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Abstract 

High-grade (WHO grades III-IV) glioma remains one of the most lethal human cancers. Adoptive transfer of tumor-targeting chimeric 
antigen receptor (CAR)-redirected T cells for high-grade glioma has revealed promising indications of anti-tumor activity, but objective 
clinical responses remain elusive for most patients. A significant challenge to effective immunotherapy is the highly heterogeneous 
structure of these tumors, including large variations in the magnitudes and distributions of target antigen expression, observed both 

within individual tumors and between patients. To obtain a more detailed understanding of immunotherapy target antigens within 

patient tumors, we immunochemically mapped at single cell resolution three clinically-relevant targets, IL13R α2, HER2 and EGFR, 
on tumor samples drawn from a 43-patient cohort. We observed that within individual tumor samples, expression of these antigens 
was neither random nor uniform, but rather that they mapped into local neighborhoods – phenotypically similar cells within regions 
of cellular tumor – reflecting not well understood properties of tumor cells and their milieu. Notably, tumor cell neighborhoods of high 

antigen expression were not arranged independently within regions. For example, in cellular tumor regions, neighborhoods of high 

IL13R α2 and HER2 expression appeared to be reciprocal to those of EGFR, while in areas of pseudopalisading necrosis, expression 

of IL13R α2 and HER2, but not EGFR, appeared to reflect the radial organization of tumor cells around hypoxic cores. Other 
structural features affecting expression of immunotherapy target antigens remain to be elucidated. This structured but heterogeneous 
organization of antigen expression in high grade glioma is highly permissive for antigen escape, and combinatorial antigen targeting is 
a commonly suggested potential mitigating strategy. Deeper understanding of antigen expression within and between patient tumors 
will enhance optimization of combination immunotherapies, the most immediate clinical application of the observations presented 

here being the importance of including (wild-type) EGFR as a target antigen. 
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Introduction 

The present standard of care for high-grade glioma (WHO grades III-IV)
remains maximal surgical resection followed by a combination of radiation,
chemotherapy [1] , and electric field stimulation [2] . Unfortunately, despite
considerable efforts, achieving effective and durable responses to treatment
has remained elusive [3] . 

Immunotherapies in various forms [4] , among them chimeric antigen
receptor (CAR) T cell immunotherapy [5–12] , have provided tantalizing
evidence of clinical responses [9 , 13] that, almost inevitably, have been
followed by tumor recurrence. Failure to achieve satisfactory clinical responses
has been attributed to multiple tumor responses initiated by the selection
pressures imposed by immunotherapies, including, but not limited to,
enhancement of the already highly disseminated nature of high grade
glioma, activation of resistance mechanisms originating in the tumor
microenvironment [9 , 14] , and the potential for evasion of immune targeting
(antigen escape) conferred by phenotypic heterogeneity within tumors [15–
20] . 

Work over the last several decades has revealed complex spatially
heterogeneous distributions of genetic, epigenetic, metabolic and protein
expression patterns that collectively define local neighborhoods within brain
tumors [21] . We believe that fine-grained cell-level analyses across multiple
patients will be required to achieve the level of understanding of high-grade
glioma [22] required to design the most effective therapies. 

Immunotherapies ideally target tumor-associated antigens with elevated
expression on glioma cells with little or no confounding expression on normal
cells in the brain or elsewhere. Several antigens fulfilling this requirement have
been described, proposed, or are under evaluation, in ongoing clinical trials of
chimeric antigen receptor (CAR) redirected T cells: IL13R α2 [16 , 23] ; HER2
[24–26] ; EphA2 [27] ; and wild-type EGFR as well as the EGFRvIII variant
[28–30] . 

Our laboratories have focused on acquiring a deeper understanding of
the organization of cell populations within the tumors of individual patients
(intra-tumor heterogeneity), and of how these vary between different patients
(inter-patient variability). In this study we consider spatial expression three
immunotherapy target antigens across a cohort of patient samples: IL13R α2,
HER2 and EGFR. IL13R α2 is a high-affinity IL13 receptor expressed by
a high percentage of high-grade gliomas [23 , 31-34] , but not significantly
in normal brain. The HER2/ErbB2 receptor tyrosine kinase is expressed by
15-30% of GBMs and is not found on normal postnatal neurons and glial
cells [35 , 36] . EGFR is over-expressed in well over half (55-70%) of newly
diagnosed glioblastomas [37] , with appearance of the EGFRvIII mutation,
when present, overlapping with wild-type EGFR [38–40] . Immunological
targeting of IL13R α2, HER2 and EGFR individually has been shown to be
safe in clinical practice [16 , 26 , 28] . 

We have here defined by immunochemistry the spatially-varying
expression patterns of these three immunotherapy targets in formalin-fixed
paraffin-embedded (FFPE) tissue samples from a cohort of 43 patients
with high-grade glioma (WHO grades III-IV). We observed that when
examined at cell-level resolution, target antigen expression was for the most
part organized into millimeter-scale neighborhoods – phenotypically similar
cells within regions of cellular tumor [21] –shaped by not well understood
combinations of cell intrinsic processes and impinging microenvironmental
cues. Strikingly, when considered across cellular tumor areas of many
patient samples, the spatial extent of EGFR-dominant neighborhoods
appeared be reciprocal to the distribution of IL13R α2 and HER2. Areas of
pseudopalisading tumor cells, however, showed tighter spatial organization in
which expression of IL13R α2 and HER2 could vary over a few cell diameters
in cells arrayed around hypoxic centers [41] . Curiously, in these areas of
pseudopalisading tumor cells, EGFR expression appeared independent of the
hypoxic gradients presumed to shape IL13R α2 and HER2 expression. 
In future investigations of fundamental tumor biology we will consider 
he multiple overlapping mechanisms that together shape the organization 
f these antigen expression neighborhoods. Clinically, our data suggests that 
ptimal multiantigen targeting strategies to “box in” high-grade gliomas and 
inimize antigen escape to yield more effective and durable therapeutic 

esponses [42–44] should incorporate targeting of (wild-type) EGFR. 

aterials and methods 

atient samples 

A cohort of 43 deidentified high-grade glioma brain tumor samples 
Supplemental Table 1), unselected except for the size of the tissue section, 
ere drawn from archival material in the tumor bank maintained by the 
OH Department of Pathology: 25.6% (11/43) WHO grade III and 74.4% 

32/43) WHO grade IV. Brain tumor samples were acquired at resection 
r biopsy from patients with either progressing or recurrent tumors (the 
atient populations available to us), and therefore from patients previously 
xposed to other therapies but who had not initiated immunotherapy. At 
he time that most of these tumor samples were collected, between 2004 
nd 2013, information on IDH status, EGFR amplification, TCGA subtype, 
nd other tumor characteristics was not collected and therefore, while 
otentially informative, was not available. Some information on the tumors 
as incorporated in pathology reports, and is presented in Supplementary 
able 1. As controls, five normal human brain samples were purchased 

rom US Biomax (GL803), and four normal brain tissue samples (frontal 
ortex, hippocampus, medulla, and pons) were provided by the City of Hope 
epartment of Pathology. All procedures and protocols were approved by the 
ity of Hope Institutional Review Board (IRB). 

mmunohistochemical staining 

Serial 4 μm-thick sections were cut from formalin-fixed, paraffin- 
mbedded (FFPE) blocks to generate sequential slides for multiple antigen 
taining. In each case, the first slide was processed for hematoxylin and 
osin (H&E) staining, followed by (in sequence) EGFR, IL13R α2, and 
ER2 immunohistochemistry (IHC), each with hematoxylin counterstain, 

sing Envision + System-HRP 3,3 ′ -diaminobenzidine (DAB) chemistry and 
utostainerPlus hardware (both Dako) by the City of Hope Research 
athology Core shared resource. All patient sample and control slides were 
rocessed together to minimize batch effects. Antibodies and dilutions 
ere: EGFR (1:100, Invitrogen 28-0005); IL13R α2 (1:600, R&D Systems 
F146); HER2 (1:200, Dako A0485). Cell populations identified by EGFR 

mmunoreactivity likely included those displaying the EGFRvIII variant, 
s EGFRvIII expression is almost always associated with wild-type EGFR 

38–40] . 

isual evaluation of tumor grade and antigen expression 

For each of the 43 patient tumor samples, the H&E slide was annotated
y a neuropathologist (D’Apuzzo) to define four major histological regions: 
ellular tumor (defined as > 60% tumor cells), pseudopalisading within 
ellular tumor areas, infiltrating tumor ( < 50% tumor cells), and normal 
rain (approximately 0% tumor cells). Intensity scales for each antigen 
ere set based on positive and negative controls: testis and prostate tissue 

or IL13R α2, and breast cancer and lung cancer for HER2 and EGFR,
espectively. Visual scoring of antigen expression (H score = 0-300) used the 
ystem: intensity (1-3) × percent positive cells. 
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Figure 1. Spatially varying expression of immunotherapy target antigens IL13R α2, HER2 and EGFR. A, Immunohistochemical (DAB) visualization of target 
antigens in aligned serial sections, annotated for cellular tumor regions as well as for normal and necrotic regions, illustrating variation in their expression across 
the tumor section. Note in these sections the absence of immunostaining for CAR T cell target antigens in regions of normal brain. Tumor PBT025-1 B, DAB 

optical density for images in part A, pseudocolored blue (low) → red (high). The same color scale was used for each image. C, Overall agreement of visual 
immunostaining score by a neuropathologist [H score = intensity (1-3) × percent positive cells], and quantitative measures of regional integrated optical 
density (rIOD) for the same tumor sections. Spearman coefficients are indicated; p = < 0.001 for all comparisons. 
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High resolution slide scanning 

The stained tumor sections were imaged in their entirety at high
resolution (0.46 × 0.46 μm pixels) using a Hamamatsu Nanozoomer 2.0
HT scanner (20 × source lens) (City of Hope Light Microscopy and
Digital Imaging Core). Images were saved in NDPI format (Hamamatsu)
and examined with NDPI.view v2 (Hamamatsu) or ImagePro Premier v9.1
(Media Cybernetics). For quantitative measurements, images were down-
sampled 1:4 (to 1.84 × 1.84 μm pixels) and converted to TIFF format
(Icy; http://icy.bioimageanalysis.org/ ), and then deconvolved into DAB and
hematoxylin (nuclear counter stain) channels (Fiji/ImageJ; https://fiji.sc/ )
[45] . 

Quantitative considerations of target antigen expression 

Images of serial sections were brought into registration using a two-step
process. First, the images of deconvolved hematoxylin-stained nuclei were
optimized for contrast and aligned [Fiji/ImageJ; Register Virtual Stack Slices
affine feature extraction, elastic registration by bUnwarpJ splines)]. Then 
he transformation parameters for the nuclear images were applied to the
mmunostained (DAB) sections (Fiji/ImageJ; Transform Virtual Stack Slices). 
he segmented immunostained images could then be pseudocolored and 

uperimposed. 
To examine histological regions of interest (ROIs) identified from H&E

tained slides (cellular tumor, for example), ROIs were mapped onto
equential immunostained sections for region-specific analyses. Expression 
evels of EGFR, IL13R α2 and HER2 in these ROIs were measured as regional
ntegrated optical density (rIOD) using the DAB plug-in of ImagePro.

ithin each histologically-defined ROI, ImagePro identified features as areas 
f grouped immunostained pixels, and for each feature returned integrated
ptical density (IOD) and feature area. Values of rIOD, IOD scaled to
he feature area within each ROI, were calculated as 255 – [( �IOD /

area) × (average area)]. These values of rIOD were used as metrics
f antigen expression within histologically-defined regions. The threshold 
or positive expression of each antigen was two times the average rIOD
etermined for a cohort of normal brain controls ( Figure 6 B). 

http://icy.bioimageanalysis.org/
https://fiji.sc/
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Figure 2. Intra-tumoral organization of IL13R α2, HER2 and EGFR antigen expression neighborhoods in cellular tumor regions, as determined from a 
grid superimposed on aligned serial sections. Within each grid element (9.2 × 9.2 μm), optical density (OD) for IL13R α2 (red), HER2 (green) and EGFR 

(blue) was measured, scaled relative to the maximum value in that section, and plotted with OD determining symbol size [smaller (lower) → larger (higher)], 
and transparency [more transparent (lower) → more opaque (higher)]. For clarity of these plots, the threshold for display was 30% of maximum, and grid 
elements were binned 10:1. Associated with each map is an Euler diagram presenting the proportions of cellular tumor regions in each tumor section occupied 
by each of the eight possible antigen combinations. Scale bar = 1 cm in each panel. A1-A3, Three tumor samples (with relatively low HER2 expression) 
illustrating tumor-to-tumor progression from EGFR-dominant to IL13R α2-dominant antigen expression. B, A tumor sample (PBT018) with very low EGFR 

expression, illustrating intermixing with relatively little high level co-expression in IL13R α2- and HER2-dominant neighborhoods. C, A portion of tumor 
sample PBT025-1 with extensive pseudopalisading necrosis (PBT025-1a), showing the relation between the structure of the tumor cell palisades and target 
antigen expression (considered in more detail in Figure 4 ). The Euler diagram illustrates the extensive overlap of antigen expression within this subregion of 
pseudopalisading necrosis. 
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Figure 3. Total percent of cellular tumor regions in each section occupied by each of the targeted antigens (IL13R α2, HER2 and EGFR), ordered by total EGFR 

occupancy. Data are shown for the entirety of tumor samples, with the exception of PBT025a encompassing the area of pseudopalisading necrosis, and illustrate 
the overall reciprocal relationship between expression of EGFR and IL13R α2 (and to some extent HER2). The complete set of antigen immunoreactivity 
maps from which these values were taken are shown in Supplemental Figure 1. The dotted lines highlight trends in the data. 
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Alternatively, to evaluate IL13R α2, HER2 and EGFR expression in
regions of each tumor without prior selection of ROIs, a grid (5 × 5
pixels; 9.2 × 9.2 μm; total area 84.64 μm 

2 ) was imposed on the
IL13R α2/HER2/EGFR TIFF image stack, and OD was extracted for each
antigen in each position. These were then plotted (down-sampled 10:1 for
efficiency) using Origin (Origin Lab; Northampton, MA) with the presence
of each antigen in each position indicated by color, and staining intensity
(OD) by symbol size and transparency ( Figure 2 ; Supplementary Figure 1) .
Proportions of total cellular tumor area occupied by each of the eight possible
combinations of three tumor antigens were computed for each position
in the grid, and visualized in Euler diagrams (Euler APE ) [46] ( Figures 2
and 6 C; Supplementary Figure 1). Additionally, we determined the total
percent of tumor area occupied by each antigen, singly or in combination
( Figure 3 ). 

Statistical considerations 

Statistical significance was evaluated in Prism v8 (GraphPad Software) by
Student’s t -test; significance was assessed as p < 0.05. 

The Spearman correlation coefficient (r) for non-parametric data,
calculated using Prism v8, was used to compare software-based quantification
with conventional pathology scores ( Figure 1 C), to compare expression
levels of IL13R α2, HER2 and EGFR between tumor samples ( Figure 7 A),
and to evaluate The Cancer Genome Atlas (TCGA) [47] expression data
( Figure 7 B). TCGA mRNA expression levels (Affymetrix U133A array) were
determined using probes 206172_at for IL13R α2, 216836_s_at for ERBB2,
and 201983_s_at for EGFR, with threshold defined as 2-fold over-expression
compared to normal brain. 

The Shannon diversity index ( H ) is a metric, viewed in an ecological
context, of species diversity within a mixed population of many species.
It incorporates consideration of the number of species in the population
richness) and their relative abundance (evenness). Here, for cellular tumor
egions, N is the number of antigen species, in this case three (IL13R α2,
ER2, and EGFR), and p i (calculated from relative rIOD) is the proportional

xpression of each antigen within a given region or neighborhood. It is
valuated as H = 

∑ N 
i=1 p i ln( p i ). Thus an H value of 0 indicates no diversity

one antigen present), and increasing values of H reflect the presence of both
ultiple antigens and greater differences in their relative expression. 

esults 

Expression of potential immunotherapy target antigens was evaluated 
n individual surgical resections from a 43-patient cohort (Supplemental 
able 1). For each tumor sample, consecutive FFPE sections were H&E
tained, or immunostained for the immunotherapy target antigens of interest:
L13R α2, HER2, and EGFR. From the H&E sections, a neuropathologist
utlined histologically-defined regions of normal brain, infiltrating tumor, 
ellular tumor, pseudopalisading necrosis (a subset of cellular tumor), and
ecrotic tissue that was omitted from any further analyses. In the example
f immunostained sections shown in Figure 1 A (PBT025-1) and presented
n pseudocolor in Figure 1 B, it is clear that within cellular tumor regions,
xpression of IL13R α2, HER2 and EGFR could be intermixed and not
patially uniform. 

In this study we evaluated antigen expression by pixel-level quantitative
easures of DAB-visualized immunoreactivity, expressed as regional 

ntegrated optical density (rIOD) in tumor regions, or as OD within elements
f grids superimposed on regions of cellular tumor. The comparisons
resented in Figure 1 C confirm that rIOD measurements and visual scoring
H scoring) show similar trends and significant correlation ( p = < 0.001
or each of the three antigens). Note that quantitative measures of antigen
xpression revealed fine distinctions within the cellular tumor regions visually 
ssigned a score of zero. 
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Figure 4. Differing microgranularity of IL13R α2, HER2 and EGFR expression at the resolution of single pixels. A , H&E stained section of tumor sample 
PBT025-1a. The inset shows a subregion of pseudopalisading necrosis within the region of cellular tumor. B-D , Gray-scale images of aligned serial sections 
immunostained for IL13R α2,HER2, and EGFR. The insets show the subregion of pseudopalisading necrosis, and illustrate in B rapid variation of IL13R α2 
immunoreactivity over a few cell diameters around the presumably hypoxic core, ( C ) more dispersed HER2 immunoreactivity, and ( D ) relatively uniform 

EGFR immunoreactivity. E-F , Superimposed aligned tumor sections showing ( E ) IL13R α2 and HER2, and ( F ) IL13R α2 and EGFR. The enlarged images 
on the right of E and F are the subregion of pseudopalisading necrosis, with a transect (yellow) and plot of OD across each pixel-length portion of the 
transect averaged across its width. Along the transect in E , the ODs of IL13R α2 (red) and HER2 (green) immunostaining varied with the architecture of the 
pseudopalisades, although not necessarily in parallel (compare c at the peak of the palisade with d in the trough, or g and h ). Along the same transect in F , the 
OD of EGFR (blue-white) immunostaining remained essentially constant except when the transect crossed areas of low cellularity ( d , g ). 
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Intra-tumoral heterogeneity 

We examined variations in antigen expression within cellular tumor
regions of patient samples using three approaches: an arbitrarily imposed grid,
a structural morphology highly characteristic of glioblastoma (WHO grade
IV), and subregions identified by image analysis software. 

(a) Antigen expression within elements of an imposed grid 
We mapped antigen expression across cellular tumor regions by arbitrarily

superimposing a grid onto the aligned sections of each of the 38 patient
umors for which this analysis was possible, with each element a 5 × 5 square
f 1.84 × 1.84 μm pixels (9.2 × 9.2 μm; total area of 84.6 μm 

2 ). The optical
ensity (OD) for each antigen averaged across each grid element was then 
etermined and mapped. Five illustrative examples of alternative expression 
atterns are presented in Figure 2 ; the entire series of patient samples is
resented in Supplemental Figure 1. In these maps, for visual clarity grid 
lements were binned 10:1 (92 × 92 μm; 8,464 μm 

2 ), and average OD
n each binned element is represented in diameter and opacity. For each 
ntigen, the threshold for display was 30% of maximum OD, emphasizing 
eighborhoods of higher antigen expression. Adjacent Euler diagrams plot 
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Figure 5. Intra-tumoral heterogeneity of IL13R α2, HER2 and EGFR antigen expression within separate subregions of cellular tumor. A, H&E section of 
tumor sample PBT025-1, with 11 separate cellular tumor subregions identified by the DAB plug-in of ImagePro, outlined and labeled a - k . B, Immunoreactivity 
(rIOD) within each of these subregions, colored in the table white (below threshold) → red (maximum). The bottom row shows the Shannon diversity index 
(Sh. Index) calculated for each of the subregions, with higher numbers indicating greater diversity. C, Shannon diversity indices for separate subregions within 
cellular tumor regions of each of 13 patient samples for which these could be identified. Data are mean + /- s.e.m. 
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the percentages of the total cellular tumor area occupied by each of the eight
combinations of the three antigens. 

These expression maps demonstrate non-random and non-independent
antigen expression in neighborhoods within cellular tumor regions, with
for the most part little spatial overlap in areas with the highest antigen
expression levels. In one common pattern, illustrated in Figure 2 A1-A3, there
is a progression from high EGFR to high IL13R α2 spatial occupancy, with
relatively few neighborhoods of high HER2 expression. In the cellular tumor
regions with the lowest EGFR occupancy, PBT018 ( Figure 2 B, Supplemental
Figure 1) and PBT023 (Supplemental Figure 1), neighborhoods of high
HER2 and IL13R α2 immunostaining were intermixed; this is a pattern never
seen when EGFR immunostaining was prominent except in a single case,
PBT079 (Supplemental Figure 1). Pseudopalisading necrosis ( Figure 2 C),
however, imposed a different antigen expression pattern that closely followed
tumor morphology (considered in more detail below). 

When examined across all 38 tumor samples, a progression from high
to low percentage of total EGFR occupancy (determined from the Euler
diagrams for each tumor) was accompanied by an inverse and reciprocal
progression for IL13R α2. This can be seen in Supplemental Figure 1, where
xpression maps and Euler diagrams for cellular regions of the 38 tumor
amples are ordered according to the total percentage area occupied by EGFR
n each sample (high → low). Figure 3 presents these data graphically: in most
ellular tumor regions, lower percentages of EGFR occupancy are associated
ith higher percentage coverage by IL13R α2, and, at the lowest EGFR
ccupancies, HER2. 

b) Granularity of target antigen expression in an area of pseudopalisading 
ecrosis 

As noted above, the cellular tumor subregion of pseudopalisading 
ecrosis (a cell architecture characteristic of GBM) in PBT025-1a 
 Figure 4 A) presented a pattern in which IL13R α2 and HER2 expression
aried according to tumor architecture (evident in Figure 2 C), and were
rganized around the central area of presumed hypoxia [41] . Within
his space, IL13R α2 immuoreactivity closely followed the radially-arranged 
ontours of tightly packed tumor palisades ( Figure 4 B), with the distribution
f HER2 immunoreactivity being somewhat more diffuse ( Figure 4 C)
ut still reflecting the underlying pseudopalisading structure. In contrast, 
GFR immunoreactivity was more uniformly distributed ( Figure 4 D). As
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Figure 6. Inter-patient heterogeneity of IL13R α2, HER2 and EGFR expression within a cohort of 43 patients. A, H&E section annotated for four tissue 
characteristics as illustrated in the panels below: Normal brain (red), Infiltrating (green), Cellular (dense) tumor (blue), Pseudopalisading necrosis (black). 
B, Target antigen rIOD judged for the entirety of cellular tumor or infiltrating tumor (when present) regions in each patient sample relative to values in 
non-tumor tissues, colored low (gray) → high (red). Threshold was defined as 2 × the average rIOD in non-tumor samples. The eight possible combinations 
of three antigens are noted as I-VIII. Not all target antigens in each patient tumor sample showed expression above threshold. C, Euler diagram indicating the 
percentages of cellular tumor regions within the 43-patient cohort showing each of the eight possible expression patterns. The area of each ellipse is proportional 
to the percent of cellular tumor area expressing IL13R α2, HER2 or EGFR, with overlap indicating co-expression within the tumor sample. D , Presumptive 
coverage of patients’ cellular tumor regions assuming delivery of CAR T cells targeting one, two or three antigens. 
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illustrated in Figures 4 E and 4 F, where lines plot the ODs of IL13R α2
and HER2, or IL13R α2 and EGFR, immunoreactivities across a transect
of pseudopalisading cells, changes in IL13R α2 expression (red) could occur
over 3-5 cell diameters, often but not always in parallel with HER2
immunoreactivity (green) ( Figure 4 E). In contrast, over the same transect,
EGFR immunoreactivity (blue-white) was relatively uniform as compared to
IL13R α2 (red), decreasing only over areas devoid of cells ( Figure 4 F). 

(c) Heterogeneity within subregions of cellular tumor 
When multiple subregions of DAB immunostaining were identified

by ImagePro within cellular tumor regions, antigen expression in these
subregions could vary widely. This is illustrated by patient sample PBT025-
1, in which all three target antigens were expressed in spatially disparate
subregions. In this tumor sample, 11 subregions were identified, a - k in
Figure 5 A. Of these areas ( Figure 5 B; intensity coded light red → dark red),
seven ( a, b, c, d, e, g, and i ) showed elevated levels of IL13R α2, two ( f and j )
showed low IL13R α2 levels, and two ( h and k ) were IL13R α2 negative. 

Overall, there were 13 tumor samples (of 43 total) within which multiple
subregions of antigen expression were detected by the DAB plug-in to
magePro and could be considered individually (in the remainder, antigen 
xpression in cellular regions was more spatially uniform). This variability 
as quantified by calculating the Shannon diversity index ( H ) for antigen

xpression each of these areas. Here, H is an index increasing in value with
he numbers of antigens expressed and with greater differences in their relative 
bundance. In the majority of tumor samples (9 of 13), values of H were
ighly variable, indicating that levels of antigen expression across cellular 
umor regions could be highly divergent. Only in tumor samples with the 
mallest number of subregions (PBT008, PBT018, PBT023, PBT029) were 
he values of H tightly clustered. 

nter-patient heterogeneity: variations of antigen expression between patients 
We next assessed how tumor antigens were expressed in tumors considered 

s a whole across multiple patients. Our analysis is summarized in 
igure 6 B for regions of cellular tumor/pseudopalisading necrosis, and regions 
f infiltrating tumor when these were present (examples shown in Figure 6 A).
bservations were grouped according to the eight possible patterns of 

L13R α2, HER2, and EGFR expression, considered individually, and in 
ombinations (designated I-VIII). Values of rIOD, presented as normalized 
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Table 1 

Combinatorics of CAR T cell target antigen expression compared to predictions assuming random and independent expression 

of each antigen. 

Eight possible combinations of three antigens: IL13R α2, HER2, EGFR. Data are by protein immunochemistry for patient samples and 

patient sample regions, and RNA expression profiling for TCGA. P -values are the result of the binomial test comparing the predicted 

and observed percentages with the null hypothesis that the samples are from the same distribution (one-tailed). RED = expression 

significantly above expectation; BLUE = expression significantly below expectation 
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to average values in non-tumor brain, are presented numerically and as color
scale (gray → red). The immunostaining threshold for positive expression
was defined as an rIOD twice the average in non-tumor brain. 

While vagaries of antigen accessibility and antibody avidity confound
quantitative comparisons between antigens, we take these measures of antigen
expression relative to control tissue to be appropriate for semiquantitative
comparisons of each antigen. 

Within regions of cellular tumor, and infiltrating tumor when present,
antigen expression varied markedly between patient samples, and, as
expected, expression of multiple antigens was common. Within regions
of infiltrating tumor, antigen expression patterns could be similar (50%;
8/16) or divergent (50%; 8/16) from those of cellular tumor regions. As
infiltrating tumor was present in only a minority of our samples (37%;
16/43), we consider here only the cellular tumor regions present in all
samples. For these regions of cellular tumor, the combinatorics of antigen
expression are illustrated by the Euler diagram in Figure 6 C. Except for
EGFR, relatively few of the 43 tumor samples were scored as expressing single
antigens (16.3% for EGFR, versus 4.7% for IL13R α2 and none for HER2).
Relatively more tumors were scored as double positive: 11.6% for EGFR and
IL13R α2; 11.6% for IL13R α2 and HER2; 25.6% for EGFR and HER2).
The percentage of triple positive tumors (IL13R α2, HER2 and EGFR was
23.3%. Only 7.0% of samples were negative for all three antigens. 

Overall, cellular tumor areas in 93.0% of patient samples expressed at
least one of the three potential target antigens, and greater than 72.1%
of tumors expressed two or three of these antigens. Based on these data,
Figure 6 D presents the percentages of patient tumors potentially targeted
by single, dual, or triple CAR T cell therapies. Depending on the particular
CAR T cell targets, multiple CAR T cell targeting increased potential patient
coverage from as low as 51.2% for a single CAR to as high as 93.0% for all
three CAR species. 

Examination of mRNA expression in the TCGA database [47] yielded a
similar pattern. Overall, when considered alone or in combination with other
antigens, 54.0% (293/543) of tumors would be accessible to an IL13R α2-
AR T cell, 15.1% (82/543) to a HER2-CAR T cell, and 92.1% (500/543)
o an EGFR-CAR T cell. 

on-random, non-independent expression of target antigens across patient 
umor samples 

For regions of cellular tumor, we next assessed how the eight possible
ombinations of antigen immunoreactivity differed from patient to patient, 
sing the compilation presented in Figure 6 B. Here, our results were highly
ivergent from expectations assuming that the probability of expression 
f each antigen was random and equal, with no interdependency. As
ummarized in Table 1 , across the entire 43-patient cohort, EGFR appeared
ith significantly higher than expected frequency when considered as a single

ntigen, when paired with HER2, and when in combination with IL13R α2
nd HER2. Of note, this dominance of EGFR expression was also evident
ithin multiple subregions of cellular tumor regions ( Figure 5 , Table 1 ). This
attern was confirmed for the 543 patient tumors in the TCGA database
47] , which also yielded patterns of antigen transcript expression that differed
ignificantly from expectations of random and independent expression, with 
he largest divergence also seen for EGFR ( Table 1 ). 

We also examined the expression data in Figure 6 B for potential
ssociations of antigen expression ( Figure 7 A). Here, IL13R α2 and HER2
xpression showed preferential pairing, with expression of these antigens 
rending to be negatively associated with EGFR. A similar pattern was
bserved for TCGA mRNA expression data [47] ( Figure 7 B). 

iscussion and conclusions 

ummary of findings 

Here, we have used immunohistochemistry to map cellular tumor regions
f formalin-fixed paraffin-embedded (FFPE) tissues from patients with high- 
rade glioma (WHO grades III-IV) to evaluate spatially varying expression
f clinically-relevant immunotherapy target antigens. We compared our 
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Figure 7. Examination of pair-wise correlations of IL13R α2, HER2 and EGFR antigen expression within cellular regions of patient tumors. A, For patient 
tumor samples, correlation of IL13R α2 and HER2 rIOD values, and anti-correlation of IL13R α2 or HER2 with EGFR rIOD values, within cellular tumor 
regions for the subset of tumors showing above-threshold expression of both antigens (from Figure 6 B). B, Similar presentation of mRNA expression profiles 
from the TCGA data set for glioblastoma [47] , with threshold defined as 2-fold overexpression compared to control brain. In all graphs, blue lines are linear 
regressions to illustrate overall trends in the data. 
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measurements within the tumors of individual patients, and across multiple
patients. To overcome the limitations of manual semi-quantitative scoring, as
well as the subjectivity of visually evaluating of IHC staining, we employed
digital imaging methods to more quantitatively examine expression of
multiple antigens within tumor regions defined according to conventional
neuropathology criteria. 

We focused on three immunotherapy target antigens that are currently
being utilized in clinical trials for recurrent high-grade glioma: IL13R α2,
HER2, and EGFR [7] . We observed that expression of these antigens was
highly-variable, non-homogeneous, non-random, and non-independent. We
observed this at all resolutions of our measurements: over the individual
elements of 9.2 μm grids superimposed on cellular tumor areas, over 10 cm-
scale regions of cellular tumor in tumor sections evaluated as a whole, and in
subregions of pseudopalisading necrosis characteristic of glioblastoma. 

Distributions of target antigen expression 

Across entire cellular tumor regions in tumor sections, neighborhoods
of EGFR expression could predominate over millimeter to centimeter-sized
areas. In these tumors, neighborhoods of IL13R α2 and HER2 expression
ere quite compact, an example being PBT060 ( Figure 2 A1). In other
umors where EGFR expression was more spatially restricted, IL13R α2 
xpression was progressively more expansive, as in PBT081 ( Figure 2 A2) 
nd PBT068 ( Figure 2 A3). Finally, in tumors in which EGFR expression
as minimal, such as PBT018, intermixed neighborhoods of IL13R α2 

nd HER2 expression were seen ( Figure 2 B). When all of the tumor
aps were arrayed in descending order of total percent of EGFR coverage 

Supplemental Figure 1), a reciprocal relationship between spatial dominance 
f EGFR versus IL13R α2/HER2 became apparent ( Figure 3 ). This reciprocal
attern of EGFR and IL13R α2/HER2 expression was preserved when tumor 
ections were evaluated as a whole ( Figure 6 B) and when plotted pair-wise
 Figure 7 A). TCGA mRNA expression profiles [47] showed a similar pattern
 Figure 7 B), suggesting that this relationship was not limited to our patient
ohort. 

Nonuniform spatially varying expression patterns have been seen for other 
ell-cell signaling elements in brain tumors: growth factors and their receptors 
ncluding PDGF and PDGFR [48] ; c-Met [49] ; wild type EGFR and the
GFRvIII variant [38 , 39 , 50-52] ; pro-angiogenic angiopoietin-2 [53] ; and

ntegrins αv β3 and αv β5 [54] . While the origins of these neighborhoods are
ot well understood, they impose a structure on tumor heterogeneity. 
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Interplay of hierarchical lineage and microenvironment shape glioma 
phenotypic variation 

Overall, high-grade glioma may be viewed as highly complex
microenvironment overlaid on developing tumor lineages to give rise
to heterogeneous neighborhood organizations not unique to these target
antigens [55–58] . 

Observations from single cell expression and genomic profiling [52 , 59-
62] suggest that variegated glioma cell phenotypes derive in part from the cell-
intrinsic variation found in diverging lineages [63 , 64] differentiating within a
stem cell hierarchy [65] , and recapitulating that of normal brain development
[66] , including appearance of cancer stem-like cells resembling normal stem
cells [67] . That heterogeneity of target antigen expression is maintained down
to the finest granularity available to us is consistent with a role of EGFR (and
other receptor tyrosine kinases) amplification in shaping of individual glioma
cell phenotypes. 

Microenvironment also appears to be critical. Hypoxic niches are
proposed to be dynamically regulated organizers of glioblastoma [68] ,
including pseudopalisading necrosis [41] . Thus, the aligned tumor cells
and their highly spatially restricted pattern of IL13R α2 expression
in neighborhoods of pseudopalisading necrosis may reflect a common
association with hypoxia, as hypoxia is reported to up-regulate IL13R α2
expression [69] , and the distribution of IL13R α2 was coincident with the
layer of cells adjacent to the presumably hypoxic core [70] . A surrounding
region of less severe hypoxia was characterized by HER2 expression and the
cell migration assembling tumor palisades [41] . 

Other microenvironmental variations related to the physical position of
neighborhoods within tumor masses also appear to contribute to establishing
neighborhood phenotypes. Border niches, sites of progression and recurrence,
can contain variegated populations of oligodendrocyte progenitor cells
(OPCs), macrophages/microglia, and glioma stem cells [71] . Here, abnormal
secretion of EGF by glioma-associated microglia is proposed to initiate a
feedback loop promoting GBM invasion and functional disruption of brain
tissue [72] . EGF secreting tumor cells counter this self-reinforcing process, as
increased EGF is reported to result in loss of EGFR gene amplification [73] .

Other aspects of metabolism may also be reflected in multiple local
metabolic neighborhoods [74] . 

Between neighborhoods, systems of reciprocal interactions [75] may be
operating [56 , 76-79] . The striking observation was that EGFR expression
appeared anti-correlated with IL13R α2 and HER2 at larger spatial scales,
as suggested by both by our immunochemistry ( Figure 7 A) and by TCGA
mRNA analyses ( Figure 7 B), may well indicate more widespread systems of
mutual interactions. 

Considerations for further development of glioma-directed 
immunotherapies 

From a translational and clinical perspective, understanding patterns of
tumor-related antigen expression in the context of high-grade glioma is an
essential step towards developing effective immunotherapies. 

One implication of our observations concerns the limited spatiotemporal
sampling that can inform precision oncology for high-grade glioma [80] .
Phenotypic and genetic aberrations [47 , 81 , 82] may be used to stratify
patients and guide therapy choices [83] . We suggest the possibility, however,
that the presence of highly variable phenotypic neighborhoods as reflected by
regions of varying TCGA subtypes within individual tumors [63] , by local
and intermixed amplification of EGFR and other receptor tyrosine kinases
[52] , and by distortions of molecular heterogeneity in recurrent verses naïve
tumors [84] , may thwart application of narrowly targeted therapies [30] 

Rather, as it is widely held that tumor recurrence has its origins in
multiple preëxisting cell populations incorporating target antigen-deficient
populations coming forward to fill the space (literally and in the evolutionary
ense) vacated by killed tumor cells [15-17 , 19 , 20 , 85] , examinations of
ntigen escape have led to considerations of potentially more effective
mmunotherapies targeting multiple antigens simultaneously. 

One recently explored strategy involves designing dual or triple 
argeting CAR T cell therapies to substantially increase the proportion
f tumor cells in primary patient samples potentially targetable by
mmunotherapies, thereby reducing opportunities for antigen escape [42–
4] . We suggest that the antigen expression patterns presented here indicate
hat multitarget immunotherapy targeting strategies incorporating EGFR 

long with IL13R α2, HER2, or other targets, could be more clinically
ffective than antigen combinations omitting EGFR. 

Alternatively, efforts are underway to design CARs recognizing 
mmunotherapy targets broadly distributed within individual tumors 
nd across patients. Examples include chondroitin sulfate proteoglycan 4 
CSPG4) [86] and the molecular complex bound by the scorpion-derived
eptide chlorotoxin (CLTX) [87] . 

he evolutionary challenge of phenotypic heterogeneity in high-grade 
lioma 

When considering the evolution of a species, theory posits that fitness
n one environment does not necessarily guarantee fitness in a successor
88 , 89] , and that genetic and phenotypic heterogeneity provides the raw
aterial for adaptation under selection pressures [90 , 91] . This principle can

e applied to consideration of malignancy, with the conclusion [92] that
… acquisition of phenotypic heterogeneity by populations of tumor cells 
mposes a degree of stability on the tumor as a whole”. Thus, clinically,
eterogeneity within tumors confers resilience to the challenges imposed 
y radiation, chemotherapies, electric fields, and immune-based therapies, 
esilience that ultimately leads to treatment failure and recurrence [14 , 93] .
r, from a patient’s perspective, more extensive and dynamic heterogeneity

f antigen expression correlates with less favorable prognoses [59 , 94] . Thus,
volutionar y theor y suggests that surmounting the consequences of the
xtensive heterogeneity of high-grade glioma will remain a major challenge
o effective and durable therapies. 
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