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The heart and brain have bi-directional influences on each other, including

autonomic regulation and hemodynamic connections. Heart rate variability (HRV)

measures variation in beat-to-beat intervals. New findings about disorganized

sinus rhythm (erratic rhythm, quantified as heart rate fragmentation, HRF) are

discussed and suggest overestimation of autonomic activities in HRV changes,

especially during aging or cardiovascular events. When excluding HRF, HRV is

regulated via the central autonomic network (CAN). HRV acts as a proxy of

autonomic activity and is associated with executive functions, decision-making,

and emotional regulation in our health and wellbeing. Abnormal changes of

HRV (e.g., decreased vagal functioning) are observed in various neurological

conditions including mild cognitive impairments, dementia, mild traumatic brain

injury, migraine, COVID-19, stroke, epilepsy, and psychological conditions (e.g.,

anxiety, stress, and schizophrenia). Efforts are needed to improve the dynamic

and intriguing heart-brain interactions.

KEYWORDS

heart rate variability, cognition, inhibitory control, neurological conditions, heart and
brain, erratic sinus rhythm, heart rate fragmentation, vagal functioning

1. Introduction

The heart and brain connect via both electrical and hemodynamic interactions
(Figure 1). For example, vagal nerves innervate the heart and mainly target the sinoatrial
(SA) node and atrioventricular (AV) node, release acetylcholine upon activation, and
decelerate heart rate; while sympathetic nerves project to the SA node, AV node, and
most cardiac muscles, release norepinephrine (NE) and epinephrine (E) upon activation,
and accelerate heart rate (Levy et al., 1993; Shaffer et al., 2014). The speed at which the
molecular signals of each branch are processed influence the speed at which the heart rhythm
is affected (Levy et al., 1993). Beat-to-beat variation is more affected by the rapid release
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and termination of acetylcholine neurotransmission of the vagus
nerve. Sympathetic nerves release norepinephrine, which is slower
to release and slower to act as it relies on a second messenger in
the signaling pathway, therefore affecting the heart rhythm across
several beats (Russo et al., 2017). As for signaling from the heart to
the brain, over 80% of vagal nerves are afferent and send impulses
to the brain (McCraty and Childre, 2010). Sympathetic afferent
nerves send autonomic signals to the dorsal root ganglia. Vagal and
sympathetic afferent nerves project to both subcortical and cortical
regions including brainstem, hypothalamus, thalamus, amygdala,
and cerebral cortex (McCraty and Childre, 2010; McCraty and
Shaffer, 2015).

Aside from electrical connections, reciprocal hemodynamic
connections exist between the heart and the brain. The heart pumps
blood which provides oxygen and nutrients to the brain; conversely,
deoxygenated blood flows back to the heart from the brain for re-
oxygenation through the pulmonary circulation. Reduced cardiac
function, as occurs in heart failure secondary to conditions such as
myocardial infarction, cardiomyopathy, or valvular heart disease,
can result in reduced cerebral blood flow, affecting cognitive
function, and contributing to dementia risk (Havakuk et al., 2017;
Moore and Jefferson, 2021). Reduction of forward cardiac output
due to arrhythmias including chronic atrial fibrillation can reduce
cerebral blood flow, leading to cognitive dysfunction (Madhavan
et al., 2018). The development of blood clots within the chambers of
the heart can contribute to embolic stroke. Atherosclerotic lesions
in the aorta and carotid arteries can inhibit blood flow to the brain,
and if they dislodge, result in embolic stroke. Hypertension within
the vascular system can result in lacunar infarcts to the brain. Thus,
a number of cardiovascular hemodynamic conditions can affect
cerebral function (Havakuk et al., 2017; Moore and Jefferson, 2021).

These bi-directional electrical and hemodynamic connections
between the heart and the brain support physiological,
psychological, and cognitive health and influence our physical,
mental, and social health (Balconi et al., 2017; Salomon et al., 2017;
Forte et al., 2019). For example, stress from natural disasters such
as earthquake or a pandemic were associated with increased cardiac
death and myocardial infarction (Kloner et al., 1997; Kloner, 2019;
Albott et al., 2020; Rollman et al., 2021). Alternatively, heart-brain
dysfunction can also be triggered by unnatural factors such as
sporting events, when emotionally devoted fans of a Super Bowl
game showed increased cardiac death associated with loss by their
home teams (Kloner et al., 2009). Another heart-brain dysfunction
example concerns the risk of Alzheimer’s disease (AD), where
higher Framingham Cardiovascular Risk Score is associated with
increased cerebral infarction, cerebral atherosclerosis, and AD
pathology (Song et al., 2021).

1.1. Heart rate variability (HRV)

Heart rate variability (HRV) is a measure of the variability of
beat-to-beat interval (R-R interval) putatively resulting from the
dynamic interactions between sympathetic and parasympathetic
activities (Prinsloo et al., 2013; Dziembowska et al., 2016). HRV
is analyzed from short-term 1 or 5-min electrocardiogram (ECG)
recordings of participants at rest and seated in a laboratory setting.
Other durations of ECG recordings (long-term such as 24-h) or

positions (such as supine) are used based on testing needs. Software
used for analysis includes, but is not limited to, Kubios, Biopac,
LabChart, or in-house developed codes (such as in MATLAB).
The ectopic beats are usually removed before the HRV analysis,
since only sinus beats are believed to reflect signals from the
brain conducted by autonomic circuits. Recent studies suggested
erratic sinus arrhythmia, independent of autonomic regulation,
contribute to HRV. These erratic rhythms need to be excluded
before autonomic regulation can be interpreted from traditional
HRV analysis (Costa et al., 2017, 2018).

1.1.1. Traditional HRV analysis in time and
frequency domain

Heart rate variability measurements using linear methods
are usually analyzed in the time domain as R-R intervals (RR),
heart rate (HR), standard deviation of the normal-to-normal
(NN) interval (SDNN), root mean squared successive differences
(RMSSD), and the percentage of the number of changes in
successive normal sinus (NN) intervals that exceed 50 ms (pNN50).
In the frequency domain, HRV measures are analyzed as high
frequency (HF), low frequency (LF), very low frequency (VLF), and
ultra-low frequency (ULF). Non-linear HRV analysis, including
Poincare plots, Power Law Exponent, Approximate Entropy,
non-linear prediction, symbolization, phase synchronization, and
Detrended Fluctuation Analysis, are less commonly used and are
beyond the scope of this review (Francesco et al., 2012; Voss et al.,
2015).

Overall, RMSSD and HF reflect vagal inputs to the heart. For
example, higher HF, RMSSD, or pNN50 indicates higher vagal
functioning, while decreased levels suggest lower vagal activity
(Shaffer and Ginsberg, 2017). The ratio of low- and high-frequency
power (LF/HF) has been used to estimate the sympatho-vagal
balance. However, this concept was disproven by Dr. Billman and
others who argued that LF reflected a complex mix of sympathetic,
parasympathetic, as well as other unidentified components, and
LF/HF was affected by respiration and heart rate independent of
autonomic nerve activity (Billman, 2013; von Rosenberg et al.,
2017). Therefore, results with symptho-vagal balance interpretation
of LF/HF are not further considered in this review.

Standard deviation of the normal-to-normal interval is a
marker of total heart rate variability and is influenced more by
sympathetic activity than other HRV measures. Additionally, VLF
and ULF are usually analyzed from 24-h ECG, and have putatively
been linked with circadian rhythm, core body temperature,
metabolism, and sleep cycle; but research on VLF and ULF
have been limited (Shaffer and Ginsberg, 2017; Table 1). The
term “vagal tone” in HRV was derived from previous studies of
vagal activity modulation. Examples include direct vagal nerve
stimulation induced decreased HRV (Rosenblueth and Simeone,
1934), or increase or decrease in HRV by blockade of autonomic
nerve transmission by targeting either the β-adrenergic receptors
or the muscarinic receptors, of the sympathetic or parasympathetic
systems, respectively (Levy, 1990; Ahmed et al., 1994; Challapalli
et al., 1999). We use the term “vagal functioning” instead of
“vagal tone” in this review, as additional components of HRV
have been reported in the last decades. HRV reflects respiratory
activity (respiratory sinus arrhythmia, or RSA) and blood pressure
fluctuation (known as Mayer wave ∼0.1 Hz) (Zeng et al., 2018; La
Fountaine et al., 2022).
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FIGURE 1

The neural communication pathways interacting between the heart and brain are responsible for the generation of HRV. The intrinsic cardiac
nervous system integrates information from the extrinsic nervous system and the sensory neurites within the heart. The extrinsic cardiac ganglia
located in the thoracic cavity have connections to the lungs and esophagus and are indirectly connected via the spinal cord to many other organs,
including the skin and arteries. The vagal nerve (parasympathetic) primarily consists of afferent (flowing to the brain) fibers that connect to the
medulla. Used with permission from the Institute of HeartMath, Boulder Creek, California (McCraty and Shaffer, 2015).

1.1.2. Heart rate fragmentation (HRF)
Complicated contributors to beat-to-beat variations suggest

that the classical HRV as a proxy of sympathetic-parasympathetic
balance may be over-interpreted, at least in some situations
(Hayano and Yuda, 2019). For example, autonomic regulation
is not associated with non-respiratory sinus arrhythmia or
erratic sinus rhythm. The erratic rhythm is different from vagal
functioning and potentially confounds the prognostic role of
traditional time and frequency HRV analysis (Nicolini et al., 2012;
Makowiec et al., 2015). Costa et al. have introduced heart rate
fragmentation (HRF) analysis, such as percentage of inflection
points (PIP) (Table 1), to differentiate between the erratic rhythm
and autonomic regulation (Costa et al., 2017, 2018). Erratic sinus
rhythm evaluation through non-linear analysis, such as Poincare
plots, short-term fractal scaling exponent, is beyond the scope of
this review (Stein et al., 2008).

Heart rate fragmentation increased with aging and provided
additive value or independent information for classical HRV
changes in cardiovascular conditions, such as coronary artery
disease or adverse cardiovascular events (Costa et al., 2018; Hayano
et al., 2020; Lensen et al., 2020). In the same study of atherosclerosis,
Costa et al. (2021) also reported that increased HRF during sleep
reflected and predicted decreased global cognitive performance (by
Cognitive Abilities Screening Instrument, CASI) and processing
speed (by digit symbol coding, DSC).

In this review, although our focus is on RR, HR, RMSSD,
SDNN, HF, and LF, it will be important in future studies to clarify
the role of HRF vs. autonomic contributions to HRV.

1.1.3. HRV and age, sex, and heart rate
Heart rate variability measures are affected by age and sex.

A study of HRV including 1,743 participants ranging from 40 to

100 years old demonstrated that SDNN decreases with age, while
RMSSD decreases from 40 to 60 years of age and then increases after
60–70 years of age. Females presented with lower SDNN but with
higher RMSSD values than males; and individuals with diabetes
presented lower RMSSD and SDNN in both sexes (Almeida-
Santos et al., 2016). Another study with over 63,000 participants
showed that females presented with higher heart rate and HF (vagal
activity) compared to males (Koenig and Thayer, 2016). Voss’s
group studied HRV (time domain, frequency domain, and non-
linear methods) in 1,906 participants (782 females and 1,124 males)
ranging from 25 to 74 years. They reported that in general age
influences were stronger than gender influences: SDNN, RMSSD,
LF, HF decreased with age in both genders up to 64 years of age.
Females (in comparison to males) presented lower LF and increase
HF, which disappeared after 44 years (LF) or 54 years of age (HF)
(Voss et al., 2015). The idea that RMSSD increases after 60–70 years
of age could not only be attributed to vagal functioning, but could
also reflect erratic rhythm or increased heart rate fragmentation
(Hayano et al., 2020). Thus, HRV studies considering sex difference
and age will be helpful in improving HRV reproducibility and
replicability, and caution is needed to interpret those changes,
especially when studies involve older participants.

Heart rate variability may also be affected by HR, itself.
A study of 36 young healthy volunteers inferred that HRV
depends more on heart rate (HR) than respiratory rate, and
the removal of HR impact improves HRV repeatability (Gasior
et al., 2016). However, the clinical significance of the predictive
value of HRV can be either dependent or independent of
HR. For example, higher HR itself is a risk factor for
cognitive decline (Imahori et al., 2021). Consequently, heart
rate correction is not routinely used in all forms of HRV
analysis.
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TABLE 1 Traditional HRV time-domain and frequency-domain measures and heart rate fragmentation measures.

Parameter Unit Description

SDNN ms Standard deviation of NN intervals

pNN50 % Percentage of successive RR intervals that differ by more than 50 ms

RMSSD ms Root mean square of successive RR interval differences

ULF power ms2 Absolute power of the ultra-low-frequency band (=0.003 Hz)

VLF power ms2 Absolute power of the very-low-frequency band (0.0033–0.04 Hz)

LF power ms2 Absolute power of the low-frequency band (0.04–0.15 Hz)

LF power nu Relative power of the low-frequency band (0.04–0.15 Hz) in normal units

HF power ms2 Absolute power of the high-frequency band (0.15–0.4 Hz)

HF power nu Relative power of the high-frequency band (0.15–0.4 Hz) in normal units

LF/HF % Ratio of LF-to-HF power

PIP % Percentage of inflection points for R-R interval

NN intervals, interbeat intervals from which artifacts have been removed; RR intervals, interbeat intervals between all successive heartbeats. ms, milliseconds; ms2 , ms squared; nu, normal
units; PIP, the percentage of inflection points. Adapted from Tables 1, 2 of Shaffer and Ginsberg (2017) and Costa et al. (2017, 2018).

1.2. HRV and brain

There is increased interest in the link between HRV and
cognition (Figure 2). The purpose of this report is to summarize
knowledge about links between HRV and cognition, their
interactions during physiological state and neurological conditions,
potential mechanisms underlying the links, and potentials ways to
improve overall health through the links.

2. Method

We reviewed the literature on PubMed/Google Scholar
database in order to determine the current literature dealing with
the link between HRV and cognition. Inclusion criteria were
based on key search items, “heart rate variability,” “cognition,”
and “dementia” “Alzheimer’s disease,” “traumatic brain injury,”
“migraine,” “COVID-19,” “stroke,” “epilepsy,” “psychological
conditions,” and “inhibitory control.” Additional search items
include “erratic rhythm” and “heart rate fragmentation.” The
authors reviewed the citations from review papers involving
HRV (linear analysis) and cognition. The final reference list
was generated based on relevance to the topics covered in this
review. Please note that here we only peek through the lens of

FIGURE 2

The number of publications on HRV and cognition increases in
recent years.

“HRV-cognition” to study the heart-brain connection. Due to the
complexity of this topic, we may not have included all studies that
are relevant to this field.

3. HRV changes and neurological
status

3.1. Physiological conditions

Heart rate variability directly and indirectly affects decision-
making related to overall health in our daily life. High HRV (high
HF or RMSSD measures) has been linked with greater executive
function, better dietary decisions, better controlled social media
use, and better negativity avoidance, among others (Allen et al.,
2007; Sakaki et al., 2016; Fung et al., 2017; Maier and Hare, 2017;
Forte et al., 2019; Williams et al., 2019; Mantantzis et al., 2020).

3.1.1. Executive function
Heart rate variability measures (LF, HF, LF/HF, RMSSD, SDNN)

can be potential early markers of cognitive impairment (Forte
et al., 2019). In a study of 79 young healthy participants using
a 5-min resting ECG analysis, higher resting HF was associated
with higher executive function (Williams et al., 2019). Interestingly,
lower resting heart rate was correlated with higher executive
function, evaluated by composite score averaged from performance
in multiple tasks such as color-word interference, visuospatial,
and trail making when controlled for lower-order processes such
as processing speed (Williams et al., 2019). Additionally, a study
including 53 young male sailors showed that higher resting RMSSD
(higher vagal functioning) was associated with better working
memory (n-back of digits) and attention (continuous performance
test, CPT), including faster and more accurate responses (Hansen
et al., 2003). Inhibitory control has been measured by startle
response (e.g., eye blink from auditory stimulation). In an example,
92 college students (Yang et al., 2021) underwent dual-task
paradigm that consists of a working memory task (various cognitive
loads) and picture viewing task (pleasant, neutral, and unpleasant
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FIGURE 3

HRV and brain cognition have bidirectional connections: Decreased HRV (from lower top-down inhibitory control) links with reduced executive
function, decision making, or emotional regulation and presents in pathological conditions (dementia, mTBI, migraine, etc.). Approach increasing
HRV also improves brain activity (e.g., alpha frequency oscillation ranged 8–12 Hz) and top-down control, and vice versa. AD, Alzheimer’s disease;
ADRD, Alzheimer’s disease and related dementia; HRV, heart rate variability; LBD, Lewy body dementia; LFO, Low frequency Oscillation; mTBI, mild
traumatic brain injury; NS, nerval system; PFC, prefrontal cortex; RIPC, remote ischemic preconditioning; Sym., sympathetic activity; TMS,
Transcranial magnetic stimulation; vagal, vagal activity; VD, vascular dementia.

images), and their resting HRV was measured. Participants with
lower resting HF presented a higher startle response magnitude
when concurrent working memory load was high, which can result
from insufficient top-down resources when the PFC is heavily taxed
by high working memory load (Yang et al., 2021). Furthermore,
in a study of 50 young healthy participants, Ottaviani et al. have
reported positive associations between resting HRV and inhibitory
control. In their study, those with higher resting RMSSD predicted
better inhibitory control, also after adjustment for confounders
including sex, body mass index, and impulsivity (Ottaviani et al.,
2019). A path modeling study from a large sample of civil servants
in Brazil (N = 8,114) has suggested that HF reduction (measured
with a 10-min resting-state ECG) was associated with impaired
executive function (trail-making B) due to insulin resistance and
subclinical atherosclerosis (Kemp et al., 2016).

3.1.2. Decision making
A study of 51 young male participants examined the

relationship between resting HRV and dietary decision-
making with options of food between healthy nutrients and
tasty temptations. Individuals with high HRV presented better
resistance to temptation from comfort foods and presented higher
ventromedial PFC activity by functional magnetic resonance
imaging (fMRI), supporting HRV as a strong dietary self-control
biomarker (Maier and Hare, 2017). In that dietary study, SDNN
was used as the HRV proxy, as it is a general variability measure
which reflects all influences on RR interval series and is known to
correlate with measures that reflect phasic vagal activity during
resting state (Allen et al., 2007). An additional decision-making
example involves resisting social media network overuse. Among
112 participants ranging between 17 and 53 years old, participants
exhibiting high impulsivity and low executive function scores
tended to suffer from excessive social media use (Wegmann et al.,
2020). Interestingly, high HRV were associated with decreased
impulsivity (Fung et al., 2017). Therefore, high HRV could directly

and indirectly (through better executive function and lower
impulsivity) help resist the temptation to social media overuse.

3.1.3. Emotional regulation
Decision-making is influenced by emotional regulation (Martin

and Delgado, 2011). A study involving 63 young (mean age of 19)
and 62 older (mean age of 72) participants measured resting HRV
and eye-tracking while presented with images of faces showing a
range of emotions. While young participants, regardless of HRV
level, showed no preference between happy or angry faces, older
participants with high HRV were more likely to avoid angry faces,
suggesting a greater ability to minimize negative influences and a
stronger positivity effect that can benefit emotional regulation and
health (Mantantzis et al., 2020). Another study of 21 older and 20
young adults used functional MRI (fMRI) and HRV methods. Their
results showed that greater resting HRV (RMSSD) was associated
with stronger connectivity between amygdala-medial prefrontal
cortex (mPFC) across age groups; however, it was associated with
stronger connectivity between amygdala-ventrolateral PFC only
in the younger group. This study indicates that higher HRV is
associated with better emotional regulation across age groups, with
some changes in regional associations during aging (Sakaki et al.,
2016).

A study including 388 healthy participants of three different
age groups suggested that higher RMSSD was linked with higher
functional connectivity from bilateral ventromedial PFC in the
young adult group and higher functional connectivity from
bilateral posterior cingulate cortex across all ages (Kumral et al.,
2019). This study supports the role of PFC functional plasticity with
aging (Greenwood, 2007).

Therefore, high HRV links with better executive function,
decision-making ability, and emotional regulation that benefit
health and wellbeing. Further, although cognitive function (PFC
connectivity) may change with aging, emotional regulation is
resilient to aging.
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3.2. Pathological conditions: Dementia,
traumatic brain injury (TBI), migraine,
COVID-19, stroke, epilepsy, and
psychological conditions

Studies have linked HRV (ECG analysis) with cognitive
dysfunction (including EEG analysis) in dementia, trauma, and
COVID-19 (Kim et al., 2006; Nicolini et al., 2014; Purkayastha et al.,
2019; Mol et al., 2021), among others.

3.2.1. Neurological conditions
Dementia is increasingly a source of great personal, societal, and

economic burden. The most common type is Alzheimer’s Disease
(AD), followed by vascular dementia, and dementia with Lewy
bodies (DLB). Early detection and differentiation as well as the use
of simple biomarkers are critical for early prevention as obvious
symptoms are lacking until later in disease progression (Nelson
et al., 2010). Imbimbo et al. (2022) studied 24-h ECG, European
Society of Cardiology Systematic Coronary Risk Evaluation (ESC
SCORE), and cognitive function (Montreal Cognitive Assessment,
MoCA) in 50 men and women with cardiovascular risk (age ranged
51–77). Their study reported that ultra-low frequency (ULF) HRV
was positively associated with MoCA and was negatively associated
with ESC SCORE, meaning higher ULF was linked to better
cognition and lower ESC SCORE. These findings supported the
idea that dysregulation of autonomic nervous system plays an
important role in developing cardiovascular risk and cognitive
decline (Imbimbo et al., 2022). In a retrospective study of resting
HRV on mild cognitive impairment (MCI) patients, compared
to the ones who developed AD (MCI-AD, n = 23), those who
developed DLB (MCI-DLB: n = 23) presented lower HRV levels
(SDNN, RMSSD, LF, HF), as well as lower visuospatial and frontal
executive functions tested by comprehensive neuropsychological
test commonly used in Korea (Allan et al., 2007; Kim M. S. et al.,
2018). An additional HRV study of 311 elderly women showed that
cognitive impairment (Mini-Mental State Examination less than
24) was greater in participants with lower HRV (HF) (Kim et al.,
2006). Therefore, lower HRV were observed with cognitive decline.

Nicolini et al. studied HRV of 253 participants [with amnestic
MCI (aMCI), non-amnestic MCI (naMCI), or cognitively normal
controls], combined with neuropsychological assessment, as well
as visual rating scales for hippocampal atrophy (Scheltens’ scale),
insular atrophy (Kim’s scale), and cerebrovascular burden (Fazekas’
scale) on brain imaging (Nicolini et al., 2020). Traditionally,
it is considered that aMCI is associated with AD pathology,
while naMCI is associated with other dementia, such as vascular
dementia. Among the three groups, aMCI group presented with
blunted normalized low frequency (nLF) increase with postural
change (from supine resting to standing): more nLF increase in
aMCI related to better episodic memory (prose-delayed recall)
and less hippocampal/insula atrophy. This result suggested an
overlapping autonomic regulation structure that involves memory
processing (Nicolini et al., 2020). On the other hand, naMCI
participants presented similar HRV changes to controls: more
LF increase related to greater cerebrovascular burden and lower
executive function. Their results suggested different autonomic
mechanisms between aMCI and naMCI (Nicolini et al., 2020).
Another important finding is that HRV changes depend on

task types. For example, a cross-sectional study examined 5-min
ECGs from 80 older participants with MCI or healthy cognition
during supine rest and standing positions (Nicolini et al., 2014).
Although no differences in baseline HRV indices between groups
were observed, during position changes the MCI participants
presented with smaller increases of normalized LF (nLF) and
smaller decreases of normalized HF (nHF), indicating reduced
physiological changes when transitioning from supine resting to
standing (Nicolini et al., 2014). Additionally, Arechavala et al.
(2021) used 5-min ECG recordings of 46 cognitively healthy elderly
participants classified into two groups (normal or pathological
levels of CSF amyloid/tau) at rest or during a computer-based
task switching challenge. In this study, there were no differences
in baseline HRV between the two groups. However, HRV (RR
and LF) decreased from resting to task in those with pathological
amyloid/tau, indicating a hyper-active sympathovagal response to
a task-switching challenge (Arechavala et al., 2021). These studies
suggested that compared to age-matched controls, individuals with
early AD risk presented reduced autonomic changes with physical
position changes from supine to standing but presented greater
responses to mental tasks.

Mild traumatic brain injury (mTBI) or concussion is a functional
abnormality with reported autonomic dysfunction. A study of 31
young athletes who experienced concussion or mTBI has suggested
that HRV (pNN50) decreased only at the acute stage (3 days
after injury) and then recovered at around 3 weeks after injury
(Purkayastha et al., 2019) compared to 31 undiagnosed young
athletes. Higher middle cerebral artery blood velocity at the acute
stage was linked with higher HRV (pNN50) and better scores in
cognition (Trails making tests) at 3 weeks and 3 month (pNN50)
after injury, indicating that insula perfusion (supply by middle
cerebral artery) at the acute stage may be one of the underlying
predictors for future recovery (Ture et al., 2000; Jordan, 2013;
Purkayastha et al., 2019).

Migraine has been shown to involve autonomic dysfunction.
A cross-sectional study of 36 participants (18 episodic migraine
and 18 controls) has shown that migraine patients during ictal
stage presented with lower SDNN and LF than controls. The
decreased HRV suggested parasympathetic dysfunction that was
negatively related to the visual analog scale for pain intensity,
meaning lower HRV linked to greater pain intensity (Zhang et al.,
2021). Matei et al. (2015) analyzed HRV of 24-h ECG recordings
from 27 young patients with migraine (10 with aura and 17
without aura at headache free period) against 10 age-matched
healthy controls. They observed consistent autonomic imbalance
such as decreased SDNN, RMSSD, and HF in migraine patients
(especially those with aura during the night period) supporting
parasympathetic hypofunction with sympathetic predominance.
Consistent with decreased vagal modulation in migraine, Akter
and Ferdousi studied 5-min resting ECG from 60 newly diagnosed
migraine patients against 30 age-matched healthy controls. They
observed decreased SDNN and RMSSD, as well as higher mean
heart rate in the migraine group (Akter and Ferdousi, 2017).

COVID-19 pandemic has been a recent global health concern.
Results from an online questionnaire and cognitive tests completed
by 421 participants reported that memory deficit is associated with
fatigue or mixed symptoms (Guo et al., 2022). A retrospective
study of 271 hospitalized patients has suggested that higher resting
HRV (SDNN) predicted more survival of COVID-19 patients aged
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70 and older (Mol et al., 2021). Mol et al. suggested that it was
only confirmed in this study that when HRV was low, COVID-19
survival was predicted by age, supporting a protective role of vagal
activity in COVID-19 (Mol et al., 2021). Additionally, a study of
17 patients analyzed HRV (SDNN) utilizing 5–7 min daily ECG
recordings for a week (Hasty et al., 2020). Results showed that of
the 12 patients who developed a C-reactive protein (CRP) surge of
50% or more, 10 were preceded by over 40% drop of HRV (SDNN)
within 72 h, and two other patients were treated with convalescent
plasma. Therefore, HRV drop predicted an acute inflammation in
COVID-19 (Hasty et al., 2020). Another study of 50 participants
with a history of COVID-19 infections compared with 50 healthy
controls demonstrated decreased HRV in the time domain (such
as SDNN and RMSSD) and frequency domain (such as LF and
HF), indicating HRV abnormality after COVID-19 (Kurtoglu et al.,
2022). Although larger sample sizes are needed for confirmation,
these studies suggest that HRV may be a helpful tool in monitoring
autonomic dysfunction in COVID-19 patients.

Heart rate variability may help to predict stroke. In part of
the Copenhagen Holster Study where 48-h ambulatory ECG and
HRV were collected from 678 healthy participants between 55 and
75 years of age, lower nighttime SDNN strongly predicted stroke
development even after adjustment for stroke risk factors (Binici
et al., 2011). Another study investigated baseline HRV from 5,308
patients that suffered an event of transient ischemic attack (TIA)
and minor stroke, followed by functional prognosis and stroke
recurrence 90 days after the event. The results suggest that higher
SDNN predicts reduced neurological disability and reduced stroke
event (Li et al., 2021). In a study of 884 stroke-free Cardiovascular
Health Study (CHS) participants, Bodapati et al. examined 24-
h ECG-derived HRV and CHS clinical stroke risk score (CHS-
SCORE). It was reported that 2 HRV measures, CV% (coefficient
of variance of each 5-min NN intervals) and SLOPE (power law
slope, or the slope of a line fitted to a plot of log spectral power
vs. log of underlying frequency), significantly improved stroke
prediction (Bodapati et al., 2017). Therefore, HRV is helpful with
stroke detection and prognosis.

Epilepsy has been studied with HRV for over 30 years.
Patients’ interictal HRV suggests an autonomic balance shift
toward sympathetic dominance, which also tends toward further
sympathetic overactivity (Myers et al., 2018). In a study of 11
epilepsy patients, HRV was compared from 5-min ECG recordings
at 10-5 min and 2 h before seizure onset (Moridani and Farhadi,
2017). Results show that during 5–10 minutes before seizure onset,
there were increases of mean HR, LF/HF, and SD2/SD1 (standard
deviation of heart rate signals, SD1 shows rapid changes and
SD2 describes long-term changes, non-linear analysis in Poincaré
plot). Although Poincaré plot analysis is a non-linear method, SD1
and SD2 determined from Poincaré plots are purely linear. These
HRV features can potentially be used to define a threshold to
aid in predicting seizures (Moridani and Farhadi, 2017). This was
supported by a recent study of 238 temporal lobe seizures from 41
patients where HRV features, including decreased RR and pNN50,
helped to identify pre-ictal state in 90% of patients and 41% of
seizures (Billeci et al., 2018; Leal et al., 2021).

3.2.2. Psychological conditions
Anxiety disorders have been linked with a higher risk of

cardiovascular disease. A meta-analysis study of 2,086 patients

with anxiety disorder and 2,294 controls free from psychiatric
diagnosis suggested that lower HF and time domain measures are
associated with anxiety disorders (Chalmers et al., 2014). These
results suggest that decreased vagal activity may underlie increased
cardiovascular risk in anxiety disorders. Stress conditions were
reviewed in a meta-analysis of HRV and stress from 37 publications.
This overview suggested consistent low vagal activity (decreased
HF and increased LF) related to stress (Kim H. G. et al., 2018).
Schizophrenia as another critical neurological disorder affecting
especially younger people, is of great epidemiological importance
especially for the healthcare system of developed civilizations
(Hasan et al., 2014; Schulz et al., 2020). Schulz et al. (2020)
studied cardiorespiratory network coupling for 30 min during
rest (NN interval, heart rate, and respiratory frequency) from 23
patients with schizophrenia, 20 first-degree relatives, and 23 healthy
controls, using coupling analyses including normalized short-
time partial directed coherence, multivariate transfer entropy, and
cross conditional entropy. Results suggest compared to controls,
schizophrenia patients’ respiration had weaker influences on heart
rate, while their heart rate had stronger influences on respiration;
their first-degree relatives presented stronger heart rate influences.
Results revealed a genetic component of the cardiorespiratory
coupling (Schulz et al., 2020). The same group also studied central-
autonomic-network (CAN) between central (frontal EEG power),
vascular (systolic pressure amplitude), respiratory (frequency), and
cardiac (heart rate) activities from 17 schizophrenia patients and
17 controls. Results suggest that schizophrenia patients presented
stronger linear respiratory and cardiac influences on central
activity, and stronger linear central influences on vascular activity
compared to controls (Schulz et al., 2019). Therefore, HRV could
be a potential objective measure of psychological distress, including
anxiety, stress, and schizophrenia.

Therefore, HRV has been studied in various neurological
conditions. HRV analysis may help predict symptoms or outcomes
of cognitive decline, migraine, epilepsy, and stroke, and to
help identify psychopathologies such as anxiety, depression, and
schizophrenia. These changes link pathologies and symptoms
such that HRV potentially allows diagnostic and therapeutic
supplements in existing pre-clinical and clinical research.

To summarize, high HRV and its associated vagal functioning
reflect better executive function, emotional regulation, and decision
making in healthy individuals. During pathological condition,
HRV was associated with autonomic dysfunction observed in
neurological diseases (Figure 3). Efforts are needed to improve our
understanding of the heart-brain interactions.

4. Updates and limitation

There are some limitations and updates to this topic: (1)
We only reviewed literatures using linear analysis of HRV and
non-linear HRV analysis were not included. (2) Studies have
focused on classical HRV analysis that represent autonomic
regulation. However, recent studies have demonstrated that a
more disorganized sinus rhythm (erratic rhythm) can contribute
to HRV increase in older adults, besides autonomic regulation
(Stein et al., 2008; Wdowczyk et al., 2018). The mechanisms
underlying the heart rate fragmentation are limited. Details
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are beyond the scope of this review. Candidate contributors
may include cellular, intracellular, extracellular mechanisms, and
potential sinus cell uncoupling (Lensen et al., 2020). Therefore,
heart rate fragmentation adds to the complexity of what HRV can
be interpreted as neuro-autonomic regulation and is also consistent
with a limited view of what HRV can tell us. Further studies
will be needed to address that. (3) We have reviewed studies that
include both short term measures of HRV in the laboratory settings
(most studies) and HRV over a prolonged period of time in real
life ambulatory settings. With more focused electrophysiological
processing, lab settings provide high quality signals and controlled
environment, as well as individual’s responses to stimuli (Angius
et al., 2019; Arechavala et al., 2021). HRV studies in real life
settings have received attention recently with advantages of real-life
processing of stimuli. Their challenges include lower signal quality
from physical activity and uncontrollable momentary conditions.
Several approaches have been used to overcome those challenges
for large scale HRV studies, such as additional algorithm for noise
reduction, artificial intelligence, and use appropriate reference state
(Smets et al., 2019). For example, carefully designed experiments
are needed with data collected at different times or conditions
for the same individuals that allow self-controlled data (Smets
et al., 2019). Further, commercial technologies provide wearable
sensors for real life HRV studies, which have supported their
application for objective measures of stress or relaxed state and
orthostatic challenge (Hernando et al., 2018; Gambassi et al., 2020).
Interestingly, HRV study during a simulated virtual environment
has been shown to detect stress-vulnerable individuals (Rodrigues
et al., 2020). (4) HRV measured under real life or free-running
conditions needs to be carefully interpreted. The information
at the time of measurement is often insufficient, and it is
difficult to tell whether the HRV analyses reflect characteristics of
autonomic function or indirectly reflect characteristics of behavior
or psychophysical activity. For example, a lower LF/HF during free
activity is associated with worse life expectancy (Shimizu et al.,
2002). However, when people spend more time in the supine
position during the day, they may have a lower mean LF/HF, but
it is not associated with lower sympathetic activity (lower stress or
better cardiac function).

5. Conclusion

The heart and brain have bi-directional influences on each
other, and both are involved in an individual’s proper reactions

to internal and environmental signals. The reciprocal support
and regulation help wellbeing while dysregulations (e.g., decreased
vagal functioning or increased HRF) can be associated with
cognitive dysfunction or other neurological conditions.
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