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Summary

Silent information regulator 2 (Sir2) proteins, or sirtuins, are protein deacetylases dependent on
nicotine adenine dinucleotide (NAD) and are found in organisms ranging from bacteria to
humans. In eukaryotes, sirtuins regulate transcriptional repression, recombination, the cell-
division cycle, microtubule organization, and cellular responses to DNA-damaging agents. Sirtuins
have also been implicated in regulating the molecular mechanisms of aging. The Sir2 catalytic
domain, which is shared among all sirtuins, consists of two distinct domains that bind NAD and
the acetyl-lysine substrate, respectively. In addition to the catalytic domain, eukaryotic sirtuins
contain variable amino- and carboxy-terminal extensions that regulate their subcellular
localizations and catalytic activity. 
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Gene organization and evolutionary history
Protein acetylation regulates a wide variety of cellular func-

tions, including the recognition of DNA by proteins, protein-

protein interactions, and protein stability (reviewed in [1]).

Post-translational modification of proteins at lysine residues

by reversible acetylation is catalyzed by the opposing activities

of histone acetyltransferases (HATs) and histone deacetylases

(HDACs), which act on both histone and non-histone sub-

strates despite their names. HDACs are grouped into three

classes on the basis of their homology to yeast transcriptional

repressors. Class I and class II HDACs, which share significant

similarity to each other in their catalytic cores, are homologs

of the yeast deacetylases Rpd3p and Hda1p, respectively

(reviewed in [2,3]). The class III HDACs are homologous to

the yeast transcriptional repressor Sir2p and have no

sequence similarity to class I and II HDACs; these Sir2 pro-

teins, also called sirtuins, are the focus of this article. 

The founding member of class III HDACs, Saccharomyces

cerevisiae Sir2p, functions in transcriptional repression at

the telomeres [4,5], the silent mating-type loci [6-8], and

ribosomal DNA loci [9,10]. Sir2p has been implicated in the

repair of double-strand DNA breaks, cell-cycle progression,

and chromosomal stability in yeast and plays a pivotal role

in the molecular mechanisms of aging in both S. cerevisiae

and Caenorhabditis elegans [11-15]. 

Sirtuins have been found in bacteria to eukaryotes [16,17]. The

hallmark of the family is a domain of approximately 260

amino acids that has a high degree of sequence similarity in all

sirtuins. The family is divided into five classes (I-IV and U) on

the basis of a phylogenetic analysis of 60 sirtuins from a wide

array of organisms [17] (Figure 1). Class I and class IV are

further divided into three and two subgroups, respectively.

The U-class sirtuins are found only in Gram-positive bacteria

[17]. The S. cerevisiae genome encodes five sirtuins, Sir2p and

four additional proteins termed ‘homologs of sir two’ (Hst1p-

Hst4p) [11] (Figure 1). The human genome encodes seven sir-

tuins, with representatives from classes I-IV (Table 1) [17]. 

Characteristic structural features
The sirtuins have a catalytic domain, unique to this family,

characterized by its requirement for nicotine adenine dinu-

cleotide (NAD) as a cofactor [18]. The structures of four sir-

tuins (Archaeoglobus fulgidus Sir2-Af1 and Sir2-Af2, human



Sirt2, and yeast Hst2) have been obtained at atomic resolu-

tion, and a number of common features are emerging [18-

21]. All four are organized in two bilobed globular domains:

a small domain with two distinct modules and a large

domain (Figure 2). 

The large domain 
The large domain contains an inverted classical open �/�

Rossmann-fold structure, which is commonly found in

proteins that bind oxidized or reduced NAD or NADP

[18,20,21] (Figure 2). This domain consists of six parallel

� strands (�1-�3 and �7-�9) that form a central � sheet, and

eight � helices (�1, �2, �6, �7, and �9-�12) that pack against

the � sheet (Figure 2). Sirt2 and the yeast Hst2p each have

an additional � helix in the crystal structure, �13, that packs

against the outside of the large domain but is not found in

Sir2-Af1 or Sir2-Af2. The most significant difference in the

large domains is an insertion in the region of the �11 helix
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Figure 1 
An unrooted tree diagram derived from phylogenetic analysis of the conserved domains of 60 sirtuin sequences from all sirtuin classes. Classes I, II, III, IV,
and U and subdivisions of classes I and IV are indicated. Organism abbreviations: A. act, Actinobacillus actinomycetemcomitans; A. aeo, Aquifex aeolicus;
A. ful, Archaeoglobus fulgidus; A. per, Aeropyrum pernix; A. tha, Arabidopsis thaliana; B. per, Bordetella pertussis; B. sub, Bacillus subtilis; C. ace, Clostridium
acetabutylicum; C. alb, Candida albicans; C. dif, Clostridium difficile; C. ele, Caenorhabditis elegans; C. jej, Campylobacter jejuni; D. mel, Drosophila melanogaster;
D. rad, Deinococcus radiodurans; E. col, Escherichia coli; E. fae, Enterococcus faecalis; H. sap, Homo sapiens; H. pyl, Helicobacter pylori; L. maj, Leishmania major;
M. avi, Mycobacterium avium; M. tub, Mycobacterium tuberculosis; O. sat, Oryza sativa; P. aby, Pyrococcus abyssi; P. fal, Plasmodium falciparum; P. hor, Pyrococcus
horikoshii; S. aur, Staphylococcus aureus; S. coe, Streptomyces coelicolor; S. pom, Schizosaccharomyces pombe, S. typ, Salmonella typhimurium; S. cer, Saccharomyces
cerevisiae; T. bru, Trypanosoma brucei; T. mar, Thermotoga maritima; Y. pes, Yersinia pestis. Modified from [17].
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in Sirt2 and Hst2p that is absent from Sir2-Af1 and Sir2-

Af2. This helix is located outside the catalytic pocket but on

the same face; it could possibly have a role in the recogni-

tion of substrate or of other members of a macromolecular

complex [18].

The small domain 
The small domain has two structural modules that result

from two insertions in the Rossmann fold of the large

domain [18,20,21]. The first insertion consists of three

� helices (�3, �4, and �5) that fold to form the helical

module (Figure 2). This module has a pocket, lined with

hydrophobic residues, that intersects the large groove

between the small and large domains. The properties of the

pocket suggest that it may be a class-specific protein-protein

interaction domain, possibly recognizing specific residues in

the substrate protein. Sequence alignments show that all

class I sirtuins have the �3I, �3, �4, and �5 helices that form

the hydrophobic pocket, but classes II, III, and IV sirtuins

have deletions in this area, suggesting class-specific differ-

ences. Structural data from Sir2-Af1 bound to NAD, Sir2-Af2

bound to p53, and unbound human Sirt2 suggest that the

helical module undergoes a conformational change upon

binding of NAD, possibly to allow interaction with acetyl-

lysine substrates [21].

The second insertion forms a zinc-binding module (see

Figure 2), composed of antiparallel � strands containing two

Cys-X-X-Cys motifs (where X is any amino acid) separated

by 15-20 amino acids that are involved in zinc coordination

[18,20,21]. Replacing the cysteines with alanines abolishes

enzymatic activity in vitro and the silencing activity in vivo

at silent mating-type, telomeric, and rDNA loci [20,22].

Likewise, the presence of zinc is required for enzymatic

activity, as the zinc chelator o-phenanthroline inhibits

enzymatic activity [20]. The localization of zinc away from

the NAD-binding pocket suggests that the zinc ion does not

participate directly in catalysis. This is in contrast to class I

and class II HDACs, in which zinc ions are part of the active

site [20,23]. 

The NAD-binding pocket 
The NAD-binding pocket, located within the large domain at

the interface of the large and small domains, can be divided

into three spatially distinct regions: the A site, where the

adenine-ribose moiety of NAD is bound, the B site where the

nicotinamide-ribose moiety is bound, and the C site, located

deep in the NAD-binding pocket (see also Figure 3) [20].

The B and C sites are thought to be directly involved in catal-

ysis. In the presence of an acetyl-lysine, NAD bound to the B

site can undergo a conformational change, bringing the

nicotinamide group in proximity to the C site, where it can

be cleaved [20]. The ADP-ribose product of this reaction

may then return to the B site, where deacetylation of the

acetyl-lysine occurs. The organization of the NAD-binding

pocket might explain how nicotinamide inhibits sirtuin

activity. At high concentrations, free nicotinamide may

occupy the C site, irrespective of whether any acetylated

lysine is bound, and block the conformational change of

NAD [24].

The large groove
A large groove is formed at the interface between the large

and small domains and runs perpendicular to the long axis

formed by the two domains (Figure 2). On the basis of muta-

genesis studies, a role in substrate recognition and catalysis

has been proposed for this groove [18,20]. Analysis of the

crystal structure of A. fulgidus Sir2-Af2 complexed with a

p53 peptide (Figure 2b) demonstrates that the peptide sub-

strate lies in the large groove [21]. The binding of an acety-

lated peptide, such as p53, may occur through the formation

of an enzyme-substrate � sheet, in which the substrate

� strand is sandwiched between the �11 strand within the

Rossmann fold and a �10 strand within the FGE loop,

named for its highly conserved FGExL motif [21]. A high

degree of conservation between sirtuins is found in the

residues implicated in substrate peptide binding, specifically

in the region of the FGE loop [21]. The predicted �10 and

�11 strands of Sir2-Af2 are absent from the solved structures

of Sirt2, Sir2-Af1, and Hst2p, however. These observations

suggest that these two regions become more ordered and

form the enzyme-substrate � sheet upon substrate binding,

as seen in the Sir2-Af2 p53 structure [21]. 

Amino- and carboxy-terminal extensions
The solved structures of full-length A. fulgidus Sir2-Af1,

A. fulgidus Sir2-Af2 and human Sirt2 correspond primarily

to the catalytic domain found within sirtuins. Yeast Hst2 and

human Sirt2 have large amino- and carboxy-terminal exten-

sions (not shown for Sirt2 in Figure 2c) that are likely to play

a role in the regulation of enzymatic activity. In support of
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Table 1 

Classification and chromosomal locations of human sirtuin
genes

Chromosomal Orthologs

Name Class location OMIM ID Yeast Mouse

Sirt1 Ia 10q21.3 604479 Sir2, Hst1 Sir2�

Sirt2 Ib 19q13.2 604480 Hst2 Sir2l2

Sirt3 Ib 11p15.5 604481 Hst2 Sir2l3

Sirt4 II 12q24.31 604482 Sirt4

Sirt5 III 6p23 604483 Sirt5

Sirt6 IVa 19p13.3 606211 Sirt6

Sirt7 IVb 17q25.3 606212 Sirt7

Mouse orthologs of human Sirt4-7 have not been characterized but are
found in sequence databases. OMIM IDs are from the Online Mendelian
Inheritance in Man repository at the National Center for Biotechnology
Information (NCBI) [76].
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Figure 2
Three-dimensional high-resolution crystal structures of four sirtuin proteins. The zinc-binding module is shown at the top left in each panel, the helical
modules of the small domain are lighter and at the top right, and the large Rossmann-fold domain is in the lower half. Each � helix and � strand is labeled
to facilitate comparisons. (a) Sir2-Af1 complexed with NAD (in stick representation; PDB accession number: 1ICI) [20]. (b) Sir2-Af2 complexed with
acetylated p53 peptide (in stick notation, with acetyl-lysine darker). Two � strands (�10 and �11) are shown that might mediate the binding of the
substrate peptide (PDB accession number: IMA3) [21]. An acetylated peptide, such as p53, may be bound through the formation of an enzyme-substrate
� sheet, in which the substrate � strand is sandwiched between the �11 strand within the Rossmann fold and a �10 strand within the FGE loop, named
for its highly conserved FGExL motif [21]. (c) Human Sirt2 (catalytic core; PDB accession number: 1J8F) [18]. (d) Full-length yeast Hst2p with the
carboxy-terminal �14 helix interacting with the NAD-binding pocket (PDB accession number: 1Q14) [19]. Structural coordinates were taken from the
Protein Data Bank and models were drawn with PYMOL [77]. 
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this model, studies have indicated that different modes of

silencing are affected by various mutations outside the cat-

alytic core [19]. In addition, the structure of full-length yeast

Hst2p indicates that the carboxy-terminal extension folds

into the NAD-binding pocket and that the amino-terminal

extension may occlude the substrate binding cleft [19]. The

carboxy-terminal �14 helix of yeast Hst2p interacts exten-

sively with residues within the large groove between the

large and small catalytic domains of the protein, as well as

with residues in these domains. In the apo (unbound) form

of Hst2p the �14 helix probably partially occludes the cofac-

tor NAD-binding site and the loop following �1 is disor-

dered. NAD binding then promotes dissociation of the �14

helix and ordering of the loop after �1, to facilitate enzymatic

activity. Likewise, the human Hst2p homolog Sirt3 is enzy-

matically inactive as a full-length protein and becomes cat-

alytically active after proteolytic cleavage of its amino

terminus following import in the mitochondrial matrix [25]. 

Localization and function 
Sirtuin proteins have been found in a wide variety of subcel-

lular locations. Human Sirt1 localizes to the nucleus, as does

yeast Sir2p [26]; Sirt1 appears to repress transcription in the

nucleus by various different mechanisms. Human Sirt2 and

Sirt3 localize to extra-nuclear compartments, much like yeast

Hst2p: Sirt2 is found in the cytosol [27,28], whereas Sirt3 is

found primarily in the mitochondria [25,29] (see Figure 4).

A key function of sirtuins is their regulation of transcrip-

tional repression, mediated through binding of a complex

containing sirtuins and other proteins. The silencing func-

tion of the yeast Sir2p is mediated by different multiprotein

complexes at different genomic sites. Silencing at the

telomeres and at the mating-type loci is mediated by a

protein complex consisting of Sir2p and the structurally

unrelated proteins Sir3p and Sir4p. Sequence-specific DNA-

binding proteins mediate the initial recruitment of Sir

protein complexes to the telomeres and mating-type loci. At

those loci, Sir3p and Sir4p blanket the underlying nucleo-

somes by interacting with hypoacetylated tails of histones

H3 and H4, and Sir2p interacts with Sir3p and Sir4p

(reviewed in [30]). Sir2p-dependent silencing of ribosomal

DNA (rDNA) is mediated by the ‘regulator of nucleolar

silencing and telophase exit’ (RENT) complex, containing

Sir2p, Net1p, and a telophase-regulating phosphatase,

Cdc14p, which is released in late metaphase [31,32]. At

rDNA loci, Sir2p can silence transcription of RNA poly-

merase II-dependent marker genes inserted within the

rDNA array and also suppresses homologous recombination

among the tandemly repeated rDNA copies [9,33,34].

Enzyme mechanism
Initial enzymatic experiments with sirtuins, carried out in

the bacterium Salmonella typhimurium, revealed only

their activity as ADP-ribosyltransferases, not protein

deacetylases. During the biosynthesis of cobalamin (also

known as vitamin B12), the CobT enzyme in Salmonella

catalyzes the transfer of phosphoribose from nicotinic acid
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Figure 3 
The enzymatic activity of sirtuins. (a) The components necessary for
sirtuin-mediated deacetylase activity are the sirtuin, �-NAD, and the
N-acetylated substrate. (b) The components form a tertiary complex and,
during the enzymatic reaction, the nicotinamide is expelled from bound
NAD to generate an oxocarbonium-like transition state in which the
carbonyl oxygen of the acetyl group attacks the C1 carbon of ADP. After
alkylamidate and cyclic intermediates and possibly protonation of the
amine leaving group (not shown), the products (c) are formed: the
deacetylated protein, 2�-O-acetyl-ADP-ribose, and nicotinamide. The
2�-O-acetyl-ADP-ribose is released into solution, where it equilibrates
with 3�-O-acetyl-ADP-ribose. Adapted with modifications from [78].
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mononucleotide (NaMN) to dimethylbenzimidazole

(DMB) to form DMB-5�-ribosyl-phosphate [35,36]. In the

absence of CobT, the Sir2-like protein CobB can partially

compensate in the catalysis of this reaction [37]. In later

studies, recombinant Sir2 proteins from both bacteria and

humans were shown to have NAD-dependent ADP-ribo-

syltransferase activity in vitro [16,38]. 

Although the enzymatic function initially associated with

sirtuins was ADP-ribosyltransferase activity, NAD-

dependent histone-deacetylase activity was subsequently

shown to be the primary enzymatic activity of Sir2p and

other sirtuins [39-41]. The deacetylation reaction gener-

ates three products: acetyl-ADP-ribose, nicotinamide,

and a deacetylated peptide substrate (Figure 3). The ratio

of these products is 1:1:1, consistent with the model that

hydrolysis of one NAD to acetyl-ADP-ribose and nicoti-

namide occurs for each acetyl group removed, and that

deacetylation requires an enzyme-ADP-ribose intermedi-

ate (Figure 3) [42]. The demonstration that the ribosyl-

transferase and NAD-cleavage activities are both

dependent on an acetylated substrate confirms the funda-

mental link between the two activities [38,39,42-44]. The

recent observation that O-acetyl-ADP-ribose delays

oocyte maturation and cell division in blastomere-stage

embryos suggests that this compound might be a bona

fide second messenger linked to the enzymatic activity of

sirtuins [43-45].

It remains likely that there is a physiological role for the

ADP-ribosyltransferase activity of individual sirtuins. A

recently identified Trypanosoma brucei class Ib sirtuin,

TbSIR2RP1, exerts both histone-deacetylase and robust

ADP-ribosyltransferase activity on histones H2A and

H2B [46]. García-Salcedo et al. [46] have suggested that

the activity of TbSIR2RP1 and extent of chromatin ADP

224.6 Genome Biology 2004, Volume 5, Issue 5, Article 224 North and Verdin http://genomebiology.com/2004/5/5/224
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Figure 4
Localization and functions of the human sirtuins Sirt1, Sirt2 and Sirt3. Sirt1 is found in the nucleus; it associates with several partners and targets for
deacetylation, as discussed in the text. Sirt2 is found in the cytoplasm bound to the microtubule network, where it forms a complex with the histone
deacetylase HDAC6. Both proteins can deacetylate �-tubulin. Sirt3 is imported into the mitochondrial matrix and proteolytically processed by the
peptidase MPP, leading to its enzymatic activation (asterisk). Ac, acetyl moiety; ProteinX, an unknown protein substrate.
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ribosylation correlates with the sensitivity of trypanosomes

to agents that damage DNA.

It is not clear whether all five classes of sirtuins have deacety-

lase activity. For instance, only class I human sirtuins (Sirt1,

Sirt2, and Sirt3) have robust enzymatic activity on a peptide

corresponding to the amino-terminal tail of histone H4 [47].

Sirt5, a class III sirtuin, has low but detectable activity in com-

parison with the class I sirtuins [47]. Interestingly, the class III

sirtuin from A. fulgidus, Sir2-Af1, also has low activity on a

histone peptide but significantly stronger activity on an acety-

lated bovine serum albumin substrate, suggesting that the

level of deacetylase activity is substrate-specific [20,21]. 

Phenotypic screens using yeast strains that have either

URA3 or TRP1 inserted within Sir2p-silenced loci have led to

the identification of �-substituted �-naphthol compounds,

sirtinol and splitomicin, which inhibit the enzymatic activity

of Sir2 proteins [48,49]. Sirtinol inhibits recombinant Sir2p

and human Sirt2 in vitro and silencing at the telomeres,

silent mating-type, and rDNA loci in vivo. Sirtinol was

recently used to define further the role of mammalian Sir2

proteins in the regulation of muscle gene expression and dif-

ferentiation in response to alterations in the ratio of concen-

trations of NAD+ and NADH [50].

Other inhibitors have been developed that capitalize on the

dependence of the sirtuins’ enzymatic activity on NAD. A

nonhydrolyzable NAD molecule, carba-NAD, inhibits

sirtuin activity, consistent with the requirement for NAD

cleavage during the enzymatic reaction [42]. It is unlikely,

however, that this inhibitor will prove useful in vivo

because it cannot permeate cells and because of its poten-

tial to affect other cellular NAD-dependent enzymatic

activities or biological pathways [48]. Nicotinamide, a

byproduct of the NAD-dependent deacetylation reaction,

inhibits sirtuins both in vitro and in vivo [42,51,52]. 

A recent study found a number of compounds that increase

the enzymatic activity of sirtuins [53], one of which, resvera-

trol, activates both yeast Sir2p and human Sirt1 in vitro and

in vivo. Plant polyphenols such as resveratrol - which is

found in grapes and red wine - have been associated with

health benefits such as cardioprotection, neuroprotection,

and cancer suppression [54-56]. Sirtuins have been impli-

cated in the regulation of cellular and organismal aging in

several model organisms (see Frontiers); regulation of sirtu-

ins by polyphenols may provide a functional link between

the effects of plant products such as resveratrol on health

and longevity and the regulation of aging [53]. 

Substrates and functions 
The functions and substrates have been studied most for

human Sirt1, Sirt2 and Sirt3 and their closest yeast

homologs Sir2, Hst1 and Hst2; little is known about the

functions of Sirt4, Sirt5, Sirt6, and Sirt7.

Sirt1
TAFI68, a transcription factor necessary for regulation of the

RNA polymerase I transcriptional complex, was the first

substrate to be identified for Sirt1 [57]; the fact that S. cere-

visiae Sir2p also regulates rDNA suggests that Sir2p and

Sirt1 may have similar functions. Deacetylation of TAFI68 by

Sir2� - the mouse ortholog of human Sirt1 - inhibits tran-

scriptional initiation in vitro [57]. Sirt1 is reported to associ-

ate physically with the human basic helix-loop-helix (bHLH)

repressor proteins hHES1 and hHEY2 [58] (Figure 4); a

similar interaction is also found in Drosophila, in which the

bHLH repressor proteins Hairy and Deadpan recruit a

sirtuin protein [59]. The Hairy-related bHLH proteins func-

tion as transcriptional repressors and play important roles in

diverse aspects of metazoan development. Sirt1 has also

been shown to form a complex with the histone acetyltrans-

ferase PCAF and the muscle transcription factor MyoD, and

it deacetylates both proteins [50]. Although transcriptional

regulation by Sirt1 through TAFI68, bHLH, MyoD and

PCAF, and p53 (see below) identify non-histone targets for

the sirtuins, Sirt1 might also regulate histone acetylation

directly through its interaction with sequence-specific DNA

binding factors, such as COUP-TF-interacting proteins 1 and

2 (CTIP1 and CTIP2) or a MyoD/PCAF complex [50,60].

These findings implicate Sirt1 as a transcriptional repressor

that functions through deacetylation of histones and non-

histone proteins. 

Sirt1 deacetylase activity has also been implicated in the

repair of DNA damage, through its ability to deacetylate the

tumor suppressor p53 [26,52], a sequence-specific transcrip-

tion factor that regulates processes such as the cell cycle, cell

death, and DNA repair, in response to a variety of stress

signals. The p53 protein is acetylated at two lysine residues,

Lys320 and Lys382, in response to DNA damage, leading to

its activation [61-63]. Acetylation by the acetyltransferase

p300 positively regulates p53 activity, and deacetylation by

HDAC1 and Sirt1 negatively regulates its activity [26,63].

Sirt1-mediated deacetylation of p53 suppresses the induc-

tion of apoptosis and prolongs cellular survival in response

to DNA damage [52]. Both Sirt1 and p53 can be localized in

promyelocytic leukemia (PML) bodies [51], subnuclear

structures that are altered or disrupted in certain tumors

and in response to various different cellular stresses [64].

These studies [26,51,52,61-63] suggest that Sirt1 deacety-

lates the p53 tumor suppressor protein to dampen apoptotic

and cellular senescence pathways. 

Two studies [65,66] have used gene-targeted mutagenesis

experiments in mice to examine the consequences of

expressing a mutant Sirt1 protein lacking part of the catalytic

domain or of deleting the ortholog of the Sirt1 gene com-

pletely. McBurney et al. [65] showed that animals homozy-

gous for a null allele of sir2� are born at only half the

expected frequency, suggesting prenatal lethality; homozy-

gous embryos and pups are smaller than their wild-type and
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heterozygous littermates and have developmental defects

of the eyes, lungs, and pancreas. In an outbred back-

ground, the Sir2�-null animals often survive to adulthood,

but both sexes are sterile because of a failure to ovulate in

females and inefficient spermatogenesis in males [65].

Unexpectedly, there is no defect in gene silencing in Sir2�-

null animals, nor in Sir2�-null homozygous embryonic

stem cells, suggesting either that Sirt1 orthologs have a dif-

ferent role in mammals from that in S. cerevisiae or that

its role in gene silencing is confined to a small subset of

mammalian genes [65,67]. In the second study [66], mice

were generated that lacked Sir2� or expressed a mutant

Sir2� protein lacking part of the catalytic domain. Both

types of Sir2� mutant mice were smaller than their wild-

type and heterozygous littermates and had developmental

defects in the retina and heart; most died postnatally [66].

Sir2�-deficient thymocytes showed an increase in p53

hyperacetylation in response to ionizing radiation, fol-

lowed by apoptosis [66]. The phenotype of the Sir2�-null

mice suggests that the Sirt1 protein is essential for normal

embryogenesis and for normal reproduction in both sexes

in mammals. Further study of the function of Sirt1

orthologs at the molecular level will help to unravel the

origins of these developmental defects.

Sirt2
The human Sirt2 protein is similar in sequence to yeast

Hst2p and both proteins are located in the cytoplasm

[27,28] (Figure 4), where Hst2p affects chromatin silenc-

ing through an unknown mechanism [27]. Sirt2 colocalizes

with the microtubule network and deacetylates Lys40 of �-

tubulin [47]. The same residue of �-tubulin is also deacety-

lated by HDAC6, a class II HDAC, and deacetylation by

HDAC6 leads to changes in cellular motility [68]. Sirt2 and

HDAC6 are found along microtubules and can be co-

immunoprecipitated with each other, suggesting that the

two proteins coordinately regulate the level of tubulin

acetylation [47]. Recent evidence shows that Sirt2 is upreg-

ulated before mitosis and suggests a role for this protein in

cell-cycle regulation [69]. Sirt2 is rapidly degraded after

mitosis, and cells overexpressing mutant forms of Sirt2

show a delay in exit from mitosis. Whether Sirt2-depen-

dent regulation of �-tubulin acetylation is related to cell-

cycle arrest remains to be determined.

A role for Sirt2 in cancer pathogenesis was recently demon-

strated using a proteomic approach [70]. The Sirt2 gene,

which is located at chromosome 19q13.2, lies within a region

that is frequently deleted in human gliomas, and levels of

Sirt2 mRNA and Sirt2 protein expression are severely

reduced in a large fraction of human glioma cell lines [70].

Ectopic expression of Sirt2 in these cell lines suppressed

colony formation and modified the microtubule network.

These results indicate that Sirt2 may act as a tumor suppres-

sor and may function to control the cell cycle by acetylation

of �-tubulin.

Sirt3
Human Sirt3 is primarily located in the mitochondrial

matrix [25,29] (Figure 4), and its mitochondrial import is

mediated by an amphipathic � helix at its amino terminus.

The protein, whether endogenous or overexpressed, is prote-

olytically clipped at its amino terminus in vivo, resulting in

the removal of the first 100 amino acids. This clipping

can be recapitulated in vitro with purified mitochondrial-

matrix processing peptidase (MPP) [25]. Interestingly, the

unprocessed protein is enzymatically inactive in vitro and

becomes enzymatically active after proteolytic processing by

MPP [25]. Negative regulation of the enzymatic activity of a

sirtuin by its amino terminus is also observed in the case of

another class Ib sirtuin, yeast Hst2p. This protein may form a

homotrimer in solution, such that the amino-terminal

methionine of each molecule interacts with the active site in

another Hst2p molecule within the quaternary structure [19]. 

Although Sirt3 shows robust histone deacetylase activity on a

histone H4 peptide in vitro, the absence of histones in mito-

chondria suggest that non-histone proteins are its primary

target [25,29]. Mouse Sirt3, also called Sir2L3, lacks the

amino-terminal extension that mediates the mitochondrial

targeting of human Sirt3 and is located in cytoplasmic vesicles

[71]. Finally, a small fraction of cells overexpressing Sirt3

shows reproducible nuclear staining (B.J.N. and E.V., unpub-

lished observations); the relevance of this observation is

unclear, but it could indicate selective targeting of Sirt3 to dif-

ferent compartments under different physiological conditions. 

Frontiers 
Much excitement has been generated by the recent observa-

tions that sirtuin proteins might play a significant role in the

genetic control of aging. In S. cerevisiae, lifespan is short-

ened by a null mutation in SIR2 and is extended by the pres-

ence of an extra copy of SIR2 [12,72]. Loss of Sir2p leads to a

derepression of silencing at the rDNA locus, which increases

recombination between rDNA repeats and results in the

accumulation of extrachromosomal rDNA circles. High

numbers of these circles in older mother cells promote

senescence by an undefined mechanism, possibly through

the titration of necessary factors away from other promoters

[73]. Likewise, the C. elegans Sir2p homolog, Sir-2.1, medi-

ates dauer-larva formation and regulates lifespan [15]. The

dauer larva represents a specialized survival form of the

worm; the molecular mechanisms by which Sir-2.1 controls

dauer formation remain to be elucidated, however.

It has been speculated that the metabolic rate of the cell

may be important in the regulation of the function of

various sirtuins, given their dependency on NAD for enzy-

matic activity. This idea is further supported by evidence

that NAD metabolism directly participates in controlling

the aging process [12,74,75]. Translating these ideas to

mouse and human sirtuins could give novel insights into the
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regulation of mammalian lifespan. In mammals, Sirt1 could

be a key part of the decision of a cell whether to live or die in

response to DNA damage. As the cell ages and NAD levels

become lower, the resulting reduced activity of Sirt1 could

drive the decision to cell senescence or apoptosis rather than

cellular survival. Likewise, lowered activity of Sirt2 via

reduced levels of NAD could alter the rate of cell division

through cell-cycle regulation. The localization pattern of

Sirt3 in the mitochondrial matrix and its dependence on

NAD suggest a possible function in the regulation of cellular

metabolism as a sensor for intramitochondrial NAD levels.

Further work is required to determine the endogenous target

of this deacetylase in the mitochondrial compartment,

however. Genetic deletion of the genes encoding different

sirtuins in mice will facilitate studies of their roles in mam-

malian aging.

In addition to a connection between metabolism and sirtuin

activity via NAD, the formation of O-acetyl-ADP-ribose as an

enzymatic byproduct represents another promising area of

investigation. Microinjection of O-acetyl-ADP-ribose delays

or blocks oocyte maturation and cell division in blastomeres

[45]. A similar effect is observed after microinjection of low

levels of active yeast Hst2 or human Sirt2 enzyme, but not

with a catalytically impaired mutant, indicating that the

enzymatic activity is essential for the observed effects. 

Human Sirt4, Sirt5, Sirt6, and Sirt7 show low or unde-

tectable enzymatic activity on histone H4 peptide [47]. This

could reflect differing substrate specificities or different

requirements for cofactors, a field of investigation that is

likely to yield interesting insights in the future. Finally, an

increased understanding of the relationship between the

structure and function of sirtuin proteins will be important

in designing specific inhibitors and exploring their potential

therapeutic value in a variety of pathological conditions. 
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