where both were 
clustered in the OC group
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San Antonio Creek-VSFB lagoon and the lowest from upper Santa 
Clara River. The same pattern is observed for the number of singletons 
(Table 2) and is also reflected in the microsatellite data (Table S3).

4  |  DISCUSSION

Rapid decline of the freshwater fish fauna of southern California 
(Moyle et al.,  2015) and northern Baja California (Ruiz-Campos 
et al., 2014) comes as no surprise given the extensive loss of habitat 
and permanent alteration of the region's natural hydrology over the 
past century (Swift et al., 1993). Yet, results from this study indicate 
that demographic decline is more the norm than the exception for G. 
aculeatus in the region, even at the deepest time scales. This may re-
flect the realities of survival in a climate that has become increasingly 
more arid over the Holocene, combined with warmer conditions at 

subtropical latitudes that reduces the availability of perennial water. 
We explore these factors below by describing population structure 
and characterizing demographic histories across different parts of 
the study area. We then discuss the implications of the current data 
for management and suggest that the emphasis on plate phenotype 
has both aided and detracted from conserving the important genetic 
variation across this part of the species range.

4.1  |  Population structure across 
southern California

We detected three regional clusters within G. aculeatus across 
southern California and show that unarmoured populations assign 
to separate groups. The clearest distinction is between populations 
within the SCB, specifically those from Ventura and Santa Clara 

F I G U R E  4  MSMC plots of upstream, unarmoured (red) and lagoonal, low armoured (blue) individuals. Thick lines are the point estimates, 
and faint lines represent the bootstrap replicates. Age and IICR estimates reflect a generation time of 2 years and mutation rate of 3.7 × 10−8, 
respectively. Plots for Bocana El Rosario and upper Santa Ana River are shown separately because they occur in different drainage basins 
(see text for additional details). There is lack of congruence between the curves of fish from the same drainage (lagoonal/upstream), which is 
the result of divergent demographic history
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river drainages, and those from the OC group. High admixture be-
tween Ventura River and lower Santa Clara River populations has 
been reported previously and is probably tied to the proximity of 
the river mouths, which are separated by ≤8 km of coastline and well 
within the dispersal distance of G. aculeatus in the ocean (Richmond 
et al., 2015). In contrast, the OC group has maintained its cohesion 
across a much larger expanse of coastline, consistent with long-
distance movement in marine environments (Fang et al., 2018; Jones 
& John, 1978; Mäkinen et al., 2006).

An unexpected finding was the clustering of the upstream Santa 
Ana River population within the OC group (at K = 2–5, Figure 1b) 
given its inland and isolated location in the San Bernardino Mountains 
(elevation = 2055 m: Figure 1a). It is the only population that occurs 
at high elevation, more than ~1200 m higher than any other native G. 
aculeatus in the region. This retention of ancestral polymorphism and 
connection with the OC group, especially San Juan Creek (Trabuco 
Creek and Bell Canyon tributaries; K ≥ 4, Figure  S1), suggests that 
the current isolation of the source population (i.e., Shay Creek) may 
be recent. However, the absence of any known hydrologic connec-
tion between Shay Creek and the coast (Flint et al., 2012; French 
& Busby,  1974) presents a challenge to this explanation (see next 
section for further details). Whole genome data now being collected 
will help shed more light on this issue.

Our results also reveal cases where naturally occurring popu-
lations of G. aculeatus have been mixed with nonlocal fish, usually 
through accidental introduction. One example is Bouquet Creek 
(Figure 1: nos. 23–24), where a resident population of unarmoured 
G. aculeatus was mixed with low armoured individuals from the 
lower Santa Clara River as a byproduct of trout stocking (Richmond 
et al., 2015). A second example is Mission Creek (no. 10), which is 
situated along the Santa Barbara coastline between the OC sites 
and the mouth of the Santa Clara and Ventura rivers. In this case, 
admixture could be due to either accidental introduction with trout 
stocking or natural dispersal from the nearby Ventura or Santa Clara 
rivers (Figure 1).

Another set of populations are probably the result of pure inci-
dental transport during trout stocking, with no evidence that G. acu-
leatus existed at the site previously. These include San Jacinto Creek 
(no. 30) and the Sweetwater River (no. 33), which also support popu-
lations of hatchery-sourced trout (Abadía-Cardoso et al., 2016). The 
population at Apple Valley (no. 29) (i.e., Mojave River) also fits this 
category; however, unarmoured G. aculeatus were also purposely in-
troduced to this drainage prior to 1940, but then were eliminated by 
subsequent incidental transport of hatchery fish sometime thereaf-
ter (Buth et al., 1984; Miller & Hubbs, 1969; Swift et al., 1993).

Still, a third set of populations involve cases of purposeful trans-
locations aimed at safeguarding the gene pool at the type locality 
for G. a. williamsoni in Soledad Canyon (USFWS,  2021). The most 
well-documented example in this category is the San Felipe Creek 
population at the edge of the Anza Borrego Desert in San Diego 
County, where translocations occurred in 1972, 1973, and 1981 
(Swift et al., 1993). The population in Pine Valley Creek is also a sus-
pected, intentional transplant based on archival memos and hearsay, 

and cluster assignments confirm that G. aculeatus in this drainage 
share the same genetic background as those from the upper Santa 
Clara River.

4.2  |  Historical demography varies with geography

The history of glaciation and transitions from wetter to drier climates 
in southern California makes it challenging to specify points in time 
that unequivocally coincide with transitions in the IICR curves, espe-
cially when mutation rates and generation times are estimated from 
G. aculeatus in other regions. However, qualitative comparison of 
the demographic trajectories can provide useful information about 
the approximate timing and location of population expansions and 
contractions, and some indication of how their contemporary sta-
tus compares to the backdrop of their deeper history. Moreover, our 
results show similarities to those in Liu et al. (2016) for G. aculeatus 
from Vancouver Island, a possible glacial refuge near the edge of the 
unglaciated region at the Last Glacial Maximum (18–20 ka). These 
fish may represent a set of interacting populations that extended 
from this area through the large unglaciated region to the south, in-
cluding southern California and northern Baja California (Bell, 1976; 
Glover et al., 2021; Heusser, 1998).

A key piece of information provided by the MSMC analysis is that 
all populations of G. aculeatus have declined dramatically from early 
peaks, and that the patterns of decline show some consistency with 
respect to location (Figure 4). Lagoonal populations also show a later 
transient period of mild “growth” that varies slightly in chronology 
and duration among sites, whereas upstream unarmoured stickle-
back populations do not. One explanation for these “growth phases” 
is that they represent admixture with nonlocal migrants along the 
coast, which could offset declines in the IICR to produce inflections 
in the estimated trajectories. Other studies document the genetic 
connectivity of estuarine populations on the Pacific coast as a re-
sult of habitat expansion as sea level rose (Dolby et al., 2016, 2018, 
2020; Stiller et al., 2021). Sea level rise would also lead to the forma-
tion and broad distribution of lagoons following maturation of the 
coast (Jacobs et al., 2011; Masters, 2006).

Lagoons provide freshwater habitat for most of the year but can 
open to the ocean during heavy rain events (Jacobs et al., 2011). The 
complex coastal geomorphology and hydrology of lagoons probably 
created dispersal opportunities that help explain the cohesion of the 
OC group, a pattern consistent with G. aculeatus worldwide where 
marine fish tend to show genetic uniformity across large geographic 
distances (Mäkinen et al., 2006). It may also explain why the lagoonal 
populations tend to have higher heterozygosity.

That the initial population sizes in the early IICR curves appear 
larger in upstream areas compared to lagoons could reflect a wet-
ter landscape and cooler climate during the time when G. aculeatus 
first expanded into the region (Glover et al., 2021; Heusser, 1998). 
However, we interpret these relative population size estimates in 
the earliest part of the IICR curves with scepticism (see Caveats 
to the MSMC below). Wetter and cooler conditions within the SCB 
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were prevalent from ~65 ka up to ~14 ka (Faribanks & Carey, 1910; 
Glover et al., 2017, 2020; Heusser et al., 2015; Kirby et al., 2013; 
Owen et al., 2003; Sharp et al., 1959) and probably provided more 
expansive freshwater habitat that could have sustained larger and 
more interconnected populations of G. aculeatus in inland areas. In 
fact, habitat supporting unarmoured G. aculeatus extended well into 
the Los Angeles Basin as recently as the mid-20th century (Culver & 
Hubbs, 1917; Mendenhall, 1908; Swift et al., 1993).

In contrast to lagoonal fish, none of the upstream fish show ev-
idence of a reversal in demographic decline, although the IICR for 
upper Santa Ana River samples reveals an interval of stable size that 
produces a sigmoid-shaped curve that more closely resembles OC 
fish. The remaining unarmoured fish in San Antonio Creek-VSFB and 
the Santa Clara River instead show a steeper, more continuous de-
cline across their full histories, with the latter showing no inflection 
in the IICR at all. We interpret these steeper, more linear trajecto-
ries as evidence of isolation with limited or no gene flow, particularly 
the upper Santa Clara River, where several large dry gaps separate 
the population from lower reaches of the main channel (Richmond 
et al., 2015). Multiple molecular data sources confirm that, while fish 
occasionally get flushed downstream across these gaps, there is no 
evidence of genes moving upstream (Buth et al.,  1984; Richmond 
et al.,  2015). Susceptibility to recurrent bottlenecks due to fluc-
tuating hydrology and El Niño-related climate events (reviewed in 
Richmond et al., 2015), and more recently increased fire frequency 
(Flint et al., 2019), may also be reducing the IICR of these fish at a 
contemporary time scale. It is likely that this history of isolation be-
tween upstream and lagoonal fish and sequential bottlenecking from 
fluctuating climatic events led to distinct and divergent demographic 
histories, as captured by the lack of overlap in their IICR curves.

The greater similarity between unarmoured G. aculeatus in the 
upper Santa Ana River and low armoured fish in the OC group, in 
terms of the shape of the IICR plot (more sigmoid than linear), age 
and size of the founder population, chronology of the transition in 
the IICR, level of heterozygosity, and clustering affinity, is peculiar 
given the isolation and high elevation of the source population at 
Shay Creek in the San Bernardino Mountains. Two hypotheses ex-
plain this conundrum. The first is that Shay Creek supports a nat-
urally occurring, relictual population that became isolated during 
uplift of the San Bernardino Mountains, and that suitable freshwater 
habitat has potentially persisted in the upland plateau as far back 
as the Last Glacial Maximum (18–20 ka; Owen et al.,  2003; Sharp 
et al.,  1959). However, Shay Creek drains northward into Baldwin 
Lake instead of toward the coast via the Santa Ana River drainage 
basin, challenging this view of natural genetic connectivity with 
outer coast fish.

A second, more plausible hypothesis, is that the Shay Creek 
population is introduced. This better explains the presence of outer 
coast alleles in these small, isolated ponds, and why it is the only 
population to occur at high elevation. Sticklebacks have also been in-
troduced to the Big Bear Reservoir just 3 km to the west of Baldwin 
Lake and there has been at least one accidental and several known 
introductions of Shay Creek fish to other high elevation ponds in 

the area (Swift et al.,  1993). These introductions further attest to 
the ease and regularity that this species has been moved artificially, 
although a definitive outer coast source(s) for the Shay Creek popu-
lation has yet to be identified.

4.3  |  Caveats to the MSMC

There are limits as to how far back in time the MSMC can reli-
ably infer demographic parameters, as alleles with deep coales-
cence become increasingly rare at older time scales (Beichman 
et al.,  2017; Mazet et al.,  2016; Takahata & Nei,  1985). This ex-
plains the greater noise in the bootstrapped data, and perhaps the 
differences in IICR between upstream and lagoonal populations at 
the oldest time intervals. For this reason, IICR estimates for early 
population history are often viewed with scepticism (Beichman 
et al.,  2017). Natural selection for specific mutations and any 
linked neutral variants can also distort the IICR, particularly if the 
type of selection reduces polymorphism (Ewing & Jensen, 2016; 
Schrider et al., 2016), and there is good reason to assume that se-
lection is a factor in this system. Phenomena that contribute to 
population structure in mating/migration also act as confounding 
factors, and may be expected in this case, given the known demo-
graphic fluctuation of landlocked populations in upstream areas 
(Moyle,  2002). For example, inbreeding (as a nonrandom mating 
process) can affect interpretation of the IICR curve because it in-
creases the rate of coalescence and leads to a reduction in Ne. 
Sequences from the larger ongoing WGS study will allow us to 
screen for long runs of homozygous sequence, in which case we 
can remove such runs and repeat the analyses to test the sensitiv-
ity of our results (Freedman et al., 2014; Mather et al., 2020).

4.4  |  Rethinking management

Our results are consistent with separate origins for unarmoured 
populations in southern California, although phylogenetic analyses 
are needed to polarize the relationships. Nonetheless, the current 
data provide evidence that the morphological entity now classified 
as G. a. williamsoni consists of distinctive genetic units, and that man-
aging according to these units may be prudent.

A number of partners have focused management on unar-
moured fish from the type locality in Soledad Canyon (upper Santa 
Clara River) (USFWS, 2021), and until now there were questions 
as to whether this made sense from a genetics perspective. The 
answer is yes, given that the population has low genetic diversity, 
is geographically isolated, and the habitat is ecologically unstable 
and subject to persistent human disturbance (e.g., fires, garbage 
dumps, recreational vehicle abandonment, illegal water diver-
sions, homeless encampments, off-highway vehicle activity, etc.). 
Climate change may also be impacting the population as peren-
nial water no longer occurs at the type locality of G. a. williamsoni 
(Girard,  1854). Whether low genetic diversity is cause for alarm 



6526  |    TURBA et al.

requires further study, as the population may have survived for 
much of its history with low diversity, and deleterious alleles 
that were potentially hidden from selection in the heterozygous 
state could have been purged over time due to drift (Robinson 
et al., 2018). If it can be shown that specific polymorphism is re-
sponsible for parallel loss of body armour, managing the three 
unarmoured populations as separate units may provide greater 
assurance that those alleles will be preserved.

Increased knowledge about the demographic history of G. ac-
uleatus in southern California also lays the groundwork for under-
standing how these fish have adaptively responded to selection, 
as the evolutionary potential of populations may rely on their pre-
existing genetic variation (Barrett et al., 2008; Jones et al., 2012; Lai 
et al., 2019). Pre-existing variation may be key to understanding the 
complete loss of body armour, a rare condition in G. aculeatus world-
wide that could be related to the absence of predators, as it has been 
extensively documented in the transition from armoured to low 
armoured morphs (e.g., Eriksson et al., 2021; Paccard et al., 2018; 
Reimchen, 1994; Wasserman et al., 2020, and references therein). 
However, whether the unarmoured condition is driven by predation 
or lack thereof remains unresolved (Reimchen, 1994).

Considerable knowledge exists on the genetic underpinnings of 
plate reduction in fully armoured fish (typically marine), where parallel 
evolution of partially armoured fish in freshwater habitat is largely the 
product of selection for an allele of the ectodysplasin gene (EDA), a 
signalling protein that is important for the development of the skele-
ton, skin and other tissues (Colosimo et al., 2005; Cresko et al., 2004; 
O'Brown et al., 2015). The allele is recessive and rare in the marine 
environment and presents a striking example of how standing varia-
tion can lead to rapid shifts in phenotype depending on the selective 
environment (Barrett et al., 2008). Earlier work found no association 
between EDA polymorphism and unarmouredness, suggesting that 
other genes or regulatory regions may be involved with the complete 
loss of plates (Richmond et al., 2015). This subject will be explored in 
further detail in our ongoing WGS project.

Results of this work also raise the question of whether low 
armoured stickleback populations might also be the focus of con-
servation efforts, given the genetic distinctiveness and geographic 
isolation of some populations in the SCB. For example, low armoured 
G. aculeatus in San Juan Creek (Figure  1: nos. 34–35) share close 
ancestry with the unarmoured stickleback population now in the 
San Bernardino Mountains and are the only remaining representa-
tives of the OC group in the Los Angeles Basin. The low armoured 
stickleback population at Bocana El Rosario is also unique in repre-
senting the southernmost tip of the species' distribution in the east-
ern Pacific Ocean. However, it is currently considered extirpated 
(Ruiz-Campos & González-Acosta,  2022). The only other extant 
population occurring in Mexico is in El Descanso lagoon, Rosarito 
(Ruiz-Campos et al., 2014). This edge population may still harbour 
critical genetic diversity that is adaptive in transitional environments 
that define the range edge itself.

These findings highlight the importance of using population 
genetic and genomic data to re-examine management strategies 

that were initially developed according to phenotype-based tax-
onomies. In this case, efforts to manage populations with a rare 
phenotype have probably helped to preserve important adaptive 
polymorphism, but emphasis on the unarmoured phenotype alone 
may exclude other populations in the region that have geographi-
cally unique variation that was once widespread across the coastal 
lagoons and drainages of southern California and northern Baja 
California.
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