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Abstract

Feature selection in Knowledge Graphs (KGs) is increasingly utilized in diverse domains, including biomedical research, Natural
Language Processing (NLP), and personalized recommendation systems. This paper delves into the methodologies for feature selection
(FS) within KGs, emphasizing their roles in enhancing machine learning (ML) model efficacy, hypothesis generation, and interpretability.
Through this comprehensive review, we aim to catalyze further innovation in FS for KGs, paving the way for more insightful, efficient,
and interpretable analytical models across various domains. Our exploration reveals the critical importance of scalability, accuracy,
and interpretability in FS techniques, advocating for the integration of domain knowledge to refine the selection process. We highlight
the burgeoning potential of multi-objective optimization and interdisciplinary collaboration in advancing KG FS, underscoring the
transformative impact of such methodologies on precision medicine, among other fields. The paper concludes by charting future
directions, including the development of scalable, dynamic FS algorithms and the integration of explainable AI principles to foster
transparency and trust in KG-driven models.
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Introduction
Brief introduction to Knowledge Graphs
In the era of large-scale digital information, Knowledge Graphs
(KGs) are an increasingly popular tool to organize data and infor-
mation [1]. At their core, KGs are an organized representation of
entities, such as objects, events, situations, or concepts that illus-
trate how those entities are related—through triplets (subject-
predicate-object). For instance, a triplet like ‘Cyclophosphamide -
treats - Cancer’ could be used to guide a KG in drug discovery
and repurposing. KGs allow for in-depth data analysis and the
development of personalized care strategies. KG platforms like
Bio2RDF, for instance, have been instrumental in exploring the
complex relationships between genetics, diseases, and environ-
mental factors (see Figure 1). KGs can facilitate a comprehen-
sive approach to healthcare supporting a wide range of applica-
tions, from advanced decision-support systems to personalized
medicine and innovative drug discovery methods [2, 3].

One of the most well-known uses for KGs is in the development
of web-based technologies, including search engines and the
Semantic Web (an extension of the World Wide Web that enables
data to be shared and reused across applications). Google KG,
DBpedia, and Yet Another Great Ontology (YAGO) utilize the
principles of the Semantic Web and Linked Open Data (a method
of publishing structured data so that it can be interlinked and
become more useful) to create extensive networks of nodes
and edges, that represent the intricate relationships within vast
datasets, and enable enhanced query processing and analytics

capabilities. The contributions of scholars such as Fensel et al. [4],
Bonner et al. [5], and Yang et al. [6] have been crucial in shedding
light on the foundational aspects and ongoing evolution of these
systems.

As technology advances at an incredible pace, we are accumu-
lating a vast amount of knowledge about genes, proteins, chemi-
cals, cells, diseases, and other biological entities, along with their
complex interactions[7]. To make sense of this complexity, KGs
have emerged as powerful tools for organizing and connecting
this intricate and multifaceted information in meaningful ways.
In the realm of precision medicine, KGs have been used to consoli-
date disparate biomedical data, and thereby systematically utilize
genetic, environmental, and lifestyle information to improve the
effectiveness of personalized patient care. This is exemplified by
PrimeKG, which significantly contributes to creating a compre-
hensive medical knowledge base by integrating a wide ontology
with data from various sources, including genomic databases,
thereby supporting detailed medical research and personalized
care planning [8].

At their core, KGs are characterized by representing entities
and their relationships through triplets (subject-predicate-
object), allowing for in-depth data analysis and the development
of personalized care strategies. For instance, a triplet like
‘Cyclophosphamide - treats - Cancer’ demonstrates KGs’ potential
in drug discovery and repurposing. Platforms like Bio2RDF
have been instrumental in exploring the complex relationships
between genetics, diseases, and environmental factors. KGs
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Figure 1. An integrated overview of KGs encompassing RDF structuring, Ontological frameworks, and GDB management, illustrating the flow from data
sources to semantic querying and storage. Figure 1 delineates the contribution of varied scholarly and scientific data sources—such as Google Scholar,
PubMed, arXiv, and DrugBank—in providing raw data inputs. These inputs are then semantically encoded via the RDF, using triples that consist of
subjects, predicates, and objects, alongside URIs that ensure the unique identification and integration of data entities across the KG. At the heart of
the semantic structure are ontologies, exemplified here by the Unified Medical Language System, which defines the schema for the KG by outlining
the essential relationships and attributes of the domain-specific entities. This ontology-based schema informs the organization and representation of
knowledge within GDBs, such as Neo4j, which are specialized for storing and operationalizing the complex relational data of KGs. The central round-
edged box showcases the role of query languages, with Cypher portrayed as a model for extracting information from GDBs through its intuitive syntax
and pattern matching capabilities. The graphic elucidation of the query output illustrates a network of nodes and edges, representing the intricate
interrelations and potential analytical insights derived from KGs. Each cluster within the network, designated as A, B, and C, symbolizes distinct subsets
or aspects of the graph database that have been queried.

thereby facilitate a comprehensive approach to healthcare;
this approach supports a wide range of applications, from
advanced decision-support systems to personalized medicine
and innovative drug discovery methods [2, 3].

The integration and analysis of data from biomedical research
and clinical practice through KGs provide a dynamic platform
for advancements in understanding and treating diseases. The
academic discourse on feature selection (FS) methods applied
to KGs, as highlighted by the studies referenced, underscores
their transformative potential in various domains, particularly in
advancing personalized medicine and healthcare outcomes.

Importance of FS
Feature selection involves choosing the subset of input variables
that are most relevant for analysis. It is a crucial step in any
type of modern research that uses machine learning (ML) models.

As datasets grow in size and complexity (ranging from petabytes
to exabytes), robust FS is essential for preventing the ‘curse
of dimensionality’ [9], which can degrade model performance.
Reducing a model’s feature set helps to mitigate overfitting and
improves computational efficiency [10]. This reduction aids ML
model interpretability in critical domains like healthcare and
finance [11, 12], and enhances a model’s generalizability to new
data, a cornerstone for practical applications [13, 14]. Streamlined
ML models require fewer computational resources, and are bene-
ficial in resource-constrained scenarios like edge computing [15,
16]. With big data’s growing influence, especially in healthcare
where it is projected to reach $79.23 billion by 2028, FS is increas-
ingly vital for ensuring robust and applicable ML models.

In regards to ML, FS most often refers to selecting particular
columns from a tabular dataset. In this paper, we take a broader
view, whereby FS also includes the selection of specific nodes or
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Figure 2. A tiny-sized ADKG (yellow node: AD; purple nodes: genes; green nodes: drugs) [28]. There are five instances of the ‘Chemical binds gene’
relationship (light purple arrows), where a chemical is shown to interact directly with a gene; six instances of the ‘Gene associates with disease’
relationship (yellow arrows), representing genes that have an association with AD; one instance of the ‘Chemical decreases expression’ relationship
(dark green arrow), indicating a chemical that downregulates or decreases the expression of a gene; one instance of ‘Gene regulates gene’ (purple
arrow), suggesting a regulatory interaction between two genes, PPARG and TPI1. More detailed information on genes and drugs is given in the
Appendix B.

entities for hypothesis generation and further investigation. With
this broader view, for example, a KG with genes and diseases can
hypothesize new subsets of genes related to a specific disease.

Recognizing various FS methods, such as algorithmic tech-
niques, statistical analyses [17], and expert insights, this review
will explore the relationship between KGs and FS, highlighting
how these frameworks can enhance the FS process.

Overview of the relationship between KGs and FS
Integrating KGs with FS enhances ML models by incorporating
domain-specific knowledge often overlooked in AI/ML systems.
KGs provide structured representations of entities, attributes, and
interconnections, aiding in precise FS across domains like the
Semantic Web, Natural Language Processing (NLP), and data inte-
gration. This improves model performance, reduces overfitting,
and enhances interpretability.

However, challenges include scalability, KG integrity, and
domain adaptation. Research efforts are needed to develop
scalable algorithms, improve KG completeness, and integrate
diverse data sources. Combining knowledge representation, ML,
and domain expertise is essential.

Innovative methods like embedding-based FS and graph neural
networks (GNNs) leverage KGs’ unique characteristics for effec-
tive FS. These approaches manage high-dimensional spaces in
KGs, enabling comprehensive data analysis.

KGs’ dynamic nature requires adaptive, real-time FS methods
to ensure relevant features and maintain ML models’ integrity in
rapidly changing scenarios.

Background and key concepts
Definition and structure of KGs
KGs categorize and link data for domain-specific knowledge dis-
covery.

Ontologies
KGs use ontologies to define relationships and model semantics
[18]. Ontologies categorize concepts to allow for flexible queries.

Bio2RDF, for example, defines classes like ‘proteins’ and ‘chem-
ical entities,’ and their relationships using resource description
framework (RDF) triples.

Example: Bio2RDF
Bio2RDF integrates datasets like DrugBank [19], SIDER [20], and
KEGG [21] into a unified RDF structure, thus enhancing data
interoperability and supporting complex queries.

• Nodes: tagged with URIs, representing biomedical entities
like genes and drugs.

• Relationships: include ‘targets’ and ‘is affected by,’ illustrat-
ing drug–protein interactions and genetic influences.

Structuring domain knowledge with RDF
RDF
RDF provides a structure for semantic representation in KGs [22].
It formalizes relationships as triplets (subject-predicate-object)
forming a graph G = {(s, p, o)}. RDF enhances data interlinking and
queryability [23, 24].

Ontologies
Ontologies in KGs categorize and describe concepts with flexible
relationships. They enhance querying capabilities by defining
both specific and abstract relationships, as seen in Bio2RDF and
AlzKB.

Leveraging graph databases
Graph databases (GDBs), like Neo4j, manage complex data rela-
tionships within KGs, enabling efficient semantic analysis [25].
Freebase and query languages like Cypher and SPARQL extend
GDB functionality for intuitive querying [26, 27].

Visual demonstration of ADKGs of varying sizes
We use AlzKb, an Alzheimer’s disease KG, as an example to
demonstrate KGs of various sizes. Figures represent tiny (Cypher
query limit 8), small (Cypher query limit 15), and medium (Cypher
query limit 200) KGs. A tiny KG example is shown in Fig. 2.
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Feature selection on KGs
In this section, we will categorize and evaluate the methodological
frameworks delineated within the referenced manuscripts. Below,
we elaborate on four distinct KG FS methods, including search
algorithms, similarity-based methods, vector embeddings, and
advanced network representation learning—all available in the
most current literature to the best of our present knowledge.

One particular application of FS on KGs is drug repurposing
with selected feature sets using AlzKB [28]. Here, feature sets
refer to the genes that are targeted by a given drug. For instance,
flubendazole is an anthelmintic that targets many different genes
including PCNA, CDK4, etc., [29]. To investigate new drugs that
have potential value in treating Alzheimer’s disease, we can select
genes that are potentially related to Alzheimer’s disease and
use them to form feature sets for analysis. This is an ongoing
research and was funded by the National Institutes of Health [U01
AG066833].

Causal discovery-search algorithm
The goal of causal discovery is to move beyond merely describing
correlated events to identifying the direction of influence between
observed phenomena. The challenge in causality analysis lies
in capturing the complex interactions between variables. Typ-
ically, these relationships are formalized using causal graphs,
where nodes represent variables and directed edges denote causal
effects.

In medicine, the gold standard for establishing causal
relationships, including confounding, collider, mediation, mod-
eration, reverse causality, effect modification, causal chain, and
causal graph, is through randomized controlled trials. However,
various analytical methods can infer causal relationships from
observational data. In this analytical approach, researchers must
consider other measured or unmeasured variables that may act
as confounders, mediators, or colliders. For a comprehensive
review of causal discovery, we recommend this survey paper by
Zanga et al. [30].

There has been a lot of work recently on building automated
methods, generally utilizing NLP techniques, to extract causal
relations from the scientific literature. KGs can be used to con-
solidate knowledge and form inferences and hypotheses about
how different variables interact. Causal analysis can then be
used to identify features that have causal effects on downstream
variables.

The study by Malec et al. [31] introduced a novel causal
FS framework using the ‘ADKG’ KG. This ADKG was con-
structed from post-2010 PubMed biomedical literature and an
ontology-grounded KG via the PheKnowLator workflow [32]. The
authors used PubMed identifiers and machine reading systems
like EIDOS, REACH, and SemRep within the INDRA ecosystem
[33] to extract data. INDRA assembles knowledge into a model
of causal molecular interactions [34], resulting in an OWL
ontology [35].

The Malec study aimed to enhance causal FS with the ADKG.
The authors performed hygiene steps, and omitted logical
entailments. They then map predicates to the relation ontology
(RO) to provide logical definitions and infer additional knowledge.
Their forward-chaining inference used CLIPS to generate new
triples based on RO properties, after assigning belief scores.
The authors then integrated PheKnowLator to facilitate path
search algorithms, thereby reweighting edges with hierarchical
relationships for optimized path searches. Competency questions,
such as causal relationships between depression and AD, were

Figure 3. Illustration of inflammatory response (pink node) as a poten-
tial confounder in the association between AD (left yellow node) and
depression (right yellow node). The diagram represents the shortest paths
(through orange nodes) identified by Dijkstra’s algorithm. The two green
paths also connect inflammatory response with AD and depression, but
both of them are one unit longer than the orange ones. Consequently,
Dijkstra’s algorithm picks the shortest path.

addressed using SPARQL queries and Dijkstra’s shortest path
algorithm [34, 36].

When applied to ADKG, Dijkstra’s algorithm identified the
shortest paths connecting genes and diseases, highlighting direct
relationships [31]. These paths were analyzed to identify poten-
tial confounders, colliders, and mediators. Confounders influence
both exposure and outcome, colliders are influenced by both, and
mediators act as intermediaries. Figure 3 illustrates identifying a
potential confounder between AD and depression using Dijkstra’s
algorithm. The study identified 126 unique potential confounders,
29 colliders, and 18 potential mediators, showcasing the ADKG’s
ability to uncover intricate relationships that traditional searches
might miss.

Feature selection-dimensionality reduction
KGs can be utilized to perform FS for high-dimensional tabular
datasets. In this scenario, nodes in the graph may relate to the
columns, or features, of the tabular dataset. These subsets of
features can then be analyzed using methods like ML models.
Below, we outline a few examples of graph-based methods for
selecting subsets of features.

• Fang et al. [37] developed an information theory approach,
informed by a KG, to select features for training ML models.
The goal of their study was to develop a predictive model
of chronic obstructive pulmonary disease (COPD) from a
tabular dataset including 28 features representing medical
tests and patient symptoms. First, the authors constructed
a KG by integrating electronic medical records and domain-
specific biomedical knowledge to identify and represent rela-
tionships among diseases, symptoms, causes, risk factors,
drugs, side effects, and more (see Figure 5). The features
of the tabular dataset corresponded to nodes in the KG.
Their algorithm, CMFS-η, used the weights between features
in the KG to iteratively add or remove features from the
set according to an information-theory-based heuristic. The
study used this approach to select subsets of the corre-
sponding features of the tabular dataset to train an SVM
model.

• Ma et al. [38] sought to develop a model to predict whether a
given Android app contained malware based on the Android
API calls contained in the source code. First, they used the
official documentation to construct a KG containing all API
entities, such as classes and methods, as well as relationships
between entities, such as return types and inheritance. Next,
they identified a set of permissions considered to be highly
sensitive that was required for each API entity. The study
created a binary feature vector for each application based
on whether or not a given entity was present in the code.
To reduce the size of the binary feature vector, the authors
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Figure 4. Example of direct and indirect dangerous API selection, as enabled by the Android API KG. The golden-orange rounded rectangle in the figure
signifies a dangerous API called ‘getCall-CapablePhoneAccounts,’ which facilitates the retrieval of Phone Account Handles for making and receiving
calls. The light-yellow rounded rectangles are APIs directly connected to the Dangerous API, up to four degrees of separation through hyperlinks, with
the understanding that links beyond this do not markedly enhance classification accuracy. The Siamese-BiLSTM network comes into play by identifying
indirectly connected, potentially dangerous APIs—represented by the red rounded rectangle, such as ‘READ SMS,’ which allows reading SMS messages
but lacks a direct hyperlink or descriptive connection to other APIs. By embedding API descriptions into a vector space using Word2Vec and processing
them through a Bidirectional LSTM, the network encodes the APIs’ textual data from both directions for a full context capture. These encoded vectors
are then condensed through a dense layer into a final representation. Comparing these representations enables the network to detect hidden APIs that,
while not directly linked, share sensitive characteristics with the known dangerous API, thereby revealing hidden dangers through textual similarity
rather than explicit interlinking.

selected only entities that were between one to four hops
from a node requiring sensitive permission. As not all enti-
ties contained explicit links in the documentation, an LSTM
model was used to identify an additional subset of entities
that shared similar descriptions with entities that require
sensitive permissions. This feature vector was then used to
train a classification model. A detailed description of how
sensitive APIs, or nodes in the KGs, were selected is shown
in Fig. 4.

• In the Hadith Corpus KG created by Mohammed et al. [41],
nodes represent distinct features and semantic categories
derived from Hadith texts. Features include specific Islamic
terms like ‘prayer’ or ‘fasting,’ while categories encompass
broader thematic areas like rituals, ethics, jurisprudence,
and other domains of Islamic scholarship. Edges in this KG
quantify associations between features and categories based
on co-occurrence frequency.

Feature selection for text classification is guided by Ant Colony
Optimization (ACO) [42–44]. ACO is a probabilistic technique for
solving computational problems that can be reduced to finding
good paths through graphs. Inspired by the behavior of ants, which
find the shortest path from their colony to food sources, ACO is a
type of swarm intelligence method and a subset of evolutionary
algorithms. Initially, several paths are randomly constructed,
and after traversing a path, an ant deposits pheromones along
it (typically inversely proportional to path length), so shorter
paths receive more pheromones. Over time, the pheromones
evaporate, reducing their attractive strength to prevent premature
convergence. When choosing their paths, ants probabilistically

prefer paths with stronger pheromone concentrations while
also exploring new paths to avoid local optima. The process is
repeated until convergence. In this way, ACO balances between
exploring new feature paths (exploration) and intensifying the
search around promising features found in previous iterations
(exploitation), thus adapting dynamically to find optimal
feature sets for text classification [45–48]. The pheromone trail
and PageRank-like heuristic measure guide this optimization.
We provide a graphical illustration of the ACO FS process
in Fig. 6.

This study demonstrates that integrating ACO into Arabic text
classification yields a notable 3% average increase in accuracy, F1
score, recall, and precision compared to conventional methods
like Naive Bayes, Random Forest, Decision Trees, and XGBoost,
thus contributing significantly to the field of Arabic text classi-
fication.

Data linking and data integration-similarity
based methods

• Data linkage and data integration refer to the process of
combining different sources of data[49]. As KGs are developed
to summarize large amounts of data, they can be great, easy-
to-use tools for adding additional data and context to make
ML workflows. For example, features of a given dataset can
be expanded to include additional information per sample
based on what we know about a given feature. In Li et al. [50],
the authors collected data on self-reported student anxiety
levels as well as basic information such as age, gender, grade,
and home address. They then used the ‘Own-Think KG’ (see
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Figure 5. Illustration of interrelated FS procedure. (1) In the data filtering step as shown in part (a), states lacking lung cancer cases are excluded after
referencing previous surveys spanning several years. (2) Features with over 50% missing values are eliminated. Then a KG is constructed from the
remaining features. (3) A KG driven algorithm is used to transform the health survey question list to a data set with significantly interrelated features.
(4) Finally, a binary relevance classifier (a special case of multi-label classifier) is proposed to predict the likelihood of multiple diseases by identifying
one-to-many cancer relationship. In part (b), the KG driven algorithm starts with the initial threshold 100%. Then it loops through existing features and
computes weights for each (features with more edges will get more weights). By sorting the weights, the features with highest weights are kept and the
threshold is subtracted by 1%. The algorithm is iterated until the stopping criterion is met.

Figure 6. A demonstration of simplified ACO FS on Hadith Corpus KG. Here, two ants named Ben and Joe traverse the KG, with Ben starting at the
‘Zakat’ node and moving to ‘Fasting’ across iterations, and Joe beginning his journey at a randomly selected node ‘Sawm’. The pheromone and heuristic
values, represented by the green and red numbers above and below the edges, are aggregated outcomes of the explorations conducted by all ants in the
system. Parameters α and β determine the relative influence of pheromone trails and heuristic information respectively, while the evaporation rate ρ

ensures flexibility in pathfinding, preventing premature convergence on suboptimal routes. The collective pheromone deposit � between ‘Fasting’ and
‘Sawm’ by Ben and Joe is a cumulative measure reflecting the alignment of the Hadith content with specific categories, denoted by the pink nodes. The
probability that Ben chooses ‘Sawm’ as the next feature is computed as a normalized version of Pheromoneα × Heuristicsβ (see the middle right of the
figure). In this instance, the focus is to reinforce the linkage between fasting-related Hadiths and the ‘Physical Acts’ category, differentiating it from the
‘Spiritual Practice’ category and the ‘Forms of Worship’ category, which are more aligned with spiritual benefits and devotional acts.

Figure 7), as well as ‘DBpedia,’ both known for their credibility
and encyclopedic nature, to identify other features for their
analysis based on the home address, including weather,
population size, and GDP at both the district and regional area
levels (see Figure 8). These KGs follow a clear and explainable

three-tuple storage structure, consisting of entities, attributes,
and values, making them suitable for non-numerical feature
generation. Importantly, they offer online querying capabil-
ities, eliminating the need to download extensive datasets
[51].
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Figure 7. Own-think KG advantage over tradition one-hot encoding. Consider a dataset that includes information about various cities, like Beijing,
Shanghai, and Hong Kong, where each city is represented by non-numerical discrete features such as its name. In a traditional dataset, the city name
might be converted into a numerical form using techniques like one-hot encoding. However, this process strips the city’s name of any contextual
information about the city itself. Using a KG like the Own-Think KG, we can query additional information about each city to enrich the features, such
as geography, economy, demography, culture, and so on, to enrich the features.

Knowledge graph embeddings-vector
embeddings
The embedding-focused approach in FS, exemplified by methods
like DistMult [52], ComplEX [53], TransE [54], RESCAL [55],
and FeaBI [56], RippleNet [57] seeks to represent nodes in a
continuous vector space that captures deep semantic rela-
tionships and properties. This is a similar concept to word
embeddings. Whereas in word embeddings, similar vectors
capture similar semantic meaning, with similar words having
similar representation, graph node embeddings capture rela-
tionship similarity within the graph network. The approach is
popular for various applications, including link prediction [58]
and entity classification [59]. Link prediction serves several
purposes, from selecting movies a user would be interested in,
to predicting drug–target interactions. Several methods have
been developed to leverage embeddings for recommendation
algorithms.

Embedding via DistMult:

1. The DistMult method, designed to predict missing relation-
ships or facts within a KG [60], embeds entities and their
interactions as vectors, inherently performing FS by

• Capturing Semantic Similarities: Entities with closer inter-
actional kinship within the KG are embedded proxi-
mately, emphasizing features underlying these seman-
tic similarities.

• Highlighting Relevant Interactions: DistMult accentuates
features defining the interactions, such as biological
pathways or chemical properties relevant to the inter-
action.

2. Optimization of Feature Representation: the DistMult training
process fine-tunes the entity and relation representations

in the vector space, adjusting the significance of various
attributes to enhance model accuracy.

• One relatively simple strategy for edge prediction is
to first create embeddings for each node and then
to train a classification algorithm to predict whether
or not a connection exists between two nodes given
their embeddings. For example, Wang et al. [61] utilized
this strategy to predict drug–target interactions. In that
study, the authors created node embeddings from a KG
that contained known drug–target interactions. Next,
they trained a deep learning model that took in a pair
of embeddings (one drug and one target) to predict
whether or not this pair was an existing edge in the
graph. The authors showed that the model was able to
identify some known interactions that were removed
from the training set.

• A unique example comes from Wang et al., who proposed
a hybrid KG embedding and path-based method in a
recommendation algorithm they named RippleNet [57].
In this context, the KG contains nodes representing
items that can be recommended, e.g. movies, along with
other nodes that represent other features associated
with each item, such as actors, genres, and release date.
Edges highlight associations between items and fea-
tures, e.g. a movie and its actors. In addition, there is a
separate matrix that contains the interactions between
each user and item. The goal is to predict the likelihood
of a user selecting an item given the KG and the user’s
prior interactions. The algorithm begins by initializing
the representation of each item based on the user’s
click history. Next, the algorithm iterates over items that
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Figure 8. Demonstration of non-numeric discrete features enrichment and selection by Own-think KG. The figure includes enriched information for
Beijing, Hong Kong, and Shanghai. For example, the additional features for Shanghai provided by the Own-Think KG (see Figure 7) detail Shanghai’s
population size, average temperature, latitude, longitude, and GDP. This thus contributes to a richer, more nuanced profile of Shanghai, compared to a
one-hot encoding representation of each city, and offers additional insights as to how each aspect of a city may relate to the analysis at hand.

are increasing hops from items the user had already
interacted with. The end result is an embedding of the
relevance of each item that is combined with the ini-
tial vector representation with a model for the final
prediction of the likelihood of selecting that item. This
was later extended by Wang et al. [62] by having a com-
bined deep framework that is simultaneously trained
on a KG embedding task in addition to learning the
recommendation task. The model architecture features
shared latent features between the two tasks, with the
idea being that the inclusion of the embedding task will
enhance the latent representations. We give an illustra-
tion of Ripp-MKR in Fig. 9.

• Ismaeil et al. [56] introduced a method, FeaBI, to generate
interpretable KG entity embeddings. First, a standard KG
embedding is calculated. Additionally, a few categories
of features for each node are extracted to form a vector,
including the types of edges or relations it has, the types
of nodes it is connected to, sequences of edge types of
a certain length, and graph structural statistics. Next,
random forest models are trained to predict each of
the original embedding dimensions from its extracted
feature vector. The random forest model ranks features
based on their importance for the reconstruction task.
These rankings can be used to better understand the
information captured by embeddings. Additionally, a
smaller subset of the feature vector can be selected for
the most important features and used in place of the
original embedding for more interpretable analysis.

Deep learning-advanced network representation
learning
Deep Learning models are designed to capture high-level, abstract
representations of data. This ability allows them to capture mean-
ingful insights from KGs, thereby enhancing applications in vari-
ous domains, including personalized recommendations and pre-
dictive healthcare analytics.

• Anelli et al. [63] proposes KGFlex, a recommendation system
[64] that integrates KG-based FS to improve the personaliza-
tion and accuracy of recommendations. They use the notion

of multi-hop predicates [65] (i.e. considering chains of predi-
cates that connect two entities at a high depth) to construct
the semantic features on a KG. For instance, A → B → C is a
2-hop predicate.

In the FS step, KGFlex utilizes the concepts of entropy
and information gain [66, 67] to assess how significant and
relevant a feature is to a user when determining whether
to engage with an item or not, i.e. to watch a movie or
not. The features, represented as 〈predicate,entity〉 pairs, are
then embedded in a latent space to construct the user–item
interaction along with user embeddings via DL methods. For a
particular user, the items with higher user–item interactions
are recommended. All the embeddings and model parame-
ters in KGFlex are learned from the Bayesian Personalized
Ranking (BPR) optimization criterion [68]. The whole proce-
dure is visualized in Fig. 10.

The performance of KGFlex is evaluated on three datasets
from various domains, Yahoo! Movies, MovieLens, and Facebook
Books. The experiments are designed to test the performance
of KGFlex in terms of the Gini Index [69, 70]). KGFlex outper-
forms certain latent factor models such as kaHFM [71], Item-
kNN [72], NeuMF [73], and BPR-MF [68] by an average of 18%.
It also surpasses other key metrics, such as Item Coverage
[74], in the recommendations it generates. Additionally, it
excels in metrics like ACLT [75], PopREO, and PopRSP [76],
which measure recommendation performance concerning
the underrepresentation of rare items. It is occasionally out-
performed only by kaHFM in top-10 recommendations.

• Su et al. [77] presented an attention-based KG representation
learning framework, named DDKG, which aimed at feature
representation and selection to improve drug–drug interac-
tion (DDI) prediction. This approach allows for end-to-end
prediction of DDIs. We summarize the DDKG into the below
four main parts:

a. KG Construction: the KG construction amalgamates the
Simplified Molecular Input Line Entry System (SMILES),
SMILES-associated triple facts, and entities such as pro-
teins and diseases. For example, we have two drugs, A
and B, and we integrate their SMILES sequences along-
side their relationships (e.g. ‘targets”) with diseases into
the KG.
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Figure 9. Illustration of Ripp-MKR feature learning mechanisms. The Ripp-MKR model involves a recommendation system KG with nodes representing
users, movies, genres, and actors. In this KG, relationships such as ‘Alice watched Barbie of Swan Lake,’ ‘Barbie of Swan Lake is starred by Barbie,’
and ‘Barbie of Swan Lake has genre Animation’ are examples of how the system is structured (see KG Construction). Taking Alice as the initial point,
we construct a historical set, VAlice, comprising Alice’s movie-watching history, which includes three movies (see RippleNet). RippleNet then extends
Alice’s preference for the Barbie series to other movies with similar genres and actors, like ‘Barbie.’ The KG Embedding Module (KGE) refines Alice’s
embedding, uAlice, by aggregating all the k-hop softmax-weighted tail embeddings ti, for instance, ‘Animation’ and ‘Barbie’ (see KG Construction). This
refined embedding, uAlice, is processed through an L-layer MLP to derive a nuanced user vector, UL

Alice. The KGE is informed by the interactions among
movies, genres, and actors. The Cross and Compress Unit examines the interactions between different genres by calculating the outer product of the
movie vector v (e.g. ‘Skyfall’) and an entity vector e from the set SSkyfall, which includes entities related to ‘Skyfall’ in the KG. After performing the outer
product between v and each e ∈ SSkyfallL times, the final latent feature vector, VL

Skyfall, for ‘Skyfall’ is obtained by taking the expectation over the L

outer products. The Recommendation Module then selects the movie with the highest sigmoid probability from the inner product of UL
Alice and VL

Skyfall,

denoted by ŷAlice,Skyfall. From potential next movies like ‘Skyfall,’ ‘Inception,’ and ‘Barbie: Fairytopia,’ Ripp-MKR recommends ‘Barbie: Fairytopia’ to Alice
as it has the highest probability value, indicating it as the most suitable next watch.

b. Drug Embedding Initialization: DDKG uses an encoder-
decoder layer to learn the initial embeddings of drug
nodes, mainly from the SMILES sequences in the KG.
This step transforms the SMILES sequences of drugs
A and B into vector representations that capture their
chemical structure and properties.

c. Drug Representation Learning: this part, consisting of three
elements, serves as the key FS step in DDKG.

– Neighborhood Sampling: for each drug node, a fixed-
size set of neighboring nodes is selected. The signif-
icance of each neighbor is determined by attention
weights, which are calculated based on the embed-
dings of the nodes and the types of relationships
among them. This step ensures only the most rel-
evant neighbors (in terms of both graph structure
and drug relationships) are considered for further
computation.

– Information Propagation: The next step involves
calculating a weighted sum of the neighbor
embeddings. The attention weights (calculated in

the previous step) are used to determine how much
each neighbor’s information should contribute to
the drug node’s new representation. This ensures
that more relevant neighbors have a bigger impact
on the final representation.

– Information Aggregation: in the final step, the
weighted sum of the neighbor embeddings is
combined with the drug node’s initial embedding
and a final global representation of a drug node is
obtained.

d. DDI Prediction: for a queried pair of drugs, DDKG esti-
mates their interaction probability by simply multiply-
ing their final respective representations derived in c.

• In the work by Hsieh et al. [78], a GNN [79] was employed
to advance the FS (drug selection) process for COVID-
19 treatment from a drug–target interaction network (see
Figure 11). The authors first constructed a COVID-19 KG
(see the top-left region in Fig. 11) and generated embeddings
using a GNN. The method involved transferring knowledge
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Figure 10. Illustration of KGFlex FS and recommendation procedure. We start with a KG with six nodes and six predicates (edges/relations). A feature set
F is constructed where each element is of form 〈predicate, node〉; for instance, from node A we can get to node B via a black predicate, then a feature
is constructed as 〈Black, B〉. We construct a global embedding set G representing each feature in F , and a user-feature embedding set P for each pair
of user and feature. All embeddings and parameters in KGFlex are learned via DL methods with the BPR optimization criterion. We then associate each
user-feature pair with an information gain IG, which measures the expected reduction in information entropy from a prior node to a new node that
acquires some information. For instance, suppose a user is currently at node A. The computed information gain IG(〈Black, B〉)=1, IG(〈Orange, E〉)=0 and
IG(〈Black, D〉)=1 means the nodes B, D and the predicate ‘Black’ have influential impacts on the user’s next move. Finally, for each user, we compute the
user–item interaction X and recommend items to him with the highest X values.

from another drug-repurposing KG (see top-right region)
and learning high-dimensional embeddings for drugs that
encapsulate the desired set of complex pharmacological
characteristics of drugs (see middle region). By utilizing
a ranking model informed by Bayesian pairwise ranking
loss, this approach prioritizes potential drug candidates for
downstream tasks such as gene set enrichment analysis (see
middle-left region), and retrospective in vitro drug screening
(see middle-right region). The top 22 most-promising drugs
including aspirin, acetaminophen, and teicoplanin that are
highlighted in the paper, demonstrate the rapid identification
of candidate drugs for COVID-19 treatment.

Comparative analysis of different approaches
Next, we will evaluate the methodologies from referenced
manuscripts, focusing on their advantages and disadvantages.
We have summarized this information in Table 1.

1. Search Algorithms Used in the Hadith Corpus KG [16] with
the ACO algorithm and in COPD diagnosis [37] with the CMFS-η
algorithm. These methods highlight the importance of selecting
appropriate strategies based on specific dataset requirements.

2. Vector Embeddings This approach, exemplified by the
DistMult Algorithm and FeaBI, moves away from explicit
path searches to embedding entities in a continuous vector
space. It captures deep semantic relationships, facilitating the
identification of intricate patterns relevant to complex domains
like drug discovery [41, 44].

3. Similarity-based Methods These methods compare entities
within a graph to identify similarities using metrics like cosine

similarity or Jaccard index. They are beneficial for clustering or
recommendation systems, as demonstrated by Ma et al. [38] in
Android malware classification and Jaworsky et al. [39] in health
survey datasets.

4. Advanced Network Representation Learning Utilizes deep
learning models to interpret and analyze KGs, capturing high-
level data representations. Examples include KGFLEX for opti-
mizing recommendation systems and DDKG for drug–drug inter-
action predictions, showcasing the power of GNN frameworks
in FS [37].

Comparison and Contrast Search algorithms and similarity-
based methods provide direct, interpretable insights into KG
structures, making them suitable for applications requiring clarity
and precision. In contrast, vector embeddings and advanced net-
work representation learning offer a nuanced understanding of
data, identifying complex patterns and relationships. These latter
methods are valuable for scenarios where data relationships are
not straightforward, enabling flexible and powerful KG modeling
for predictive analytics. The drug ranking technique by Hsieh
et al. [78] demonstrates the intersection of vector embeddings
and advanced network learning, highlighting their transformative
potential in FS.

Challenges and opportunities in KG FS
KGs are transforming data-driven fields like biomedical research,
bioinformatics, and recommendation systems. They offer sig-
nificant analytical capabilities but also present challenges and
opportunities, especially in FS for ML models.
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Figure 11. Feature selection (drug selection) via GNN embedding and drug ranking. The authors first constructed a COVID-19 KG containing different
types of nodes (including 3,635 drugs) and interactions. The variational graph autoencoder with GraphSAGE messages passing [80, 81], a specific
type of GNN, was used to derive the drug embedding (the grey squares in Feature Selection) by transferring a drug repurposing KG [82] to boost
the representativeness. Initial drug ranking using Bayesian pairwise ranking loss was then applied to rank and select possibly potent drugs out of
all candidates, hence serving as a FS step. The model efficacy was demonstrated using different validations. For instance, the authors performed
Genetic Validation by identifying significant associations between SARS-CoV-2 and selected drugs. Drug Screening Validation is also performed by
retrospectively comparing selected drugs with effective drugs in various in vitro drug screening experiments. In the Population-based Validation, the
proposed method identified six drugs administered to the COVID-19 patients out of ten positive drugs that were effective in the electronic health records.
In addition, Drug Combination Search for improving the COVID-19 treatment efficacy is conducted on the selected drugs. All validation results testify
the capability of the proposed method speeding up the discovery of candidate drugs for treating COVID-19.

Table 1. Comparison of Feature Selection Methods for KGs

Method Computational
Complexity

Scalability Practical Applicability Pros and Cons

Search Algorithms High Limited High (well-defined domains) Pros: Efficient and precise in known domains.
Straightforward implementation. Cons: May miss novel
connections. Less adaptive to new patterns.

Similarity-based
Methods

Moderate Manageable High (clustering,
recommendation systems)

Pros: Easy to understand. Efficient for
clustering/recommendations. Cons: Reliant on
similarity metric quality. Computational challenges
with large KGs.

Vector Embeddings High (training), Low
(inference)

High Extensive (link prediction,
drug discovery)

Pros: Captures deep semantic relationships. Scalable to
large KGs. Enhances predictive power. Cons: Challenges
in interpretability. High initial training cost.

Advanced Network
Representation
Learning

Significant Challenging High (complex pattern
recognition)

Pros: Learns complex representations. Integrates
heterogeneous data. Versatile in application. Cons:
Computationally intensive. Complex model structure.

Challenges
Feature selection in KGs faces several hurdles:

1. High Dimensionality and Complexity: KGs encompass
numerous entities and relationships, creating high-dimensional
spaces that challenge traditional FS methods.

2. Data Heterogeneity: KGs integrate diverse data types
(numerical, categorical, textual) from various sources,
necessitating robust FS techniques.

3. Interpretability: enhancing interpretability is crucial, espe-
cially in fields like healthcare, where understanding why
features are selected is essential.

Future directions
Several promising research avenues could redefine KG FS:

• Causal Inference Techniques: applying causal inference
techniques to KGs can refine FS strategies [31].

• Embedding KGs into Feature Matrices: creating feature
matrices from KGs facilitates downstream tasks and
enhances model performance [83].

• Novel Algorithms: exploring the use of algorithms like ACO
would introduce new approaches to FS within KGs [41, 44].

• Multi-objective Optimization: using multi-objective opti-
mization techniques would offer a refined methodology
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for FS, balancing criteria like redundancy and relevance
[84].

• Interdisciplinary Integration: combining KGs with quantum
computing, reinforcement learning (RL), and federated
learning (FL) can enhance FS. Quantum-enhanced selection
addresses scalability, RL refines the process based on
feedback, and FL enables decentralized selection, preserving
privacy [85, 86].

• Semantic Enrichment and XAI: leveraging the semantic
information in KGs and applying Explainable AI principles
can improve FS and model interpretability. Incorporating XAI
principles into FS for KGs can be achieved through various
methods, including attention mechanisms, interpretable
models, and visualization techniques. Attention mechanisms
in models such as Graph Attention Networks (GATs) allow for
the identification of important features by assigning different
weights to different parts of the input data, making it
easier to understand which features significantly impact the
model’s predictions. Interpretable models, such as decision
trees or rule-based systems, can be employed to provide
clear and understandable decision paths that explain why
certain features were selected. Additionally, visualization
techniques, such as heatmaps and graph visualizations,
can help users intuitively understand the relationships
and significance of different features within the KG. These
methods not only enhance the transparency of the FS
process but also build trust in the model’s predictions
by providing insights into its underlying decision-making
process. However, integrating XAI principles into KG FS
comes with challenges, including ensuring scalability and
maintaining interpretability in complex models. Scalability
issues arise as the size and complexity of KGs increase,
and necessitate efficient algorithms that can handle large
datasets without compromising interpretability. Balancing
model complexity with the need for transparency is crucial,
as overly complex models may offer better performance but
at the cost of reduced interpretability.

• Domain Knowledge Integration: integrating domain-specific
knowledge into the FS process results in more effective selec-
tions, particularly in specialized fields like genomics and
pharmacology.

• Multi-modal Data Fusion: combining various data sources
into KGs offers a holistic view and unlocks new insights and
applications.

• Dynamic KGs and Real-time Feature Selection: developing
methods for real-time FS as KGs evolve can lead to more agile
models, critical in rapidly changing domains like social media
analysis.

• Collaborative KG Frameworks: creating frameworks for shar-
ing and integrating KGs can enhance feature diversity and
quality, fostering standardized protocols and benchmarks.

• Ethical Considerations: prioritizing ethical considerations
and bias mitigation in KG FS ensures fairness and equity in
applications. KGs can inherit biases from their data sources,
leading to skewed outcomes. Addressing these biases requires
diverse datasets and fairness-aware algorithms. Privacy
is crucial, especially in sensitive domains like healthcare,
necessitating robust data anonymization techniques and
secure methods such as differential privacy and encryption.
Ethical implications include the need for transparency and
accountability in decision-making, especially in healthcare,
where explainable AI principles and regulatory frameworks
can prevent data misuse and discrimination. This expanded
discussion ensures a responsible approach to KG FS.

Conclusion
Examining KG methodologies underscores the importance of scal-
ability, accuracy, and interpretability in FS processes. As KGs grow,
developing scalable algorithms that efficiently process large-scale
KGs without losing information granularity is paramount. This
requires a balanced approach that leverages KGs’ rich semantic
relationships while addressing computational challenges.

Key Points

• Emphasizes combining feature selection techniques
with KGs to enhance predictive modeling in biomedical
research.

• Shows significant applications in bioinformatics,
improving disease prediction and drug discovery
processes.

• Discusses challenges like computational complexity
and the need for comprehensive KGs, proposing future
research to develop efficient algorithms and integrate
additional data sources.
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Appendix
Appendix A. Table of Acronyms
Table A.1 lists the Table of Acronyms for this paper.

Table A.1. Table of Acronyms

Abbreviation Definition

ACLT Average Coverage of Long Tail items
ACO Ant Colony Optimization
AD Alzheimer’s Disease
ADKG Alzheimer’s Disease Knowledge Graph
AI Artificial Intelligence
AlzKb Alzheimer’s Disease Knowledge Base
APOE Apolipoprotein E
AUC Area Under the Curve
Bi-LSTM Bidirectional Long Short-Term Memory
BPR Bayesian Personalized Ranking
COPD Chronic Obstructive Pulmonary Disease
CYP2D6 Cytochrome P450 2D6
DDI Drug-Drug Interaction
DistMult The Distributed Multinomial Method
DL Deep Learning
DR Dimensionality/Dimension Reduction
DSA-SVM Direct Search Simulated Annealing with Support Vector

Machine
DTP Drug-Target Pairs
FS Feature Selection
GDB Graph Database
GNN Graph Neural Network
HMOX1 Heme Oxygenase 1
KEGG Kyoto Encyclopedia of Genes and Genomes
KG Knowledge Graph
LDA Linear Discriminant Analysis
LLE Local Linear Embedding
ML Machine Learning
MLP Multiple Layer Perceptron
MQL Metaweb Query Language
MTHFR Methylenetetrahydrofolate Reductase
RDF Resource Description Framework
RFE Recursive Feature Elimination
nDCG Normalized Discount Cumulative Gain
NLP Natural Language Processing
NOS3 Nitric Oxide Synthase 3
OWL The Web Ontology Language
PCA Principal Component Analysis
PPARG Peroxisome Proliferator-Activated Receptor Gamma

(Continued)

Table A.1. Continued

Abbreviation Definition

RDF Resource Description Framework
RFE Recursive Feature Elimination
RO Relation Ontology
TPI1 Triosephosphate Isomerase 1
URIs Uniform Resource Identifiers
UMLS Unified Medical Language System
W3C World Wide Web Consortium
YAGO Yet Another Great Ontology

Appendix B. A more detailed description of KGs of sizes
tiny, small, and medium
Within each of the three graphs(see Figs 2, A.1, and A2), the nodes
and their connections are represented by distinct colors and arrow
types to convey different biological relationships:

Orange (see Figs A.1 and A2) and Yellow (see Figure 2) nodes
represent the disease entity, with AD positioned as the central
node, highlighting it as the primary focus of this network.

Purple nodes signify genes, which are implicated in AD through
various associations such as genetic risk factors, differential gene
expression, or other genetic interactions.

Green nodes denote chemicals, encompassing drugs, vitamins,
or other bioactive molecules. These external agents are potential
modulators of gene function or disease pathology.

• There are five instances of the ‘Chemical binds gene’ rela-
tionship (light purple arrows in Fig. 2 and brown arrows in
Figs A.1 and A2), where a chemical is shown to interact
directly with a gene. This does not necessarily indicate an
increase or decrease in gene expression, but rather a physi-
cal or functional interaction. For example, one of the edges
indicates that folic acid, a form of vitamin B that is vital for
making DNA and other genetic material, binds the MTHFR
gene. MTHFR plays a crucial role in processing amino acids,
the building blocks of proteins. Variants of this gene can affect
homocysteine levels in the blood. Deficiencies in folic acid are
linked to elevated homocysteine levels, which may increase
the risk of AD.

• There are six instances of the ‘Gene associates with disease’
relationship (yellow arrows in Fig. 2 and red arrows in Figs
A.1 and A2), representing genes that have an association with
AD. These relationships might represent genetic risk factors,
genes involved in the pathology of the disease, or genes that
could be potential targets for therapeutic intervention. For
instance, the NOS3 gene is associated with AD. It is involved
in the generation of nitric oxide, a molecule that aids in blood
vessel dilation. Impairment in NOS3 function can affect blood
flow in the brain, potentially impacting Alzheimer’s disease
pathology.

• There are three instances of the ‘Chemical increases
expression’ relationship (pink arrows), denoting chemicals
that are known to upregulate or increase the expression
of certain genes. For instance, vitamin A increases the
expression of HMOX1, a gene that encodes an enzyme in
response to oxidative stress, and that is also a contributing
factor in neuronal damage observed in AD.

• There is one instance of the ‘Chemical decreases expression’
relationship (green arrow), indicating a chemical that down-
regulates or decreases the expression of a gene. Namely,
cyclosporine, an immunosuppressant that may inhibit the
formation of the amyloid plaques, that are a hallmark of AD,
decreases the expression of TPI1, an enzyme that plays a
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Figure A.1. A Small-sized ADKG (Orange Node: AD; Purple Nodes: Genes; Green Nodes: Drugs) [28].

Figure A2. A Medium-sized ADKG (Orange Node: AD; Purple Nodes: Genes; Green Nodes: Drugs) [28].
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crucial role in glycolysis, a metabolic pathway that occurs in
the cytoplasm of cells.

• There is one instance of ‘Gene regulates gene’ (purple arrow),
suggesting a regulatory interaction between two genes,
PPARG and TPI1. For context, PPARG is a gene that codes
for a protein that regulates fatty acid storage and glucose
metabolism. It is a target for some drugs that might influence
Alzheimer’s disease progression.

Figure A.1 provides an example of a small-sized ADKG with 23
nodes and 32 edges (setting the Cypher limit clause to 15) and

Fig. A2 provides an example of a medium-sized ADKG with 156
nodes and 288 edges (setting the Cypher limit clause to 200). In
addition to the relationship types described above, the medium-
sized ADKG also demonstrates the ‘DRUGTREATDISEASE’
(gold arrows) and ‘GENEINTERACTSWITHGENE’ (brown arrows)
relationships. As the size of the KGs continues to expand, the
challenge of comprehending the intricate web of entities
and relationships within them becomes daunting for human
observers. Consequently, there arises an urgent need for the
development of sophisticated computational tools capable of
effectively managing these vast KGs.


	 A review of feature selection strategies utilizing graph data structures and Knowledge Graphs
	Introduction
	Background and key concepts
	Feature selection on KGs
	Challenges and opportunities in KG FS
	Conclusion
	Key Points
	Acknowledgements
	Funding




