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Fuzzy Contour Trees:
Alignment and Joint Layout of Multiple Contour Trees
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(a) separate layout (b) grouped layout (c) bundled layout (d) bundled layout + optimized branch spacing

Figure 1: An illustration of the fuzzy contour tree layout. (a) Separate layout of multiple contour trees yields a cluttered representation, while
grouping (b) and bundling (c) lay out aligned branches jointly. To better leverage vertical space, saddles can be shifted (d). In each layout,
the same branch on the bottom is highlighted in pink.

Abstract
We describe a novel technique for the simultaneous visualization of multiple scalar fields, e.g. representing the members of an
ensemble, based on their contour trees. Using tree alignments, a graph-theoretic concept similar to edit distance mappings, we
identify commonalities across multiple contour trees and leverage these to obtain a layout that can represent all trees simulta-
neously in an easy-to-interpret, minimally-cluttered manner. We describe a heuristic algorithm to compute tree alignments for a
given similarity metric, and give an algorithm to compute a joint layout of the resulting aligned contour trees. We apply our ap-
proach to the visualization of scalar field ensembles, discuss basic visualization and interaction possibilities, and demonstrate
results on several analytic and real-world examples.

1. Introduction

Topology-based methods have a long tradition in the visualization
of scalar fields. Founded on mathematical principles, they provide
an abstract representation of scalar field structure. Among a variety
of methods, the contour tree serves as the well-understood basis for
a plethora of techniques, ranging from the straightforward genera-
tion of visualization images (e.g. [PCMS09]) to clever analysis user
interfaces (e.g. [WDC∗07a]).

As modeling and simulation of uncertainty are becoming in-
creasingly prominent aspects of computational science, however,
it has proven challenging to adapt topology-based visualization to
the resulting novel data modalities. Here, we consider the example
of contour tree visualization of ensemble data sets. Such ensembles

result from sampling of parameter spaces and stochastic properties
of models, and consist of multiple realizations of a model, called
ensemble members. Identification of similarities and differences
between members and detection of outliers are among the elemen-
tary analysis tasks that should be supported by visualization. The
randomized nature of prevalent contour tree layout techniques and
their large parameter spaces often result in strongly different repre-
sentations for very similar scalar fields. Thus, in naïve form, these
techniques are not suited to the needs of ensemble visualization.

In this paper, we propose a novel strategy for the joint visu-
alization of many contour trees: the fuzzy contour tree. We uti-
lize tree alignments—a graph-theoretical concept similar to edit
distance mappings—to identify common branches across multiple
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contour trees, where commonality is identified through a semanti-
cally meaningful similarity metric. Using such alignments, we de-
vise an algorithm to lay out common branches for all trees iden-
tically, and improve this basic resulting layout through the use of
edge bundling and further abstraction. In essence, we replace the
independent layout of each tree by the layout of a common super-
tree, and use this to draw individual trees in a similar manner. This
approach yields a coherent, easy-to-interpret representation of mul-
tiple contour trees. We leverage our approach to provide improved
contour tree visualization of ensemble data sets. After discussing
related work in Section 2, we make the following contributions:

• We describe the application of tree alignment to contour trees,
and provide a heuristic algorithm to quickly compute the align-
ment of multiple contour trees with a problem-specific similarity
metric in Section 3.
• We devise a layout algorithm that uses both alignment and indi-

vidual trees to achieve a simultaneous, easy-to-interpret visual-
ization of multiple contour trees, with basic interaction possibil-
ities (Section 4).
• We identify elementary visualization tasks for visualization of

scalar ensembles, and show how our technique supports these
tasks. Several examples are used to demonstrate this (Section 5).

The work we present here is intended to provide proof-of-concept
towards the use of tree alignments for layout of multiple contour
trees, and we provide a detailed discussion of our approach and
a comparison to other topology-based ensemble visualization ap-
proaches in Section 6. We conclude with a summary of open ques-
tions, limitations and further opportunities inherent in our approach
(Section 7).

2. Related Work

Contour Trees in Visualization. Our work is rooted in the
topology-based visualization of scalar fields using contour
trees [CSA03]. Such visualizations provide a mathematically well-
founded and effective abstraction, and have been used to define
features of interest [BWP∗10] or provide user interfaces [KRS03,
WDC∗07b, CSv04]. A general overview of topology-based tech-
niques is given by Heine et al. [HLH∗16].

Applying topology-based visualization to multiple scalar fields
at once has several major use cases. In ensemble analysis, an un-
derstanding of commonalities and differences between ensemble
members is sought [WHLS19], while the study of time-dependent
scalar fields aims to identify feature evolution over time [BWP∗10].
In both cases, an important problem is to establish feature corre-
spondence by topological means. A common approach is to use
branches or sub-trees of contour trees to characterize regions that
are then examined for correspondence using overlap measures;
however, this does not take the contour tree structure into account.
An example is the comparison of two scalar fields based on con-
tours obtained from the contour tree by Schneider et al. [SWC∗08].
Similarly, Lukasczyk et al. uses merge tree segmentations to com-
pute the correlation between features [LWM∗17]. Space-filling
structures in turbulent flows are tracked by Schnorr et al. using the
volume overlap of 3D Morse-Smale cells, which serve as input to a
maximum-weight, maximal matching [SGKH15].

Instead of considering the spatial overlap of topologically-
characterized regions of scalar fields, a further class of methods
focuses primarily on correspondence directly from a graph-centric
perspective. For example, Saikia et al. [SSW14] compare all sub-
trees of two merge trees against each other to find repeating struc-
tures, and Thomas and Natarajan [TN11] adopt a similar approach
to identify symmetries in scalar fields.

Heine et al. present a review of different layout strategies for
contour trees as well as a new layout method [HSCS11]. We adapt
their orthogonal layout method for our fuzzy contour trees. This
orthogonal layout method, as well as most commonly used layout
methods for sufficiently large contour trees, is at heart a random-
ized algorithm, since optimal layout is an NP-hard problem. Apart
from direct computation [CSA03], contour trees can be extracted
in parallel [CWS∗19], and generalizations of contour trees to mul-
tidimensional data are presented by Carr and Duke [CD13].

Ensemble Visualization using Contour Trees. A use case we
consider in this paper is the visualization of scalar field ensem-
bles through the contour trees of the ensemble members. Vi-
sualizing the information in, and differences between, multiple
trees was achieved e.g. by Schulz et al. through an edge-bundled
visualization of multiple samples from a probabilistic graph
model [SNG∗17]. Location and sub-tree structure uncertainty of
two different graphs were visualized by Lee et al. [LRCP07]. Shu
et al. discuss EnsembleGraphs to visualize hierarchical clustering
across an ensemble [SGL∗16]. A recent survey on graph visualiza-
tion was given by Hu et al. [HN18].

Contour trees of uncertain scalar fields were considered by Kraus
[Kra10]. Here, two contour trees of morphologically filtered ver-
sions of an uncertain volume data set represent the range of uncer-
tainty, visualized by combining both trees in one image. Günther
et al. [GST14] also use two realizations of an uncertain scalar field
that represent estimations of the support of the PDF of the input
data. They characterize mandatory critical points in the given range
of realizations and provide mandatory merge and split trees.

Contour tree-based uncertainty visualization as proposed by Wu
et al. [wZ13] includes a layout algorithm for contour trees. The
idea of assigning slots to branches is identical to the one by Heine
et al. that we use in this paper. However, the proposed space-saving
strategy is not applicable in our case, since a separation in up-
ward/downward and mixed branch zones is not possible consider-
ing multiple saddles and leaves for each branch. The same authors
visualize the mean contour tree obtained from the pointwise ensem-
ble mean, with uncertainty added from contour differences between
individual members.

In the fuzzy contour tree, we are able to visualize collections of
scalar fields quantifying uncertainty indirectly. It is thus possible
and desirable to incorporate information from individual contour
trees into the overall visualization. In contrast to the work by Wu et
al. [wZ13], the fuzzy contour tree is not calculated using a mean of
all data points, but is based on a topology-driven matching of indi-
vidual contour trees. Thus, outlier behavior remains clearly visible.

Distance and Merging of Graph-Based Topological Descrip-
tors. A central aspect of the work we present here is aimed at iden-
tifying an optimal matching of contour trees to create a common
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layout. We therefore provide a short overview of the major classes
of techniques in this active research area.

The general problem of finding a distance between (rooted) trees
arises in different fields of computer science, such as computational
biology [SZ90], AI [KTSK00] and code compilation [HO82]. Var-
ious types of edit distances, based on defining a cost function for
edit operations in trees, have been applied to solve this problem,
with the tree edit distance [Tai79] being the most general and com-
plex approach. An overview is given by Bille [Bil05]. Tree align-
ments, a computationally cheaper alternative, were introduced by
Jiang et al. [JWZ94]. Apart from being easier to compute, align-
ments exhibit some properties which make them a good fit for our
purpose. Those properties will be explained in Section 3 as well as
our method to apply the alignment to an ensemble of more than two
unrooted, unordered contour trees.

Recently, different types of edit distances have been applied to
merge trees and other graph based descriptors representing the
topology of a scalar field. Saikia et al. [SSW14] applied the 1-
degree edit distance to branch decomposition trees of merge trees to
find self similarities in scalar fields. Sridharamurthy et al. used the
constrained edit distance [Zha96] on merge trees for feature track-
ing in time-dependent data [SBKN18]. Beketayev et al. [BYM∗14]
propose a method to compare merge trees based on the minimum
edit distance between all possible branch decompositions of the
two compared trees. Rieck et al. use the edit distance for ordered
trees on persistence hierarchies [RSLng]. Moreover, many met-
rics other than edit distances have been proposed for merge trees,
often obtained by restricting a metric on the more general Reeb
graph [BDFL16, BGW13, CO17, SMP15, MBW13]. Yan et al. in-
troduced a metric between labeled merge trees, allowing the defi-
nition of an average of several merge trees [YWM∗19]. In contrast
to this, in our work, the distance between single contour trees is
not important, but a matching of their nodes is required to achieve
a common layout. In addition, the resulting matching needs to in-
corporate all paths and all features of the single contour trees. This
makes the edit distance in terms of the tree alignment the preferred
approach for our purpose, resulting in a super-tree with the required
properties.

Contour trees yield more difficulties than merge trees when
searching for a distance metric or matching algorithm. They are
in general more complex data structures with potentially high vari-
ance for small changes in the considered scalar field. As recently
shown by Hristov et al., also branch decomposition poses addi-
tional challenges for contour trees [HCng]. Applying their method
to contour trees, Saikia et al. [SSW14] describe similar problems.
Therefore, we conclude that the application of edit distances and
general merging of contour trees is not yet understood well. In this
paper, we adapt and apply tree alignments to contour trees to obtain
a matching and a super-tree of multiple contour trees.

3. Tree Alignment of Contour Trees

We aim to devise a combined representation or layout of multi-
ple contour trees that respects and leverages similarities among
the trees and the scalar fields they represent to facilitate common,
topology-based analytical tasks. A central problem is therefore to

identify such similarities. This can be accomplished – on a tree
level – by constructing a matching between the nodes and arcs of
all individual contour trees, such that matched nodes and arcs cor-
respond to similar structures in the scalar fields. A good way to find
such matchings is using tree edit distances, which induce a mapping
of nodes in the compared trees [Bil05] such that the trees become
minimally different w.r.t. edit distance. An interesting approach for
merge trees is described by Sridharamurthy et al. [SBKN18].

In brief, edit distance between two labeled trees measures the
minimum number of operations (i.e. insert, delete, relabel) required
to transform one tree into the other. More generally, operations can
carry arbitrary cost, and a cost-minimal sequence of edit opera-
tions is sought. An edit sequence S for two trees T1 and T2 in-
duces a mapping of the vertices MS ⊂ V (T1)×V (T2) where for
all (v1,w1),(v2,w2) ∈MS

• v1 = v2 if and only if w1 = w2, and
• v1 is an ancestor of v2 if and only if w1 is an ancestor of w2.

Given two ordered trees T1 and T2, the edit distance δ(T1,T2) can be
computed in timeO(|T1| · |T2| · |L1| · |L2|) using dynamic program-
ming, where L1 and L2 are the depths of the trees [Tai79]. Given
two unordered rooted trees T1,T2, the problem of computing the
value of δ(T1,T2) is known to be NP-hard [Bil05].

Contour trees are unordered, unrooted trees, thus general edit
distance is not suitable for our purpose. However, many restricted
variants of the edit distance, which are easier to compute and appli-
cable to unrooted trees, have been introduced [Bil05]. From these,
we utilize tree alignments and the corresponding tree alignment
distance. A tree alignment A of trees T1, . . . ,Tn is a super-tree of
the aligned trees, i.e. it contains each aligned tree as a sub-tree. In
general,A is not unique and can be computed from each individual
tree through sequences of insert operations and node relabelings.
A minimal tree alignment minimizes a cost function over the edit
sequences that yield A from each Ti, thus intuitively providing a
"small" alignment that captures the similarity between the individ-
ual trees.

In comparison to general edit mappings, whose computation is
NP-hard, minimal alignments can be found in quadratic time in the
number of nodes for (arbitrarily rooted) contour trees. Furthermore,
an important property towards a joint layout of contour trees is the
path property: all paths in the individual trees map to paths in the
super-tree. A detailed description and comparison of these concepts
can be found in the survey by Bille [Bil05].

We next consider alignment of two general trees, and on this
basis proceed to describe an algorithm for computing an alignment
of n contour trees.

3.1. Minimal Contour Tree Alignment

An alignment of two trees T1 and T2 is obtained by first inserting
nodes labeled with a blank symbol λ into T1 and T2, making them
isomorphic. Let T ′1 ,T

′
2 be the resulting trees and Talign be the un-

labeled tree isomorphic to both. Labeling a node v ∈ V (A) with
l(v) := (l(v1), l(v2)), where v1 and v2 are the nodes in T ′1 and T ′2
corresponding to v, and l is the labeling, gives the alignment A.

© 2020 The Author(s)
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(a) (b) (c)

Figure 2: Differences between alignment and edit distance: (a) An
intuitive mapping between the two trees; it can only be achieved
with an edit distance mapping, as the lower gray node must be
deleted as a parent of the blue node and a new gray node must
be inserted as parent of the red node. In an alignment though, in-
sertions must occur before deletions. The minimal alignment and
corresponding mapping are shown in (b) and (c). Matching the blue
nodes is impossible since it would result in a cycle.

The aligned label l(v) represents an edit operation, and is asso-
ciated with a cost γ(l(v1), l(v2)), which is an arbitrary metric. The
overall cost of A is then

γ(A) = ∑
v∈V (A)

γ(l(v)),

allowing to define the alignment distance as the minimal cost.
δalign(T1,T2) = min{γ(A) | A is alignment for T1,T2}. Thus, each
Aminimizing γ(A) is a minimal tree alignment for the chosen met-
ric. It corresponds to a restricted edit distance, where all insertions
are performed before all deletions. This yields the super-tree prop-
erty, and nodes labeled without λ represent the induced matching.

Differences between Alignment and Edit Distance. It is illustra-
tive to highlight a number of differences between tree alignments
and edit mappings. From an edit distance mapping between T1 and
T2, one can construct a tree of the mapped nodes in a natural way
(following from the mapping properties). This tree will always be
a sub-tree of T1 and T2. Given the cost function

γ(λ, l) = γ(l,λ) = 1,γ(l1, l2) =

{
0 if l1 = l2
2 otherwise

the minimal alignment from T1 to T2 will be the smallest common
super-tree, and the sub-tree induced by the minimal edit sequence
will be the largest common sub-tree [Bil05]. Therefore, alignment
mappings are not able to match certain corresponding structures;
consider e.g. the alignment and edit mapping in Figure 2: the more
intuitive matching cannot be achieved by an alignment, a restriction
inherent in tree alignments.

A

v

B C

(a)
B

v

A C

(b)
B

v

w

A C

D

(c)
A

w

v

B D

C

(d)

Figure 3: Illustration of consistent root and path properties. If the
root A of the alignment (a) is not kept consistent and changed to
B in (b), the following alignment could be (c), which violates the
ancestor property for v and C if again rooted in A (see (d)).

However, the super-tree property provides substantial advan-
tages. First, it allows the construction of a heuristic for aligning
more than two trees (cf. Section 3.2). Furthermore, a super-tree
of all contour trees contains all features (critical points) of the
original fields. In contrast, an edit mapping only induces a sub-
tree. The most important advantage of alignments in our context
however is reduced computational complexity: for two unordered
trees with bounded degree, the alignment can be computed in time
O(|T1| · |T2|); this assumption is fulfilled for contour trees in most
practical settings (e.g. in the strongly prevalent piecewise linear
case). In contrast, the corresponding edit distance problem is NP-
hard [Bil05].

3.2. Alignment Heuristics

We extend the minimal alignments introduced above for two trees
to n trees as follows. Given n scalar fields, the alignment of the
corresponding contour trees can be used as a representation of the
topology of the ensemble. In general, the problem of aligning n
trees is again known to be NP-hard, even for bounded degree or
ordered trees, since it is a generalization of the multiple sequence
alignment [WJ94]. Thus, direct computation is not feasible. Fur-
thermore, the alignment procedure requires rooted trees, whereas
contour trees are unrooted. To address both problems, we adopt the
following interlocking heuristics:

Sequential Alignment of Multiple Trees. Let A2 be the minimal
alignment of T1 and T2, and define Ak+1 as the minimal alignment
of Tk+1 and Ak. The final matching is the one induced by An.

In this manner, we construct an alignment of n trees sequentially.
This alignment will in general not be a minimal alignment. How-
ever, A2 contains all features of T1 and T2. Aligning a third tree T3
which has features similar to T1 but not to T2, withA2, the resulting
alignmentA3 will still match them, since they are present inA2 and
T3. For example, consider the two trees in Figure 2. The blue and
red nodes are swapped. If further trees with this swap are aligned,
there will likely be two blue and two red nodes in the alignment.
Our experiments (cf. Section 5) indicate that this heuristic works
well in practice and is cheap to compute.

Rooting Contour Trees. To align two unrooted contour trees, it
appears possible to minimize alignment over all possible choices
of roots. For the sequential alignment, this can however lead to
problems; in Figure 3, the edit mapping property is violated af-
ter aligning with respect to different roots. This problem does not
arise if the root of the alignment is kept consistent. Thus, in each
step of the sequential alignment, the alignment node corresponding
to the previously chosen roots has to be chosen as the root of the
new alignment as well. In contrast, the root of Tk+1 can be chosen
freely to obtain an optimal result.

3.3. Cost Metrics

The cost of edit operations that induce the minimal alignment can
be chosen as an arbitrary metric, providing flexibility in steering
minimal alignments towards matching nodes that are semantically
related. For example, nodes can be labeled by scalar value, and the

© 2020 The Author(s)
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difference between the scalar values of two nodes can be chosen
as cost. A similar construction, independent of the absolute scalar
value, can be obtained by labeling nodes in a rooted tree with the
difference in scalar value to their origin, i.e. with the persistence
of the unique edge pointed to this node. Again, the metric is the
difference of the two values. One could also use the area corre-
sponding to this edge in the field, or the sum or product of sev-
eral of these quantities, depending on application needs. Following
Sakia et al. [SSW14], we call the size of the edge segmentation
volume, independent of the dimension, and the product of volume
and persistence metric the combined metric. In their use case, the
combined metric performed best. A purely combinatorial matching
is possible by defining fixed costs per edit operation type, but this
appears less useful in the application scenarios we envision here.

Furthermore, a meaningful way to combine labels of the form
(l(v1), l(v2)) into a single label after each alignment step needs to
be chosen. For example, for scalar value labels, the average of l(v1)
and l(v2) can be chosen as the new label. Similar constructions can
be used for the other examples discussed above.

Importantly, to preserve the semantics of the individual contour
trees in an alignment, we penalize the matching of nodes of dif-
ferent critical point type (minimum, maximum, saddle) by choos-
ing prohibitively large cost for such relabelings. Hence, we ensure
that it is always cheaper to insert a non-matching new node than to
match critical points of different types.

3.4. Algorithm

The overall algorithm to approximate the minimal alignment for n
contour trees T1, . . . ,Tn with cost metric c is shown in Algorithm 1.

The runtime of the above algorithm is in O(n2 · |Vmax|4) for n
trees, where |Vmax| is the number of nodes of the largest tree. Be-
cause this is still expensive for large trees, and it is not sensible to
lay out contour trees with hundreds of nodes, we apply contour tree
simplification (e.g [CSv04]) before alignment. This results in very
good computation times for trees with several hundreds of nodes,
as given in Table 1 for the examples discussed in Section 5.

The given algorithm is at heart, a randomized algorithm; find-
ing an ordering of trees to ensure optimal alignment is an NP-hard
problem, and thus we turn to randomization and randomly permute
the input ordering of trees, as is done in many other algorithms that
would otherwise have to employ exhaustive combinatorial search.
In practice, to increase repeatability, the random ordering is com-
puted using a fixed chosen seed. In our experiments, we have found
that while alignments differ, the quality of the resulting layouts is
largely independent of the chosen seed. Figure 10 shows layouts
resulting from two different seeds for the same set of contour trees.

Our algorithm applies to arbitrary choices of the cost metric c,
which can be chosen to suit the needs of a particular application
domain. We provide corresponding examples in Section 5.

3.5. Properties of the Contour Tree Alignment

The output of our algorithm is an alignment of the n contour trees,
where each Ti is rooted in a chosen leaf, and all roots are matched

Algorithm 1: Heuristic for minimal alignment of n contour
trees
Let Amin be some alignment tree with infinite cost
foreach leaf r1 of T1 do

Let T r1
1 be T1 rooted in r1

A= T r1
1

for i = 2...n do
Let A′min be some alignment tree with infinite cost
foreach leaf ri of Ti do

Let T ri
i be Ti rooted in ri

A′ = align(A,T ri
i )

if c(A′)< c(A′min) then
A′min =A′

if c(A′min)< c(A) then
A=A′min

if c(A)< c(Amin) then
Amin =A

to the root of the alignment. A fulfills a set of properties that are
important for the layout algorithm:

• A is a super-tree, therefore all inner nodes of the individual trees
are matched to inner nodes of the alignment and all leaves of the
alignment represent leaves of the individual trees.
• The alignment preserves the node type, i.e. the alignment nodes

also have a specific type (minimum, maximum or saddle).
• All paths in individual contour trees which start at the chosen

root are matched to sub-paths in the alignment (path property).

Some properties complicate laying out the fuzzy contour tree:

• In contrast to contour trees, an inner node of the alignment can
be a minimum or maximum. For visualization purposes, these
inner extrema nodes can be turned into leaf nodes by attaching
their children to their parent node. (cf. Figure 4 and Section 4.1).
• Matched leaves from different contour trees are not necessarily

connected to a single matched saddle. However, the path prop-
erty ensures that different saddles will be either on the parent
branch of the leaf in the alignment or in its sub-tree.
• For a saddle node in the alignment, that matches saddle nodes

from the member trees, there is not necessarily a single leaf node
matching leaves from exactly the same member trees.

4. Fuzzy Contour Trees

In the following, we describe a layout algorithm that allows an intu-
itive joint depiction of multiple contour trees in a sensible manner –
the fuzzy contour tree. The layout procedure centrally relies on the
alignment described in the previous section: It is used to achieve

Figure 4: Turning an inner minimum/maximum node into a leaf.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Lohfink et al. / Fuzzy Contour Trees

Figure 5: Bundled edges. Red: plateau-width, blue: bundle-width.
The child branch is expanded to compensate the bundling.

layouts of the individual contour trees that are then combined into
the fuzzy contour tree.

In order to achieve a high recognition factor for the fuzzy contour
tree, we use the well-established and often-used orthogonal lay-
out [HSCS11] as a basis for our algorithm. In this layout, branches
are drawn as vertical lines, and are connected by saddles, which are
drawn as horizontal lines rather than points. Finding an orthogo-
nal layout for the alignment (and thus for all aligned contour trees)
is done in analogy to finding a layout for (single) contour trees.
First, a branch decomposition is recursively established, then the
resulting branches are assigned horizontal positions, with the ver-
tical positions of the nodes given by their isovalues. For the indi-
vidual contour (sub-)trees of the alignment, matched nodes are as-
signed equal positions. They are then combined, and further layout
improvements for the resulting fuzzy contour tree are performed to
significantly increase visual clarity. In the following, we describe
differences to the layout approach for single contour trees and these
layout improvements in detail.

4.1. Branch Decomposition of the Alignment

A key ingredient in contour tree layout is the branch decomposi-
tion. To identify a branch decomposition of a contour tree, first,
a root and a main branch are selected. From saddles in this main
branch, further branches can be identified recursively until the en-
tire contour tree is decomposed. In case of a single contour tree,
the leaf with minimum isovalue is chosen as root, and the main
branch is chosen as the monotone increasing path with maximal
persistence starting in this root. These properties may vary across
multiple contour trees, and thus the choice of root and main branch
fundamentally affects the tree layout.

The alignment we compute above provides a dedicated root
node. This root is guaranteed to exist in all individual contour trees
and ensures the path property of the alignment (see Section 3.2 and
Figure 3). In the process of branch decomposition, this root might
turn out as the maximum of the main branch instead of the mini-
mum in the individual contour trees. In this case, the minimum of
the main branch is considered as root.

Starting in the chosen root node, a main branch is chosen by
considering both, alignment and individual contour trees, as fol-
lows: All possible paths in the alignment from the root node to
each leaf are initially considered as candidates for the main branch.
Note that paths that are monotone in one or more individual trees
are not necessarily monotone in the alignment, due to insertion of
nodes and averaging of labels (isovalues). Separately for increasing
and decreasing directions, each candidate path in the alignment is

then considered in each individual tree, and counted if it is mono-
tone, giving its path frequency F . This frequency is then used as a
rating R for candidate paths. R := F% is the percentage of aligned
trees that contain the considered path. Here, other ratings could be
employed; see Section 4.4 for further details.

Choosing the path with the highest rating R as the main branch
and proceeding recursively for each sub-branch (i.e. saddle) of the
main branch yields a branch decomposition for the alignment. A
corner case occurs if no contour tree contains a path from the cur-
rently considered saddle to any leaf. The frequency of the branch
is then considered zero, and the rating is based on the path persis-
tence in the alignment.

4.2. Layout Algorithm

After a branch decomposition for the alignment is established,
many known layout algorithms for contour trees could be em-
ployed. To obtain a suitable layout for the fuzzy contour tree repre-
senting the combination of all individual contour trees, additional
information from the individual trees need to be taken into account
when optimizing layout clarity, e.g. by minimizing crossings. Cur-
rently, we incorporate the isovalues of nodes from individual con-
tour trees into the layout, resulting in value ranges (as opposed to
individual isovalues) for leaves and saddles. Further consideration
of branches in the individual contour trees is part of future work.

As a basic layout strategy, we adapt the (partly randomized)
method proposed by Heine et al. in their permutation phase
[HSCS11]: we attempt to find an ordering of branch groups that
minimizes a weighted number of edge crossings. Instead of branch
persistence, we weight crossing by the rating R obtained during
branch decomposition. Thus, branches that have been chosen as
main branches for the entire alignment or sub-trees are less likely
to be crossed in the resulting ordering. The optimum ordering is
sought as proposed by Heine et al. using a combination of random
walk and simulated annealing. While this approach does not ensure
an optimal layout, it gives very good results in practice (cf. Sec-
tion 5). Furthermore, the non-deterministic nature of the algorithm
may yield different layouts given identical input; we inherit this
property from Heine’s algorithm. Further discussion is given in
Section 4.4.

In our setting, all branches are considered as individual branch
groups. This is a natural choice, since the decomposition of the
alignment into branch groups, taking multiple isovalues per node
into account, tends to result in small branch groups, often contain-
ing only a single branch. The resulting order of branches is trans-
lated directly into horizontal coordinates for the layout, such that
each branch occupies one vertical slice of the overall layout.

Grouped Layout. The horizontal coordinates obtained in the
alignment layout can be propagated to the individual contour trees
via the node matching from the alignment. Thus, across all contour
trees, matched nodes are assigned identical horizontal positions.
"Superimposing" all individual contour trees with the assigned mu-
tual layout results the grouped layout (Figure 1(b)).

While this layout presents a significant improvement over sepa-
rate layout of individual trees with superimposition (shown in Fig-
ure 1(a)), visual clutter is still an issue and can be disruptive.
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Figure 6: Branch spacing optimization (left to right): bundled fuzzy contour tree; branches stacked at the bottom; bounding space inserted;
fitting to previous distribution.

Bundled Layout. To reduce visual clutter, we further abstract the
grouped layout through edge bundling. On the basis of the grouped
layout, the bundled layout (Figure 1(c)) bundles all edges of a
branch group and assigns an opacity to edges and nodes based on
the rating R of the branch. Branch edges are bundled close to their
origin to the mean vertical position of the group’s saddles. The dis-
tance to the origin consists of plateau width and a bundle width.
Both are illustrated in Figure 5 and can be customized.

To further simplify the representation, we only draw the edges
of a branch group originating at the respective maximum and min-
imum saddle values. The inbetween area is filled with appropriate
opacity to accentuate its affiliation. If a child branch must be con-
nected at an isovalue that is not spanned by the bundled edge, the
child branch is extended to the plateau. If this is not possible, i.e.
if its parent and its plateau are not on the same side of the child
branch, the child branch’s horizontal position is shifted accord-
ingly. In the future this can be avoided by incorporating further
knowledge on individual contour trees in the alignment layout al-
gorithm. A plateau size that is large enough to make a clear distinc-
tion between a connection to the parent branch and a connection
to the plateau ensures that the parent-child relation remains clear
even in this special case. Again, Figure 5 provides an example.

Optimized Vertical Branch Spacing. In many cases, ensemble
members will have a similar topological structure, resulting in a
strong resemblance of their contour trees after alignment. This may
result in clustered branch origins in the fuzzy contour tree. To dis-
ambiguate in these cases, we propose to shift branches vertically to
better leverage available vertical space. Although vertical node po-
sition no longer indicates scalar value, we preserve the vertical or-
dering of branches. Furthermore, given sufficient vertical space, the
vertical distribution of branches on each parent branch adheres to
as much as possible, and the saddle isovalue ranges of two branches
left and right of the parent branch overlap only if they do so in the
original tree; they are never forced to overlap by our algorithm.

The shifting procedure is performed across all sub-trees in a
bottom-up manner, beginning with the branches farthest from the
chosen main branch. Available space on a sub-tree’s main branch
is filled in three steps, with different types of spaces considered in
each step (cf. Figure 6 for an illustration):

Step 1: All saddles are stacked in correct order without space in
between. Overlaps of saddles left and right of the main branch
are reflected. The occupied vertical space is marked as "saddle".

Step 2: Based on the bounding box of the sub-tree’s main branch,

"bounding" spaces are added above and below every "saddle"
space, if the current space is smaller than the bounding box.

Step 3: The original space above and below every child branch on
the sub-tree’s main branch is compared to the current spacing.
Space is added to obtain a distribution of the child branches sim-
ilar to the original layout.

After each step, the amount of occupied vertical space relative to
the available height is checked. If it exceeds available height, the
spaces added in the previous step are "compressed" by scaling all
vertical heights down such that the maximum available height is not
exceeded; all further steps are omitted. If this occurs after the first
step, this means that an overlap of the isovalue ranges cannot be
avoided. After step 2, it implies the possibility of overlaps between
main branches of sub-trees. This shifting can be applied to the
grouped layout and the bundled layout alike and significantly dis-
ambiguates overlapping structures and reduces clutter. Figure 1(d)
provides an example.

4.3. Basic Interaction

In the following, we consider basic interaction modalities en-
abled by the fuzzy contour tree. The resulting interactive visual-
izations (including the layout algorithm discussed above) are im-
plemented in a lightweight JavaScript prototype based on the d3.js
library [BOH11]. An overview of the user interface is given in Fig-
ure 7. For the datasets we consider in Section 5, all algorithms run
quickly enough to enable fully fluid interaction.

We implement branch highlighting (Figure 8a): hovering a
branch in the fuzzy contour tree highlights this branch and all its
bundled edges and ancestors while all other branches are grayed
out. The selection can be fixed and released by clicking. For a fixed
selection, no ancestors are highlighted (cf. Figure 1).

Figure 7: An overview of the fuzzy contour tree user interface.
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(a) (b)

Figure 8: (a) Branch highlighting. The selected branch and all an-
cestors are highlighted with all connected saddles. (b) Member
highlighting. Each member containing an edge in the selected bun-
dle is highlighted in the associated color.

At the top of the UI, a grid providing information on individual
contour trees is linked to the fuzzy contour tree. Figure 9 shows
tree highlighting: selecting the index of an individual contour tree
in the grid highlights this particular contour tree. To clarify mem-
bership of each branch, highlighting a branch in the fuzzy con-
tour tree also triggers member highlighting in the grid (See Fig-
ure 8b). All members that contain one of the contained edges are
highlighted in the corresponding edge color.

It is furthermore sensible to link the fuzzy contour tree to a spa-
tial representation of each of the individual analyzed scalar fields.
We implement this component highlighting for the 2D case, as
shown in Figure 12. While we do not implement similar function-
ality for 3D datasets, volume rendering or isosurface visualization
can be applied in these cases.

4.4. Layout Parameters

Several parameters influence the layout process. The temperature
function of the simulated annealing and its parameters are adopted
from the layout algorithm by Heine et al. [HSCS11] and are dis-
cussed there. Additional parameters in our approach are the branch
rating R, used to obtain the alignment branch decomposition, and
the cost function used to weight crossings during the simulated an-
nealing. The weights for this cost function are here chosen as the
rating R of the crossing branches. Other ratings may be chosen to
customize the layout.

For example, it appears natural to consider persistence of
branches in the alignment as rating. However, since node values
in the alignment differ from those in the individual contour trees,
this persistence cannot be considered an intuitive stability measure,
making its impact difficult to interpret. Thus, we do not consider

Figure 9: Tree highlighting applied to two contour trees of the
analytical ensemble. (Left) A typical member is highlighted. Its
branches follow branches with maximal frequency. (Right) The dis-
similarity of the structure of the outlier is clearly visible.

persistence further here, and we reserve a more detailed considera-
tion of ratings for future work.

4.5. Challenges

Several specific challenges arise when visualizing a fuzzy contour
tree that are not present in the visualization of individual contour
trees. Among special cases for the layout treating leaf and saddle
positioning, the problem of multiple saddles appearing as the origin
of a single branch is the most prominent one. In this case, the opac-
ity of branches is determined by the path occurring in the largest
number of individual contour trees, and for each origin minimum
and maximum branch are visible. Furthermore, every origin is as-
signed an individual color for connecting edges. Hence, the exis-
tence of multiple origins is emphasized when the affected edge is
highlighted, and also in member highlighting, cf. Figure 8b for an
example. When highlighting individual trees, only the edge to the
origin occurring in the tree is highlighted. In addition, several lay-
out questions on the bundle positions need to be considered since
having multiple origins provides multiple choices for the start po-
sition of bundled edges.

5. Results

In this section, we apply our algorithm to the specific problem of
visualizing the contour trees of scalar field ensembles. Using our
approach, this is easily accomplished: from each ensemble mem-
ber, the contour tree is extracted. Optional preprocessing of the data
such as noise removal or contour tree simplification can be applied
as desired to individual contour trees. The alignment is computed
and the layout strategies and interactions discussed in the previous
section are applied.

We illustrate our technique and its properties on several analyt-
ical and real-world examples in both 2D and 3D. Running times
for a sequential implementation of the alignment algorithm, formu-
lated as a C++ TTK [TFL∗18] filter, and general dataset properties,
are given in Table 1. All times were obtained on a standard worksta-
tion with an Intel Core i7-7700 and 16GB of RAM. Contour trees
were computed and, if sensible, persistence-simplified using TTK.

Tasks. The fuzzy contour tree as combination of multiple individ-
ual contour trees in one visualization is aimed at analyzing and un-
derstanding scalar ensembles. In this context, we aim to support the
following domain-agnostic elementary analysis tasks:

Dataset Size n |Vmax| |A| talign [s]

analytical 128×128 16 20 28 0.06
cylinder 2D 128×256 23 32 62 0.15
cylinder 3D 642×128 10 60 144 1.10
viscous fingers 642×45 15 48 128 0.83

Table 1: Properties and runtimes of the example data sets. n is num-
ber of ensemble members in each case, while |Vmax| and |A| denote
maximal contour tree size (after simplification) and alignment size,
respectively. talign denotes the alignment computation time.
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T1 - Compare : Identify similarities and differences in topologi-
cal structure across the ensemble. Example: Which scalar values
induce topological changes in contours in some or all of the en-
semble members?

T2 - Combine : Identify ensemble members with common topo-
logical segmentation or threshold values. Example: Which con-
tours represent the ensemble well? Which critical points occur
in all members (common topological denominator [GST14])?

T3 - Separate : Separate groups of ensemble members with sim-
ilar behavior and indentify outliers. Example: Which ensemble
members contain a specific branch?

We illustrate the concretization of these tasks for fluid flow applica-
tions in the examples described below, where topological analysis
is used to identify features of interest.

5.1. Analytical Example

To demonstrate the usefulness of fuzzy contour trees and give a
straightforward example that illustrates both alignment and layout,
we devise an analytical two-dimensional data set with simple struc-
ture: Each of 16 ensemble members contains a small local maxi-
mum in the center and 4 local extrema of varying height around the
center peak. In 15 members these extrema are three maxima and
one minimum, in one further (outlier) member there are two min-
ima and two maxima. Figure 10 shows the fuzzy contour tree for
this data set, computed using the persistence metric from Section 3.

Comparing the different ensemble members using the fuzzy con-
tour tree (T1) is straightforward: Using the bundled layout, the
branches with high frequency are easily determined as those with
highest opacity. Also, the existence of three maxima and one min-
imum in most ensemble members is clearly apparent, as are the
isovalues inducing topological changes.

Identifying the members that share the structure with three max-
ima and one minimum (T2) can be achieved using member high-
lighting. Topological structures contained in every member of the
ensemble are given by the branches that are highlighted in both,
Figure 9 (a) and (b). As expected, two maxima and one minimum
are part of the common structure of the whole ensemble, as well as
four small, linked branches at the vertical center of the tree, repre-
senting the four corners of the domain, as can be seen using com-
ponent highlighting (Figure 11). Note that the small maximum in
the center of each ensemble member is not visible as a common
structure in this case, but as multiple (nearly) horizontal branches.
This results from the super-tree property and a chosen metric that
favors high persistence (cf. Section 3.1 and Figure 2).

Outlier identification (T3) can be accomplished using member
highlighting on the single minimum with low frequency on the left
of the tree. Tree highlighting then provides all information on the
topological structure of the outlier (cf. Figure 9).

5.2. Heated Cylinder

The heated cylinder ensemble describes the flow around a heated
pole in both 2D and 3D domains. The ensemble was obtained by
simulating the corresponding model with stochastically perturbed

Figure 10: Fuzzy contour tree of the analytical example, aligned
and laid out using different randomzations (left and right).

initial and boundary conditions for velocity. Fluid initially at rest is
heated around the pole, begins to rise, and forms a plume. Scalar
values describe flow vorticity, and topological segmentation identi-
fies vortices as the attracting basins of maxima. The contour trees
for both data sets were simplified using persistence, with the same
threshold for all members.

2D ensemble. Using the combined cost metric (cf. Section 3) for
the alignment of the ensemble contour trees results in a highly in-
tuitive matching, as can be verified in the component view. Sev-
eral highlighted components across different members are shown
in Figure 12. For example, the global maximum at the center (rep-
resented by the long orange branch in the fuzzy contour tree) is
matched in all members, as indicated by the small variance of the
matched nodes. Fuzzy contour tree visualization using different
layout options is shown in Figure 1. Clearly, bundled layouts are
visually most intuitive and exhibit the least amount of clutter.

3D ensemble. In the 3D case, matching according to the same
combined cost metric provides good results for the alignment as
well. Common topological structures present in all ensemble mem-
bers are clearly identifiable in the fuzzy contour tree visualiza-
tion given in Figure 13. An intuition on what contours have been
matched can be built by exploring the 3D data set and matched
components in an appropriate viewer.

Approaching topological tasks using the fuzzy contour tree. An
example on how to compare ensemble members (T1) in the 3D case
is given in Figure 12. Here, all branches with a high frequency are
marked. They can be determined by their opacity and using mem-
ber highlighting. Without considering frequency, common topolog-
ical structures can be determined: at the bottom, only minima ex-
ist, then a layer of maxima occurs, followed by another area with

Figure 11: Component highlighting: Selected branches shared by
the members in Figure 9 are highlighted in the ensemble members.
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Figure 12: Component highlighting shows alignment quality: Exemplarly marked components (vortices) in the fuzzy contour tree (bundled
layout, optimized branch spacing) of the 2D heated cylinder ensemble and representative examples of possible matching behavior.

mainly maxima; these extrema indicate vortices of different rota-
tional direction. Whether this structure is present in all members
can be checked using tree highlighting, providing a common seg-
mentation for the relevant members (T2). The single blue minimum
(vortex) between the two layers of maxima distinguishes one en-
semble member from all others. It can be determined easily using
member highlighting for this branch (T3).

5.3. Viscous Fingering

To illustrate the behavior of our method in a setting where search-
ing for topological similarities in the member’s level sets is not
meaningful, we consider the fuzzy contour tree for 15 members of
the viscous fingering ensemble [Sci]. To derive three-dimensional
piecewise linear scalar fields from the given point clouds we follow
the approach by Lukasczyk et al. [LAS∗17]. The contour trees are
simplified by persistence.

As expected, the alignment algorithm computes the alignment
of the contour trees without problems, but as Figure 14 illustrates,
the resulting fuzzy contour tree is complex. The large variance
in the scalar values of critical points of the branch groups indi-
cates that the matching is not semantically meaningful. Hence, non-
meaningful alignments are easily identified.

6. Discussion

As shown in the previous section, fuzzy contour trees are useful to
visualize topological structures across ensembles. Fundamentally,
tree alignment, i.e. the matching of individual contour tree nodes

Figure 13: Common topological structures of the 3D heated cylin-
der ensemble are clearly shown in the fuzzy contour tree. All
branches occurring in at least 8 out of 10 members are highlighted.

and arcs into a super-tree, enables the joint layout of all contour
trees as a fuzzy contour tree, but also imposes some limits w.r.t.
possible applications: often, overlap measures are used to map fea-
tures defined by the contour tree segmentation onto each other. In
contrast, our method is independent of position and area in the field
of matched arcs and nodes. If the same major features are shared
among multiple fields in a similar topological structure (regarding
relative positioning and connectivity in the contour tree) but are
scattered differently over the domain, our approach is still able to
find and match them. Naturally, this is only possible as long as the
overall topological structure provides a sufficient amount of simi-
larity for a meaningful matching.

If the structure of the different contour trees shows only small
or no topological similarity, as discussed in the viscous fingers ex-
ample above, a minimal alignment will exist (and is computed by
our algorithm), but the resulting fuzzy contour tree will not yield a
meaningful visualization. As explained in Section 3 and Figure 2,
alignment matching can be limited by the positioning of semanti-
cally similar features in the individual trees. If a semantically mean-
ingful match is not possible, there are two alignment options: either
the features are not aligned, resulting in two separate branches (de-
sired behaviour), or a semantically not meaningful matching to a
different part of the tree is achieved (see Section 5.3).

Finally, our method cannot automatically identify semantically
meaningless alignments automatically. While it would appear in-
tuitive to consider the alignment cost as a criterion and declare
alignment failed if the cost is too high, this cost is a heuristic that
does not allow an absolute comparison that is easy to generalize
across a large range of datasets. However, identifying alignments
containing matchings of unrelated topological components can be
achieved by a user when comparing matched segments via compo-
nent highlighting. Indications that an alignment is not meaningful
are apparent in the fuzzy contour tree: large differences in the ver-
tical coordinates of saddles and leaves belonging to a branch mark
potential matchings of originally unrelated branches in the individ-
ual contour trees.

Comparison to Similar Techniques. Here, we discuss similarities
and differences of the fuzzy contour tree with similar approaches.

As merge trees can be seen as a special case of contour trees
with a fixed root, fuzzy merge trees could be generated with a sig-
nificant speedup compared to fuzzy contour trees since testing dif-
ferent roots to generate the alignment is unnecessary.

© 2020 The Author(s)
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Compared to the combined visualization of the fuzzy contour
tree, displaying multiple contour or merge trees side-by-side pro-
vides much less support for the tasks defined in Section 5. Inde-
pendent visualization of individual contour trees results in different
layout and scaling; thus, a sensible comparison of the contour trees,
especially of value ranges, is not feasible. Even if identical layout
and scaling could be obtained, there are strong limits on the vi-
sual scalability of a side-by-side approach, and manual or “visual“
matching of subtrees has to be performed by a viewer, making the
approach non-practical overall.

Favelier et al. [FFST19] cluster ensemble members based on
an embedding of their persistence maps in Euclidean space. Us-
ing the notion of mandatory critical points, confidence regions for
each cluster are calculated and visualized. Athawale et al. process
a given 2D Morse complex ensemble to obtain a probabilistic map
and a survival map, called summary maps for 2D Morse complex
ensembles [AMJ∗19]. The probabilistic map shows the probabilis-
tic classification of all points in the plane based on the mandatory
maximum their integral curve ascends to over all ensemble mem-
bers, while the survival map traces the behavior of gradient flows
under persistence simplification, where unchanged gradient flow
direction after a simplification step is counted as a survived step.

Both techniques are suited for ensembles of arbitrary size, but
do not consider or present single or combined contour trees. Fur-
thermore, a fuzzy contour tree incorporates information from in-
dividual contour trees into a single overall visualization, and links
this combined visualization back to the individual contour trees;
this possibility fundamentally enables T3 and is not available in ei-
ther summary maps or the persistence atlas. While the persistence
atlas provides clustering of the ensemble members (T2), users are
not provided sufficient information on individual members to iden-
tify those with common segmentations, unless they are part of the
ensemble’s common topological denominator.

A further limitation of the two approaches in comparison to our
approach is the fixed comparison metric. While the persistence atlas
relies on trend and location of critical points, and the approach by
Athawale et al. is based on the gradient field, our approach can in-
corporate these parameters when matching nodes in the alignment,
but it also can be based only on the topological structure or any
other parameters. This flexibility makes fuzzy contour trees highly
adaptable to domain-specific needs.

7. Conclusions and Future Work

In this paper, we combine tree alignments with a novel layout algo-
rithm to achieve simultaneous depiction of multiple contour trees
as a fuzzy contour tree in a semantically meaningful manner with
minimal clutter. We illustrate the usefulness of these visualizations
for ensemble analysis, and demonstrate interaction enabled by the
fuzzy contour tree on several examples.

We identify several opportunities for future work:

• We will investigate an algorithm to compute minimal tree align-
ments deterministically. While the current algorithm works well
in practice, a deterministic algorithm would be preferential.
• An automated manner to identify non-meaningful alignments

Figure 14: Large differences between saddles and leaves in a single
branch indicate the matching of semantically unrelated branches
for the viscous fingers ensemble.

appears as an important aspect towards real-world use of our
technique, and we will consider several options in future work.
• Identifying suitable cost metrics for a more general set of

tasks and application domains would benefit the applicability of
our approach. For example, an appropriately chosen, location-
dependent metric could shift the focus on variation among en-
semble members rather than commonalities.
• Further optimizations of the layout, as well as a systematic inves-

tigation of visual analysis on top of fuzzy contour trees, appear
fruitful. Furthermore, we will investigate how other scenarios in-
volving several contour trees can benefit from our approach.
• Finally, we will investigate the combination of our approach with

image databases [AJO∗14] for in situ visualization.

While we obtain promising results, our work aims to provide an ini-
tial demonstration that the fuzzy contour tree is useful for topology-
based visualization of scalar ensembles.
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