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Germline modifiers of the tumor immune
microenvironment implicate drivers of
cancer risk and immunotherapy response

Meghana Pagadala 1, Timothy J. Sears 2, Victoria H. Wu3,
Eva Pérez-Guijarro 4, Hyo Kim5, Andrea Castro2, James V. Talwar 2,
Cristian Gonzalez-Colin6, Steven Cao7, Benjamin J. Schmiedel 6,
Shervin Goudarzi8, Divya Kirani 9, Jessica Au 2, Tongwu Zhang 10,
Teresa Landi 10, Rany M. Salem 7, Gerald P. Morris 11, Olivier Harismendy2,12,
Sandip Pravin Patel13, Ludmil B. Alexandrov14,15, Jill P. Mesirov16,17,
Maurizio Zanetti16,18, Chi-Ping Day 4, Chun Chieh Fan 19,20,
Wesley K. Thompson21, Glenn Merlino4, J. Silvio Gutkind3,
Pandurangan Vijayanand 6 & Hannah Carter 16,17

With the continued promise of immunotherapy for treating cancer, under-
standing how host genetics contributes to the tumor immune microenviron-
ment (TIME) is essential to tailoring cancer screening and treatment strategies.
Here, we study 1084 eQTLs affecting the TIME found through analysis of The
Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched
in areas of active transcription, and associate with gene expression in specific
immune cell subsets, such asmacrophages anddendritic cells. Polygenic score
models built with TIME eQTLs reproducibly stratify cancer risk, survival and
immune checkpoint blockade (ICB) response across independent cohorts. To
assess whether an eQTL-informed approach could reveal potential cancer
immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and
ICB response-associated polygenic models; CTSS inhibition results in slowed
tumor growth and extended survival in vivo. These results validate the
potential of integrating germline variation and TIME characteristics for
uncovering potential targets for immunotherapy.

Cancer is a disease characterized by heterogeneous somatic and
germline mutations that promote abnormal cellular growth, evasion
from the immune system, dysregulation of cellular energetics, and
inflammation1–4. Both inflammation and immune surveillance con-
tribute to the selective forces that shape tumor evolution3–6. Immu-
notherapies alleviating immune suppressive signals have emerged as a
promising treatment strategy; however, response rates are low and the
determinants of response remain elusive7,8. Furthermore, the potential
of galvanizing the immune system is still unmet due to an incomplete
understanding of the complex tumor immune microenvironment

(TIME). In particular, knowledge of germline factors and other intrinsic
factors that interact with characteristics of tumors to render them
sensitive to host-immunity or immunotherapy is lacking.

Germline variation is responsible for a considerable proportion of
variation in immune traits in healthy populations9,10. In the context of
tumors, germline variants are associated with immune infiltration,
antigen presentation and immunotherapy responses11,12. Autoimmune
germline variantsmodify immune checkpoint blockade (ICB) response
and variants underlying leukocyte genes predict tumor recurrence in
breast cancer patients13,14. For example, the common single nucleotide
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polymorphism (SNP) rs351855 in FGFR4 was found to suppress cyto-
toxic CD8+T cell infiltration and promote higher immunosuppressive
regulatory T cell levels via increased STAT3 signaling inmurinemodels
of breast and lung cancer15. Normal genetic variation underlyingmajor
histocompatibility complex molecules, MHC-I and MHC-II, dictate
whichmutations in an individual’s tumor can elicit immune responses,
and play a role in antigen-driven host anti-tumor immune activity that
influences tumor genome evolution through immune selection16,17.
Polymorphic variation in these regions has also been linked to treat-
ment outcomes18–20. Recent literature highlights polymorphisms in
other immune-related genes such as CTLA-421, IRF522, and CCR523,24 that
also affect treatment outcomes.

Efforts to identify germline variation associated with anti-tumor
immune responses have pointed to effects on immune infiltration
levels and immune pathways, such as TGF-β and IFN-ɣ11,12,25. Genes with
significant cis-eQTLs in the TCGA are both enriched for immune-
related genes and associated with immune cell abundance within the
TIME26. These studies provide evidence that variants may act through
specific effects on immune cells. eQTL profiling of 15 sorted immune
cell subsets from healthy individuals found that the effects of many
eQTLs were specific to immune cell subsets27. Understanding
mechanisms and cell-type effects of TIME host genetic interactions
could not only identify aspects of immunity that negatively impact
cancer and immunotherapy outcomes, but also point to putative tar-
getable cell types and molecules for modulating immune responses.

In this work, we identify common germline variants associated
with TIME characteristics that are also associated with cancer out-
comes, reasoning that such dual associations would implicate the
aspects of immunity most critical for tumor control and uncover
putative targets for immunotherapy28,29. We construct and validate
polygenic models to predict cancer risk, survival and ICB response,
studying the eQTLs selected during model fitting to gain functional
insights. Our results support a role for common immune variants in
cancer risk, survival and immunotherapy response, and provide a
potential strategy for immunotherapy target discovery. The study
design is summarized in Fig. 1A.

Results
Identifying heritable characteristics of the tumor immune
microenvironment
To focus on common germline genetics with the potential to modify
tumor immune responses, we assessed which characteristics of the
tumor immune microenvironment (TIME) showed evidence of SNP
heritability. To describe the TIME, we collected a comprehensive set of
immune phenotype (“IP”) components comprising composite mea-
sures derived from bulk gene expression and expression levels of
individual immune-related genes (Fig. 1B). Composite phenotypes
included infiltrating immune cell levels calculated using CIBERSORTx
(immune infiltrates) and 6 immune subtype scores from a pan-cancer
TCGA analysis by Thorsson et al. (landscape components). Immuno-
modulators were collected from Thorsson et al., where weighted gene
correlation network analysis was used as an unbiased systematic
approach to identify gene sets relevant to the TIME.We includedgenes
from these sets along with immune checkpoint genes, cell type mar-
kers, antigen presentation genes, TGF-β pathway genes, and IFN-γ
genes as these have been implicated as important modifiers of the
TIME. After removing IP componentswith high numbers of zero values
to reduce spurious associations, we retained 724 immune-related
genes and 9 composite phenotypes (733 IP components total) mea-
sured across 30 cancer types (Supplementary Data 1–3 and Supple-
mentary Fig. 1). Each IP component (gene expression level or
composite phenotype) was analyzed independently.

We evaluated the potential of germline variation to explain inter-
tumor differences in IP components by performing SNP heritability
analysis (Fig. 1A). Since highly polymorphic regions such as the HLA

locus can inflate SNP heritability estimates30, we separately estimated
SNP heritability attributable to the HLA locus and the rest of the gen-
ome. We identified 235 (32.0%) IP components where levels were
SNP-heritable (Fig. 1C and Supplementary Data 4). No composite
phenotypes passed heritability thresholds and thus the remaining
associations werewith gene expression and will be referred to as TIME
eQTLs. For these 235 genes, we conducted 2-state GCTA analysis and
identified 140 (59.6%) that had a significant proportion of SNP herit-
ability attributable to regions outside the HLA locus, while 17 (7.2%)
were mostly attributable to the HLA locus. We focused our TIME eQTL
discovery analysis on these 157 heritable immune genes.

To assess the possibility of tumor-type specific SNP-heritable
effects, we revisited the SNP-heritability analysis in breast cancer,
which had the most samples. The 2-state heritability analysis uncov-
ered 17 genes (FDR <0.05), including HLA region genes (HLA-A, HLA-C,
HLA-G, HLA-DRB1, HLA-DRB5, HLA-DQB1, HLA-DQB2, MR1, MICA,
BTN3A2,HLA-DQA2,HLA-DQA1, andPAICS) and ERAP2 andDCTN5 genes
which were shared with the pancancer analysis. Two additional genes,
KRR1 and FN1, were onlydetected in the breast cancer-specific analysis.
FN1 encodes fibronectin, which plays a role in the stromal micro-
environment and tumor invasion31. It has been implicated in develop-
ment of several tumors, including breast cancer32,33. KRR1 is a
proteasomal subunit linked to integrin expression in breast cancer34.
These results suggest that there are likely shared heritable features
related to antigen presentation, but also differences that could be
unique to each cancer’s microenvironment (Supplementary Data 5).
However, larger sample sizes are needed to investigate tumor-type
specific effects.

Detecting putative germline modifiers of the TIME
To identify TIME eQTLs, we performed a genome-wide association
study (GWAS). First, we analyzed each of the 140 heritable immune
genes outside of theHLA locus across individuals of European ancestry
in the TCGA (Supplementary Fig. 2A). Immune gene expression was
inverse-rank normalized within tumor type, such that tumor-type
specific differences were removed (Supplementary Fig. 1). Only com-
mon germline variants with minor allele frequency >1% were con-
sidered and imputation quality (Rsq) was evaluated to ensure high
accuracy (Supplementary Fig. 2B). No evidence of inflation was
observed (Supplementary Fig. 2C). Using linkage and distance-based
clumping35, we identified 825 TIME eQTLs (Fig. 2A, Supplementary
Data 6). Cis associations, defined as an associated locus occurring
within 1 MB of a gene transcription start site, encompassed the
majority (95.0%) of associations36, while 5.0% of the associations were
trans. Mechanisms of trans associations are complex and tend to have
weaker effects on transcriptional regulation37. In contrast, cis associa-
tions are proximal to an IP component and havemore direct effects on
transcription. Overall, ERAP2 (181, 21.9%), CCBL2 (76, 9.2%), DHFR (75,
9.0%), and ERAP1 (70, 8.5%) had the most germline associations
(Supplementary Fig. 2D) of the 140 genes tested.

To remove HLA region associations solely attributable to LD
structure38,39, we conducted conditional GWAS analysis for seventeen
genes in theHLA region of chromosome6. Alignment to a general HLA
gene reference can introduce error into expression level estimates due
to the highly polymorphic nature of these genes. We therefore also
revisited SNP associations with gene expression estimates derived
from allele-specific RNA alignments40 (“Methods” section) and per-
formed GWAS analysis using allele-specific expression. In total, we
identified 65 TIMEeQTLs in theHLA region (Fig. 2B). CombiningGWAS
and conditional HLA GWAS associations, we identified 890 TIME
eQTLs. Generally, LD-independent eQTLs clustered by genomic
regions with HLA-A, HLA-B, HLA-C associated variants falling in the
MHC Class I genomic region and HLA-DQB1, HLA-DQA1, HLA-DPB1,
HLA-DRB5 associated variants falling in the MHC Class II genomic
region (Supplementary Fig. 2E).We note thatHLA-DRB5 only occurs on
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specific haplotypes, but has homology to HLA-DRB3 and HLA-DRB4
which could lead to erroneous assignment of gene expression in
individuals where theHLA-DRB5 gene is absent. We therefore revisited
eQTL analysis for HLA-DRB5 using only individuals with HLA-DRB1*15
and HLA-DRB1*16 alleles, which indicate haplotypes inclusive of the
HLA-DRB5 gene41–43. This analysis implicated 2 SNPs associated with
HLA-DRB5 expression levels. (Supplementary Data 7).

We noted some correlation among immune genes across
tumors, especially those related to macrophages and lymphocytes

which were the most abundant infiltrating immune cells (Supple-
mentary Fig. 2F). The largest group of correlated genes included
MHC Class I and II genes along with macrophage genes VSIG4,
CD163, FCGR2A FCGR3A, HAVCR2, LILRB2, LILRB4, and CD53 (Sup-
plementary Fig. 3A and S3B) and was most strongly associated with
antigen presentation, dendritic cell processing, and IL-10 produc-
tion (Supplementary Fig. 3C). The next largest comprised two anti-
correlated gene subgroups which contained EP300 and TREX1
respectively (Supplementary Fig. 3D) and was related to innate
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Data file.

Article https://doi.org/10.1038/s41467-023-38271-5

Nature Communications |         (2023) 14:2744 3



immune activation, the C-type lectin receptor signaling pathway
and antigen presentation (Supplementary Fig. 3E). These two
groups correlated strongly with the top 2 principal components
from Principal Component Analysis (PCA) conducted on the
expression of the 157 unique SNP-heritable immune genes. CD53,
CD86, and CYBB, which are highly correlated (ρ > 0.7) to the
Thorsson et al.44 macrophage regulation score, were major con-
tributors to PC1 while HACD2, LNPEP, and EP300 were major con-
tributors to PC2 (Supplementary Data 8). We investigated whether
this gene correlation would inflate the chance of detecting eQTLs
associated with a particular group, however analysis of summary
statistics showed that despite their correlation, genes typically did
not recover the same SNP associations unless they were encoded at
the same genomic locus, such as ERAP1 and LNPEP orOAS1 andOAS3
(Supplementary Fig. 3F). Finally, to confirm TIME eQTLs were not
cancer-type specific, we conducted associations with tumor type. Of
our 890 TIME eQTLs, only rs146336885 was associated with tumor
type (Supplementary Data 9 and Supplementary Fig. 3G).

Previous studies of germline variation and important modulators
of immune checkpoint response such as APOE45, CTSW46, CTLA-421,

PD-L147,48, PD-149–51, CXCR3/CCR523, IRF522, and FGFR415 along with
immune signatures and immune cell infiltration have been
conducted11,26,52. We incorporated these 194 germline associations
from literature into our analyses (Fig. 2C and Supplementary Data 10).
Like Shahamatdar et al.11, we included immune infiltrates estimated
from bulk RNA sequencing into the set of immune components we
investigated, however, none of the CIBERSORTx infiltrates passed our
SNP-heritability filter. Zhang et al.46. took a fundamentally different
approach, analyzing ER + breast cancer-associated variants from
Michailidou et al.53 for proximity to immunoinflammatory GWAS var-
iants. The top SNP, rs3903072, was an eQTL for CTSW in breast cancer.
Although not specifically focused on breast cancer, our study also
identified CTSW as a SNP-heritable IP component (GCTA V(g)/
V(p) = 12.1%) and detected a pan-cancer association with rs3903072
(beta=0.21, p = 2.8e-36). The study by Sayaman et al.52 focused on 139
immune traits described in the Thorsson et al.44 paper, of which 106
were immune signatures and 33 included immune measures such as
TCR/BCR characteristics, CIBERSORTx infiltration and antigen load.
Comparing gene results between Sayaman et al. and our study, 10
genes were shared between our analyses,HLA-DRB5, HLA-B, HLA-DRB1,
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MICB, HLA-DQB1, HLA-DQB2, HLA-DQA1, HLA-DQA2, MICA, HLA-C,
emphasizing the importance of MHC Class I and II machinery in
modifying the TIME. Nineteen of our variants were in LD with 361
Sayaman et al. TIME eQTLs (R2 > 0.50).

Combining our TIME eQTLs and literature associations resulted in
a set of 1084 candidate associations. A number of TIME eQTLs were
associatedwithmultiple immunegenes; thus,wehad agreater number
of associations than TIME eQTLs. For example, within our own dis-
covery pipeline rs2693076 was associated with LILRB2, PLEK, MYO1F,
and CD14. From literature curation, Sayaman et al. identified associa-
tions with rs2111485 and multiple signatures, including interferon-
signaling and IFIT3 signaling.

Identification of TIME eQTLs related to cancer outcomes
We next wanted to determine if TIME eQTLs could serve as the basis
for genetic models for cancer risk, survival and immunotherapy
response prediction. An association with gene expression in the TIME
does not necessarilymean that the eQTLwill impact cancer outcomes.
Thus, we evaluated our TIME eQTLs in the context of human cohorts,
relying on datasets with both genetic and relevant cancer phenotype
data to build models.

For cancer risk, we performed a PheWASwith cancer ICD10 codes
in the UK Biobank, and also cross-referenced our associations against
summary statistics from the NHGRI-EBI GWAS catalog54,55 and Van-
derbilt PheWAS catalog56 (Supplementary Data 11). We observed high
overlap in risk variants (FDR <0.05) identified by these three sources
(Supplementary Fig. 4A). When assessing overlap based on the corre-
sponding genes, an even higher degree of overlap was observed, with
only 2 eQTLs, TAP2, and LNPEP, being uniquely implicated by the UK
Biobank (Supplementary Fig. 4B). For survival analysis, we evaluated
TIME eQTLs with overall and progression-free survival in the TCGA
dataset, treating each tumor type separately. Survival association was
evaluated by CoxPH model for tumor types with at least 100 samples
available and including covariates relevant to each tumor type (Sup-
plementary Data 12–13).

To investigate the implication of TIME eQTLs for immune
checkpoint blockade (ICB) response, we collected sequencing and
ICB response information for 279 patients with melanoma treated
with immune checkpoint inhibitors from 4 studies57–61, and imputed
SNPs from exome sequencing data. PCA analysis of genotypes
showed no batch effects (Supplementary Fig. 4C). Accuracy of
exome-based imputation was assessed by comparing original TCGA
genotype calls to genotypes imputed in from TCGA exome data at
positions matching those in the ICB data; aside from variants on
chromosome 6 within the HLA region most were accurately impu-
ted (Supplementary Data 14). Ultimately, 525 out of 1084 TIME
eQTLs could be imputed with sufficient quality (minor allele fre-
quency >0.05 in all 4 discovery ICB cohorts with imputation accu-
racy of at least 0.362,63 (Supplementary Fig. 4D).We conductedmeta-
analysis with METAL64 using the four melanoma ICB cohorts to
evaluate SNP associations with ICB response. No individual eQTLs
were significantly associated with ICB response after multiple test-
ing correction (Supplementary Data 15).

To model the role of immune genetic background in cancer
phenotypes as a whole, we used polygenic scores. We adopted the
polygenic score construction approach by Elgart et al.65 which
performs shrinkage-based SNP selection followed by construction
of a nonlinear, machine learning based PRS capable of capturing
interactions between SNPs. For risk analysis, we selected two cancer
types for more in depth analysis. We repeated our survival analysis
with tumor-type specific polygenic survival score (PSS) as the
independent variable. We also constructed a polygenic ICB score
(PICS) in the four ICB melanoma cohorts. In each case, we validated
genetic models in independent cohorts. These analyses are
described below.

TIME eQTLs underlying antigen presentation stratify melanoma
and prostate cancer risk
To assess the potential of immune genetic background to influence
cancer risk, we evaluated TIME eQTL derived polygenic risk scores
(PRSs) in two cancer types with differing levels of immune involve-
ment. Melanoma is classically thought of as an immune ‘hot’ cancer
type, with high levels of immune infiltration and one of the highest
rates of immunotherapy response66. In contrast, prostate cancer tends
to have a more suppressed immune microenvironment67,68.

We first constructed PRS from TIME eQTLs in UK Biobank sepa-
rately for melanoma and prostate cancer. Because TIME eQTL risk
associations were derived in part from the UK Biobank, we sought to
evaluate the resulting PRS models in independent cohorts. We vali-
dated the melanoma PRS in 3029 melanoma cases and controls from
UTMDAnderson69. As is typical for PRS scores, the difference in score
distributions for cases and controls was small (Fig. 3A), but the odds of
melanoma were significantly different in the top and bottom 10th
quantile in the validation cohort (Fig. 3B). eQTLs related to CTSS and
MHC class II genes featured prominently among the most informative
features during model fitting, suggesting a role for class II antigen
presentation in cancer risk (Fig. 3C). We validated the prostate cancer
PRS in a cohort comprising 91,644 cases and controls from the ELLIPSE
Consortium70 with similar results (Fig. 3D, E). CTSS and class II MHC
genes were once again themost important features, thoughHLA-B and
HLA-C appearedmore influential in prostate cancer risk (Fig. 3F). Effect
sizes separating the top andbottomquantileswere larger inmelanoma
thanprostate cancer (Fig. 3B vs E andSupplementary Fig. 5).Whilepan-
cancer risk analysis implicated individual eQTLs for CTSS, ERAP1,
ERAP2, CTSW and class I and II MHC genes (Supplementary Data 11),
PRS analysis pointed to additional eQTLs with some shared between
melanoma and prostate (FPR1, LYZ, FCGR3B, HLA-G, HLA-H, HLA-DQA1,
andHLADQB1), unique tomelanoma (MNDA, IL2RA, OAS1, and TAP2) or
unique to prostate (AMP3D, SIGLEC5, HLA-B, HLA-C, and HLA-DRB1).

As the PRS analysis implicated aspects of both antigen directed
T cell responses and macrophage activity, we asked whether the mela-
noma PRS correlated with T cell and macrophage phenotypes in mela-
nomas in the TCGA dataset. Indeed, tumors in the upper 10th quantile
of the melanoma PRS had higher levels of infiltration by pro-tumor
inflammatory M2-like (Fig. 3G), but not M0 or M1-like macrophages.
Promotion of an inflammatory pro-tumor environment was also corre-
latedwithdecreasedCD8+Tcell infiltration (Fig. 3H). This supports that
TIME eQTLs contribute to cancer risk at least in part by modifying the
activity of immune cells at the site where a tumor develops.

TIME eQTLs associated with survival implicate immune evasion
We also revisited survival associations to evaluate polygenic con-
tributions. We built cancer type-specifc PSS separately for each tumor
type using 70% of samples, then used them to calculate PSS for the
remaining 30% of tumors, and evaluated these scores along with other
covariates in aCox Proportional Hazards analysis.We found significant
associations with overall survival in lung adenocarcinoma, stomach
adenocarcinoma, bladder urothelial carcinoma, breast invasive carci-
noma, clear cell renal carcinoma, papillary renal carcinoma, head and
neck squamous cell carcinoma, lung squamous cell carcinoma, eso-
phageal carcinoma, pancreatic adenocarcinoma, rectal carcinoma,
colorectal adenocarcinoma (FDR <0.05; Fig. 4A) andwith progression-
free survival in lung adenocarcinoma, breast invasive carcinoma,
bladder urothelial carcinoma, rectum adenocarcinoma, colorectal
adenocarcinoma, pancreatic adenocarcinoma, stomach adenocarci-
noma, and hepatocellular carcinoma (FDR <0.05; Fig. 4B).

Among these tumor types, we were able to obtain matched sur-
vival and genotype data for non-smokers that developed lung cancer
from the Sherlock cohort71. PSS-stratification of the 30% of TCGA lung
adenocarcinoma (LUAD) samples (Fig. 4C) and individuals in the
Sherlock cohort (Fig. 4D) showed similar effects onoutcome, such that
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tumors with the lowest PSS scores had the best overall survival.
Incorporating the TCGA LUAD-based PSS into a CoxPH analysis of the
Sherlock tumors including clinical covariates (Supplementary Data 13)
returned a larger hazard ratio than in the held out 30% of TCGA sam-
ples (Fig. 4E). The PSS for overall survival included eQTLs for genes
involved in regulating T cell activity (CTSW, PD-1, PD-L1), antigen pro-
cessing and presentation (VAMP372, ERAP2, MICA), response to

immunogenic stimuli such as aberrantDNAormicroorganisms (TREX1,
OAS1, C3AR1, FPR1), suppression of myeloid cells (SIGLEC5), folate
metabolism (GGH, DHFR), amino acid metabolism (CCBL2), and inter-
feron signatures (Fig. 4F). The presence of GGH and DHFR suggested
the possibility that our eQTL set could include pharmacogenomic
modifiers of anti-folate treatments such as methotrexate and peme-
trexed. We therefore revisited our validation analysis, omitting eQTLs
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for these genes, and found that the PSS still validated in Sherlock
(Supplementary Fig. 6).

TIME eQTLs implicate targets for modulating immune
responses
We next constructed an immunotherapy response-specific PRS using
four published melanoma cohorts treated with immune checkpoint
blockade. We validated the predictive potential for this polygenic
score in two independent cohorts, one consisting of renal cell carci-
nomas, and the other of non-small cell lung cancers. In both cohorts,
responders had significantly higher polygenic ICB scores (PICS)
(Fig. 5A, B) and in ROC analysis the PICS achieved an area under the
curve >0.7 (Fig. 5C). Feature importance analysis of the PICS model
suggested eQTLs involving genes related to DNA replication (TREX1,
DHFR) and antigen presentation (PSMD11, ERAP1, ERAP2, CTSS) were
most informative (Fig. 5D).

Although tumor-immune interactions vary across tissue sites and
tumor characteristics, our study design emphasized tumor-general
effects which may explain the generalization of the PICS across ICB
cohorts with distinct tumor types. The PICS selected 30 TIME eQTLs
(Fig. 5E) and one SNP associated with Tfh infiltration levels. The PICS
implicated genes associated with antigen processing and presentation
(CTSS, ERAP1, ERAP2, PSMD11), complement (C3AR1) and cytolytic
activity (CTSW), vesicular transport (DCTN5, DYNLT1), post-
translational regulation (DBNND1, GPLD1), folate metabolism (DHFR),
phagocytic activity (FPR1, LYZ), and single-stranded DNA response

(TREX1). We repeated this analysis selecting 31 TIME eQTLs at random,
matched for minor allele frequency, and found that the observed dif-
ference in burden score between responders and nonresponders was
significantly larger than random in both discovery and validation sets
(Supplementary Fig. 7A, B). PICS outperformed clinical variables such
as age and sex (Supplementary Fig. 7C, D).

For most ICB response genes the direction of effect of variants
associated with responder status was mostly consistent across
cohorts, though some variants, such as rs28459155 associated with
PSMD11 showed less agreement (Fig. 5E and Supplementary Data 16).
rs28459155 associatedwith lower odds of being a responder inMiao et
al., Rizvi et al., and Hugo et al. but higher odds of being a responder in
VanAllen et al., Snyder et al., and Riaz et al. As a comparison to current
ICB biomarkers, we also evaluated association of tumor mutation
burden (TMB) and expression levels of PD-L1, PD-1, and CTLA-4 with
responder status and foundno significant associations (Fig. 5E).We ran
associations with the 31 variants and TMB, PD-L1, PD-1, and CTLA-4 to
determine if any variants were associated with these previously
researched biomarkers. We observed only an association between
TMB and ERAP1 variant rs27765 and PD-L1 and DHFR variant rs503367
(Supplementary Fig. 7E).Models that used PICS togetherwith TMBand
immune checkpoint gene expression had significantly higher variance
explained compared to TMB and immune checkpoint gene expression
alone (anova p <0.007; Supplementary Fig. 7F).

We next evaluated PICS-implicated genes as possible entry points
tomodify anti-tumor immunity. Colocalization of gene expression and
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GWAS signals canpoint to putative causal disease-related genes that in
the setting of ICB response might suggest candidate targets to sti-
mulate more effective anti-tumor immunity. Examining gene expres-
sion data available for 4 out of 6 cohorts, we noted that none of the 15
genes were significantly differentially expressed between ICB respon-
ders and nonresponders (Supplementary Data 17). However, some
TIME eQTLs were associated with both higher expression of the

associated gene and worse ICB response, suggesting that these genes
could potentially be inhibited to improve anti-tumor immunity (Sup-
plementary Data 18). Of the genes meeting these criteria, only CTSS,
TREX1, and PSMD11 had small molecule inhibitors available. For all
three genes the effect of the minor allele on gene expression varied
across human cohorts (Supplementary Fig. 7G, I). In the Van Allen
cohort where rs11917071 associated with lower odds of being a
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responder, individuals carrying the minor allele also tended to have
increased TREX1 expression (Supplementary Fig. 7G). In theHugo et al.
andMiaoet al. cohorts, individuals carrying rs2267844 trended toward
lower TREX1 expression and higher odds of being a responder (Sup-
plementary Fig. 7H). This is consistent with TREX1’s role as an immune
inhibitor that prevents cGAS-STRING initiation, with inhibition of
TREX1 stimulating IFN signaling and autoimmunity, making it a
potential immunomodulatory target73,74. Individuals with rs28459155
had lower odds of being a responder in 3 of the 6 cohorts and trended
toward increased expression of PSMD11 in 2 of these cohorts (Sup-
plementary Fig. 7I). A proteosomal protein involved in ubiquitination,
PSMD11 is associated with worse prognosis in pancreatic cancer75.
IndividualswithCTSS variant rs23058814 also hadhigher odds of being
a responder and trended toward decreased CTSS expression (Supple-
mentary Fig. 7J). Increased CTSS expression has been linked to tumor
progression in follicular lymphoma due to decreased CD8+ T cell
recruitment76. CTSS featured prominently in our cancer risk analysis
and, unlike TREX173,77, had not been implicated as a likely target for
solid tumor immunotherapy. Furthermore, we observed increased M1
macrophage infiltration in individuals with the CTSS variant in Hugo
et al. suggesting that CTSS activity might contribute to remodeling of
the TIME (Supplementary Fig. 7K). These considerations led us to
choose CTSS as our top target to validate in vivo. Examining two
separate mouse immunotherapy-treated mouse models, we observed
significant differences in Ctss expression (Supplementary Fig. 7L, M
and Supplementary Data 19).

To test the hypothesis that inhibition of CTSSwould increase anti-
tumor immune activity, we treatedmice implanted with MC38 tumors
with a CTSS small molecule inhibitor. Mice treated with CTSS inhibi-
tors had slowed tumor growth andbetter survival compared to control
mice (Fig. 5G, H). We also evaluated the interaction of CTSS inhibitor
treatment with anti-PD-1. Mice treated with CTSS inhibitor or anti-PD-1
monotherapy had significantly decreased tumor growth and better
survival compared to control mice. Additionally, tumor growth was
further decreased in mice treated with the combination of anti-PD-1
andCTSS inhibitor as compared tomice treatedwith anti-PD-1 or CTSS
inhibitor alone. In the MC38 model, we observed an increase in infil-
trating M1 macrophages and a decrease in M2macrophages similar to
findings from Hugo et al. (Fig. 5I and Supplementary Fig. 8). These
findings demonstrate that a focused screen for cancer relevant TIME-
associated variants provides a fruitful strategy to reveal novel immu-
notherapy targets. Furthermore, the influence of CTSS inhibition on
the myeloid landscape identifies macrophages as potential cell types
that may modulate immunotherapy response.

Biological implications of TIME eQTLs
Overall polygenic analysis of cancer-relevant TIME eQTLs implicated
91 genes (counting literature-based signatures as a single gene) as
potentially contributing to cancer risk, progressionor immunotherapy
response (Fig. 6A). From these, we sought to understand what aspects
of the tumor-immune interface were affected. We evaluated eQTL-
implicated genes relative to the two broad functional categories
established based on gene ontology enrichment analysis of correlated
gene groups in the TIME (Supplementary Fig. 3). Whilemultiple eQTLs
in both categories contributed to survival and ICB associations, genes
related to innate immune stimulation (Top GO terms: exogenous
peptide antigen processing and presentation, NIK/NF-kβ signaling and
C-lectin driven innate immune responses) were notably absent from
the risk category. This could reflect differences in the tumor types
considered in the risk versus survival analyses performed, or it could
reflect that such immune eQTLs only become relevant in later stages of
disease, perhaps when the right stimuli are present. Literature asso-
ciations were also mostly tied to progression, possibly reflecting that
many of these were originally reported based on observed effects on
prognosis.

The majority of TIME-eQTLs were detected as cis associations
(87.1%), aside from 39 (12.9%) trans associations (Supplementary
Fig. 9A). Eight cancer relevant TIME eQTLs (1.6%) affected protein-
coding regions (Supplementary Fig. 9B). In the case of HLA–A, HLA-C,
FPR1, CTSS and TAP2, missense variants in coding regions were asso-
ciated with expression differences. In addition, missense variants in
PALB2, NOTCH4 and GBP3 were associated with expression differ-
ences in DCTN5, MHC Class II and CCBL2, respectively (Supplemen-
tary Fig. 9C).

As the majority of TIME eQTLs fell within non-coding genomic
regions, we evaluated their potential to affect regulation of chromatin
architecture and transcription based on histone marks78. Regions
harboring TIME eQTLs were strongly enriched in H3K27ac, H3K36me3
and H3K4me3 and depleted in H3K9me3 (Fig. 6B)79. H3K27ac is a
knownmarker of active enhancers andH3K4me3 is usually enriched at
promoters near transcription start sites80,81 suggesting some TIME
eQTLs could affect expression of multiple genes while others may be
gene specific. TIME eQTLs were depleted in repressive H3K9me3
marks82. Enrichment in histonemarks wasmost pronounced in certain
immune cell types (Supplementary Data 20).

eQTLs are often cell-type specific27,83, so we evaluated whether
TIME eQTLs in TCGAwere dependent on immune cell infiltration level
or corresponded to known immune cell-type specific eQTLs in DICE
(“Methods” section). Macrophages, CD4+ and CD8+T cells were the
most represented cell types. Of our TIME eQTLs, 48 influenced gene
expression in macrophage, 44 were CD4+T cell eQTLs, 42 were
CD8+T cell eQTLs and 27 were B cell eQTLs (Fig. 6C and Supplemen-
tary Data 21). Comparing myeloid-specific eQTLs to lymphoid-specific
eQTLs, variants associated with FAM216A, RNASE6, MARCH1, OAS1,
HLA-DQB2, GPNMB, LYZ, and CPVL were myeloid-specific.

Re-visiting the 15 genes implicated by the PICS model (Fig. 7), we
sought to gainmoreperspective on the aspects of immunity influential
for immunotherapy response. Many of these genes also had risk or
survival associated eQTLs and were modifiers of gene expression in
various immune cell types. Peptide processing appeared to be a major
factor contributing to ICB responses; Peptidases involved in both
class I (ERAP1, ERAP2) and class II (CTSS) peptide processing appeared
to be a shared component between ICB response and risk. In contrast,
aspects relating to cytolytic activity (CTSW), pathogen responses
(FPR1, C3A1, and LYZ) and single stranded DNA responses (TREX1)
sharedmore in common between ICB response and progression while
eQTLs involving intracellular trafficking proteins DCTN5 and DYNLT1
appeared to uniquely affect ICB response. Interestingly, eQTLs for
DCTN5 showed immune cell type specific effects, whereas those for
DYNLT1 did not. These proteins mediate vesicle and organelle traf-
ficking that may have different implications in different cell types. For
example, in T cells they may play a role in immune synapse formation
and energetics by transporting mitochondria to the membrane84.
Interestingly, another vesicle trafficking gene, VAMP3, was implicated
in progression. Altogether, our analyses reveal a subset of TIME eQTLs
that highlight key aspects of immune function with implications for
cancer risk, progression, and immunotherapy response.

Discussion
The success of immunotherapies has generated enthusiasm for using
the human immune system as a weapon to eliminate cancers85–88.
However the very existence of cancer indicates the failure of the
immune system to control malignant cell populations throughout
multiple stages of tumor development4. Here we studied common
genetic variants associated with interindividual differences in immune
traits and the tumor immune microenvironment, reasoning that these
variants could reveal the aspects of immunity most critical for the
successful immune control of tumors. Focusing on immune char-
acteristics that showed evidence of SNP heritability in The Cancer
Genome Atlas or were implicated in the literature, we screened for
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eQTLs in the tumor immune microenvironment. We then used poly-
genic score analysis to link genes to cancer risk, progression or
immunotherapy response via their eQTLs. Although there were many
differences in the genes linked to cancer risk, progression and
response to immune checkpoint blockade, the 15 associated with ICB
response often contributed to predictive models across multiple
categories. These included genes related to antigen processing and
presentation, innate immunity, and intracellular trafficking.

The immune system interacts with tumors throughout their
development and treatment, both through tumor-promoting inflam-
mation and immune-mediated elimination of cancerous cells89,90.
Adaptive immunity played a significant role across all aspects of our
analysis. Alongside multiple MHC I and MHC II genes, TIME eQTLs
affected non-HLA antigen presentation pathway genes: CTSS, CTSW,
ERAP1, ERAP2, and TAP2. ERAP1 and ERAP2 are endoplasmic reticulum
peptidases that trim peptides before loading them onto MHC
proteins91,92. ERAP1/ERAP2 polymorphisms have been associated with
cervical cancer and autoimmunity93–99. CTSS is a cysteine protease
critical for MHC Class II loading and is frequently mutated in follicular
lymphoma. Its loss limits communicationwith CD4+T follicular helper

cells while inducing antigen diversification and activation of
CD8+T cells76,100. CTSW is crucial for cytotoxicity and is expressed in
specific immune cell types100. Interestingly, the involvement of MHC II
and immune cell specific genes suggest that inter-individual variation
in immune surveillance contributes to cancer risk. Notably, we saw that
genes implicated in cancer risk were mainly those involved in both
MHC Class I and Class II antigen processing and presentation, while
TIME eQTLs associated with prognosis pointed to genes that would
support evasion of the MHC I CD8+T cell axis including PD-L1, PD-1,
and CTSW.

Polygenic risk scores for melanoma and prostate cancer, two
tumor types falling at opposite ends of the spectrum of immune
activity101,102, both pointed to a role for MHC II-based antigen pre-
sentation. MHC Class II expression has been linked to ICB response in
melanoma;103 Although prostate cancer is considered immunologically
“cold”, rare dramatic responses to immunotherapy have been
documented104. MHC Class II is usually restricted to professional
antigen presenting cells although prostate cancer cells have been
shown to express MHC Class II. The Class II pathway is crucial for a
prolonged anti-tumor response as it leads to sustained CD8+T cell
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activation and leads tomore complete tumor clearance.CTSSwasboth
detected and validated as a determinant of risk and response, sug-
gesting MHC Class II could underlie both risk and response to immu-
notherapy. Together with reports from multiple immune vaccine
studies that responses were primarily driven by CD4+T cells105–108,
these findings place further emphasis on the central importance of
MHC II for effective anti-tumor immune responses.

In contrast, a subset of innate immune geneswere implicated only
in the context of cancer progression and immunotherapy response.
Innate immunity acts as the body’s first line of defense against
microbial pathogens and cancer cells, and involves cells originating in
the bone marrow that carry non-polymorphic receptors. Cells of the
innate branch such as macrophages and dendritic cells play a pivotal
role in the tumor microenvironment creating a hostile pro-
inflammatory environment, suppressing T cells, promoting angio-
genesis, and initiating lymphangiogenesis. While innate eQTLs such as
FPR1, OAS1, and LYZ were also implicated in risk, aspects of immune
stimulation related to pathogen and damage associated molecular
patterns such as TREX1 were depleted in risk association. That these
genes do not appear in association with risk could indicate that the
tumor microenvironment has to reach a certain stage before they are
relevant. Involvement of innate immune genes in later disease stages
could also potentially indicate a role for certain microbes and

pathogens in prognosis and immunotherapy response that ismodified
by inter-individual differences in innate immune function. Indeed, it is
increasingly appreciated that microbes occupy the tumor niche109 and
can contribute to differences in outcome110–112.

Immune checkpoint blockade-specific polygenic scores (PICS)
derived from TIME eQTLs implicated putative targets to modify anti-
tumor immunity; TREX1 has previously been highlighted as a promis-
ing target73, and small molecule inhibition of CTSS resulted in slower
tumor growth and longer survival of mice, with effects comparable
to anti-PD-1. CTSS has been reported to affect macrophage
function and gene expression levels in autoimmune disease113 and has
reported immune suppressive roles in follicular lymphoma76,100,114.
We found that inhibition of this gene relieves immune suppression in
solid tumors and synergizes with immune checkpoint inhibitors. In
solid tumors, reports have highlighted that CTSS can impact TGFβ-
related activities115, autophagy116 and BRCA1 stability117, so it is possible
that the effects of inhibiting CTSS are not exclusive to the tumor
immune microenvironment. Nonetheless, we observed remodeling of
the suppressive and inflammatory-likemacrophage populations in the
mouse tumors treated with CTSS inhibitor.

Notably PICS reproducibly correlated with ICB response across
multiple cohorts with melanoma, non-small cell lung cancer (NSCLC)
and kidney cancer (RCC). Furthermore, PICS compared favorably with
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other popular measures such as tumor mutation burden (TMB) and
checkpoint gene expression for predicting binary response category.
In RCC the link between tumor mutation burden (TMB) and ICB
response is not clear, in contrast to high TMB diseases like melanoma
and NSCLC where higher TMB is associated with better
responses61,118–120. Possibly, in a setting with low TMB such as in RCC,
host genetics havemore value as prognostic biomarkers. In the future,
germline determinants of the TIME couldbe integrated into predictors
alongside other characteristics of the TIME found to inform immune
response such as TMB, PD-L1 positivity, the number and quality of
T cells121, IFN-ɣ response, cytotoxicity scores, T cell activation andT cell
exhaustion signatures59–61,122–129. Some of these factors require profiling
of tumor RNAwhich is less commonly performed in clinical settings. If
germline variants could serve as a proxy for characteristics of the TIME
that otherwise require more complex molecular profiling, they could
provide an avenue for more cost effective tools for the clinic.

Our analysis had several limitations. We focused on common
germline variation; however, rare germline variants have potential to
modify the tumor immunemicroenvironment. In Sayaman et al., MMR
rare variants were associated with higher lymphocyte infiltration and
BRCA1 mutations with IFN and MHC response modules52. Exploration
into rare variants in immune genes could reveal aspects of TIME but
might also share mechanisms with increased infection rates or
immunodeficiencies130,131. These individuals may be affected by rare
cancer types as observed in transplant and HIV-infected patients132.
Common SNP to gene linkages were assumed based on SNP associa-
tion with gene expression. However, it is possible that some eQTLs
may be incorrectly linked to target genes or may affect the expression
of multiple genes.

Furthermore, our approach prioritized pan-cancer associations,
which has the potential advantage of revealing more generalizable
associations at the cost of missing cancer-specific effects. Our
approach is dependent on the availability of paired genomic and
transcriptomicdata from tumors,which is currently available only for a
few cohorts. Effect sizes associating genetic variants with cellular
phenotypes are likely to be larger than those linking genetic variants to
diseases133–135, however the number of associations detected may still
be limited by available sample sizes and the limited population
diversity thereof. Phenotypes comprising multiple genes are likely to
have higher polymorphicity, which could make detection of associa-
tions with composite phenotypes such expression-based estimates of
pathway activity or immune cell infiltratesmore difficult. Wewere able
to impute a subset of our SNPs into existing immune checkpoint
blockade study cohorts that had only exome sequencing, but others
falling outside of exonic regions could not be analyzed in this context.
Studies focused on tumor exomes and transcriptomes could include
genome-wide SNP profiling via arrays or low pass whole genome
sequencing to allow more effective integration into future studies of
germline genomic variation.

Methods
Ethics statement
This research was conducted in accordance with the guidelines of
the University of California San Diego (UCSD) Institutional Review
Board (IRB). The UCSD IRB has determined this study does not
involve human subjects research as defined by federal regulations at
45 CFR 46 as it entails secondary analysis of deidentified human
data. We have taken all necessary steps to ensure that the study was
conducted ethically and in compliance with all relevant guidelines
and regulations. All the animal studies were approved by the Insti-
tutional Animal Care and Use Committee (IACUC) of university of
California, San Diego, with protocol ASP #S15195. All experiments
adhere with all relevant ethical regulations for animal testing and
research.

TCGA subject details
The Cancer Genome Atlas (TCGA) consists of tumor and matched
normal samples for over 11,000patients. TheGenomicDataCommons
(GDC) legacy archive contains germline data for 11,542 samples from
10,875 unique individuals. Samples with TCGA project IDs: DLBC,
LAML, and THYM were excluded as they represent cancers derived
from immune cells. Pairs of individuals with estimated KING kinship
coefficient > 0.177, which represents first-degree relatedness were
excluded. TCGA individuals were consented for general research use
and no attempts were made to reidentify or contact subjects. Both
females and males were included, and sex and individual age were
included as covariates. Experiments were not blinded and randomi-
zation of subjects was not relevant to the study.

TCGA genotype processing
Normal (non-tumor) level 2 genotype calls generated from Affymetrix
SNP6.0 array intensities using BIRDSUITE (RRID: SCR_001794)
software136 were retrieved from TCGA GDC Legacy Portal (accession
date: 04/26/2019) using gdc-client v1.6.0. In these files, each of
906600 SNPs was annotated with an allele count (0 =AA, 1 = AB,
2 = BB, and −1 =missing) and confidence score between 0 and 1. Gen-
otypeswith a score larger than0.1 (error rate >10%)were set tomissing
and data were reformatted for PLINK (RRID:SCR_001757)35. We dis-
carded 322 SNPs with probe names that did not match the hg19 UCSC
Genome Browser (RRID:SCR_005780) Affymetrix track (track: SNP/
CNV Arrays, table:snpArrayAffy6). Allele counts were converted to
alleles using the definitions in metadata distributed with Affymetrix
SNP 6.0 Array Documentation and negative strand genotypes were
flipped to the positive strand using PLINK.

Pre-imputation processing of autosomal and X chromosome
genotypes consisted of the following steps:
1. SNPs with call rate <90% were removed.
2. SNPs with minor allele frequency (MAF) < 1% were removed.
3. Individuals with genotype coverage <90% were removed.
4. Individuals with conflicting gender assignments were flagged.
5. Heterozygous haploid SNPs were set to missing.

After applying these filters, the remaining 800,644 autosomal and
32,809 X chromosome SNPs were input to the secure Michigan
Imputation Server137. SNPs were imputed with Minimac3/Minimac4
and European HRC Version r1.1 2016 reference with Eaglev2.3 phasing.

Post-imputation processing of genotypes included:
1. SNPs with MAF < 1% were removed.
2. Autosomal SNPs with Hardy–Weinberg Equilibrium <1e-9 were

removed.
3. Individuals with high heterozygosity rates (>3 SDs of mean) were

removed.
4. Pairs of individuals with kinship coefficient >0.177 (first-degree

relatedness) were removed.

Rsq values from INFO files were extracted to annotate genotyping
quality. The final genotyping data included 8217 individuals and
7,884,718 variants. Only single nucleotide polymorphisms (SNPs) were
analyzed.

TCGA population stratification
Ancestry filtering was applied using two techniques: (1) k-means clus-
tering and (2) outlier identification. HapMap Phase III genotypes were
obtained from the NCBI HapMap ftp site and lifted to hg19 using lift-
Over (downloaded 07-09-2019)138. Hapmap and TCGA were merged
and reduced to a set of 33,675 independent SNPs determined pre-
viously through linkage-based filtering using PLINK135,138. Pairwise
identity-by-state (IBS) between all individuals was calculated and
the resulting IBS matrix was used for PCA analysis. Ancestral clusters
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were determined by first training k-means clustering using sklearn
v0.20.3 on HAPMAP Phase III individuals and then predicted groups in
TCGA. TCGA Individuals were grouped into the following HAPMAP
groups: (1) TSI, CEU, (2) JPT, CHD, CHB, (3) MEX, (4) GIH, (5) MKK, and
(6) YRI, ASW, LWK. Cluster (1) was identified as European individuals.

We ran the aberrant R package v1.0 with lambda 20 for outlier
identification139. Intersection of k-means clustered individuals andnon-
outlier individuals from outlier identification analysis was used for
the European ancestry discovery cohort in TCGA.

TCGA phenotype data
PanCanAtlas RNA data from GDC PanCanAtlas Publications Supple-
mental Data (https://gdc.cancer.gov/about-data/publications/
pancanatlas) was downloaded (access date: 10/14/19). Only primary
tumors (barcode: 01A/01B/01C) were considered in our analysis. Cor-
responding clinical metadata were obtained from the GDC Portal
(https://tcga-data.nci.nih.gov/docs/publications/tcga/).

The followingphenotypeswereextractedorgenerated fromRNA-
seq data:
1. Immunomodulators: 436 genes used to define immune states

from Thorsson et al.44.
2. Immune checkpoint molecules: 78 immune checkpoint stimula-

tory and inhibitory molecules from Thorsson et al.44.
3. Antigen presentation: 231 antigen presentation genes from Gene

Ontology [GO_REF:0000022].
4. Immune cell markers: 60 immune cell typemarkers fromDanaher

et al.140.
5. IFN-ɣ: IFN-ɣ genes retrieved from Biocarta [Systematic Name:

M18933].
6. TGF-β: TGF-β genes retrieved from Biocarta [Systematic Name:

M22085].
7. Immune states: Individual level scores for 6 immune states

[wound healing, IFN-ɣ dominant, inflammatory, lymphocyte
depleted, immunologically quiet, and TGF-β dominant] from
Thorsson et al.44.

8. Immune infiltration levels: 22 relative immune infiltration esti-
mates from CIBERSORTx141 using the LM22 signature matrix.

Phenotypes with greater than 10% zero values were excluded and
rank-based inverse normal transformation (Supplementary Fig. 1) was
applied to each tumor type using Eq. 1142. This transformation causes
each phenotype to have an identical distribution in each tumor type,
which removes tumor-type specific information.

qnormððrankðx,na:last = 00keep00Þ � 0:5Þ=sumð!is:naðxÞÞÞ ð1Þ

A total of 733 phenotypes remained for preliminary analyses.
For HLA allele-specific expression, TCGA tumor-specific RNA BAM

files were downloaded from the GDC on 07/16/2019. The HLApers143

kallisto-based pipeline was used with gencode v30 annotations144.
Default parameters were used and the two alleles with the highest cal-
culated expression were retained for each HLA gene if there were more
than 2 alleles reported. The top 2 highest expressedHLA alleles for each
genewere averaged for input into SNP analyses. If expression for at least
two alleles was not calculated, expression was set as missing for the
sample. Only primary samples (01A/01B/01B) were considered for ana-
lysis. Summed HLA allele-specific expression was inverse-rank normal-
ized by cancer type and used for downstream analyses.

TCGA GCTA analysis
SNP heritability estimates were calculated with the genomic-
relatedness-based restricted maximum-likelihood (GREML) approach
implemented in GCTA (Genome-wide Complex Trait Analysis)
v1.93.2beta145,146. Genetic relationship matrices (GRMs) which measure
genetic similarity of unrelated individuals (GRM<0.05) were

constructed for the autosomal and X chromosomes for the European
cohort. Benjamini-Hochberg false discovery rates (FDR) were calcu-
lated using statsmodels147. Immune traits were considered sufficiently
heritable if the V(g)/V(p) value was >0.05 using the full GRM.

As highly polymorphic regions such as HLA and KIR gene regions
can inflate heritability estimates, we conducted a 2-state GCTAanalysis
with separate GRMs for HLA/KIR regions (HLA chr6:28,477,797-
33,448,354, KIR chr19:55,228,188-55,383,188) and with the rest of the
genome excluding HLA/KIR regions. Age and sex were included as
covariates. An FDR <0.05 was used to identify SNP-heritable IP com-
ponents from 2-state analysis. If an IP component had high SNP her-
itability using the HLA/KIR GRM, a conditional GWAS analysis was
conducted; otherwise, a standard GWAS analysis with Bonferroni-
corrected suggestive p-value thresholdwas conducted.Ultimately, 140
IP components outside of the HLA/KIR regions and 17 IP components
within the HLA/KIR regions were identified. We repeated the 2-state
analysis for breast cancer only samples using age, ER, PR, and
HER2 status as a covariate. Hormone receptor status was categorical
and retrieved from clinical files describing IHC results.

TCGA phenotype principal component analysis
In all, 157 SNP-heritable components were analyzed using sklearn. IP
component valueswere scaled by SklearnStandard Scaler andused for
principal component analysis (PCA). Ordinary least squares (OLS)
regression was performed with 157 IP components and principal
components, wherein the beta coefficient represents the degree of
change in principal component for every unit change in IP component.
P-values indicate whether a coefficient was significantly differ-
ent from 0.

TCGA GWAS analysis
The GLM method in PLINK was used to conduct association analyses
with IP components. All associations were adjusted for covariates of
age, sex, and the first ten principal components. Gene expression
values, CIBERSORTx relative infiltration estimates, and immune state
scores were inverse-rank normalized by tissue type to control for
tissue-type expression effects. Significant associations were identified
with the PLINK clumping method using the primary suggestive
threshold corrected for the number of phenotypes tested148 (1×10-5/
140) using a kb threshold of 500, and an R2 threshold of 0.5.

To determine if variants had been implicated in previous cancer
GWAS studies, variants were input into the LDlink server (https://
ldlink.nci.nih.gov/?tab=ldtrait) using parameters “EUR” population, an
R2 threshold of 0.5 and base pair window of 500kb54,55. We also
retrieved the Vanderbilt PheWAS catalog56 and any TIME eQTLs in high
linkage disequilibrium (R2 > 0.5) with Vanderbilt PheWAS catalog can-
cer risk TIME eQTLs were included as cancer risk variants. Lastly, we
assessed TIME eQTLs by PheWAS analysis in the UK Biobank
(detailed below).

TCGA conditional HLA analysis
The PLINK GLM method was used to run stepwise conditional ana-
lysis for identification of independent HLA associations39. The most
significant initial associations detected with HLA region phenotypes
by standard GWAS analysis were incorporated as covariates in the
subsequent round. Specifically, we re-ran the analysis with chro-
mosome 6 variants including the most significant SNP (lowest
p-value in the previous round) as a covariate. Analysis was con-
ducted until no SNPs with Bonferroni-corrected p-value < (1 × 10−5/
17) remained. Analysis for HLA-DRB5 was revisited using only indi-
viduals with HLA-DRB1*15 and HLA-DRB1*16 allele calls indicating
haplotypes where the HLA-DRB5 gene is present. We re-ran condi-
tional GWAS analysis only within individuals with these alleles
(n = 1564). SNPs with Bonferroni-corrected p-value (p < 1 × 10−5/17)
were kept for further analysis.
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Literature TIME Associations
We compiled existing germline variants associated with the tumor
immune microenvironment (TIME) or ICB response from the litera-
ture. We collected 14 studies with their descriptions below:
1. Kogan et al. (2018): Discovery of FGFR4 germline variant which

enhances STAT3 activity impeding CD8 T cell infiltration.
2. Queirolo et al. (2017): Investigation of 6 CTLA-4 SNVs in 173

metastatic melanoma patients with overall response and survival
information.

3. Uccellini et al. (2012): IRF5 polymorphism was associated with
non-response to adoptive therapy with TILs.

4. Bedognetti et al. (2013): CXCR3 and CCR5 genetic polymorphisms
were evaluated for expression of respective ligands and TIL
migration.

5. Lim et al. (2018). Systematic identification of germline genetic
polymorphisms associated xCell cell type gene signatures
(gsQTLs) in TCGA.

6. Shahamatdar et al. (2020). Systematic identification of germline
genetic polymorphisms associated with immune infiltration
in TCGA.

7. Ostendorf et al. (2020). Identification of APOE2 and APOE4
germline variants associated with melanoma progression and ICB
response in mice.

8. Zhang et al. (2019). Identification of breast-cancer-associated
variant modulating CTSW expression.

9. Sayaman et al. (2020). Systematic identification of germline var-
iants associated with 33 immune traits including leukocyte sub-
sets, adaptive receptor, immune expression signatures.

10. Yoshida et al. (2021). Identification of 2 PD-L1 variants associated
with survival outcomes in advanced non-small-cell lung cancer
patients.

11. Kula et al. (2020). Review of 10 PD-L1 genetics variants.
12. Salmaninejad et al. (2018). Review of 5 frequently studied PD-1

genetic variants.
13. Sasaki et al. (2014). Characterization of PD-1 promoter variant and

association with survival in non-small cell lung cancer.
14. Tang et al. (2015). Characterization of 3 PD-1 variants and asso-

ciation with cancer risk.

For Sayaman et al., 598 significant associations were identified,
520 of which were within the MHC II region. To identify independent
Sayaman et al SNPs, we performed linkage disequilibrium based
clumping with the same parameters used for our analysis. After
clumping, 55 independent Sayaman et al SNPs remained.

TIME eQTL Annotation
Variants were annotated with VEP (Variant Effect Predictor)149 with
default parameters and the GRCh37 reference genome. Coding var-
iants were mapped to protein sequences using the Uniprot GFF file.

GREGOR (RRID: SCR_009165) was used to analyze SNP enrich-
ment at epigenetic features. We obtained 479 bed files for 11 histone
experiments and 52 cell types from ENCODE (RRID:SCR_015482)
(downloaded on 3 May 2020). Only “stable peaks” and “replicated
peaks” files were kept for analysis. If more than 1 bed file for a cell type
and transcription factor were available, the files were combined,
resulting in 259 files.

GREGOR was run with EUR Reference files made from the 1000
Genomes Project data with an LD window size of 1MB and LD R2 > 0.7.
Enrichment ratios were calculated by taking the difference between
observed and expected number of SNPs and dividing by the expected
number of SNPs. Any files with Audit errors were excluded.

Cell-type eQTL analysis
We followed the GTEx approach for cell type interaction eQTL
discovery36. We ran a linear regression model with an interaction term

accounting for interactions between genotype and cell type enrich-
ment from xCell150 Eq. 2:

p∼g+ i + goi + C ð2Þ

where p is the IP component vector, g is the genotype vector, i is the
inverse normal transformed by tissue type xCell enrichment score150,
and the interaction term g ◦ i corresponds to pointwise multiplication
of genotypes and cell type enrichment scores. The same covariates,
denoted by C, were used as in the regular immune microenvironment
GWAS analysis. Benjamini-Hochberg FDR was calculated for the beta
coefficient of the interaction term and variants with FDR <0.05 were
identified as significant.

DICE expression quantitative trait loci (eQTLs) were obtained at
https://dice-database.org/. Methods associated with DICE eQTL dis-
covery are published in Schmiedel et al.27.

Non-linear polygenic score construction
Using the approach outlined in Elgart et al.65, we generated three dis-
tinct polygenic scores to characterize TIME eQTLs as predictive of risk,
survival, or ICB response. For each predictive task, we built models
using a training cohort and evaluated them on a held-out validation
cohort that was independent of the training cohort when available.
First, we conducted three separate association analyses to determine
the effect of each TIME eQTL on each outcome, including only indi-
viduals in the respective training cohorts to calculate beta and sig-
nificance values and controlling for covariates relevant to each
outcome. Next, nominally significant eQTLs from these associations
were subjected to shrinkage-based selection using LASSO151. We tuned
the parameter controlling the strength of shrinkage (α) in the LASSO
by testing a range of α’s for each model, from those that removed all
eQTLs under consideration to those that kept all of them, and chose
the one that maximized AUC ROC on the training cohort. The eQTLs
that passed this selectionprocesswereused as features to construct an
XGBoost152 model predictive of the outcome of interest. We only fit
XGBoost models on the respective training cohorts and then applied
the models to calculate scores on the validation cohorts. We also
performed a feature importance analysis for each model by using the
model.feature_importances_ function from the python xgboost pack-
age (version 1.6.2). XGBoostmodel parameters were set to default and
a random seed was fixed across all analyses to ensure reproducibility.

Polygenic Risk Scores (PRS) for melanoma and prostate cancer
were constructed from TIME eQTLs with nominal cancer risk associa-
tions based on our UK Biobank PheWAS. Beta values were extracted
from theUKBiobankPheWASwith cancer ICD10 codes. Themelanoma
risk model (number of SNPs=43) was validated using the Geneva
melanoma cohort (excluding individuals with no FH of melanoma),
while the prostate cancer risk model (number of SNPs=26) was vali-
dated on all individuals in the ELLIPSE prostate cancer cohort. PRS
quantiles and corresponding odds ratios were presented.

Polygenic survival scores (PSS) were constructed for cancer types
with available stage information and at least 100 samples. This resulted
in 15 cancer types for analysis. We constructed PSS based on TIME
eQTLs nominally associatedwithOS and PFS in cancer-specific Kaplan-
Meier analyses (P <0.05).Cancer-type specificbeta values for eachSNP
were obtained from a Cox Proportional Hazards model measuring
contribution to survival outcomes while adjusting for relevant tumor
type-specific covariates (Supplementary Data 13). TCGA cohorts were
split 70:30 into train and validation partitions. The PSS model for
TCGA LUAD (number of SNPs=28) was validated in the Sherlock
cohort. Kaplan-Meier curves were generated for the 30% of held-out
TCGA-LUAD samples not used formodel training, and all individuals in
the independent Sherlock validation sets based on quartile stratifica-
tion (low,middle, middle, high) and significance was assessed through

Article https://doi.org/10.1038/s41467-023-38271-5

Nature Communications |         (2023) 14:2744 14

https://dice-database.org/


logrank tests between low and middle, low and high and middle
and high.

Polygenic ICB scores (PICS) were constructed from nominally
significant TIME eQTLs identified in the METAL analysis of response
(iRecist: CR, PR, SD) across four ICB-treated melanoma cohorts (Van
Allen, Hugo, Riaz, and Snyder). The PICS model (number of SNPs = 31)
was validated on two independent ICB-treated cohorts (Rizvi and
Miao). ROC-AUC and Mann-Whitney U tests153 were the primary eva-
luation metrics used to assess PICS performance for predicting ICB
response. We further conducted ROC-AUC analysis with clinical vari-
ables (age, sex) alone, PICS alone, and PICS with clinical variables.
Logistic regression was used to estimate the variance in response
status explained by PICS, TMB and checkpoint gene expression.
McFadden pseudo-R2 was reported and models were compared
by anova.

Risk analysis - UK Biobank
To assess cancer risk, we conducted PheWAS with cancer ICD10 codes
in the UK Biobank. UK Biobank subjects were subsetted into separate
ethnic-racial groups following continental ancestry prior to analysis.
To identify the European-ancestry samples, we started with directly
called genotype data and identified a set of overlapping SNPs with
1000Genomes Project and AWS (RRID:SCR_008801) (1KG) population
and then merged them together. Next, we pruned the SNP set so
remaining SNPswere in linkage equilibriumusingPLINK35.flashpcawas
used to calculate principal components for 1KG SNPs154. The UK Bio-
bank samples were projected onto 1KG space using flashpca. To
identify subjects of European ancestry, we utilized Aberrant to gen-
erate clusterswith a broad set of lambda values (clustering thresholds)
and checked that the cluster included all 1KG subjects of European
ancestry and maximized the total number of UK Biobank subjects
(lambda = 8.2)139. Finally, we compared the self-reported race/ethnicity
of subjects within this cluster and removed samples that were dis-
cordant. We identified 454,487 subjects of European ancestry. To
identify the unrelated samples from the finalized European list, we
used the relatedness file provided by UK Biobank and a custom script
was used to select unrelated samples whilemaximizing sample counts.
The final European unrelated set included 382,841 subjects. Variant
dosages extracted from imputed UK Biobank BGEN files were used for
PheWAS analysis with PLATO v2.0.0155.

ICD10 diagnosis codes associated with neoplasms and immune
disorders were collapsed according to level-1 groupings used by UK
Biobank resulting in a total of 24 groups. For example, C00-C14 is one
of the groups containing ICD10 codes associated with malignant
neoplasm of lip, oral cavity, and pharynx. Individuals with diagnosis
code in a group were coded as 1, with the remaining individuals coded
as 0. Logistic regression was conducted with UK Biobank binary files
containing HLA-immune variants, logistic phenotype file, and age, sex,
and principal components 1-10 as covariates. P values were
Benjamini–Hochberg FDR adjusted.

TCGA survival analysis
Kaplan-Meier analysis of immunemicroenvironment associationswere
conducted with overall and progression-free survival retrieved from
Liu et al.156 by cancer type using the lifelines package v0.25.11. As
recommended by Liu et al., TCGA cancer types, TGCT and PCPG, were
excluded as survival data did not meet quality standards. TCGA indi-
viduals were divided into three groups based on genotype calls: minor
allele homozygotes, heterozygotes and major allele homozygotes.
Significance was determined using the logrank test between minor
allele and major allele homozygotes. Only SNPs with at least 1% minor
allele frequency in each cancer type and more than 1 minor allele
homozygous individual were considered for analysis. Only variants
with a nominal p < 0.05 were considered as candidate features for PSS
model construction.

High Density Melanoma Cohort and ELLIPSE Consortium
genotypes
Rawgenotypes for theHighDensityMelanomaCohort and the ELLIPSE
Consortium were downloaded from dbgap under accession
phs000187.v1.p169,157. Duplicate genotypes were removed and lifted
over to thehg19 referencegenome. SNPswith call rate <90%andminor
allele frequency (MAF) < 1% were removed. Individuals with genotype
coverage <90% were removed. Using snpflip, variants were flipped
such that they were oriented to the “+” strand. 822,808 variants and
3033 individuals remained for genotype imputation by Michigan
Imputation Server137 (Minimac3/Minimac4, European HRC Version r1.1
2016 reference, Eaglev2.3 phasing).

Raw genotypes for ELLIPSE Consortium were downloaded from
dbgap under accession phs001120.v2.p2158. PLINK genotype files con-
sisting of 505,219 calls from the following consent groups were com-
piled: c1-c3,c6,c8,c10-18,c20,c23,c25,c27-28. Pre-imputation
processing of autosomal and X chromosome genotypes followed
below steps:
1. Duplicated variants were removed.
2. Heterozygous haploid SNPs were set to missing.
3. SNPs with call rate <90% were removed.
4. SNPs with minor allele frequency (MAF) < 1% were removed.
5. Individuals with genotype coverage <90% were removed.
6. Non-ACGT variants were removed.

Strand flips were reversed using snpflip. After preprocessing
genotypes, the remaining 410,116 SNPs and 91,644 individuals were
input to the secure Michigan Imputation Server (RRID:SCR_017579)137.
Whole-genomeSNPswere imputedwithMinimac4 (RRID:SCR_009292)
and ancestry-matched reference panel 1000 Genomes Project Phase 3
version 5 (RRID:SCR_008801). Finally, post-imputation duplicated SNPs
and SNPs with MAF< 1% were removed.

Necessary PRS TIME eQTLs were extracted from imputed
genotypes.

SHERLOCK genotypes
Sherlock genotype processing are detailed in original publication71.
Briefly, germline DNA from 256 individuals were obtained. 24 were
excluded due to either quality control issues or computational arti-
facts, resulting in 232 samples. Variants were called with GATK Hap-
lotyper algorithm159. Final calls were annotated with ANNOVAR160.

Immunotherapy response analysis
Raw fastq files were obtained using SRA toolkit v2.9.6-1-ubuntu64 for
the following immune checkpoint trials: Hugo et al. 2016 (SRA acces-
sion: SRP090294, SRP067938; Cancer: melanoma)57, Van Allen et al.
(SRA accession: SRP011540, Cancer: melanoma)58, Miao et al. (SRA
accession: SRP128156, Cancer: clear cell renal carcinoma)161, Riaz et al.
(SRA accession: SRP095809, SRP094781; Cancer: melanoma)60, Rizvi
et al. (SRA accession: SRP064805, Cancer: non-small cell lung
cancer)59, Snyder et al. (SRA accession: SRP072934, Cancer:
melanoma)61. Reads were aligned to UCSC hg19 coordinates using
BWA (RRID:SCR_010910) v0.7.17-r1188162. Reads were sorted by SAM-
TOOLS (RRID:SCR_002105) v0.1.19163,164, marked for duplicates with
Picard Tools (RRID:SCR_006525) v2.12.3 and recalibrated with GATK
(RRID:SCR_001876) v3.8-1-0165–167. Germline variants were called from
sorted BAM files using DeepVariant v0.10.0-gpu168,169. The final immu-
notherapy cohort consisted of 68 clear cell renal carcinoma, 279
melanoma and 34 non-small-cell lung cancer patients.

To evaluate the quality of SNP imputation from whole exome
data, we took advantage of the TCGA having both. Of the 1,322,586
variants available from DeepVariant analysis of immunotherapy
cohort, 225,000 were available in TCGA imputed data. We extracted
these 225,000 variants from TCGA and input into the Michigan
Imputation Server (reference panel: HRC, phasing: Eagle). We
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compared genotypes from whole-exome calls vs. original Affymetrix-
based TIME-SNP calls. Variants with >5%mismatches in genotype calls,
minor allele frequency <5% in any cohort or imputation accuracy
(R2 < 0.3) were excluded. Only variants with at least 5% frequency in all
4 melanoma cohorts used for discovery analysis were considered for
ICB analysis, leaving 525 SNPs.

Population stratification analysis was conducted by taking over-
lapping variants between TCGA and ICB cohorts. Variants with MAF
differences >0.1% were excluded resulting in 3612 frequency-
concordant variants. PLINK IBD analysis was conducted and top 10
principal components were included in association analysis.

Subject phenotypes were downloaded from supplementary
information of ICB trial publications. Four melanoma cohorts were
used as the discovery cohort for ICB-associated variants, while Miao
et al. renal cell carcinoma and Rizvi et al. non-small cell lung cancer
cohorts were used for validation. Response phenotypes were deter-
mined from iRECIST criteria170. Patients were categorized as respon-
ders if they had iRECIST criteria: CR (complete response), PR (partial
response), and SD (stable disease). Non-responders had iRECIST cri-
teria: PD (progressive disease). This resulted in 114 responders and 165
non-responders. Genome-wide association studies (GWASs) were
conducted for ICB responders within each ICB-cohort using PLINK.
Age, sex, and the top 10 principal components were included in the
logistic analysis as covariates. We then used METAL (version release
2011-03-25)64 with a sample size weighting scheme to perform a pan-
study melanoma meta-analysis for ICB response. Only variants with a
nominal METAL analysis p < 0.05 were considered as candidate fea-
tures for PICS model construction.

Immune checkpoint blockade response RNA-seq
FASTQ/BAM files were downloaded for 33 RCC and 120 melanoma
patients. BAM files were converted to FASTQ using bam2fq164.
Unpaired reads were removed using fastq pair171. Paired reads were
aligned with STAR (RRID:SCR_004463) v2.4.1d172 to GRCh37 reference
alignment. RSEM v1.2.21173 was used for transcript quantification. TPM
values were log2 transformed for analyses. Differential gene expres-
sion analysis between responders and non-responders from cohorts
Riaz et al.60, Hugo et al. 2016, Miao et al.161, and Van Allen et al.58 was
performed using the DESeq2143 package in R. Cohort was included as a
covariate when calculating top differentially expressed genes.

Mouse experiments
Wild-type C57BL/6 (RRID:IMSR_JAX:000664) were purchased from
The Jackson Laboratory. Mice at Moores Cancer Center, UCSD are
housed in micro-isolator and individually ventilated cages supplied
with acidifiedwater and fed 5053 Irradiated PicolabRodent Diet 20 lab
diet. Temperature for laboratory mice in our facility is mandated to be
between 65 and 75 °F ( ~ 18–23 °C) with 40–60% humidity. All animal
manipulation activities are conducted in laminar flow hoods. All per-
sonnel are required to wear scrubs and/or lab coat, mask, hair net,
dedicated shoes, and disposable gloves upon entering the animal
rooms. A 12 light/12 dark cycle was used for the mice. In all, 2 × 105

MC38 (RRID:CVCL_B288) cells were transplanted into the flank of 8–10
femaleC57Bl/6 (RRID:IMSR_JAX:000664)mice, aged 7-8 weeks.Where
indicated, when tumors reached 100mm3, mice were randomized and
treated with anti-PD-1 (10mg/kg i.p., Bio X Cell Cat# BE0146, RRID:
AB10949053, clone RMP1-14), CTSS inhibitor (5mg/kg, i.p., APEx Bio)
or isotype control antibody (Bio X Cell, Cat #BE0091). Treatments
were given 3 times a week. Mice were euthanized per ASP guidelines
when tumors reached 1500mm3 or when control mice succumbed to
tumor burdens, and tumorswere taken forflowcytometric analysis. All
mice were euthanized by trained personnel with carbon dioxide
inhalation in a euthanasia chamber. Cervical dislocations were used as
a secondary means to assure death after euthanasia with CO2. MC38
cells were not screened using STR profiled on site.

Flow cytometry
For in vivo studies, tumors were dissected, minced, and re-
suspended in complete media (DMEM with 10% FBS and 1% anti-
biotics) supplemented with Collagenase-D (1 mg/mL; Roche) and
incubated at 37 °C for 30min with shaking to form a single-cell
suspension. Tissue suspensions were washed with fresh media and
passed through a 70-µmstrainer. Cells were stained for viability with
Zombie Aqua Viability Dye (BioLegend) according to manu-
facturer’s instructions. Cell surface staining was done for 30min at
4 °C with the following antibodies: Live/Dead Fixable Aqua stain
(1:1000), CD11b-BV711 (M1/70) (1:200), CD68-APC/Cy7 (FA-11)
(1:100), F4/80-PE/Dazzle (BM8) (1:200), I-A/I-E (M5/114.15.2) (1:200),
and Arginase 1 (A1exF5) (1:100). All antibodies were purchased from
BioLegend, and the viability stain and Arginase 1 was purchased
from ThermoFisher Scientific. The gating strategy for M1 and M2
macrophages are shown in Supplementary Fig. 8.

RT-PCR
RNA from MC38 (RRID:CVCL_B288) tumors was extracted using the
RNeasy Mini Kit (Qiagen catalog #74104). 500 ng of RNA per reac-
tion was used to prepare cDNA with the SuperScript™ VILO™ cDNA
Synthesis Kit (ThermoFisher Scientific) following manufacturer’s
instructions. The cDNA was used to set up the RT-PCR reaction with
4 technical replicates per tumor with the Fast SYBR™ Green Master
Mix (ThermoFisher Scientific) according to manufacturer’s
instructions. PCR quantification was conducted using the 2-ΔΔCT

method and normalized to the housekeeping gene β-actin. Primers
used for CTSS expression quantification are detailed in Supple-
mentary Data 19.

RNA-seq andCIBERSORTx infiltration estimates forM4melanoma
mouse model were obtained from GEO accession (GSE144946).
Responders were mice whose size at harvest was smaller than the last
dose of anti-CTLA-4. RNA-seq counts were converted to TPM and log2
normalized.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All human data used in this study come from publicly available sour-
ces, however some of these sources require controlled access. The raw
data can be obtained directly from the source studies. The processed
formof the data used to support the findings of this study are available
on request from the corresponding authors HC andMP. Becausemany
of the sources are controlled access, the requestor must have
approved access for the data to be shared.

For Data Access to processed genotyping and transcriptomic
data, contact corresponding authors with proof of access to dbGaP
studies: TCGA174 (dbgap accession: phs000178.v11.p8); UK Biobank175

[https://www.ukbiobank.ac.uk/enable-your-research/apply-for-
access]; Hugo et al. 201657 (SRA accession: SRP090294, SRP067938);
Van Allen et al.58 (dbgap accession: phs000452.v3.p1, SRA accession:
SRP011540); Miao et al.161 (dbgap accession: phs001493.v2.p1, SRA
accession: SRP128156); Riaz et al.60 (SRA accession: SRP095809,
SRP094781); Rizvi et al.59 (dbgap accession: phs000980.v1.p1, SRA
accession: SRP064805); Snyder et al.59,61 (dbgap accession: phs001041.
v1.p1, SRA accession: SRP072934); Oncoarray Prostate Cancer176

(dbgap accession: phs001120.v2.p2); High Density Analysis of
Melanoma69,157 (dbgap accession: phs000933.v3.p1).

The remaining data are available within the Source Data file.

Code availability
All code used for analysis and figure generation are available at https://
github.com/cartercompbio/TIMEgermline 177.
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