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facts in protein structures bias
ligand-binding predictions†

Shanshan Y. C. Bradford, ‡a Léa El Khoury, ‡b Yunhui Ge, b Meghan Osato, b

David L. Mobley bc and Marcus Fischer *ad

X-ray crystallography is the gold standard to resolve conformational ensembles that are significant for

protein function, ligand discovery, and computational methods development. However, relevant

conformational states may be missed at common cryogenic (cryo) data-collection temperatures but can

be populated at room temperature. To assess the impact of temperature on making structural and

computational discoveries, we systematically investigated protein conformational changes in response to

temperature and ligand binding in a structural and computational workhorse, the T4 lysozyme L99A

cavity. Despite decades of work on this protein, shifting to RT reveals new global and local structural

changes. These include uncovering an apo helix conformation that is hidden at cryo but relevant for

ligand binding, and altered side chain and ligand conformations. To evaluate the impact of temperature-

induced protein and ligand changes on the utility of structural information in computation, we evaluated

how temperature can mislead computational methods that employ cryo structures for validation. We

find that when comparing simulated structures just to experimental cryo structures, hidden successes

and failures often go unnoticed. When using structural information in ligand binding predictions, both

coarse docking and rigorous binding free energy calculations are influenced by temperature effects. The

trend that cryo artifacts limit the utility of structures for computation holds across five distinct protein

classes. Our results suggest caution when consulting cryogenic structural data alone, as temperature

artifacts can conceal errors and prevent successful computational predictions, which can mislead the

development and application of computational methods in discovering bioactive molecules.
Introduction

Rational drug discovery relies on structural data to nd mole-
cules that treat disease. The success of drug discovery hinges on
the quality of the input structure. Oen, crystallographic reso-
lution is the main criterion to judge the quality of a structure,
given that the condence in the position of the atomic coordi-
nates increases with resolution. The underlying assumption is
that the chosen structure captures relevant functional confor-
mations that are useful for molecular discoveries.
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With structural information in hand, investigators then use
computational methods to guide structure-based screening and
design. Depending on the application, the choice of computa-
tional approach is a deliberate balance of speed and precision.
High-throughput methods like docking rapidly rank pre-
existing small-molecule libraries to help guide experimental
screening of selected compounds,1 while low-throughput
methods like molecular simulations and free-energy calcula-
tions help prioritize new compounds for synthesis.2,3 Despite
their differences, computational approaches on both ends of
the speed-vs.-precision continuum rely heavily on the quality of
the input structure. Fast docking methods that place exible
ligands in typically rigid or nearly rigid protein structures are
especially vulnerable to the choice of the input structure.4,5

Slower simulation-based approaches allow receptors to relax
and change conformation.6,7 When timescales of the relevant
motions are fast, adding a layer of computationmaymend aws
of experimental input structures. Such experimental blemishes
originate from the misinterpretation of electron density maps,
steric clashes, or, in the pursuit of nding a new chemotype,
from a co-crystallized ligand imprinting its bias upon the
chosen protein structure. To capture long timescale collective
motions of larger domains, simulations have to be either
Chem. Sci., 2021, 12, 11275–11293 | 11275
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lengthy or efficient.7–10 In the best-case scenario, this can lead to
insights into the dynamics of how proteins transition from one
functional state to another. In the worst-case scenario, insuffi-
cient sampling results in unequilibrated states that are trapped
in local energy minima.

For better or worse, computation generally leads the struc-
ture further away from the experimental input. Still, when
successful, computational methods can provide valuable
insights for pharmaceutical discovery and design. Docking
methods have been widely used for library-screening
campaigns, yielding different bioactive compounds than those
from experimental high-throughput screening.11 Recent large-
scale tests have substantially advanced the discovery of new
bioactive compounds, compared to picking compounds
randomly,1 even on challenging targets.12 Binding free energy
methods13 have shown promise for guiding lead optimization
efforts2,14 and are beginning to be widely used in industry.15,16

Despite their successes, these computational approaches
have undeniable liabilities that need addressing. For instance,
docking is valuable for ltering libraries, but it is unreliable at
predicting if and how tightly individual compounds are likely to
bind;12 free energy calculations need to overcome errors in the
underlying force elds (FFs) to more reliably reproduce experi-
mental energies.17 Typically, method development goes through
feedback cycles of computational predictions and experimental
validation and benchmarking. Clearly, the ability to improve
a computational method hinges on the quality of the experi-
mental data against which it is tested.18,19 In turn, computa-
tional methods may inherit errors from crystallographic
artifacts. Ultimately, the value of a structure will be measured by
how well it advances our understanding of biology or informs
ligand discovery, not solely by its resolution. Although well-
resolved atoms are precisely dened, they may not be accu-
rate. By the same token, poorly resolved features in high-
resolution datasets may not be unimportant for function.
Along various timescales, the mobility of such exible structural
elements varies from disordered side chains, to loops, to
intrinsically disordered proteins.20–22

Currently, nearly all crystallographic datasets are collected at
cryogenic temperatures (cryo).23 Cryocooling enables conve-
nient collection of datasets to high resolution and completeness
without detrimental effects of radiation damage.24 However,
some important structural states may be missed due to the
cryogenic cooling process.25 Recently, we and others have shown
that by changing to room temperature (RT), we can populate
higher energy conformational states that are hidden under
routine cryogenic conditions.23,25–31 As contributions from
enthalpy versus entropy change with temperature, distinct
conformational ensembles are being trapped, depending on the
speed of cooling.32–34

The realization that data collected 200 K below RT may not
be representative of the ensemble of biologically relevant states
has sparked an interest in interrogating crystallographic elec-
tron density maps for signs of alternate side chain,35 back-
bone,36 and ligand37 conformations in orthosteric and allosteric
sites.38 Recently, we showed that RT crystallography (RTX) can
provide information about exibility and conformational
11276 | Chem. Sci., 2021, 12, 11275–11293
energy penalties in ligand discovery.27 Although this pioneering
study pragmatically supports the notion that drug discovery
may benet from structures solved at RT, a systematic study
linking the effects of temperature on protein structures to drug
discovery is still missing.

To systematically probe the bias of temperature on the utility
of structural data for ligand discovery and computational
methods development, we collected crystallographic data of 9
structure pairs, i.e. the same protein–ligand complex at 2
temperatures. This is the most expansive temperature series to
date that was deliberately assembled for a set of congeneric
ligands. Such similar ligands are typically encountered in
medicinal chemistry campaigns around a hit series. The
matched datasets of similar ligands at 2 temperatures also
enable us to disentangle whether ligand binding or temperature
is the main contributor to the observed protein response.

We chose the uncollapsed cavity created by the L99A muta-
tion in T4 lysozyme (T4L) as a suitable system to investigate the
impact of temperature on protein–ligand structures by using
crystallography and computation for the following reasons:
many related ligands are available, loops and side chains
respond to the binding of different ligands, and crystals diffract
to high resolution. For several decades, T4L–L99A has served as
a workhorse39 for understanding protein stability,40 rigidity and
hydration,41,42 ligand-binding thermodynamics,43,44 and crystal
forms.45 It has also been used to assist membrane protein
crystallization46 and computational methods development.47

Onemight assume that not much novelty is le to be discovered
about a system that has been studied so exhaustively, with more
than 700 T4L structures deposited to the PDB and more than
130 structures for the L99A cavity alone with different ligands
bound. Here, we collect crystallographic data on 9 matched
dataset pairs collected at 2 temperatures (cryo and RT) to high
resolution (<1.5 Å on average). Despite abundant previous
studies, our datasets provided surprising structural insights
into how T4L structure and ligand binding changes with
temperature.

To evaluate the impact of these temperature-induced
changes on the utility of structural information in computa-
tion we focused on two aspects. First, to understand how
temperature bias affects computational methods development
that employs cryogenic structures for calibration and valida-
tion, we compared simulated structures to experimental struc-
tures solved at low and high temperature. Second, to
understand how temperature affects coarse docking and
rigorous binding free energy calculations, we used different low
and high temperature structures as computational starting
points and monitored performance metrics such as docking
enrichment and RMSD, and errors in calculated absolute
binding free energies.

To test the generality of our observations we further
expanded our computational approach to examine another 4
distinct protein classes for which RT and cryo data are already
available in the PDB. Again, temperature-induced structural
changes are common among all proteins and lead to errors in
validating the success of computational models; when using
© 2021 The Author(s). Published by the Royal Society of Chemistry
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only cryo structures, one would miss both failures and
successes of the computational predictions.

This work addresses 3 fundamental issues that arise when
structural models are used for ligand discovery. First, what
impact does temperature have on the conformations and
occupancies of proteins and their ligands? Second, do these
temperature artifacts affect the accuracy and improvement of
computational methods? Third, do temperature artifacts
mislead structure-based drug discovery and design?

Results
Crystal cryocooling induces global idiosyncratic structural
changes

To systematically study the impact of temperature on protein
structure in the presence of similar ligands, we collected pairs
of crystallographic datasets of the same protein–ligand complex
at 2 temperatures (cryo and RT). We obtained 14 new high-
resolution datasets: 9 at RT and 5 at cryo. Combined with 5
cryo PDB-deposited datasets, this yielded a total of 9 matched
pairs of the T4L–L99A cavity: the apo structure and 8 ligand
complexes, 3 of which were previously unknown (3-iodotoluene,
4-iodotoluene, benzylacetate). For chemical structures, see
Fig. 1E. The 9 structure pairs were solved in the same space
group, P3221, to an average resolution of 1.42 Å at cryo and 1.39
Å at RT. Hence, observed structural differences are unlikely due
to differences in the perceived quality of the data. Despite
higher average resolutions of 1.19 Å for the 5 cryo structures
solved here, nal Rfree values of our 9 RTX structures were lower
by 0.8% on average (Table S1†). This suggests a better t of the
model rened against the RTX data than against the cryo data.
As expected, the crystal unit cell (UC) volumes shrank upon
cooling, on average by 4% (Fig. 1A). The o-xylene complex at RT
was closest to its cryo equivalent with a 2% difference; the apo
UC volume was most dissimilar at nearly 6%. For average UC
volumes of 3.50 � 0.04 � 105 Å3 at cryo and 3.65 � 0.02 � 105 Å3

at RT, the standard deviation at cryo was twice as high as at RT.
Contrary to the expectation that thermal mobility increases
diversity at RT48 and despite higher average Wilson B-factors of
16.9 � 1.7 Å2 at RT (n ¼ 9) vs. 13.6 � 2.9 Å2 at cryo (n ¼ 5), the
cryogenic datasets were more variable than the RT datasets.

To locate temperature-induced changes in the electron
density maps, we calculated isomorphous difference maps by
subtracting the apo cryo map from the RTXmap (Fo� Fo). There
were signicant differences in the peaks of both positive and
negative signs across the entire structures, many of which were
near the ligand-binding site (Fig. 1B and S1†). To reveal areas
that were most affected by temperature across all 9 matched
pairs, we mapped any residue that changed its rotameric state
in response to temperature onto the T4L structure (Fig. 1C). To
provide a conservative estimate, we monitored only those resi-
dues that showed a change in the Chi1 angle of their side chain
in the crystallographic electron density maps. Note that Gly, Ala
and Pro that make up �20% of residues in T4L do not have
a Chi1 angle. Overall, more than a third of the 164 residues in
the protein responded to temperature in at least 1 of the 9
structure pairs. This value is similar to the 35% of residues that
© 2021 The Author(s). Published by the Royal Society of Chemistry
were found to be remodeled upon cryocooling across 30
deposited structures (9). Residues affected by changes in
temperature were distributed across the entire structure and
covered all types of amino acids; bulky aromatic residues (e.g.,
Trp, Phe, and His) were underrepresented most likely due to
steric constraints. Notably, the residues that were most
responsive to temperature change in several structures were
located near the ligand-binding site (Fig. 1B and C). This
suggests that residues critical for accommodating ligand
binding are most affected by temperature changes.

To exclude changes in crystal packing as a major source of
observed structural changes, we compared crystal contacts of the
apo structures that showed the largest UC volume shrinkage upon
cryocooling; mostly, the same residues were involved in crystal
contacts at RT and cryo (ESI Fig. S2†). Although we expected more
residues at the crystal-packing interface to be systematically
affected by the UC compression, only a few surface residues
responded to temperature in several datasets (Fig. 1C and S2†). On
average, all pairwise root-mean-square deviations (RMSDs) were
below 0.3 Å. A residue-resolved RMSDplot showed no clear trend of
temperature changes of any structure pair (ESI Fig. S3†). Very few
residues had RMSD values larger than 0.5 Å; the only residue
exceeding 1 Å RMSDwas Thr109 in the binding site adjacent to the
“F-helix”39 of the 3-iodotoluene complex. To understand if areas of
higher positional variability (RMSDs) coincide with higher mobility
(B-factors), we plotted B-factors of the main chain and side chains
for all residues in each structure (ESI Fig. S4†). Main-chain values
were slightly elevated in 4 areas: 2 distal loops, 1 helix patch close to
the binding site, and the ligand-responsive F-helix, especially for
the o-xylene complex solved at cryo (in 1995 43 (ESI Fig. S4A†). Apart
from the F-helix, these regions did not coincide with the “hotspots”
(identied in red in Fig. 1C). Side chain B-factors followed neither
the pattern shown in Fig. 1C nor that in ESI Fig. S4A.† Rather,
longer side chains, like those in Lys, Arg, and Asn, dominated the
peaks in the plot, as expected for exible residues that are oen on
the protein surface and point into solvent (ESI Fig. S4B†). Hence,
neither B-factors nor RMSDs, as proxies for increased movement,
consistently coincided with protein regions where rotamers most
frequently responded to temperature changes. Although global
indicators of temperature sensitivity illustrate the magnitude of
structural differences upon changing data-collection temperature,
we were especially interested in local differences. During drug
discovery, local conformational states of binding pockets are con-
sulted to screen virtual libraries, optimize hits, and design
compounds de novo.
RTX reveals hidden F-helix conformation in apo structure that
is key for ligand binding

To gain insight into local temperature sensitivities, we interro-
gated electron density maps, especially around the ligand-
binding site. Within the T4L–L99A site, ligands were enclosed
by the dynamic F-helix.49 Despite decades of research on the T4L
model system, only 1 state, the closed conformation, has thus
far been observed for the apo structure. However, at RT, the
difference electron density map of our apo dataset showed clear
evidence of a second F-helix conformation (Fig. 1D). The second
Chem. Sci., 2021, 12, 11275–11293 | 11277



Fig. 1 Global and local structural responses to temperature. (A) Globally, structures at cryogenic temperatures (cryo; blue plot) are more variable and
more compact than their room temperature (RT; red plot) equivalents, as shownby average unit cell (UC) volumes across 9matched structures collected
at both temperatures. (B) The isomorphous Fo� Fomap of the apo structure collected at cryo versus RT shows differences in the electron density (green
mesh, positive difference electron density; red mesh, negative difference electron density) that indicate idiosyncratic temperature effects, especially
around the ligand-binding site in the bottom lobe, indicated by the black dotted mesh in panel C (labeled LIG). (C) Occurrence of temperature-
dependent rotamer differences across all 9 structures are projected onto the respective residues in the T4L apo structure; colored by temperature
sensitivity of each residue across all 9 structure pairs: yellow for few structures, orange for several structures, and red for most structures showing
temperature differences of the residue; white patches are Gly and Ala that do not have Chi angles; and grey patches show no rotamer change with
temperature. (D) Locally, RT data of the L99A apocavity reveal an alternative F-helix conformation (conf. B) in the Fo� Fc difference electron densitymaps
(green and redmesh for positive and negative density, respectively; only cyan conformation Awas included in refinement) that is not visible at cryo; 2mFo
�DFcmap shown as bluemesh; stick thickness represents relative occupancy. (E) All 8 ligand complexes show a shift in preferred orientation in response
to temperature rather than due to ligand binding for at least 1 residue rotamer in the F-helix near the ligand-binding site. Ringer plots for selected residues,
with rotamer differences at RT (red) versus cryo (blue) indicated by arrows.

11278 | Chem. Sci., 2021, 12, 11275–11293 © 2021 The Author(s). Published by the Royal Society of Chemistry
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conformation was equivalent to the “intermediate” state that
has been observed in several ligand complexes,49 in agreement
with the selection of preexisting conformational states upon
ligand binding.50–52 Occupancy renement of the apo structure
in the presence of both F-helix states led to approximately 40%
presence of the second conformation. To conrm that this
conformation had not been missed previously, we inspected the
electron density map of cryo apo PDB structure 4W51 but found
no evidence for an alternate F-helix conformation (ESI Fig. S5†).
To further ensure that the second conformation was not
populated due to changes in our experimental setup other than
temperature, we recollected the cryo apo structure to 1.3 Å with
the same conditions we used for RTX. Again, we observed no
difference in the electron density for the second state at cryo,
indicating that indeed temperature allowed this alternate state
to be partially populated at RT. Revealing this alternate
conformation only at RT is striking, given that this alternate
state becomes relevant, even at cryo temperatures, for the
binding of several ligands.47,49,53,54
Cryogenic cooling distorts the local environment of the
ligand-binding site

Beyond revealing a hidden conformation of the entire F-helix,
we sought to understand the temperature impact on indi-
vidual side-chain rotamers that line the binding site. Analysis of
Chi angles in the apo structure using Ringer55 showed
temperature-dependent remodeling of several binding-site
residues normally associated with ligand binding. Only at RT
did an alternate conformation of Ser90 appear, and in the
closed state of the F-helix, residues Met106, Glu108, Thr109,
and Thr115 occupied new rotameric positions (ESI Fig. S6†).
Nearly all residues of the F-helix with Chi angles were affected to
some degree.

To look for temperature-induced rotamer changes in the
presence of a ligand, we next turned to our 8 pairs of individual
ligand complexes. All structures were affected by idiosyncratic
structural remodeling upon cooling, especially in the exible
ligand-binding site (Fig. 1C). First, in each structure, at least 1
binding-site residue responded to temperature change in
addition to ligand binding (Fig. 1E). Second, across all 8
structure pairs, each F-helix residue changed idiosyncratically
upon cooling in at least 1 ligand complex. The extent of
temperature-induced artifacts was alarming, given that most
studies use only cryogenic data. In the context of a typical
medicinal chemistry campaign, idiosyncratic structural
changes introduced by cryocooling would be mistaken for
genuine responses to ligand binding and unequivocally
considered in ligand design instead of being agged as arti-
facts. The fact that highly similar ligand complexes were
affected to different degrees complicated the derivation of
structure/activity relationships. For instance, at cryo, Met106
appeared to change orientation when o-xylene bound, relative to
the propylbenzene-bound structure (Fig. 1E). However, the
major RT conformation of Met106 was absent in the respective
cryo dataset, both for o-xylene and propylbenzene. Ironically,
the main RT rotamer of o-xylene matched the cryo rotamer of
© 2021 The Author(s). Published by the Royal Society of Chemistry
propylbenzene and vice versa. Of the 2 Met106 conformations
visible for propylbenzene, only the minor one was captured at
cryo. Similar temperature sensitivities were observed for Glu108
in 3-iodotoluene, Thr109 in ethylbenzene, and Thr115 in ben-
zylacetate, to name a few. We paid especially close attention to
the changes in Val111 due to the importance of this residue in
complicating ligand-binding predictions.47,56,57 Ringer plots
documented temperature differences of Val111 for about half of
our complexes, including toluene, iodobenzene, o-xylene, eth-
ylbenzene, and benzylacetate (ESI Fig. S7†). For instance, Val111
in the iodobenzene and o-xylene structures occupied different
conformations at cryo, whereas the RTX conformations were
identical (ESI Fig. S7†).

To illustrate the problems of using cryo data alone for
medicinal chemistry, we focused on 2 neighboring F-helix
residues (Glu108 and Thr109) across 3 structures—apo and 2
ligands (toluene and iodobenzene) (Fig. 2A)—that by Tanimoto
coefficient standards would be considered essentially identical
(Table S2†). In the apo structure, the rotamers for Glu108 and
Thr109 changed upon cryocooling. The main rotamer of Thr109
at RT was the one that stabilized when ligands like toluene or
iodobenzene were bound. At RT, the Chi1 distribution of
Thr109 agreed across the 3 structures (apo, toluene, and iodo-
benzene), whereas at cryo, it did not. Also, while the preferred
Thr109 rotamers matched between RT and cryo in the iodo-
benzene structure, they differed between the 2 temperatures in
the presence of the congeneric ligand toluene and in the
absence of a ligand. At both temperatures, the rotamer distri-
bution wasmore similar between toluene and apo than between
toluene and iodobenzene. Glu108 rotamers agreed for toluene
and iodobenzene at both temperatures, but they shied with
temperature in the apo structure. Hence, a difference was seen
in the preferred Glu108 rotamer upon binding toluene versus
iodobenzene at either temperature, whereas the apo structure
responded both to ligand binding and temperature. This makes
it impossible to deduce from cryo data alone whether residues
respond to ligand binding rather than temperature, even for
related ligands or neighboring residues. Thus, RT data can help
distinguish genuine protein conformational responses to
ligand binding from temperature artifacts.
Cryogenic cooling changes ligand-binding poses and
occupancies

To fathom the impact of temperature on ligand binding, we
looked for temperature-induced changes in ligand poses and
occupancies. During this project, we collected hundreds of
datasets to optimize ligand occupancy. In general, ligand
occupancies were lower at RT under similar soaking conditions.
This observation agreed with more favorable thermodynamics
of ligand binding at lower temperatures, which we previously
derived.27 Nonetheless, we observed new ligand-binding poses
at RT that were not reported previously. For instance, toluene is
modeled as a single conformer in the cryogenic PDB structure
4W53.49 At RT, we noted the presence of signicant difference
electron density, indicating a second ligand conformation
(Fig. 2B). An unbiased Polder-OMIT map conrmed the
Chem. Sci., 2021, 12, 11275–11293 | 11279



Fig. 2 Temperature sensitivity of binding congeneric ligands. (A) Ringer plots compare rotamers for 2 proximal F-helix residues, Glu108 and
Thr109, across 3 congeneric structures (apo, bound to toluene, and bound to iodobenzene) in response to temperature (cryo in blue, RT in red).
Arrows indicate temperature-sensitive rotamers, and tildes indicate nomajor rotamer change. (B) Toluene's alternative ligand conformation at RT
is indicated by the presence of green Fo � Fc difference density when only the major conformer is included in refinement and confirmed by an
unbiased Polder OMIT map that excludes all ligands (here superimposed onto the map for clarity). (C) o-Xylene experiences a 0.41 Å RMSD shift
upon changing temperature, while the overall protein structure differs by only 0.2 Å.

Chemical Science Edge Article
presence of a second toluene conformation that is rotated by
60�, which is equivalent to the ortho position. When included in
renement, the second conformer converged to 37% occupancy
(Fig. 2B), supported by electron density below the conventional
1 sigma cutoff. The co-existence of a second toluene conformer
is consistent with the observed binding mode for other ligands,
such as o-xylene (Fig. 2C). The o-xylene-binding mode placed
methyl groups simultaneously into both positions occupied by
the 2 binding modes of toluene (Fig. 2B). A protein-based
superposition of the cryo versus RT o-xylene structures showed
that the ligand was rotated by as much as 30�, leading to
a ligand RMSD of 0.41 Å; the protein RMSD was only 0.21 Å.
Given that the o-xylene cryo structure accommodated both
methyl groups, we redetermined the cryo structure of toluene to
atomic resolution of 1.1 Å. Indeed, we also found the second
conformation of toluene in the cryo Fo � Fc maps (ESI Fig. S8†),
11280 | Chem. Sci., 2021, 12, 11275–11293
where it rened to 43% occupancy. While the major conformer
observed in the deposited structure 4W53 agrees closely, the
RMSD of the minor conformer in our new cryo versus our RTX
structure was 0.22 Å. Even in cases that showed no or insuffi-
cient electron density to model the ligand, RTX data helped
increase condence in cross-modeling minor states explicitly.58

Next, we compared ligand occupancies of the iodobenzene
complex, as it showed 2 ligand conformations at RT and cryo, and
the high map peaks of the electron-rich iodine increased our
condence in determining occupancies. Automatic occupancy
renement revealed substantial temperature differences (Fig. S9†);
relative occupancies changed from 50 : 49 for conformers A : B in
the deposited cryo structure 3dn4 (ref. 59) to 32 : 19 at RT. The shi
in ratio from roughly 1 : 1 to almost 2 : 1 corresponds to a shi in
relative free binding energy DDGA,B from 0.01 kcal mol�1 to
0.31 kcal mol�1. Together, RMSD and occupancy differences
© 2021 The Author(s). Published by the Royal Society of Chemistry
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indicated that temperature induces nonsystematic structural
changes that affect ligand binding. Alarmingly, the residues that
enable and respond to ligand binding appeared to be the ones
most affected by cryocooling artifacts. To understand how detri-
mental such temperature effects are on structure-based ligand
discovery, we next examined the impact of such differences on
computational predictions of ligand binding. First, we compared
experimental protein conformations to simulated ones. Then we
compared their performance in ligand docking and free energy
calculations.
Cryogenic structures mislead the validation of computational
methods

We rst set out to address the following question: are appar-
ently wrong simulations really wrong? Because �95% of all
structures have been collected under cryogenic conditions,23

our results raise the concern that cooling artifacts may misin-
form computational methods development. Success or failure
of computational predictions is typically validated against cryo
structures, which in turn, inform methods development. To
determine whether the current gold standard of validating
against cryo structures misleads computational analyses and
method development, we compared structures from molecular
dynamics (MD) simulations to the matched RT/cryo tempera-
ture pairs of our 9 T4L–ligand and apo structures.

To reveal differences between computational and experi-
mental data, we developed an analysis tool that facilitates
comparing Ringer plots to MD populations, which we call
“Cringer” (available on GitHub, seeMethods for details). Briey,
we used Cringer to plot the side-chain rotameric states and the
respective frequencies for each residue visited during our MD
trajectories using a Gaussian kernel-density estimation (Fig. 3).
For simplicity, we focused only on residues that differed with
temperature. Results t into 4 categories: true positives, true
negatives, false positives, and false negatives (Fig. 3). Speci-
cally, a true positive is when computation and experiment
agree, and a true negative is when they disagree. When
comparing computational results to experimental results, it is
typically assumed that the experiment is accurate and thus all
comparisons of computational to experimental results lead to
true positives and true negatives, which can be used to assess
computational performance. Furthermore, it is typically
assumed that all observed structural changes are responses to
ligand binding. In reality, however, experimental biases due to
temperature effects may lead to false positives and false nega-
tives, which would invalidate this assumption and make it
impossible to distinguish real computational success from
failure if only cryo data were available.

Here we focus on 2 categories, false positives and false
negatives, which mislead computational methods develop-
ment. Using Cringer, we found numerous examples in both
categories across the protein and in the binding site (ESI
Fig. S10 and S11†). For false positives, computational data
agreed with cryo data but disagreed with RTX data, meaning
that agreement of simulation with cryo was present but arti-
factual. For instance, MD simulations match the major Met106
© 2021 The Author(s). Published by the Royal Society of Chemistry
rotamer of the o-xylene-bound structure at cryo, but it differed
from the rotamer at RT (Fig. 3). Although unsuccessful in
recapitulating the RT distribution of this F-helix residue, the
cryo comparison would ag this prediction as a success, which
would be a false positive. The false-negative category contains
cases in which MD simulations disagreed with cryo data but
agreed with RTX data. In other words, false negatives are
successful cases for RTX and MD that are mistakenly agged as
failures in comparison to cryo. This is exemplied by the
simulated Asp72 rotamer distribution in the benzylacetate
complex, which captured both the major and minor rotamers at
RT but only the minor conformation at cryo (Fig. 3).

Overall, none of our 9 temperature pairs were spared from
misleading comparisons. Cringer detected25 false positives and
false negatives across all ligand complexes and apo that would
misinform methods calibration and validation if only cryo
structures were used (ESI Fig. S10 and S11†).

Furthermore, to test the dependence of sampling relevant
conformations on the input structure, we started simulations
from 3 F-helix states—“closed”, “intermediate”, and “open”49

(ESI Fig. S15, S16 and S42–S44†). As expected for sufficiently
converged simulations, differences in Cringer plots were mostly
negligible, with a high agreement in themajor conformation (ESI
Fig. S15†). In some cases, changing the input structure revealed
minor rotamers (ESI Fig. S16†). Although sampling minor, high-
energy conformers was encouraging, we did not count these as
successes; instead, we focused on correctly sampling the major
conformation. In some cases, simulations that started from
different input structures accessed rare higher-energy
conformers otherwise seen only at RT, probably because some
starting structures are more prone to trapping than others. For
instance, Val111 is known to cause problems in computational
sampling by getting “stuck” in local energy minima.56

In the 4-iodotoluene complex, Val111 populated the major
conformation present in both RT and cryo data (i.e., a true
positive) when the sampling was started from the closed F-helix
state to which the ligand preferentially binds. This conforma-
tion faded when the intermediate structure was the starting
point and was not sampled at all when the open structure was
the starting point (ESI Fig. S12†), indicating that high-energy
barriers separating these conformations require extended MD
sampling. Use of enhanced sampling methods like BLUES60,61

can help accelerate crossings of such energy barriers and
sample rotamer transitions. We used BLUES to enhance the
side chain sampling of Val 111 in the L99A:iodobenzene
complex and apo L99A (ESI Fig. S17,† panel D). Our results
showed sampling of rotamer transitions for Val 111 in
L99A:iodobenzene. Also, we used BLUES to enhance the
binding mode sampling of iodobenzene, ethylbenzene, pro-
pylbenzene, butylbenzene, benzylacetate, o-xylene, and p-xylene
and found that the dominant binding mode of each BLUES
simulations reected the corresponding crystallographic
binding mode (ESI Fig. S30–S36†).

Differences in sampling put the focus on another ingredient
of computational success besides the input structure: force
elds (FFs). Notably, protein FF parameters are optimized to t
quantum chemistry data but then are improved and validated
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Fig. 3 Cryo artifacts misinform computational method validation. Computational Cringer plots derive histograms of rotamer populations of
each residue, plotted as a frequency across residual dihedral angles iterated over all frames of anMD simulation. Cringer plots enable comparison
to experimental Ringer plots to identify true positives (MD rotamers agree with both RT and cryo), true negatives (MD disagrees with both RT and
cryo, which may agree or not), false positives (MD agrees with cryo, both differ from RT) and false negatives (MD agrees with RT, both differ from
cryo). Shown here are selected examples of all 4 categories; more examples of false negatives and false positives are provided in the ESI (Fig. S10
and S11†).
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based on cryogenic structural information. Thus, protein FF
parameters are most likely biased by temperature effects. To
gauge the impact of the FF on conformational sampling, we
compared our primary FF, AMBER ff14SB,62 by testing 2 other
AMBER FFs, ff15ipg63 and Force Balance-15 (FB-15).64 The
ff14SB FF is widely used in all-atom simulations of protein–
ligand complexes in water. The parameters of ff15ipq differ
from those of ff14SB; the ff15ipq FF was developed with a self-
consistent physical model and rebuilds charges, angles,
torsions, and some van der Waals parameters for proteins. The
FB-15 FF was developed by retting the intramolecular bond,
angle, and dihedral parameters using the same functional from
and parameter set used in the original AMBER FF model (ff94)
and its subsequent iterations (ff99sb, ff14SB, etc.).

As part of this test of FFs, we compared Cringer plots cor-
responding to the residues in and near the binding cavity,
which were obtained during the simulations on apo L99A using
ff14SB, ff15ipq, and FB-15. Overall, this comparison showed
that the 3 FFs captured the same rotamers in almost all cases,
but the population of these rotamers (and their relative free
energy by extension) depended on the FF (ESI Fig. S37–S40†).
Interestingly, our computational results showed that ff14SB
captured the correct dominant rotamer population observed in
cryo and RTX structures in some cases where ff15SB and FB-15
failed to do so (ESI Fig. S13 and S14†). In turn, the apparent
sensitivity to similar FFs raises the possibility that if cryo
structures are used for FF validation, FFs might be tuned
incorrectly to reproduce differences in cryo structures. At this
point, we can only speculate what impact using curated RTX
data will have on improving FFs. However, in our simulations
subtle differences in the FFs inuenced rotamer populations
11282 | Chem. Sci., 2021, 12, 11275–11293
enough to alter agreement with experimental data, suggesting
that such data may be useful for FF validation and improve-
ment, especially if it becomes more commonly available.
Temperature-induced structural differences affect docking
performance

The choice of structural input affects the quality of computa-
tional predictions. To understand the impact of temperature-
induced structural differences on computation, we looked at 2
types of methods: rapid, coarse docking methods that are used
to prioritize virtual compounds, and slow, rigorous free energy
of binding calculations that are used to obtain affinity
estimates.

To gauge the impact of temperature artifacts on docking
performance, we used OEdock65 to dock 63 experimentally
conrmed T4L–L99A binders [https://github.com/MobleyLab/
lysozyme_binding, from the work of ref. 66], 35 ZINC
compounds described as binders,67 and 3152 property-matched
DUD-E “decoys”68 (i.e., assumed nonbinders) into different
protein structures. We compared the performance of docking to
the apo structures at cryo (closed F-helix) and at RT (closed and
intermediate F-helix) and to their equilibrated state aer a 50 ns
MD simulation. To evaluate performance, we looked at 2
metrics that do not necessarily show the same trends:27

enrichment and pose delity. Enrichment measures our ability
to pick binders from a large library of molecules. The enrich-
ment plots of all 6 input structures showed improved perfor-
mance over randomly selected molecules (Fig. 4). The
equilibrated RTX apo structure in the closed state outperformed
all other input structures by using the area-under-the-curve
(AUC) and adjusted logAUC metrics (Fig. 4 and ESI Fig. S19†).
© 2021 The Author(s). Published by the Royal Society of Chemistry
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The experimental closed structures at cryo and RT showed
similar logAUC/AUC values, and the intermediate RT structure
performed worse in the unequilibrated batch. Adding a step of
MD-equilibration improved only the closed state at RT, whereas
AUC performance declined by 5% for the other 2 states. The
improved logAUC performance of the closed RTX structures,
both experimental and equilibrated, emphasized the ability to
enrich binders among top-ranked molecules, which are typi-
cally the ones prioritized in large docking campaigns. We also
examined how well docking scores were correlated across
different potentially selected reference structures and found
that scores were correlated fairly well across all possible choices
(ESI Fig. S18†).

With several cryo L99A–ligand structures available, we were
able to assess pose delity by calculating the RMSDs of pre-
dicted ligand poses and comparing those values to the RMSDs
of 22 deposited PDB structures (ESI Table S3A†). Comparing the
best-ranking docked ligand poses to those observed in the
experimental crystal structures, we found that the input
Fig. 4 Temperature-induced structural differences affect docking per
enrichment plots from docking 98 known T4L–L99A binders against 315
Vina and input structures with a closed and intermediate F-helix conf
simulations. (C and D) Docking poses of 2-ethoxyphenol (colored sticks)
structures (as in A–B) are compared to PDB structure 2RB1 with RMSDs

© 2021 The Author(s). Published by the Royal Society of Chemistry
structure inuenced docking performance, though the effect
was highly context-dependent. Typically, several structures
generate reasonable RMSDs, but well-performing structures
may differ across ligands. There are 2 examples where 1 struc-
ture performed much better than the rest. In both cases, the
equilibrated closed RTX structure had the best AUC perfor-
mance. For instance, although the equilibrated closed RTX
structure docked 2-ethoxyphenol with an RMSD of 0.7 Å, all
other structures struggled to recapitulate this pose and had
RMSDs exceeding 2.1 Å, particularly with considerable
misplacement of the key phenol OH-group (Fig. 4C). The
structure also found the best alternative ligand pose of iodo-
benzene in what was otherwise the worst ligand in the set, in
terms of pose prediction quality (all other RMSDs exceeded 3.6
Å). Nonetheless, this structure produced the 2 worst RMSDs
overall for 4-methylthionitrobenzene and 3-methylbenzylazide.
MD equilibration compromised the docking performance of
propylbenzene, compared to the respective experimental
structure. For p-xylene, the situation was reversed, i.e., all
formance. (A) AUC (shown as fractions) and (B) adjusted logAUC (%)
2 property-matched DUD-E decoys using (A) OEdock or (B) Autodock
ormation; equilibrated structures were generated after 50 ns of MD
docked against (C) experimental and (D) equilibrated cryo and RT apo
indicated.
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equilibrated structures generated ligand poses closer to the
experimental reference (ESI Table S3A†). For benzene, the
experimental cryo structure performed best before equilibration
and worst thereaer. Overall, this dependence of docking
results on the choice of structure is not surprising, given that
the protein is held rigid while docking. Therefore, the chosen
structure partially dictates the outcomes. This is a known
limitation of docking methods and the motivation for devel-
oping methods like exible docking or ensemble docking.

In practice, this context-dependence complicates the choice
of input structure, especially when a wide variety of chemotypes
are being docked that prefer distinct conformational states.
However, disentangling RMSD performance based on ligand
preference for F-helix conformations helps gain some clarity. Of
the 22 structures, 10 ligands stabilized the intermediate F-helix
state, 10 bound to the closed state, and 2 bound to the open
state. This helps explain why pentyl- and hexyl-benzene rank in
the bottom 3 overall: they cannot be properly accommodated
because they prefer the open state. Overall, structures that
achieved the most cases of lowest RMSDs per ligand were the
experimental closed cryo structure, the equilibrated interme-
diate RTX structure, followed by the experimental intermediate
RTX state, which was revealed in the RTX apo structure, and the
equilibrated closed RTX structure; the equilibrated cryo struc-
ture placed last overall. As exemplied above, comparing
predictions to cryo structures may compromise RMSD evalua-
tions when temperature artifacts hide or shi ligand confor-
mations (Fig. 2B). For instance, pose RMSDs of o-xylene docked
into cryo or RT structures improved by as much as 0.4 Å (average
increase, 0.2 Å), when compared to RTX experimental poses (ESI
Table S3B†).

To account for differences between docking algorithms, we
repeated the docking experiment using Autodock Vina.
Changing the docking algorithm had some notable effects on
the 2 performance metrics. For instance, while the equilibrated
closed structure at RT performed best, as it did for OEdock by
AUC, it surprisingly ranked last, in terms of early enrichment
(logAUC) (ESI Fig. S20†). This result stresses the impact of the
choice of metric and ultimately the selection of structures for
docking. Note also how different curves can lead to the same
AUC values (Fig. 4B). Although we observed trends similar to
those we saw with OEdock, overall, the experimental closed and
intermediate RT structures ranked second by logAUC and AUC
analysis, respectively (Fig. 4B and ESI Fig. S20†). Overall, RMSD
trends for Autodock (ESI Tables S4 and S5†) were similar to
those for OEdock (ESI Table S3†), in terms of which structures
produced the best RMSDs. Across all combinations of ligands
and structures, both methods achieved RMSD values less than 2
Å for more than half of all docked ligands (59% for OEdock and
66% for Autodock), which is usually considered a successful
pose prediction.69 One notable difference was the pose delity
using harsher RMSD criteria: Autodock achieved 3-fold better
pose delity than OEdock: 36% and 8% of all docking poses
achieved RMSDs below 1 Å and 0.5 Å, respectively, versus 12%
and 3% for OEdock. However, given the results of prior studies,
these performance differences may be target specic. Although
overall similar trends emerged when using OEdock versus
11284 | Chem. Sci., 2021, 12, 11275–11293
Autodock Vina, detailed analysis of dockingmetrics highlighted
the choice of docking soware as another considerable variable
for drug discovery.
Absolute free energy of binding predictions improve with RTX
data

To understand how susceptible rigorous calculations of abso-
lute free energy of binding are to changes in temperature during
crystal data collection, we compared calculated free energies of
binding (DGcalc) to experimental free energies of binding (DGexp)
for 7 ligands (Table 1).43,59 Using the cryo structures as a starting
point to predict DGcalc,cryo, we used state-of-the-art calculations
in explicit solvent with 20 ns per thermodynamic state using
a thermodynamic cycle of 29 states. Overall, the calculations
appeared sufficiently converged (ESI Fig. S21–S25†) and showed
uncertainties (dcalc) that were comparable to their experimental
equivalents (Table 1). The median difference between the pre-
dicted DGcalc and DGexp (DDG) was 0.95 kcal mol�1, with the
best prediction for ethylbenzene having a DDG of
0.33 kcal mol�1. For 3 complexes (toluene, iodobenzene, and o-
xylene), the difference between DGcalc,cryo and DGexp exceeded
1 kcal mol�1 (Table 1). To assess whether RTX data can rescue
the suboptimal results of these 3 complexes, we repeated the
calculations using our new RTX structures in complex with their
respective ligands instead of the cryogenic input structures
(Table 1 and Fig. S23–S25†). Using the RTX data improved the
calculations, on average, by 0.34 kcal mol�1. Although we
consider the improvement for toluene negligible, that for o-
xylene was 0.65 kcal mol�1 closer to the experimental value, just
by changing the temperature during experimental data collec-
tion of otherwise identical structures. To put these values into
perspective, the temperature-induced error of predicting o-
xylene binding was larger than the computational error of pre-
dicting the binding of p-xylene and ethylbenzene.

Finally, we explored whether our new apo RTX structure
would shake off both the temperature and ligand bias imprin-
ted on cryogenic holo protein structures. We found that the
simulation trajectories uctuated much less, and convergence
was achieved much earlier across our 3 most problematic cases
(toluene, iodobenzene and o-xylene) (Table 1, ESI Fig. S23–
S25†). This result suggested that the apo RTX structure is
a better starting point for absolute binding free energy calcu-
lations that sample both the unbound and bound states.
Reaching convergence in one-tenth the time in the absence of
a ligand (�2 ns vs. �20 ns) saves valuable computational
resources. In addition, if this structure proves superior in
general, generating only 1 apo RTX structure instead of multiple
ligand-bound structures would ease both RTX data collection
and computational setup. Using the apo structure at RT as
a starting point for all 3 ligands further improved the agreement
with experimental data, on average by 0.64 kcal mol�1. In the
best-case scenario for o-xylene, we saw an improvement of
1.65 kcal mol�1 using the RT structure versus the cryo structure
(Table 1); this value corresponds to a change in KD by more than
1 order of magnitude. Notably, the improvement was better
than the average difference of our 3 most challenging cases
© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 1 Experimental and calculated binding affinities of L99A complexes. Absolute binding free energies (DGcalc) were computed in explicit
solvent after 20 ns per thermodynamic state using a thermodynamic cycle of 29 states. The DGcalc values and their respective uncertainties (dcalc)
were estimated through the Multistate Bennett Acceptance Ratio implemented in PyMBAR.98 The experimental affinities (DGexp) of toluene, p-
xylene, o-xylene, ethylbenzene, propylbenzene, and n-butylbenzene and their respective errors (dexp) have been reported by Morton et al.,43 and
those of iodobenzene were published by Liu et al.59 Across all cryo structures, the average error (DDG) is 1.077 kcal mol�1, and the median is
0.95 kcal mol�1. For the 3 most problematic cases (toluene, o-xylene, iodobenzene), the average and median values from the cryo complex are
1.64 kcal mol�1 and 1.44 kcal mol�1, for the RT protein–ligand complex (holo) are 1.3 kcal mol�1 and 1.36 kcal mol�1, and for the RT apo are
1.00 kcal mol�1 and 1.18 kcal mol�1, respectively

Ligand Protein Temp. DGcalc (kcal mol�1) dcalc (kcal mol�1) DGexp (kcal mol�1) dexp (kcal mol�1)
DDG
(exp.–calc.) (kcal mol�1)

p-Xylene Holo Cryo �4.13 0.03 �4.67 0.06 �0.54
Ethylbenzene Holo Cryo �5.43 0.03 �5.76 0.07 �0.33
Propylbenzene Holo Cryo �5.60 0.04 �6.55 0.02 �0.95
n-Butylbenzene Holo Cryo �5.90 0.05 �6.70 0.02 �0.8
3-Iodotoluene Holo Cryo �5.56 0.04 n.a. n.a. n.a.
4-Iodotoluene Holo Cryo �5.81 0.04 n.a. n.a. n.a.
Benzylacetate Holo Cryo �3.63 0.05 n.a. n.a. n.a.
Toluene Holo Cryo �4.1 0.03 �5.52 0.04 �1.42
Toluene Holo RT �4.16 0.03 �5.52 0.04 �1.36
Toluene Apo RT �4.34 0.03 �5.52 0.04 �1.18
o-Xylene Holo Cryo �2.54 0.04 �4.6 0.06 �2.06
o-Xylene Holo RT �3.19 0.04 �4.6 0.06 �1.41
o-Xylene Apo RT �4.18 0.05 �4.6 0.06 �0.42
Iodobenzene Holo Cryo �4.51 0.04 �5.95 n.a. �1.44
Iodobenzene Holo RT �4.82 0.03 �5.95 n.a. �1.13
Iodobenzene Apo RT �4.54 0.03 �5.95 n.a. �1.41
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from the experimental values, which makes the DGcalc,RT,apo of
o-xylene the second-best prediction overall. Although RTX data
consistently improved the prediction of our 3 most problematic
cases with DDGcalc > 1 kcal mol�1, overall the calculated abso-
lute free energies of binding consistently provided less favor-
able free energies than did those determined by isothermal
titration calorimetry (ITC).
Temperature artifacts affect computational methods across
protein classes

To investigate whether our observations were limited to T4L, we
extended our analysis to 4 other protein classes: an oxidore-
ductase model system (Cytochrome C Peroxidase – gateless
mutant), a protease (Thrombin), a phosphatase (Protein Tyro-
sine Phosphatase 1B), and a sugar-binding protein (Galectin)
for all of which high-resolution RT-cryo pairs are available in the
PDB.

Comparison of Ringer–Cringer plots conrms that false
positives (FP) and false negatives (FN), which mislead compu-
tational methods development, are present in all 4 protein
systems. Again, FP and FN are not limited to certain regions of
each protein but are distributed throughout; none of the 4
binding sites were spared from misleading comparisons (Fig. 5
and S45†). While generally MD simulations starting from RT vs.
cryo structures agreed, there are several examples where both
produce different results. For instance, while simulations
starting from cryo structures would fail for Asn222 in Galectin
and Asn193 in CCP, using the RT structure recapitulates the
experimental results (Fig. 5). Overall, we see a higher proportion
of missed failures (FP) over missed successes (FN). The
combined percentage of failures (FP + FN) ranges from 4% for
© 2021 The Author(s). Published by the Royal Society of Chemistry
CCP and galectin, to 12% for PTP1B and 18% for thrombin
(Table S5†). Consequently, high FP rates of up to 12% (for
thrombin) indicate that disagreement with experimental data
oen goes unnoticed when using only cryo structures. Likewise,
many successful predictions (up to 6% across our protein
systems) are discarded as failures.

To test the impact of those temperature induced binding site
differences on docking, we docked known ligands and DUDE
decoys against unequilibrated (PDB) vs. equilibrated (MD) at
either cryo or RT. Our prior work had already established the
impact of crystallographic temperature on docking perfor-
mance for CCP.27 Temperature differences are also born out in
differences in docking performance for thrombin and PTP1B.
While all input structures showed improved performance over
randomly selected molecules, results vary with input structure
as expected (Fig. S46 and S47†). With an adjusted logAUC value
of 28.5 (where 0 is random), the equilibrated RTX thrombin apo
structure outperforms all other input structures (Fig. S46A†) by
a signicant margin of at least 9% compared to unequilibrated
cryo and up to 20% for unequilibrated RTX. Notably, equili-
brating the cryo structure lowers AUC performance by 3%
compared to the experimental cryo structure. In contrast, the
equilibrated cryo structure performs best for PTP1B, where all
other structures perform similarly poorly (Fig. S47†).

In our analysis of relative binding free energy results (Tables
S6 and S7†), we observe several important issues. First, if we
focus on the subset of binding free energy calculations which
had smaller errors relative to the originally reported data70

(perturbation 1–3 in Tables S6 and S7†), we nd that our results
have relatively little dependence on the choice of starting
protein structure. For thrombin, the errors for these perturba-
tions are 0.61 � 0.21 kcal mol�1 for RT structures and 0.40 �
Chem. Sci., 2021, 12, 11275–11293 | 11285



Fig. 5 Temperature artifacts mislead computational validation across protein classes. Ringer–Cringer comparisons reveal hidden differences
between experimental data collected at RT (red) or cryo and computational predictions. Several binding site residues are highlighted as false
negative (FN), true negatives (TN) and false positives (FP) across four protein systems cytochrome C peroxidase (A), thrombin (B), protein tyrosine
phosphatase 1B (C), galectin (D). Respective 2Fo � Fc electron density maps are shown at 1 sigma. See Fig. S45† for more examples.
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0.07 kcal mol�1 for cryo structures. For PTP1B, the errors are
0.60 � 0.16 kcal mol�1 for RT structures and 0.41 �
0.06 kcal mol�1 for cryo structures. These differences are not
statistically signicant. However, for those perturbations with
relatively larger errors relative to the original experiments
(perturbation 4–9 in Tables S6 and S7†), above 1 kcal mol�1, we
nd that the dependence on the choice of starting structure is
larger. Computed relative binding free energies vary by up to
1 kcal mol�1 for thrombin and 4.6 kcal mol�1 for
PTP1B kcal mol�1 depending on the choice of starting structure.
This effect is hidden when considering that the average differ-
ences of those perturbations appear similar at 0.41 �
0.16 kcal mol�1 and 0.49 � 0.27 kcal mol�1 for RT and cryo
structures of thrombin, and 2.23 � 1.23 kcal mol�1 and 2.20 �
1.44 for RT and cryo structures of PTP1B, respectively.

This tells us that, rst, poorly predicted relative binding free
energies are partly due to poor sampling and convergence of
protein motions and, second, these slow protein motions are
related to those observed in the differences between RT and cryo
structures. For these targets, while we do not observe that RT or
cryo structures result in dramatically better predictive
11286 | Chem. Sci., 2021, 12, 11275–11293
performance, this analysis indicates that the differences
between these structures are important for binding and that if
we neglect the relevant protein motions this will mislead any
comparison with experiment. For example, a comparison only
with results from cryo structures would yield the conclusion
that perturbations 2,3,4,6,8 of thrombin are treated accurately
by the force eld and model, whereas a comparison with only
RT structures would indicate that perturbations 1,5,6,8,9 are
treated accurately (Tables S6 and S7;† using a cutoff of
0.5 kcal mol�1); these issues would confound validation of the
computational approach. It is also interesting to note that, here,
several perturbations which showed relatively large errors in the
original work70 had signicantly lower error here, despite use of
the cryo structure in both cases and an otherwise similar
protocol—further suggesting slow protein motions and
sampling problems. In summary, we nd that differences
between RT and cryo structures correspond to slow protein
motions which can adversely impact the convergence and
accuracy of relative binding free energy calculations, and these
differences are particularly common for transformations which
had high errors initially.
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Discussion

Current rational ligand discovery operates under the assump-
tion that a representative conformational ensemble is trapped
upon cryocooling, which enables ligand-binding predictions
and validation. However, we and others have shown that RTX, at
synchrotron and free electron laser sources, provides novel
insights into hidden conformational states of functional
importance that may be missed otherwise. Here we have
examined the extent to which these assumptions hold true in
the widely used T4L–L99A model binding site as well as 4 other
protein classes. The T4L system has been studied exhaustively
for decades, with hundreds of PDB structures available. Still,
our RTX provides novel insights that could not be gained
otherwise. Our systematic study raises concerns that tempera-
ture artifacts in cryo structures compromise computational
structure-based drug design by interfering with calibration,
validation, and application of these methods to discover
bioactive molecules. Three important implications for
structure-based ligand discovery emerge. First, temperature
artifacts compromise our global and local understanding of
protein–ligand structures. Second, validating against cooled
structures misinforms the development of computational
methods. Third, cryo artifacts affect the docking performance
and free energy of binding calculations.

Cryogenic structures are less homogeneous than those
collected at RT, though an increase in thermal mobility with
temperature would suggest otherwise.25,29 Pairwise comparisons
of electron density maps revealed temperature-induced
conformational changes across the entire protein structure
not just at compacted crystal-packing interfaces. For ligand
discovery, ligand-binding sites appear most sensitive to cryo-
genic cooling practices. By nature's design, binding-site
malleability enables proteins to accommodate diverse ligands
and tailor their conformational response to changes in the
environment, such as pH, pressure, mutation and temperature.
In turn, changing these variables, intentional or not, enables
one to probe the protein's conformational landscape. Matthews
et al. reported that T4L mutations are accommodated mainly by
backbone shis and rarely by rotamer changes;39 however, we
observed wide-spread rotamer differences when we changed the
temperature. Protein motions span a wide range of timescales,
from millisecond motions of large domains, to nanosecond
rotamer changes, and picosecond water dynamics. These
timescales do not align with the rate of cooling. In addition,
high variability originates from experimental inconsistencies,
such as plunging speed through changing LN2 gas layers when
cooling crystals of different sizes. This leads to the trapping of
a nonequilibrated mix of conformational states at cryo that
complicates the analysis and use of these structures. Analo-
gously, in computation we would not expect to obtain milli-
second domain motions from a microsecond MD simulation,
nor would we expect a simulation started from an unfolded or
misfolded protein to rapidly reveal the true folded state if the
simulation timescale is far less than the folding time. Indeed,
RTX data showed that idiosyncratic changes due to temperature
© 2021 The Author(s). Published by the Royal Society of Chemistry
are common. In fact, none of the binding sites of our 8 ligand
structure pairs were spared temperature-induced rotamer
changes. We saw differences in Val111 for more than half of the
ligand complexes. This residue causes problems in computa-
tion due to high-energy barriers that prevent it from reorienting
on simulation timescales. The increase in temperature
appeared to lower such energy barriers and enable the residue
to populate the high-energy, rare states in the crystallographic
experiment. RTX may help overcome kinetic trapping and MD
dependence on starting conformation. Different conformations
of neighboring residues binding to nearly identical ligands
could be mistaken for genuine responses to ligand binding if
cryo structures were used alone, as is common in drug
discovery.

Given these observations, we recommend caution when
interpreting cryo structural data on ligand binding. In the best-
case scenario, cryo structures may provide drug design guid-
ance, despite their high likelihood of harboring hidden distor-
tions, as seen for some of the docking. In the worst-case
scenario, idiosyncratic temperature effects may result in costly
medicinal chemistry detours misled by erroneous structure/
activity relationships – despite the availability of what appears
to be the gold standard cryo structures at high-resolution. When
only cryo data are examined, there is no telling if the observed
changes are legitimate or artifactual. Also, computational errors
caused by temperature artifacts and algorithmic imperfections
may amplify changes or cancel them out. Again, precision of
atomic resolution does not imply real-life accuracy.

Beyond the protein, ligands also shi positions, change
occupancy, or disappear upon cooling. For instance, the o-
xylene ligand in the RT versus cryo structure had an RMSD of
0.41 Å, whereas the protein RMSD was only 0.2 Å. Although an
RMSD of 0.41 Å would be judged a success for a computational
docking prediction, this is a considerable difference in the
observed binding mode caused by the cooling process alone.
Re-determining the cryo toluene dataset to atomic resolution
supports the idea of using RTX datasets to look for features that
may lie dormant in cryogenic datasets and vice versa.58

It is no secret that the computational search for bioactive
molecules makes crude assumptions. In contrast, experimental
data are oen assumed to be the only reliable “truth” against
which computational results are validated and methods are
improved. While errors associated with experimental methods,
such as ITC, have been acknowledged,71 structural data are still
widely trusted without consulting the primary experimental
evidence—the electron density map. At any temperature, elec-
tron density maps oen hold clues of missing or ctitious
features,72 especially below the conservative 1 sigma
threshold.55 These can be subtle but informative. We intro-
duced our analysis tool, Cringer, to help identify genuine
discrepancies in RT, cryo, and simulated structures; and made
this tool openly accessible to aid computational benchmarking.
Finding many false-positive and/or false-negative results across
every matched temperature pair and across protein classes
suggested that computational aws frequently go unnoticed,
and successes may be discarded. The wide-spread occurrence of
such results also suggests that it is unlikely that any cryo
Chem. Sci., 2021, 12, 11275–11293 | 11287
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structure will be spared from deceptive temperature effects. In
terms of methods development, such experimental aws may
get incorporated into computational methods, at least to the
extent that protein FFs are tuned, in part, to ensure that
proteins are stable in experimental cryo structures.

Given the differences between similar FFs used in this study
(e.g., differences in dominant rotamers inMD simulations as we
varied the protein FF), it may be very interesting in the long
term to use RT structures, including rotamer occupancy data
like that examined here, to help test and improve protein FFs.
Other approaches may likewise be affected, such as integrative
structural biology,73 which aims to combine experiments and
simulation into a useable framework to better understand
biology.18,19 Again, understanding the limitations of nonequi-
librium experimental data and their associated errors is key to
leveraging the synergy of experiments and simulations to their
full potential.

Along these same lines, this work has potential implications
for testing FFs used inmolecular simulations. If our models and
FFs are tested against cryo data, their performance would
appear worse (at least in terms of side-chain rotamer pop-
ulations and ligand binding modes), whereas computational
results would better agree with those from RT. Additionally,
different FFs give different rotamer populations in some cases,
and using cryo structures to evaluate which FF performed best,
would lead to incorrect conclusions. For slow side-chain
motions, adequate rotamer sampling can be achieved, in
some cases, using enhanced sampling methods like BLUES.

Finally, the exquisite temperature sensitivity of the binding
site affects the utility of cryo structures. Consulting artifactual
conformations can mislead ligand discovery, design, and/or
protein evolution. Hence, we expected computational perfor-
mance to follow the “garbage-in/garbage-out” philosophy. Our
ndings show that a “blunt” tool like docking can appear
relatively unaffected by cryogenic imperfections, at least in
terms of overall enrichment. However, RTX and equilibrated
data can provide alternative inputs. For instance, revealing the
hidden intermediate F-helix in the T4L apo structure by RTX
provides opportunities to nd molecules that specically
stabilize alternative high-energy conformational states. Despite
all the convolution, critically considering docking metrics can
provide some guidance. For instance, the equilibrated inter-
mediate RTX structure performed worst by AUC measures but
ranked second by RMSD, an observation consistent with the fact
that most ligands bind to the latter state. Previously, we showed
that using alternative loop states to assign Boltzmann-weighted
energy penalties can improve docking performance.27 A 40%
change in occupancy of the major conformation corresponded
to a Boltzmann energy of the major closed state of around
0.3 kcal mol�1, which is about 2-fold higher than the penalty for
the major loop of cytochrome C peroxidase that reshuffled the
docking ranks and led to the discovery of ligands that would not
have been found otherwise.27 One of the take-aways from
expanding docking to other protein classes is that an RTX
structure, when available or obtainable,23 appears to provide
a more “even-keeled” docking template than a cryo structure.
Interestingly, the best docking improvement was seen for MD-
11288 | Chem. Sci., 2021, 12, 11275–11293
equilibrated RTX structure of thrombin, which also happened
to show the largest rate of false positives and false negatives of
any system studied here. While cryo structures may outperform
other input data despite their structural pathologies due to the
crudeness of the calculation, they may also surrender to those
artifacts and perform worse. A Boltzmann docking approach
that uses either experimental27 or computational74 energy
weights, may provide an alternative route. Finally, the fact that
empirical scoring functions used in most docking algorithms
are derived from cryogenic structures might suggest a deeper
problem of cryo artifacts being “baked” into current empirical
scoring functions.

Rigorous free-energy calculations appear to benet more
from RTX input structures for T4L. MD-based free energy
calculations starting from apo RTX structures converged faster
and gave more accurate results. At least for this target, we found
that using the apo RTX structure saved both computational and
experimental resources because we needed only 1 RTX struc-
ture. Alternatively, with increasing MD simulation time, cryo-
genic and RTX structures became increasingly
indistinguishable, as simulations begun at the cryo structure
relaxed to something more like the RTX structure. By extending
to 4 other protein classes we nd that differences between cryo
and RT structures correspond to slow protein motions which
sometimes adversely impact the convergence and accuracy of
relative binding free energy calculations, and these differences
are particularly common for transformations which had high
errors initially.

Several caveats of this study merit mentioning. First, very
long simulations may lead to the same converged state inde-
pendent of the starting structure; however, a state that differs
from the experimental input structure may not be more useful
for ligand discovery, in spite of costly computation. Advances in
making longer timescales that are important for many biolog-
ically relevant processes accessible to simulation has recently
been exemplied by exascale SARS-CoV-2 simulations.10

Leveraging such computational power could provide an addi-
tional avenue to remedy some of the issues our work has
revealed. Also, the discussed benets of apo structure may not
hold for all targets, i.e., if the apo structure does not populate
conformations relevant to ligand binding, representative holo
or simulated structures are needed. Both alternatives add bias:
ligands imprint features onto the protein surface, and calcula-
tions lead further away from experimental observations. If not
collected carefully, RT data will contain another source of error,
radiation damage, that may change molecular structure.75,76

With measures to prevent damage in place, conformational
variation in proteins is observed, despite radiation damage not
as a consequence of it.77

To reect common computational practices, we ran simple
docking implementations to gauge whether changes in the
major state would change the results. However, the presence of
experimental minor or alternate states and conformational
ensemblesmost likely also affect the results of the computation.
These are typically ignored, however, as scripts that “prepare”
a structure for docking typically discard minor states. Thus,
a sea change is needed in the modeling approach to such
© 2021 The Author(s). Published by the Royal Society of Chemistry
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structures, to retain these carefully modeled and informative
alternate features. An oen overlooked inadequacy of evalu-
ating docking results is the difference between scoring and
sampling failures. Typically, only the single top-ranking
pose per compound is reported, hiding whether the correct
pose was overlooked or not sampled at all; a lower ranking,
equi-energetic alternative pose may agree with RTX data.
Finally, weak, promiscuous ligands, such as fragments, are
likely more affected by alternative poses than a nanomolar drug
candidate. Because such fragments are oen the starting point
that guides drug-discovery efforts, RTX may prove especially
useful for fragment-based ligand discovery.78

These caveats should not distract from the main result of
this paper—RTX data can provide instructive guidance to ligand
discovery and design, methods improvement and integration,
and protein evolution. It can also provide novel insights into the
conformational energy landscape of protein–ligand complexes,
even for exhaustively studied targets like T4L. Ongoing
improvements in automation, renement, and analysis tools
will help us detect and model rare conformational states
condently.49 Given the nonsystematic impact of cryocooling,
a cryo structure alone cannot clarify 2 important questions:
which conformations are temperature artifacts, and which
missing conformations could be revealed at RT? Ultimately, all
structures are measured by their value in advancing our
understanding of protein function and our ability to modulate
malfunction in disease. The data presented here suggest that
RT structures can provide key insights that are not apparent in
cryo structures.

Experimental
Crystallography

Protein production and purication. The gene containing T4
phage lysozyme with mutations R12G/I137R/L99A was subcl-
oned into pET-28 (EMD Biosciences). The plasmid containing
the lysozyme construct was then transformed into cells of BL21-
CodonPlus(DE3)-RIPL strain and grown in Terric Broth
medium containing 100 mg mL�1 kanamycin to an O.D.600 of
0.6–0.8 at 37 �C and then induced with 0.5 mM isopropyl b-D-1-
thiogalactopyranoside at 18 �C for 12–16 hours. Cells were
harvested and lysed by microuidizer, centrifuged at 18 000�g
for 1 hour and then puried on a Ni-NTA column (GE Health-
care Life Sciences) at 4 �C, with a buffer of 50 mM sodium
phosphate (pH 7), 0.2 M NaCl, and 5 mM 2-mercaptoethanol.
The Ni-NTA column was then eluted with imidazole gradients in
the same buffer, and the elution was concentrated to 10 mg
mL�1 and dialyzed overnight in 50 mM sodium phosphate (pH
6.6), 0.2 M KCl, 5 mM 2-mercaptoethanol. The dialyzed elution
was further concentrated the next day and loaded onto an SD75
26/60 column (GE Healthcare Life Sciences) for size-exclusion
chromatography (SEC) within freshly prepared dialysis buffer.
The SEC fractions were concentrated to 10 mg mL�1, aliquoted,
ash-cooled in liquid-nitrogen, and stored at �80 �C until
needed. Protein purity exceeded 95% by SDS-PAGE.

Crystallization. Crystals were grown from a 10 mg mL�1

frozen protein solution by the hanging drop method at 18–
© 2021 The Author(s). Published by the Royal Society of Chemistry
20 �C, with a 1 : 1 drop ratio of protein to solution and over
a well solution of 0.1 M tris-hydrochloride (pH 8), 20–26% (w/v)
PEG 4000, 70–170 mM lithium citrate, 8–18% 2-propanol,
50 mM 2-mercaptoethanol, and 50 mM 2-hydroxyethyl disul-
de. Diamond-shaped crystals grew within a month. Fresh well
solution containing an additional 30% (w/v) ethylene glycol
served as the cryo solution. Ligands were soaked overnight into
the crystals in the cryo solution containing 50–100 mM ligands
at cryo (100 K) or RT (278 K). Hundreds of datasets were
collected at the APS beamline ID-24 during the course of this
project and were prioritized based on data, electron density
map quality, and ligand occupancy. Halogenated compounds
were chosen for clearer visibility in electron density maps and
higher condence in the assignment of occupancies and poses.

Renement and analysis. To ensure that structural differ-
ences are not the result of radiation damage,77 we only consid-
ered those datasets that were free of typical signs of global or
local radiation damage (Table S1†).75,79,80 Data in Fig. 1A are
presented as box-and-whisker plots using Prism 8, where the
borders of the box mark the upper and lower quartile around the
median, and the whiskers mark the highest and lowest observed
value. Thermodynamically, ligand occupancy decreases with
increasing temperature.25 In line with the inclination that proper
structure modelling necessitates an ensemble of both the bound
and unbound states,81 we rened ligand occupancies to less than
100%. Consequently, we refrained from overinterpreting changes
in experimental and simulated loop occupancies and only looked
at gross changes in side-chain occupancies that were not
muddled by unbound states.
Computational approach and methods

To avoid bias in the interpretation of results, all experiments
and computations were conducted double-blind at the 2 sites
(St. Jude and UCI), and experimental and computational data
were compared and assessed only at the point of writing this
manuscript.

Cringer [krinj-er]. Analysis scripts for Cringer (Computa-
tional Ringer) are available on the GitHub repository linked to
this paper (https://github.com/MobleyLab/T4L-temperature-
effects).

Absolute binding free energy calculations
System setup. Crystallographic structures of T4 lysozyme

(L99A) complexes were downloaded from the RCSB Protein Data
Bank (rcsb.org).82 For iodobenzene, toluene, and o-xylene, we
also used the L99A RT co-crystal structures to set up additional
binding free energy calculations. Furthermore, we added iodo-
benzene, toluene, and o-xylene to the new apo RT structure of
L99A to form 3 complexes (apo RT with iodobenzene, toluene,
or o-xylene) on which we performed binding free energy calcu-
lations. For each system, we rst used pdbxer 1.4 (ref. 83) to
remove the ligands and water molecules from the PDB struc-
tures and to add the missing heavy atoms to the receptors.
Then, we used PDB2PQR web server84 to protonate the protein's
residues at pH 7 and to rename the residues/atom according to
the AMBER naming scheme. The resulting pqr les were con-
verted to PDB les using ParmEd 2.7.4 (https://github.com/
Chem. Sci., 2021, 12, 11275–11293 | 11289
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ParmEd/ParmEd). All the studied ligands were considered
neutral and were protonated using Chimera 1.12.85 Lastly, we
converted the PDB les of the ligands to mol2 les using
OpenEye toolkits (OpenEye Scientic Soware). The receptors
and ligands were modeled using AMBER ff14SB86 and GAFF
version 2 (ref. 62) FFs, respectively. We solvated the protein–
ligand systems by using the TIP3P water model87 in a cubic box
with 12 Å padding. Na+ and Cl� counter ions were then added to
neutralize the system and achieve a buffer concentration of
50mM. Further details on the system's setup are provided in the
ESI Appendix, ESI Methods,† and the GitHub repository linked
to this paper.

Absolute binding free energy simulations. All alchemical
binding free energy calculations were conducted using YANK
0.17.0 (http://getyank.org/0.17.0). The alchemical pathway
included 29 manually selected thermodynamic states in explicit
solvent, and all simulations were run in the NPT ensemble at
300 K with a pressure of 1 atmosphere. Long-range electrostatic
interactions were calculated using the particle mesh Ewald
method,88 with a nonbonded cutoff of 11 Å. Orientational
Boresch-style restraints89 were applied to keep the ligand in
a single-binding mode during the simulations; a set of 1 bond, 2
angles, and 3 dihedral restraints was used. We used a spring
constant of 20 kcal mol�1 Å�2 for the bond restraint, while the
angle and dihedral restraints were set at 20 kcal (mol per
radians). We gradually turned on these restraints throughout
the thermodynamic states using a lambda set of 29 windows.
More technical details about the binding free energy calcula-
tions are provided in the ESI Appendix, ESI Methods,† and in
the GitHub repository linked to this paper.

Relative binding free energy simulations. We selected the
targets thrombin and PTP1B which are part of several RBFE
benchmark studies.90–92 The simulation protocol follows
a previous work93,94 using GROMACS (2021-dev-20200320-
89f1227-unknown) with a patch optimizing PME performance
on GPU (https://gerrit.gromacs.org/c/gromacs/+/13382). For each
perturbation, two sets of simulations were prepared: solvated
ligands and ligand–protein complexes. The initial ligand struc-
tures were obtained from a previous published work.93 The
initial protein structures used were the same as the unbiasedMD
simulations (see below). For each target, 9 perturbations (edges)
were selected based on a previous work.70 For each perturbation,
two states were prepared for both in-solution/bound state
ligands: state A and state B, representing ligand 1 and ligand 2,
respectively. An energy minimization was rst performed, fol-
lowed by a 10 ps NVT equilibration at 298 K. Then the produc-
tion equilibrium simulation (in the NPT ensemble) was
performed for 6 ns at 298 K and a pressure of 1 bar. 80 snapshots
were extracted from the production simulation. For each snap-
shot, a non-equilibrium transformation from state A to B (and
vice versa) was performed during 50 ps. For each perturbation, 3
replicas of the series of simulations described above were per-
formed leading to a total of 120 ns simulation data to calculate
the free energy differences for the ligands in their in-solution/
bound states. See ESI† for more details.

MD simulations. We performed classical MD simulations to
study the conformational change of L99A upon ligand binding.
11290 | Chem. Sci., 2021, 12, 11275–11293
MD simulations on each L99A–ligand complex were executed
using the OpenMM package 7.1.1 and 7.4.2.95 First, we mini-
mized the water and ions for 4000 steps with the protein and
ligand xed by using 500 kcal mol�1 Å2 positional restraints.
Aer that, we performed a second minimization step on the
water and ions for 4000 steps, with the receptor and ligand
restrained using 50 kcal mol�1 Å2 positional restraints. Typical
MD water models are parameterized to do well at 300 K, so we
initially ran all of our simulations at 300 K. To ensure that our FP
and FN analyses were unaffected by the comparison to crystal-
lographic data collected at 278 K, we repeated MD simulations of
all complexes at 278 K (Fig. 3, ESI Fig. S10 and S11†). In both
cases, we heated the system from 0 K to the target temperature
while gradually releasing the restraints on the receptor–ligand
complex. Across all 9 structure pairs we observed only one
Cringer comparison where a major side chain distribution that
differed with temperature changed from TN (MD run at 278 K) to
FN (MD run at 300 K). In our comparison to the crystallographic
data collected at 278 K, we do not count this case as a FN. Prior to
the production run, we performed an equilibration step of 10 ns
in the NPT ensemble to reach a density of 1 atmospheric pres-
sure. Further details of the simulation protocol are provided in
the ESI Appendix, ESI Methods,† and in the GitHub repository
associated with this paper.

BLUES simulations. We used BLUES (Binding modes of
Ligands Using Enhanced Sampling) simulations package to
enhance the sampling of ligand-binding modes61 and accelerate
the sampling of side-chain rotamers in the protein's residues.60

BLUES is a nonequilibrium candidate Monte Carlo approach
coupled with standard MD. In a BLUES simulation, the ligand
or a rotatable bond of a side chain is allowed to rotate and then
relaxed through alchemical perturbation, before accepting or
rejecting the proposed move based on the nonequilibrium work
done during this process. The BLUES simulations were executed
using OpenMM 7.1.1.95 The protein–ligand systems used for the
simulations were taken aer the equilibration step of the clas-
sical MD simulations, as described above. We performed BLUES
side-chain sampling on the L99A complexed with iodobenzene,
where we enhanced the side-chain sampling of 2 residues
belonging to the protein's binding site (Val111 and Leu118). For
the BLUES binding-mode simulations, we enhanced the
binding-mode sampling of iodobenzene, ethylbenzene, pro-
pylbenzene, butylbenzene, benzylacetate, o-xylene, and p-
xylene. To analyze our binding-mode simulations, we used
time-lagged independent component analysis and perron-
cluster cluster analysis tools, as described in Lim et al. 2019.96

More details about the BLUES simulations are provided in the
ESI Appendix and ESI Methods.†

Docking. We used OEdock (OpenEye Scientic Soware) to
dock 63 experimentally conrmed T4-L99A binders from the
work of ref. 66 and [https://github.com/MobleyLab/
lysozyme_binding], 35 ZINC compounds described as
binders,67 and 3152 DUD-E “decoys”68 into the following struc-
tures: (1) the cryo structure of apo L99A (PDB code: 4W51), (2)
the RT structure of apo L99A with a closed F-helix conformation,
(3) the RT structure of apo L99A with an intermediate F-helix
conformation, (4) the cryo structure of apo L99A with a closed
© 2021 The Author(s). Published by the Royal Society of Chemistry
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F-helix conformation extracted aer 50 ns of MD simulations
(PDB code: 4W51), (5) the RT structure of apo L99A with a closed
F-helix conformation extracted aer 50 ns of MD simulations,
and (6) the RT structure of apo L99A with an intermediate F-
helix conformation extracted aer 50 ns of MD simulations.

A reference ligand (toluene extracted from 4W53 and aligned
with the 6 different protein structures) was used to localize the
binding site. Then the scores were ranked and themetrics (AUC,
logAUC, and RMSD) were calculated. The RMSDs were calcu-
lated relative to the cryo and the RT crystal structures of each
ligand. We used Chimera to align the active site of each L99A
complex used for docking to its corresponding crystal structure.
The alignment of the active site was done within 5 Å of the
ligand. Then we computed the RMSD values with Chimera and
accounted for ligand symmetry. The semilog plots and the
adjusted logAUC were calculated, as described by Mysinger and
Shoichet.68 All the analysis tools used to calculate the docking
metrics can be found on GitHub (https://github.com/
MobleyLab/T4L-temperature-effects).

For OEdock, we used a combination of 2 scoring functions:
Chemgauss3 65 for the exhaustive search scoring, which was fol-
lowed by optimization scoring using Chemscore.97 Chemgauss3
accounts for the hydrogen bonds between the ligand and protein,
hydrogen-bonding interactions with implicit solvent, and metal–
chelator interactions. Furthermore, Chemgauss3 uses Gaussian
smoothed potentials to evaluate the shape complementarity of the
ligand to the protein's binding site. Chemscore is a sum of the
following interaction contributions: lipophilic, hydrogen bonding,
metal–chelator, clashes, and rotatable bonds.

Data availability

Crystallographic coordinates and structure factors for all
structures have been deposited in the PDB with the following
accessing codes: 7L38, 7L37, 7L3A, 7L39, 7L3B, 7L3C, 7L3E,
7L3D, 7L3G, 7L3F, 7L3H, 7L3I, 7L3K, 7L3J. Additional scripts
and information are available at GitHub at https://github.com/
MobleyLab/T4L-temperature-effects.
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