UCLA

Posters

Title

Mote Herding for Tiered Wireless Sensor Networks

Permalink

https://escholarship.org/uc/item/7g7940x9

Authors

Thanos Stathopoulos Lewis Girod John Heidemann <u>et al.</u>

Publication Date

2005

CENS Center for Embedded Networked Sensing

Mote Herding for Sensor Networks

Thanos Stathopoulos(*), Lewis Girod(*), John Heidemann(), Deborah Estrin(*)** *CENS Systems Lab ****USC/ISI**

Mote Herding: A system architecture for Tiered Wireless Sensor Networks

Mote Herding

Tiered systems: Collections of *motes* and *microservers* working together

Mote Herding explores guidelines to clarify how services should be developed in tiered systems

Design Principle

Shift system complexity from motes to microservers for those operations that require distributed decision making on the motes

Corollaries:

• **Centralize** decision making on a *microserver* to make decisions based on a *complete* set of information

Architectural abstractions

- Flock: a collection of *motes* that connects to a microserver via a multihop tree
- **Shepherd**: a *microserver* responsible for a *single flock*. Shepherds connect to each other using *IP-based routing* over 802.11
- **Herd**: the collection of *flocks* and *shepherds* that forms the *entire* mote/microserver network

- **Reduce** volatile state required for *system functionality* on motes
- Utilize computational and communication resources on microservers to support more *complex functionality*
- **Program** a significant part of the system in a *familiar* and resource-rich 32-bit environment

Mote Herding Services

Flock Services

- Operate on a *flock* under supervision of *a shepherd*
- Hybrid: code resides on *motes* and *microserver*
- Can use other services in the same flock but *cannot* interact with motes on *other flocks*
- Emphasize *master-slave* relationship between microservers and motes

Flock Foundation service: Mote Routing

- Provides *bi-directional* routing from motes to their shepherd
- Centralized protocol: *shepherd* makes *all* routing decisions
- Lack of distributed decision making on motes improves stability and consistency

Herd services

- Operate on the *entire* network
- Code resides only on *microservers*
- Interface to the mote network via *appropriate flock* services
- Allow for *distributed* and *collaborative* decision making between microservers

Herd Foundation service: Microserver State Replication

- StateSync: a reliable *state synchronization* protocol
- Allows *state sharing* on the microserver level for information pertaining several flocks
- Provides each microserver with a *global state view*

Service Details and Performance

CentRoute

- Centralized routing protocol based on *source* routing
- Motes broadcast beacons *only* when they wish to join a tree
- Any motes *attached* to the tree *forward* join beacons towards shepherd via unicast
- Shepherd picks *best path* using an ETX metric and sends a *unicast reply* to the mote
- Mote attaches to shepherd and uses the *last mote* on the reverse path as its *parent*
- Multi-shepherd ambiguities resolved on microserver network

Improved connectivity at high densities due to lack of per-mote neighbor state

Neighbor density (motes)	CentRoute loop prob. (%)	MintRoute loop prob. (%)	Multihop loop prob. (%)
4	0	0.47	2.11
8	0	0.01	1.92
12	0	0.02	1.88
16	0	0.03	2.48
20	0	0.03	3.65
24	0	0.04	4.8
28	0	0.04	3.12
32	0	0.02	7.27

Loop avoidance improved by combination of *centralized decision making*, *source routing* • **Query resolution** replies to client and absence of *any* mote decisions

DataRel

- End-to-end mote data reliability protocol
- Can deliver 100% to the data at up to 30% *link failure* rates
- Low buffer usage and complexity compared to hop-by-hop protocols (mDTN)

ResDisc

• **Resource Discovery** herd service

• **Registration protocol** *registers* mote

• **Resource caching** *exports* local flock

resources and *imports* remote flock

queries based on information from

based on three subservices

resources with *shepherd*

resources

resource caching

Future Work

Usage	RAM	ROM	RAM cost
(bytes)			per neighbor
CentRoute	1274	17184	0
MintRoute	1689	12588	18
Multihop	1560	17292	19

state

Lower memory usage on the The CentRoute *phased-join* operation mote due to absence of O(N)

• Implementing more services (data replication, tasking, system monitoring) • Implement a coordinated imaging application using Cyclops and larger more powerful cameras

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced