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Highlights

•

Havre magma entered the ocean before fragmenting.

•

Clasts were produced by quenching buoyant magma in the ocean.

•

Buoyant >1 m diameter pumice blocks floated to the ocean surface.

•

Clasts with enough isolated porosity and trapped gas floated in a raft while the 

rest sank.

Abstract

A long-standing conceptual model for deep submarine eruptions is that high hydrostatic 

pressure hinders degassing and acceleration, and suppresses magma fragmentation. 

The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided 

constraints on critical parameters to quantitatively test these concepts. This eruption 

produced a >1 km3raft of floating pumice and a 0.1 km3 field of giant (>1 m) 

pumice clasts distributed down-current from the vent. We address the mechanism of 

creating these clasts using a model for magma ascent in a conduit. We use water 

ingestion experiments to address why some clasts float and others sink. We show that 

at the eruption depth of 900 m, the melt retained enough dissolved water, and hence 

had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation 

in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There 

was still, however, enough exsolved vapor at the vent depth to make the magma 
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buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where 

it rose, quenched, and fragmented to produce clasts up to several meters in diameter. 

We show that these large clasts would have floated to the sea surface within minutes, 

where air could enter pore space, and the fate of clasts is then controlled by the ability 

to trap gas within their pore space. We show that clasts from the raft retain enough gas 

to remain afloat whereas fragments from giant pumice collected from the seafloor ingest

more water and sink. The pumice raft and the giant pumice seafloor deposit were thus 

produced during a clast-generating effusive submarine eruption, where fragmentation 

occurred above the vent, and the subsequent fate of clasts was controlled by their 

ability to ingest water.
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Submarine volcanic eruptions may be fundamentally different from those on land owing 

to the high hydrostatic pressure provided by the ocean, which inhibits degassing and 

hence magma acceleration and fragmentation. The records of such eruptions are few 

and our understanding is limited by the challenge in directly witnessing eruption 

processes and sampling and characterizing the deposits from those eruptions. Indeed, 

overcoming this biased understanding of volcanic eruptions was highlighted by a 

National Academies report (National Academies, 2017): “What processes govern the 

occurrence and dynamics of submarine explosive eruptions”?

Silicic magmas that erupt more than a few hundred meters below sea-level give rise to 

eruption styles distinct from those on land owing to the contrasting properties of the 

ambient fluid (water vs air) into which the magmas erupt (Cashman and Fiske, 1991). 

For example, clasts that erupt at the seafloor are initially buoyant, but ingest water 

into pore space as they cool (e.g., Whitham and Sparks, 1986); hence fragmented 

magma can either rise to the surface to form rafts, or feed submarine density currents if 

the clasts become waterlogged (Allen and McPhie, 2009).

One distinctive facies of both modern and ancient clastic deposits from submarine silicic

eruptions is voluminous deposits of giant (>1 m) pumice clasts (e.g., Kato, 1987; Kano 

et al., 1996, Kano, 2003, Allen and McPhie, 2009, Allen et al., 2010, Jutzeler et al., 

2014). These clasts often have one or more quenched margins with curviplanar joints 

perpendicular to the cooling surface that suggest they quenched in water (e.g., Wilson 

and Walker, 1985, Allen et al., 2010, von Lichtan et al., 2016; Fig. 1). Otherwise, 

submarine pumice vesicularities are similar to those produced in subaerial Plinian 

eruptions (e.g., Barker et al., 2012) and hence it has been proposed that fragmentation 

mechanisms are also similar for large (>1 km3) submarine equivalents (e.g., Allen and 

McPhie, 2009, Shea et al., 2013). There are, however, textural differences: pumice 

clasts from deep submarine eruptions tend to have smaller bubble number densities, 

lack very small vesicles (<10 μm), and display a narrower range of modal vesicle sizes 

(Rotella et al., 2015). Clasts have also been proposed to form from buoyant bubbly 

magma as it exits the vent by “viscous detachment or by the development of cooling 

joints” (Rotella et al., 2013), an eruption style that would not fit neatly into either the 

“effusive” or “explosive” categories used to describe subaerial eruptions. Pumice clasts 

can also form by spallation from a pumiceous carapace on effusive domes (e.g., Cas 

and Wright, 1987, Kano, 2003, Allen et al., 2010).
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Fig. 1. (a) Location of the Havre volcano (red circle) in the Kermadec arc. Inset shows 
the raft and plume on 19 July, 01:26 UTC. Inset scale bar is 20 km long. Plume and raft 
show the transport direction to the northwest. Example seafloor 
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giant pumice clasts showing curviplanar surfaces (b) and typical deposit (c). (d) Shaded 
relief map showing the vent location (triangle) at a depth of 900 m; arrow shows the 
dispersal axis of seafloor giant pumice (the same as the transport direction in a), and 
the light purple lines bound the region containing those clasts. Caldera is 4.5 by 5 km in 
size. Viewing direction is looking south. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

In July 2012, approximately 1.2 km3 of rhyolite pumice clasts erupted at a water depth of

900 m from the submarine Havre volcano in the Kermadec volcanic arc (Carey et al., 

2014; Fig. 1). The majority of the pumiceous material formed a raft of floating clasts that 

was widely dispersed in the western Pacific Ocean (Jutzeler et al., 2014, Carey et al., 

2018). A second clastic product of this eruption is a 0.1 km3 deposit of giant pumice 

clasts on the seafloor around the inferred vent. An outstanding question is whether 

these seafloor giant pumice clasts and raft pumice originated from the same eruptive 

phase. Though not conclusive, the vesicularities, composition, microtextures (e.g., 

bubble number densities, crystallinity, microlite mineralogy), and macrotextures (e.g., 

banding), are similar as is their primary axis of dispersal (Carey et al., 2018). If the raft 

and seafloor pumice did originate from the same eruptive episode, their different fate, 

i.e., whether they floated or sank, thus requires seafloor giant pumice to ingest water 

more effectively than clasts that were transported into the raft.

Here we use a model for magma ascent, constrained by estimates of the eruption rate 

for the pumice raft and a variety of measurements on erupted materials, to show that 

buoyant magma reached the seafloor prior to fragmenting. We then investigate how 

pumice clasts from the raft and seafloor ingest water as they cool and find that seafloor 

pumice ingest water more efficiently by trapping very little gas. We thus infer that 

vesicular coherent magma extruded into the ocean. The magma quenched and 

fragmented non-explosively to form the pumice clasts that then either remained afloat 

because they retained enough gas or, if they waterlogged, settled to the seafloor.

2. Methods

2.1. Conduit model

Magma ascent is simulated using a one-dimensional two-phase model for steady flow, 

modified from Degruyter et al. (2012) and Kozono and Koyaguchi (2009). Pressure at 

the vent is 9 MPa corresponding to a water depth of 900 m. The conduit length is 8.1 km

with a pressure at its base of 200 MPa. Crystallinity is 5% (Carey et al., 2018) 

and crystals do not grow or nucleate during ascent. The effects of crystals and bubbles 
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on viscosity are based on the models of Costa (2005) and Llewellin and Manga (2005), 

respectively (supplement S1). Water content in the melt is 5.8 weight % based on 16 

plagioclase-hosted melt inclusions from a seafloor giant pumice clast (supplement S2). 

Number density of bubbles is 1014 m−3 (Rotella et al., 2015), high enough that we can 

assume equilibrium bubble growth (Gonnermann and Manga, 2005); we obtain similar 

ascent rates for number densities 100 times lower and higher. The effects of 

temperature and dissolved water on viscosity are computed using Giordano et al. 

(2008) and the measured composition (supplement S3) and water content. Temperature

is set to 850±20 °C based on cpx-opx Fe–Mg exchange (Putirka, 2008) in ten measured 

cpx and opx compositions. Magma can fragment in the conduit if the strain-

rate γ˙ exceeds a critical value (e.g., Papale, 1999)

(1)γ˙>10−2G/μ,

where G=1010 Pa is the shear modulus (e.g., Simmons, 1998) and μ is the melt 

viscosity. We compute both the strain-rate at the conduit walls and the elongation strain-

rate in the center of the conduit.

It is important to recognize that in addition to uncertainties in magma properties there 

are also model assumptions that affect strain-rates, ascent velocity, and vesicularity at 

the vent. For example, the ascending magma is assumed to be isothermal and 

Newtonian, we neglect viscous heating and shear localization in the magma, and we do 

not permit non-equilibrium bubble growth. We also use a geometrically idealized conduit

shape. In addition, we assume that at any given depth the bubble size is uniform and 

use this bubble size to compute a permeability. There are, however, bubbles much 

larger than the mean size which, owing to the nonlinearity of permeability-bubble size 

relationships, could lead to higher permeability and more outgassing.

2.2. Floatation experiments

To determine the propensity for Havre pumice clasts to remain afloat after reaching the 

raft at the ocean surface, we conducted 11 experiments in which we measured the 

amount of liquid water and trapped gas within cm-sized clasts from the Havre raft (7 

samples) and fragments of seafloor giant pumice (4 samples). We heated dry raft clasts 

and giant pumice fragments to a range of temperatures up to 700 °C and placed them 

on the water surface for ten minutes. We then rapidly encased the clasts in wax – to 

minimize further changes in the distribution of internal fluids – and imaged the clasts at 

1.22 μm resolution using X-raycomputed microtomography (XRT) with 30 keV 

monochromatic X-rays. To enhance the absorption contrast between the water and 

glass, we used a 13 weight % potassium iodidesolution. Additional imaging details are 
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provided in supplement S4. From the XRT images, we identified the volumetric content 

of glass, liquid water, and trapped gas within the clasts using machine 

learning algorithms to segment these three phases (Fauria et al., 2017).

To further quantify pumice floatation dynamics, we measured the floatation time of room

temperature raft and seafloor clasts. To measure floatation times, we placed dry 

and ambient temperature clasts in water and noted the time at which they sank. Before 

the experiments, we cleaned the clasts in an ultrasonicator for ∼10 min and then dried 

them. Once the experiments were initiated, we monitored the clasts with a camera and 

noted the time at which the clasts sank to the nearest minute. If clasts continued to float 

after the first six months of the experiments, we stopped monitoring with a camera and 

began checking on the clasts approximately daily and then weekly once the 

experiments progressed past the first year.

We measured clast weight before and after the experiments. For a subset of the clasts, 

primarily the seafloor clasts, we measured clast volume using photogrammetry. 

Specifically, we took 100–180 photographs per clast using a Canon DSLR camera with 

an extension tube. We processed the images and constructed volume models (Poisson 

surface reconstructions) using VisualSFM and MeshLab softwares. In cases where the 

clasts were too small to accurately measure volume using photogrammetry, we estimate

pumice volume using pumice mass assuming a clast porosity of 83% (Carey et al., 

2018).

2.3. Isolated porosity

Differences in isolated porosity between the raft and seafloor samples are unresolvable 

in the XRT scans. We thus use helium pycnometry to quantify the connected and 

unconnected pore space. Samples were cored, washed, dried, and weighed. The 

volume of the cylindrical cores was calculated based on the mean of 10 measurements 

of the sample diameter and height. The volumes of the solid phase and isolated porosity

were measured using a He-pycnometer at the University of Oregon using methods 

described in Giachetti et al. (2010). The pycnometry measurements and bulk volume 

were used to calculate the connected porosity. One seafloor sample and one raft 

sample were crushed, weighed, and analyzed using He-pycnometry in order to 

determine the solid density. The bulk vesicularity was calculated from the solid density, 

bulk volume, and bulk density. The isolated vesicularity was calculated from the 

difference between the bulk vesicularity and connected vesicularity.

3. Results
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Fig. 2 shows how ascent velocity, mean bubble size, melt viscosity, and vesicularity vary

with depth in the conduit for conduit radii of 3, 21 and 33 m. The corresponding mass 

eruption rates are 4.2×103, 1.0×107 and 6.2×107 kg/s, respectively. This model 

reproduces the observed vesicularity of about 80–90% and modal vesicle size (Rotella 

et al., 2015, Carey et al., 2018). A conduit radius of 21 m leads to a mass eruption rate 

similar to the time-averaged value inferred from the volume of the pumice raft and the 

estimated duration of the raft-forming stage of the eruption, 9×106 kg/s (Carey et al., 

2018). For this eruption rate, Fig. 2b shows that the gas and melt remain coupled and 

there is negligible outgassingduring ascent. The model does not account for any further 

modification of vesicularity of clasts after they enter the ocean.

1. Download high-res image     (163KB)

2. Download full-size image

Fig. 2. Magma ascent and gas escape, computed using the steady one-dimensional 
model of Degruyter et al. (2012) with melt properties for the Havre 
2012 rhyolite eruption, showing how pressure (a), melt (solid curves) and gas (dashed 
curves) velocities (b), strain-rate relative to that needed to cause brittle fragmentation 
(c), magma viscosity (d), and vesicularity (e) varies with depth below the seafloor. Three
conduit radii are assumed, 3, 21 and 33 m. Only the upper 4 km of the conduit are 
shown. Additional parameters: the percolation threshold for gas flow through the magma
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is zero, tortuosity factor is 3, bubble throat to radius ratio is 0.31, and the friction 
coefficient for gas flow through the magma is 10 (supplement S1 for details).

There are uncertainties in all model parameters including, critically, those that affect 

viscosity: water content and temperature. However, the main conclusions are not 

sensitive to reasonable ranges in these parameters. For example, if we reduce the 

water content to 5% and temperature to 820 °C, even for an eruption rate an order of 

magnitude greater than inferred, 1×108 kg/s, the strain-rate is still a factor of 5 too low to

cause melt to fragment based on equation (1).

Fig. 3 shows that reheated (>500 °C) Havre raft pumice can retain enough gas to 

remain buoyant. By comparison, fragments from the seafloor giant pumice are almost 

fully saturated (<0.05 volume fraction gas) after they are reheated above 500 °C and 

placed on the water surface. The results from these experiments demonstrate that hot 

Havre seafloor giant pumice draw in considerably more water than raft pumice. In raft 

pumice, some of the gas is trapped by the infiltrating water (red arrow), but there is also 

a significant amount of unconnected porosity (isolated bubbles). This difference is 

further highlighted by the pycnometry measurements. Fig. 4 shows the connected and 

unconnected porosity analysis and reveals that seafloor giant pumice has fully 

connected porosity whereas raft pumice always contains isolated bubbles. These 

differences may be documenting samples from different parts of the conduit, or samples

that experienced different and continued vesiculation histories in the water column. A 

thorough analysis of textures from raft and seafloor samples may reveal not only why 

some clasts float, but provide further insights into ascent processes in the conduit and 

water column.
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Fig. 3. Initially hot pumice ingests more water than cold pumice, and giant pumice 
fragments (unknown locations within the larger clast) recovered from the seafloor ingest
more water than pumice from the raft. A different pumice clast is used for each 
experiment and hence data point. The horizontal line shows the trapped gas fraction 
needed to keep a clast with a vesicularity of 80% buoyant. The two images on the upper
right are 2D slices through their 3D images showing the distribution of glass (white), 
trapped gas (black), and liquid water (blue). Upper left shows the 3D shapes of trapped 
gas bubbles with a different color assigned to different gas bubbles.
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Fig. 4. Connected fraction of total porosity vs. total porosity for seafloor 
giant pumice samples (blue) and raft samples (red). The measurements were 
conducted on multiple cores from three seafloor giant pumice samples and nine raft 
samples. Distinct samples are shown with different symbols. Excluding one seafloor 
measurement, which was collected from a breadcrusted exterior, the seafloor giant 
pumice samples all have >99% connected porosity. All raft samples contain isolated 
vesicles. Shown with the curve is the amount of connected porosity needed, as a 
function of total porosity to allow clasts to sink if the connected pore space fills 
completely with water (equation (B.9)).

Fig. 5 shows clast volume versus floatation time. We find that floatation time increases 

with clast size and that raft pumice float orders of magnitude longer than seafloor 

pumice. We compare pumice floatation times to a diffusion model for pumice floatation 

from Fauria et al. (2017). The model predicts that floatation time scales as

(2)τ=4R2Daθ2,

where τ is time, 2R is clast diameter, Da=1.9×10−9 m2/s is air-water diffusivity (Fauria et 

al., 2017), and θ is the fraction of pore space containing liquid water. The shaded region

in Fig. 5 shows predictions of equation (2) with θ between 0.1 and 0.5. Seafloor clasts 

match the diffusion model prediction while raft pumice float much longer than predicted 

and, indeed, have yet to sink. The presence of isolated bubbles (Fig. 4) may explain 

why cold raft pumice float much longer than theoretical models predict.
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Fig. 5. Clast volume versus floatation time (the time at which clasts sink). Data points 
above “still floating” show clasts that were still floating at the time of manuscript 
submission. Open data points represent clasts for which volume was calculated from 
weight and by assuming porosity; black data points represent clasts for which volume 
was measured using photogrammetry. From calculated porosity from mass and volume 
measurements we find that seafloor clasts have porosities of 85.6 ± 3.2%. The grey bar 
represents a floatation time prediction from equation (2) and assuming 0.1 < θ < 0.5. The
behavior of seafloor clasts matches the gas trapping prediction while that of raft clasts 
does not. Error bars are smaller than the data points.

4. Discussion

We now address, in order, three basic questions about the 2012 Havre eruption. Where 

and why did the magma fragment? What processes form meter-sized clasts? Why do 

some pumice clasts float (raft pumice) and others sink (seafloor giant pumice)?

4.1. Fragmentation

From the conduit model, strain rates never become large enough to cause brittle 

fragmentation within the conduit of the Havre eruption. Instead, at 86% vesicularity, the 

erupting magma is less dense than sea water and hence will continue to rise above the 

vent rather than creating a dome. What processes then create the pumice? We do not 

favor buoyant detachment of blebs by gravitational instabilities, one mechanism 

suggested for example by Rotella et al. (2013), because the separation of blebs is slow 

compared to the inferred extrusion velocity for the Havre eruption and we did not see 
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fluidal-shaped clasts either near the vent or in samples from the raft. For a bleb of 

length l and radius r buoyantly rising above the extruding magma, the 

velocity dl/dt≈(ρw−ρc)gr2μln (l/r), where ρc is clast density, ρw is water density, and g is 

gravity (Olson and Singer, 1985). This is a Stokes flow scaling, appropriate because the 

magma viscosity controls extrusion prior to fragmentation. Choosing l=2r for equant 

bleb, μ=5×106 Pa s (Fig. 2), ρw−ρc=500 kg m−3 (Rotella et al., 2015, Carey et al., 2018), 

and l=5 m, we obtain an ascent speed of 4 cm/s, much less than the velocity at the vent 

of 14 m/s (Fig. 2). The melt is so viscous that ductile processes are too slow to produce 

clasts.

Instead, we suggest that the surface of extruded magma will quench in the ocean, 

producing a network of cracks perpendicular to the magma surface. Highly vesicular 

magma is prone to quench fragmentation and the temperature difference between 

magma and seawater is sufficient to create cracks (van Otterloo et al., 2015), possibly 

aided by continued vesiculation. Crack propagation speeds can be tens to hundreds of 

meters per second (van Otterloo et al., 2015) so that a large volume of fragmented 

debris can be produced very quickly. Although a range of fragment sizes will be 

produced, they will not be able to separate and rise unless they can also float upwards 

fast enough from the extruding magma. Smaller fragments may weld together, or may 

break off larger clasts or the side of the extruding spine of magma if spine extends 

above the vent.

4.2. Separating pumice from extruding magma

The terminal rise speed U of clasts produced by quenching and surrounded by water, 

idealized here as spherical with radius R, is

(3)U=8(ρw−ρc)gR3ρwCD.

Given the very high Reynolds number (∼107), the drag coefficient CD is approximately 

0.3 (e.g., Batchelor, 1967). Equation (2) also neglects entrainment by the buoyant warm

water heated by the clasts, which would increase velocity. With a conduit radius of 21 m 

the vent velocity is 14 m/s (Fig. 2), and clasts with R>4.5 m will rise faster than the 

extrusion speed, at least before they ingest water. Exit velocity is inversely related to 

conduit radius owing to mass conservation. If the vent widens by 40% at the seafloor, 

the minimum radius R for detachment decreases to 1.2 m. There are uncertainties in 

both the mass eruption rate that constrains the exit velocity and the parameters that 

affect the minimum size of clasts computed from equation (3), but predicted meter-sized

clasts are similar to typical sizes of the giant pumice on the seafloor, averaging 1–1.6 m 

near the vent and increasing with dispersal distance (Carey et al., 2018).
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4.3. Reaching the sea surface

Clasts that detach from the extruded magma will rise through the ocean until they 

saturate with water. Once saturated, clasts will become negatively buoyant and sink to 

the seafloor. For meter-sized clasts, water ingestion is limited not by permeability but by 

the ability of water vapor in the clast to cool, condense and draw in liquid (appendix A). 

As cooling is slower than permeable flow, the rate of heat loss from the interior of the 

pumice will determine the time to saturation. To compute the evolution of clast density 

through water ingestion, and hence their ascent through the ocean, we model the 

cooling, condensation, and thus flow of liquid water into spherically symmetric clasts 

using experimentally measured rates of heat loss, and compute the rise speed of the 

clasts using equation (3)from the time-evolving mean clast density (assuming fully 

connected porosity). We allow gas in the clasts to expand as the ambient pressure 

decreases (appendix B), which is significant because water vapor density is >15 

kg/m3 at 900 m water depth and ∼1 kg/m3 at the surface. Additional joints within clasts 

would enhance water ingestion and cooling beyond what we model. We neglect any 

possible further vesiculation within clasts as they rise through the ocean. Although 

clasts may remain hot as they ascend and can continue to exsolve water, vesicles need 

not grow if the pore space is connected to permit gas leakage to the ocean 

(e.g., Kueppers et al., 2012). Fig. 6 shows the time required for clasts of different 

vesicularities to reach the ocean surface before they become negatively buoyant in 

water. Meter-sized clasts, such as the seafloor giant pumice, are expected to reach the 

raft at the ocean surface and will have ingested little water. The initial sizes of raft 

pumice are not known, but Fig. 6 suggests that a minimum size of about one meter is 

required for clasts to reach the surface.
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Fig. 6. Time required for clasts to reach the ocean surface from a depth of 900 m as a 
function of their size and vesicularity (assumed constant during ascent). Clasts with 
diameters smaller than those for which the curves begin (to the left of the curves) will 
ingest enough water to become negatively buoyant before reaching the surface. Rise 
speed evolves according to equation (2) and clast density is computed from the water 
ingestion model (appendix B).

4.4. To sink or float?

The long-term fate of floating pumice on the sea surface depends on their ability to 

ingest additional water as they float. The ascent model predicts that there is virtually no 

liquid in meter-sized and larger clasts as they reach the sea surface owing to the 

expansion of vapor in the clasts during ascent (appendix B). However, the seafloor 

deposit of giant pumice comprises clasts up to 9 m in diameter (Carey et al., 2018). 

Some of those may include pumices that are large enough to reach the sea surface, but

are trapped underneath floating pumice and remain fully surrounded by water, in which 

case we would expect them to sink once the water vapor cools and condenses (Allen et 

al., 2008). Others must have reached the sea surface and subsequently saturated with 

water.

Once pumice reaches the sea surface, we expect air to replace most of the water vapor 

in the pore space because gas diffusion and exchange is rapid, and is further enhanced 

as clasts crack or break. Air-filled pumice is known to float much longer (e.g., Whitham 

and Sparks, 1986; Manville et al., 1998; Dufek et al., 2007, Jutzeler et al., 2017) than 
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the time it takes for porous flow to allow water to infiltrate (Vella and Huppert, 2007). 

Instead, the ability of clasts to float is controlled by the propensity of the infiltrating water

to trap gas bubbles within the pore space and/or the presence of isolated vesicles. If 

enough gas is trapped during infiltration of water, the clasts will float until this gas 

diffuses through the water and out of the clast (Fauria et al., 2017).

The difference in isolated and connected porosity can partially explain the propensity for

raft pumice to float, however, additional gas trapping is required for most clasts (Fig. 4). 

Our experiments confirm that fragments of seafloor giant pumice ingest more water and 

trap less gas than raft pumice, and hence more rapidly become negatively buoyant. The

presence of elongate ”tube” vesicles in some seafloor pumice has further implications 

for why some clasts sink preferentially to others. The elongate structure, high 

connectivity and anisotropic permeability of such vesicles would permit rapid clast 

saturation and subsequent sinking to the seafloor (Wright et al., 2006). The diversity of 

these textures within pumice deserves more detailed microtextural analysis.

We thus propose that what separates pumice into the raft is their ability to trap gas and 

the presence of isolated vesicles; clasts that cannot retain enough gas sink. Those that 

trap gas and/or have sufficient isolated vesicles float. Presumably the difference in gas 

trapping results from differences in topology of the pore space such as the number of 

dead-end pores. We could not, however, identify any key differences in our images. We 

note several caveats. First, we are not able to do experiments on meter-sized raft or 

seafloor clasts owing to the lack of intact samples and our inability to measure and 

image the infiltration at such large scales. We thus assume that the smaller fragments 

we imaged are representative of the larger clasts from their respective units. Second, 

we do experiments on quenched samples, whereas the vesicularity and texture of the 

pumice may evolve during quenching and also after their initial fragmentation. Larger 

clasts should take longer to ingest water, explaining why seafloor pumice clast size 

increases with distance from the vent (Carey et al., 2018).

4.5. The effusive eruption of Havre

The raft-forming Havre eruption was not explosive in the same manner as subaerial 

pumice clast-forming eruptions. This submarine style of pumice-generating eruption 

requires an eruption depth that is not-too-deep and not-too-shallow (Fig. 7). In deeper 

water, with the critical depth depending on the water content of the melt, the magma will

not be buoyant and will form a lava flow or dome (Fig. 7c). In shallower water, the melt 

viscosity will be higher owing to greater gas exsolution and the magma may undergo 

brittle fragmentation in the conduit (Fig. 7a). For the Havre mass eruption rate, 
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composition, and water content, a vent depth of 2.8 km will lead to the erupting magma 

being denser than seawater (1030 kg/m3), and a vent shallower than 290 m will allow 

the magma to fragment in the conduit (21 m radius) assuming that the criterion given by

equation (1) is accurate. It is worth noting that the Taupo eruption which also produced 

giant pumice fragments, and was dominated by Plinian-phreatoplinian explosions and 

magmatic fragmentation in the conduit, occurred in water depths that were never more 

than 200 m (Wilson and Walker, 1985, Houghton et al., 2003). Mass discharge rate also

matters because low ascent rates enable outgassing. For example, at Havre multiple 

lava domes with low-to-moderate vesicularity extruded in 2012 at the same water depth 

as the vent that produced the giant pumice clasts. At Sumisu Dome C in the Sumisu 

Dome Complex, Izu Bonin Arc, Japan, silicic pumiceous dome carapaces at 1100–1300 

mbsl have high vesicularity, between 60–85%, and did not produce a clastic deposit 

(Allen et al., 2010).
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Fig. 7. Schematic illustration of the eruption of magma with Havre composition and 
water content, but at different depths: (a) shallow enough that fragmentation occurs in 
the conduit, (b) Havre vent depth, and (c) deep or ascended slow enough that 
vesicularity is <58%. In (b), clast size in the raft decreases with transport owing to 
abrasion. Inset in each panel illustrates the manner in which clasts might form, either 
within the conduit (a), or quenching in water (b and c). Panel (b) illustrates the settling of
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smaller clasts close to the vent, the rise of large, hot clasts to the sea surface, the 
trapping of hot pumice beneath the sea surface, and the settling of giant pumice out of 
the raft due to water ingestion. The relative temperature gradient of melt to glass in 
clasts given from orange to grey, respectively. White shapes are vesicles. Liquid water 
is blue. Not to scale.

The 2012 eruption that produced the pumice raft partly conforms to the eruption style 

proposed by Rotella et al. (2013) in which bubbly magma enters the ocean and clasts 

detach from the extruding magma; we favor “cooling joints” and other mechanical 

stresses over “viscous detachment” for Havre because the effusion velocity is so high 

and because we lack evidence for any wholly or partly bleb-shaped clasts; ductile 

processes, however, may be important for creating floating clasts from less viscous 

magmas (e.g., Kueppers et al., 2012). As noted by others (e.g., Cas and Giordano, 

2014, Allen and McPhie, 2009, White et al., 2015), terminology such as explosive and 

effusive, developed for subaerial eruptions and their deposits, may not translate well to 

the submarine realm where high hydrostatic pressure and the cooling effects of liquid 

water can modulate fragmentation.

Given that submarine giant pumice deposits are common products of historical 

eruptions and well documented in the rock record (Reynolds et al., 1980, Kano et al., 

1996, Risso et al., 2002, McPhie and Allen, 2003, Kano, 2003, Allen and McPhie, 

2009, Allen et al., 2010, Jutzeler et al., 2014, von Lichtan et al., 2016), we infer that the 

2012 Havre eruption may be an example of a relatively common style of deep 

submarine volcanic eruption. Modern intra-oceanic arcs, such as the Kermadec, Izu, 

Bonin, Mariana, and South Sandwich arcs contain many deep submarine silicic 

volcanoes, and similar eruptions may be common.

5. Conclusions

The 2012 pumice raft-forming eruption was produced from a vent that extruded buoyant

vesicular rhyolite into the sea at speeds >10 m/s. This lava fragmented by quenching in 

the ocean to produce three subpopulations of clasts. Large clasts (>1 m) rose to the sea

surfacewithout ingesting enough water to sink. Those large clasts with sufficient isolated

vesicles and/or trapped gas remained afloat in the raft. Large clasts that did not retain 

enough gas, and those that were trapped beneath the pumice raft, sank to create the 

seafloor giant pumice. Smaller clasts would not have reached the surface, ingesting 

water quickly and settling close to the vent, or were transported by currents if small 

enough.
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The eruption style documented at Havre may be dominant for submarine silicic 

eruptions, as most submarine vents are at depths greater than a few hundred meters. 

Voluminous deposits of giant pumice clasts are a product, and thus an indicator, of 

large, deep silicic effusive eruptions. This eruption style can partition most of the mass 

into distal and global ocean basins, which has implications for how we interpret past 

events and may ultimately lead to a re-evaluation of the volumes and magnitudes of 

submarine eruptions in the past.
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As the interior of vapor-filled pumice cools, vapor condenses and draws in liquid water. 

Whether heat loss or permeability limits this ingestion of liquid depends on the ability of 

a clast to lose heat compared to the ability of liquid to flow into the clast – the slowest 

process will govern liquid ingestion.

The condensation of vapor and heat loss from the clast is similar to the classic Stefan 

problem except that advection of heat by liquid water drawn into the clast may dominate

the heat transport. An energy balance at the vapor–liquid interface balances the 

conductive transport across that interface with the latent heat released

(A.1)−κdTdx=ρsϕLu

where u is the fluid velocity, L the latent heat, ρs is the density of 

steam, ϕ is porosity, T is temperature, κ is the thermal conductivity of the liquid-

saturated clast, and x is position. The temperature distribution within the liquid-saturated

part of the clast that determines the left-hand side of equation (A.1) depends on u, and 

we use the solution for steady-state advective-diffusion problem from Bredehoeft and 

Papadopulos (1965)

(A.2)T(x)−TaTs−Ta=eβx/a−1eβ−1

where β=ua/D is a dimensionless Peclet number (ratio of advection to diffusion of heat), 

where D is the thermal diffusivity of the liquid-saturated clast, a is the distance from the 

clast surface to the steam–liquid interface, and Ta and Ts are the temperatures of the 

ambient water and steam–liquid interface, respectively. The solution for the infiltration 

speed can be obtained by solving equations (A.1) and (A.2)

(A.3)u=Daln [1+κ(Ts−Ta)ρsϕLD]

If permeability limits the infiltration speed of water, a lower bound on the velocity is given

by Darcy's law assuming buoyancy controls infiltration

(A.4)u>kρwgμwϕ

where k is permeability, and μw is the viscosity of water. We use > because we neglect 

the additional (and likely much larger) pressure gradients from gas contraction and 

capillary forces that would further increase u.

Whether heat loss controls infiltration (equation (A.3)) or permeable flow 

(equation (A.4)) depends on which is larger – the slowest velocity is rate-limiting. 

Permeability is not limiting if

(A.5)k>μwϕDaρwgln [1+κ(Ts−Ta)ρsϕLD]

Using D=Dwϕ+Dr(1−ϕ)=2.5×10−7 m2/s for ϕ=0.8, where Dw and Dr are the diffusivities of 

water and glass, respectively (Bagdassarov and Dingwell, 1994), κ=2 W m−1 K−1, and 

conditions at the ocean surface (Ts−Ta=100 °C, ρs=1 kg/m3), we find that cooling is 

limiting provided k>1.2×10−13 m2 for a clast with a=1 m. Permeability of pumice is 
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generally larger than this value, typically >10−12 m2 for vesicularities of 70–80% 

(e.g., Rust and Cashman, 2004, Mueller et al., 2005, Burgisser et al., 2017, Colombier 

et al., 2017; Gonnermann et al., 2017). Note that the value of k from equation (A.5) is an

upper bound because we ignore additional pressure gradients driving water into the 

clast in equation (A.4) and densities and temperature difference at greater depths 

decrease the velocity predicted by equation (A.2). The model also neglects any 

interfacial instabilities that might enhance infiltration or change effective diffusivities 

(e.g., Randolph-Flagg et al., 2017).

Appendix B. Cooling, ingestion and ascent model

We model the density evolution and rise of hot and initially water vapor-saturated clasts.

Clast density evolves due to internal gas decompression, contraction of vapor by 

cooling and condensation, and from liquid water infiltration. We assume that the clast 

vesicularity does not change due to volatile exsolution after clasts form. By coupling a 

model for clast density evolution to a model for clast rise speed (equation (3)), we can 

estimate the time it takes clasts of varying sizes and vesicularities to reach the ocean 

surface from a depth of 900 m (Fig. 6).

Consider a clast that is entirely filled with water vapor such that f=1, where f is the 

fraction of pore space filled with water vapor. The clast has vesicularity, ϕ, initial 

temperature, T, diameter, 2R, and originates from a depth of 900 m. We assume an 

initial temperature of 850 °C and calculate the initial density ρs, mass, ms, 

specific enthalpy, H, and total enthalpy, HT, of internal the water vapor using 

a thermodynamic look-up table (IAPWS IF-97, XSteam; Holmgren, 2006). We assume 

that the internal steam is fully coupled to the clast and cannot flow out unless the 

volume of steam exceeds the internal volume of the clast pore space. We calculate clast

density as

(B.1)ρc=ρr(1−ϕ)+ρsϕf+ρwϕ(1−f)

where the subscripts r and w stand for rock and liquid water. Clast density changes 

primarily as a function of the volume of internal water vapor, which in turn is affected by 

cooling and decompression. Clasts lose thermal energy through cooling according to

(B.2)dHTdt=−qFS,

where q is an average rate of heat loss that was measured experimentally to be 

approximately 7.5 W cm−2 for initially air-filled pumice in water (Fauria, 2017), S is clast 

surface area, and F is a factor that describes the partitioning of latent heat within the 

water vapor and sensible heat within the glass. The ratio of sensible to latent heat in the

clasts is characterized by the Stefan number
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(B.3)St=ΔTcpϕL∼1,

where ΔT, is the temperature difference between the initial clast temperature and 

ambient water, cp is the heat capacity of the glass, and L is the latent heat of 

vaporization. We define

(B.4)F=ϕLΔTcp+ϕL.

The factor F accounts for sensible heat loss from the glass. That is, not all heat is drawn

out of the internal water vapor, rather a proportion of cooling affects the glass. For an 

850 °C clast, we estimate F∼0.5. We find that precise value for F does not affect the 

calculated clast rise speeds, but is important for determining the minimum clast size that

can reach the surface.

We calculate clast rise speeds as a function of clast density and size using equation (3).

Clast rise distance Z through the water volume is

(B.5)Z=∫Udt.

We relate depth h to pressure according to P=ρwgh. At each new depth we calculate the

density and volume, Vs, of the internal water vapor as a function of pressure and 

specific enthalpy using a thermodynamic lookup table (XSteam; Holmgren, 2006). 

Internal water vapor can expand as clasts rise through the water column, and contract 

due to cooling. The volume fraction of pore space filled with water vapor is

(B.6)f=VsϕVc

where Vc is clast volume. If the net effects of cooling, decompression, and gas 

expansioncause the volume of internal water vapor exceed the volume of the pore 

space such that f>1, we let all excess water vapor exit the pore space and set f=1. We 

define the excess water vapor as Ex=f−1. We write the change in water vapor mass and 

total enthalpy due to vapor escape from the clast as

(B.7)Δmi=−ExVcϕρs,

(B.8)ΔHT=−ΔmiH.

In contrast, cooling can make contraction and condensation exceed decompression 

effects such that f<1. If this is the case, we allow liquid water to enter the pore space 

vacated due to condensation (e.g., Fauria et al., 2017). Water ingestion does not 

decrease clast enthalpy. Equation (B.1) demonstrates, however, how ingested water 

increases clast density and thereby affects rise speed, decompression rates, and clast 

fate.

We solve equations (3) and (B.1)–(B.8) using a first order finite difference scheme. The 

model ends when a clast either reaches the ocean surface or becomes neutrally 

buoyant due to vapor condensation and water ingestion. Fig. 4 shows how clast size 

affects rise time to the surface and the minimum clast sizes required to reach the 
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surface from a depth of 900 m. Below these minimum clast sizes, cooling results in 

vapor condensation and buoyancy reversal before a clast can reach the surface (Fig. 4).

Many of the assumptions in equations (B.2)–(B.8) and approximations needed to 

develop this model could, in principle, be relaxed with a full 3D multiphase flow model 

that includes gas exsolution from the melt and mass, momentum and energy 

exchange with the surrounding water, and the presence of unconnected porosity (Fig. 

4). The model used here also neglects the buoyant ascent of warm water that would 

entrain clasts. A model that couples clast-scale processes and large-scale dynamics 

may improve the accuracy of calculations of the fate of clasts and may reveal new and 

neglected processes.

If there is unconnected porosity, and all the connected porosity fills with liquid water, the 

unconnected porosity is able to keep clasts floating if

(B.9)ϕu=(ρr−ρw)(ρw−ρs)(1−ϕt)

where the subscripts on density are as before and u and t indicate unconnected and 

total porosity, respectively.
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