
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Intentional commitment through an internalized theory of mind: Acting in the eyes of an 
imagined observer

Permalink
https://escholarship.org/uc/item/7g8741tc

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Cheng, Shaozhe
Zhao, Minglu
Zhu, Jingyin
et al.

Publication Date
2022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7g8741tc
https://escholarship.org/uc/item/7g8741tc#author
https://escholarship.org
http://www.cdlib.org/


Intentional commitment through an internalized theory of mind:
Acting in the eyes of an imagined observer

Shaozhe Cheng1 Minglu Zhao3 Jingyin Zhu1

shaozhecheng@zju.edu.cn minglu.zhao@ucla.edu zhujy@zju.edu.cn

Jifan Zhou1 Mowei Shen1 Tao Gao2,3

jifanzhou@zju.edu.cn mwshen@zju.edu.cn tao.gao@stat.ucla.edu
1 Department of Psychology and Behavioral Sciences, Zhejiang University

2 Department of Communication, UCLA 3 Department of Statistics, UCLA

Abstract

The ancient Greek hero Ulysses chose to bind himself to re-
sist the temptation of Sirens, highlighting the fact that humans
may voluntarily sacrifice their freedom of choice to achieve
committed goals. In this work, we propose a computational
model for such commitment under the framework of Bayesian
Theory of Mind. The model is based on the idea that even
when alone, humans act to better demonstrate their intentions
to an imagined third-party observer (ITO) censoring their ac-
tions. Our model successfully captures the Ulysses-constraint
of freedom, as the freedom confuses the ITO’s inference of
their intention. We further show that, trajectories generated
both by human actors and actors modeled with ITO censorship
are easy to interpret both in the eyes of an actual human ob-
server and an ITO. The results demonstrate that under conflict-
ing desires, humans achieve commitment by spontaneously
censoring their actions with an internalized theory of mind.
Keywords: conflicting desires; intention; commitment; meta-
cognition; internalized theory of mind

Introduction
Humans are purposeful agents who act to fulfill desires. Yet,
human minds are often full of desires incompatible with each
other. The ancient Greek hero Ulysses wanted to hear the
Siren’s song, yet he was also eager to safely return to home-
land without being seduced by the Siren — in the end he vol-
untarily surrendered his freedom and bound himself to a mast
to resist the temptation. We mundane people also constantly
experience this contradiction within ourselves: People suffer
from conflicting desires as if they have multiple selves; part
of you wants longevity while another part is addicted to alco-
hol (Schelling, 1984). This multiple-selves dilemma has long
been discussed in philosophy (Elster, 1987) and psychology
(Freud, 1923), while the cognitive and computational mech-
anisms of why humans can generally act coherently under
conflicting desires are still unclear.

The traditional action theory in philosophy asserts that de-
sires, despite their complexity, are sufficient for directly gen-
erating any action when combined with beliefs (Audi, 1974;
Davidson, 1963). Rational actions can be defined as the ones
that are expected to fulfill desires (Dennett, 1987). In decision
theory and artificial intelligence, this insight has been for-
mulated as designing algorithms to maximize expected utili-
ties (MEU) (Von Neumann & Morgenstern, 1953; Russell &
Norvig, 2002). Complex desires can be simultaneously main-
tained by defining all of them as part of the reward function.
Agents do not need to make the hard choice among desires
and can simply act to maximize expected utility, where the
expectation is jointly evaluated by the probability of all fu-
ture states and how well the states can satisfy all desires.

The power of MEU has been demonstrated by modern AI
such as deep reinforcement learning, which is able to generate
complex intelligent behaviors, reaching human-expert level
performance in games like Atari (Mnih et al., 2015) and Go
(Silver et al., 2016, 2017). The importance of modeling de-
sires has also been widely accepted in cognitive psychology,
such as Theory of Mind (ToM), assuming that humans spon-
taneously explain others’ actions by attributing them to the
combination of beliefs and desires (Wellman, 2014). Com-
bining Bayesian inference and MEU, it has been shown that
human decision making can be considered as a naive util-
ity calculus with positive rewards and negative costs (Jara-
Ettinger, Gweon, Schulz, & Tenenbaum, 2016).

On the other hand, intention models are based on the as-
sumption that other than beliefs and desires, intention is also
an indispensable mental state. Intention is the “deliberation”
of what to do based on belief as the information and desire
as the motivation (Bratman, 1987). Desires do not directly
drive human actions but are instead mediated by intentions
(Harman, 1986; Searle, Willis, et al., 1983). Intention-based
actions do not consider the expectation of all future states
evaluated by all desires but requires deliberation of what de-
sires to choose. Intention then serves as a proactive commit-
ment to a fixed plan towards a specific goal (Bandura, 2001).

Therefore, any conflicting nature of desires must be “fil-
tered out” before forming an intention to execute actions: An
agent is allowed to desire conflicting things but not to in-
tend conflicting things (Bratman, 1987). The philosophical
theory of intention has been supported by human empirical
studies using introspection and self-reports (Malle & Knobe,
2001; Perugini & Bagozzi, 2004; Schult, 2002). The fea-
sibility of modeling intention computationally has also been
demonstrated: Early work of logical AI formalizes intention
as selecting a goal for persistent pursuit (Cohen & Levesque,
1990). More recently, intention has been modeled as opti-
mizing the order of destinations with different rewards, which
allows the model to focus on one destination at a time (Jara-
Ettinger, Schulz, & Tenenbaum, 2020).

Another study focused more on the psychophysics of in-
tentional actions in adults (Cheng et al., 2021). In a 2D navi-
gation task, it compared humans with an optimal Markov De-
cision Process (MDP) model. The results showed that human
actions qualitatively deviate from modeled actions with sev-
eral behavioral signatures of intentional commitment: “Dis-
ruption resistance,” with which humans persistently pursue a
plan despite setbacks; “Temporal leap”, where people com-
mit to a distant future even before achieving the proximal
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Figure 1: Ulysses and Siren. Ulysses faces two paths: one
with the option to go to the Siren, and the other one with the
fixed future of going home only.

one; “Ulysses-constraint of freedom”, which, especially re-
lated to the current work, refers to the proactive constraint
of one’s freedom by avoiding a path that could lead to many
futures, similar to Ulysses’s self-binding to resist the temp-
tation of the Siren’s song (Fig. 1). In the study, participants
were given the opportunity to “self-bind” at a crossroad with
two paths: an open-ended path that could lead to two desti-
nations, or a fixed-future path that leads to only one destina-
tion. Similar to the spirit of Ulysses, participants are biased
towards choosing a path that leads to one fixed future, instead
of the one with the freedom to choose different destinations.
Such behavior is essentially the participants’ declaration to
maintaining a fixed intention. Since participants finished the
tasks individually, the Ulysses-constraint of freedom can be
taken as a “self-declaration” without being influenced by oth-
ers. Together, these behavioral results show the inflexibility
of human actions, indicating that they are indeed driven by
committed intentions, instead of the desire to optimize the
expectation of multiple rewards.

Intention commitment
through an internalized theory of mind

ToM serves as the basis for people to understand others’ ac-
tions. People further use it to censor their own actions to
present a better version of themselves to others (Goffman et
al., 1978). Once such mindset is internalized, even when peo-
ple are alone by themselves, they would still imagine an ob-
server being present and act in a way that satisfies his expec-
tations. The ability to view one’s own mind from an objec-
tive perspective has been considered as a great achievement of
human rationality (Dennett, 1996), which has also been high-
lighted as a type of meta-cognitive process (Flavell, 1979;
Bandura, 1989). Applying the Ulysses-constraint of freedom
phenomenon, people chose to abandon the choice with mul-
tiple destinations in order to let the imagined observer under-
stand their intentions more easily.

Empirical studies on commitment
Commitment is the hallmark of intention. Empirical stud-
ies on commitment were first explored by economists, who
found that humans are not fully rational as utility-maximizers
due to the fact that their preferences may change over
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Figure 2: A meta-cognitive model of intention.

time—referred to as the “changing tastes” problem (Strotz,
1955). To forestall the changing tastes, commitment has been
proposed as a regulation device to deal with the temporal
fluctuations of preferences (Thaler, 1980; Schelling, 1980;
Bryan, Karlan, & Nelson, 2010). However, economists’ fo-
cuses are on explaining consumers’ behavior and providing
high-level commitment strategies, instead of the cognitive
mechanisms of intentional commitment under ToM.

Psychological researchers, on the other hand, have been
looking into how people control their desires executively
since the time of Sigmund Freud. When faced with temporal
fluctuations of preferences, a lack of self-control frequently
leads to inconsistency in behavior (Ainslie, 1975). One clas-
sic demonstration of executive control is children’s ability to
suppress current impulses in exchange for larger future ad-
vantages (Mischel, Ebbesen, & Raskoff Zeiss, 1972; Choe,
Keil, & Bloom, 2005). Although children do not understand
internal conflicting desires until they are at least 7 years old
(Choe et al., 2005), they appear to demonstrate persistence
towards a specific goal as early as infancy (Leonard, Lee, &
Schulz, 2017). These findings indicate people’s capability
to self-regulate to resolve conflicting desires. Yet, it is not
clear how the commitment is achieved through self-control,
especially how it can be computationally formalized through
a modern Bayesian ToM (BToM) model (Baker, Saxe, &
Tenenbaum, 2009).

A meta-cognitive model of intention
We focus on how the self-declaration of intention can be mod-
eled as an internalized BToM, which works as an imagined
third-party observer (ITO) constantly monitoring and censor-
ing one’s own actions. Here we only consider the scenario
with two possible goals, while the model can be easily gen-
eralized to multi-goal situations (Fig. 2). The model has the
following stages:

(A) Action planning before committing Before commit-
ting to an intention, an agent acts by considering all possible
rewards and aims to maximize the expected utility. We solve
the problem of planning with rewards as a Markov Decision
Process (MDP) model whose terminal states are all desired
goals. Consider there are two goal states, A and B, with ter-
minal rewards rA, rB respectively. The agent’s reward func-
tion is defined as the averaged reward:
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Figure 3: Meta-cognitive processes of intention.

r = (rA + rB)/2 (1)

Given this reward function, the action policy can be ob-
tained from classic dynamic programming algorithms such as
Value Iteration (Bellman, 1957). This policy implies that the
agent acts to maximize the expectation of all rewards without
committing to a specific goal. The output of this uncommitted
policy Pβ(action | state) is based on a soft-max function with
a rationality parameter β. When β → 0 , the agent acts ran-
domly; when β →+∞, the agent acts greedily by the optimal
solution. Here we chose β = 2.5 following previous studies
in modeling human actions with MDP (Baker et al., 2009).

(B) Self-monitoring. The observed actions generated in
step (A) are constantly monitored by the ITO (Fig. 3a). Al-
though the generation of an action is not based on any specific
intention, the ITO always tries to attribute it to an intention
through Bayesian goal inference (Baker et al., 2009).

Pβ (intention | action1:T ,state1:T )

∝

T

∏
t=1

Pβ (actiont | statet , intention)P(intention)
(2)

The action likelihood, Pβ ( actiont | statet), is derived from
an optimal policy of an MDP whose terminal state is the
agent’s intention with a reward function defined as r =
rintention. The output of this self-monitoring process is the
posterior probability of all possible intentions.

(C) Commit or not? Once having a posterior distribution
of intentions calculated from self-monitoring, the agent needs
to decide whether to commit, and if so, which one of the two
intentions to commit to. The decision is based on the differ-
ence of posterior probability between two intentions:

∆Posteriors = |P(A)−P(B)| (3)

This difference can be modeled as a Just-noticeable differ-
ence (JND), which is a standard protocol in modeling human
perception in psychophysics (Weber’s Law). If ∆Posteriors <
JND, no intention will be selected, and the agent will con-
tinue to follow the uncommitted policy defined in Step (A);
If ∆Posteriors > JND, the agent will commit by sampling an

intention from the posterior distribution of the two intentions
[P(A), P(B)]. Here we use sampling instead of deterministic
decision rule to allow for re-planning (Bratman, 1987), as it
is possible for agents to switch intentions after committing.
(D) Intention-based reward shaping. Once an intention
has been committed, only the one reward term consistent with
the intention will be maintained, while all others will be ig-
nored for future action planning.

r = rintention (4)

(E) Self-censoring. If an intention is sampled in Step (C),
the agent will commit to it through a self-censoring process
(Fig. 3b). Unlike self-monitoring, which infers the agent’s in-
tention given an already generated action, self-censoring eval-
uates possible future states by simulating the consequences of
different actions and how the future states will influence the
ITO’s inference of the agent’s intention. The purpose of self-
censoring is to discourage the agent from entering states that
will confuse the ITO’s in recognizing the already-committed
intention. This is achieved by defining the desirability of a
state rsel f−declaration to be the likelihood ratio of entering that
state given the committed intention. Intuitively, this will en-
courage the agent to enter states that only the committed in-
tention can lead to while others cannot. This likelihood is
computed by integrating out the action probability given pol-
icy and transition uncertainty.

rsel f−declaration =
P(statet+1 | statet , intentioncommitted)

∑intention∈I P(statet+1 | statet , intention)
(5)

P(statet+1 | statet , intention)

= ∑
action∈A

P(statet+1 | st ,action)P(action | statet , intention)

(6)
(F) Action planning with self-commitment. Considering
both (D) and (E), the agent will take actions that 1) physi-
cally leads to the goal and 2) mentally facilitates the ITO’s
inference. The committed policy is solved by an MDP with
reward function defined by a weighted sum of rintention and
rsel f−declaration:

r = rintention +αrsel f−declaration (7)

where α ∈ [0,+∞) is a declaration parameter. When α →
+∞, the agent acts to best declare its commitment through
facilitating the ITO’s inference of its intention.

Experiments
Overview
Here we tested our theory of commitment by modeling a pre-
vious human experiment and running a new human experi-
ment. In Experiment 1, we used our model to explain the
behavioral signatures of Experiment 2 of the Cheng et al.’s
(2021) study (stimuli can be found at https://osf.io/k5e69/) in-
cluding “disruption resistance” and “Ulysses-constraint”. Ex-
periment 2 further tested the “Enhanced legibility” assump-
tion that humans should purposefully demonstrate their in-
tentions in order to make it easier for an observer (human or
Bayesian model) to infer their intentions.
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Crossroad
Fixed-future path 
leading to one destination

Open-ended path,   
could lead to 
both destinations

Figure 4: Design of the crossroad. An agent at a cross-
road. Agents can either choose a fixed-future path that leads
to one destination (orange arrow) or choose an open-ended
path that could lead to both destinations (green arrow). This
is an sample map of 6-steps-to-crossroad condition, defined
as the length of the shortest path between the agent’s starting
position (dashed blue circle) and the crossroads was 6.

Experiment 1: Modeling Ulysses-constraint and
disruption resistance

The goal of this modeling experiment is to use our model to
explain behavioral signature of intentional commitment ob-
served in Experiment 2 of the Cheng et al.’s (2021) study .
In the experiment, humans are required to reach one of two
goals in a 2D map, with carefully designed crossroads that
lead to two paths: One that constrains agents towards one
fixed destination, and the other one with options to switch
(Fig. 4). The result demonstrated the Ulysses-constraint, in-
dicated by the fact that humans prefer the fixed-destination
path over the open-ended one, even though the expected util-
ity of taking the two paths was identical from a reward max-
imization perspective. In addition, the number of steps for
the humans to reach the crossroad was systematically ma-
nipulated, varying from [0, 1, 2, 4, 6] steps. The effects of
Ulysses-constraint gradually increase as the number of steps
to reach the crossroad increases, suggesting that intentional
commitment does not emerge immediately but takes time and
deliberation. To reveal the behavioral signature of “disruption
resistance”, there was noisy drift that would drag the agents
away from their intended locations during the entire course
of the experiment. The design was to cover for a special trial
added at the end of the experiment. In this trial, the drift was
not random but deliberately designed so that when the agent
first revealed its destination to reach, the drift would drag the
agent back to a position equally distanced from the two des-
tinations (see Fig. 5). Instead of re-planning and choosing
the two destinations with equal probability, humans strongly
prefer to fight back at the disruption and resume their pursuit
of the originally revealed destination.

In our study, we predict that an agent controlled by our
intention model can demonstrate both the Ulysses-constraint
and the disruption resistance phenomena. In contrast, a de-
sire model without intentional commitment, implemented as
including only step (A) of the intention model, should not be
able to demonstrate either of the two.

First position revealing 
a destination

Drifted position 
(with equal distance to both destinations)

Figure 5: Design of the deliberate disruption. Design of
the deliberate disruption. Once an agent revealed its desti-
nation, it was immediately pushed back to a position equally
distanced between the two destinations.
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Figure 6: Experimental results. The error bars reflect 95%
confidence intervals.

Results

Results of both intention model and desire model, together
with human experiment results from Cheng et al. (2021) are
shown in Fig. 6a. For the intention model, we fitted the
threshold parameter to JND = 0.08 and the declaration pa-
rameter to participants’ judgments to α = 5.5 by minimiz-
ing the sum of squared errors between model’s and humans’
choices between the two paths across all steps-to-crossroad
conditions; r = 0.98, RMSE = 0.075. For the desire model,
there was no free parameter to fit. Both the intention model
and the desire model used a fixed rationality parameter β =
2.5, which match the overall task performances of humans’
2D navigation. The desire model shows 50% under all condi-
tions, regardless of the rationality parameter. Consequently,
we cannot apply the same method of model fitting. Instead,
we adjust the model parameters to match the number of steps
humans need to reach their goals.

Ulysses-constraint of freedom Overall, the intention
model preferred the fixed-future path (59%; 95% CI
[0.56,0.62]) over the open-ended path (41%) (one sample t-
test with a 50% baseline, t(19) = 4.17, two-tailed p < 0.001,
BF10 = 11150, d = 1.52). The main effect of steps-to-
crossroad was significant (F(4, 95) = 19.34, p < 0.001 ,
η2

p = 0.45 ). They chose the fixed-future path more at steps
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2, 4, 6, as revealed by one sample t-test with a 50% baseline
(all ps < 0.05 ). Post-hoc analyses further indicated that this
preference was much stronger at steps 4 and 6, compared with
step 2 (all ps < 0.05).

This pattern is consistent with human data which shows no
commitment at step 0 and 1. According to our model, this is
because at these two steps, there is not enough evidence for
the ITO to strongly favor one intention over the other, hence
triggering the commitment. Once enough trajectory informa-
tion has been obtained (after step 2), the ITO can infer the
intentions with posterior high enough to trigger commitment.
The agent will bias against the open-ended path, as here it is
difficult for the ITO to infer the agent’s intentions with both
being able to explain the actions. As expected, the desire
model shows no preference at all crossroads simply because
the expected utility of taking these two paths are identical.

The intention model with the same parameters also ex-
plains disruption resistance in human behavior (90%; 95% CI
[0.76,1]) by reaching the original destination much more than
the chance level (Fig. 6b) (one sample t-test with a 50% base-
line, t(19) = 13, two-tailed p < 0.001 , BF10 = 1.36e+ 08 ,
Cohen’s d = 2.91 ), while the result of the desire model (55%;
95% CI [0.31,0.79]) showed no difference to a chance level.
These results demonstrate that the intention model captured
both the “Ulysses-constraint of freedom” and “disruption re-
sistance” signatures of human intentional actions.

Experiment 2: Enhanced legibility
The core of our theory of intentional commitment is that hu-
mans act to make it easier for an ITO to infer their intentions.
Beyond reporting the signatures in the Cheng et al.’s (2021)
study, our model also generate predictions that can be tested.
First, it predicts that human observers should actually find
the destinations of trajectories generated by humans and the
intention model easier to predict, compared with those gen-
erated by the desire model. We refer to this prediction as
“enhanced legibility.” Note that the result should hold even
with the desire model following a policy that can reach the
goal as efficiently as the human subjects, optimally solved by
MDP. This prediction is tested in Experiment 2a.

Another core argument we have here is that ITO is func-
tionally identical to an imagined human observer. If so, when
replacing the human observer with an ITO to infer the des-
tination of trajectories, we should produce similar enhanced
legibility results. This prediction is tested in Experiment 2b.

Experiment 2a. Enhanced legibility in the eyes of real hu-
man observers

Participants A total of sixty participants (32 females, Mage
= 22.17, SD = 4.17) were recruited for credits or payments.
They were evenly split to three groups with human actors,
intention model actors, desire model actors, respectively. All
participants were given informed consent.

Method The human trajectories in our experiment were
taken from Experiment 2 of Cheng et al. (2021), Trajectories
of intention model and desire model came from Experiment
1. To prevent participants from detecting the regularities in

the crossroads, 50 trajectories were randomly mixed with 25
trajectories with randomly generated maps. Data from the
random trajectories were not analyzed. In all groups, par-
ticipants were asked to watch the trajectories and then pre-
dict which one of the two destinations is the goal. Each trial
started with a central fixation of 1300ms. After that, a 2D
navigation game display was presented with a blue agent,
two red destinations and black barriers. Each time step of the
agent’s motion was presented for 500ms. At the [2,5,8,11,14]
steps, the display freezes, at which time participants were
asked to identify the goal and rate their confidence using a
9-point scale by clicking with the mouse on an array of num-
bered boxes (from very unlikely to very likely), aligned hori-
zontally at the bottom of the screen. After the last report, the
trajectory continues until the agent reaches the destination.

Results When participants select the non-target as the goal
with confidence p, the probability of the actual target is 1− p.
Each time the mean posterior of the actual destination over
the group of participants is computed by averaging partici-
pants’ confidence in judging the target as the true destination.

Fig. 7a shows how the posterior evolves over time. The
difference in posterior is the most salient at step 8, which is
around the middle of the trajectory. At this step, the pos-
terior from the human actor (0.73, 95% CI, [0.71, 0.75],
t(38) = 3.29, p = 0.002, BF10 = 16.43, Cohen’s d = 1.04
) and the intention actor (0.75, 95% CI, [0.73, 0.77], t(38)
= 3.86, p <0.001, BF10 = 62.84, Cohen’d = 1.22) are sig-
nificantly higher than that of the desire actor (0.66, 95% CI,
[0.64, 0.67]). There is no significant difference between judg-
ments to trajectories from the human data and the intention
model (t(38) = -0.74, p = 0.464, BF10 = 0.38, Cohen’d =
0.23). These results show that indeed humans find trajectories
from human actors and intention actors easier to interpret, in-
dicating the “enhanced legibility” nature of self-declaration.

Experiment 2b. Enhanced legibility in the eyes of
imagined third-party observers (ITO) We employed the
BToM model as an imagined observer to test the “en-
hanced legibility”. The ITO model is rationally derived from
Bayesian inference over MDP policies for reaching each goal.
This model is not trained on any data of how humans inter-
pret trajectories. We are curious about whether this model
can nevertheless function in a similar way as the human ob-
servers in Experiment 2a. Specifically, the experiment here
is identical to Experiment 2a except that the human observer
is replaced by the ITO model, which infers intentions from
trajectories generated by the same human actors, intention
actors, and desire actors. The ITO model infers the agent’s
destination by Equation 2. The initial P0(destination) was
set to 0.5 for both potential destinations. The results are ana-
lyzed in the same way as Experiment 2a.

Results The posterior of the ITO inference of the actual
destination (finally reached) was plotted in Fig. 7b. The ITO
is able to infer the actual destination much faster than the de-
sire model (cluster-based permutation tests identified signif-
icant gaps from steps 5 to 14, all ps <0.05). Overall, the
results show that trajectories generated by human actors and
intention actors are equally legible from the perspective of
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Figure 7: Results of enhanced legibility. Posterior of actual
destination inferred by human and ITO observers as a func-
tion of steps. Error shading denotes 95% confidence intervals.

the ITO observer. This strongly supports our assumption that
when human actors generate actions, they are indeed trying
to facilitate the ITO’s inference of their intention.

ITO captures the human judgement qualitatively but is
more extreme in its prediction. There are two possible rea-
sons. One is that ITO assumes less randomness in actions
so that the likelihood for the intentions become more distinct
from each other. The other is that ITO has perfect memory
and uses all past information as reference to make judge-
ments. Humans observers, however, are limited by working
memory capacity and experience memory decay when new
information arrives (Gao, Baker, Tang, Xu, & Tenenbaum,
2019). In the future, the ITO may be improved by assuming a
similar temporal decay in accumulated information over time.

These results collectively demonstrate that the “enhanced
legibility” nature of intention was quantitatively captured.

Discussion
We proposed a meta-cognition model of intention based on an
internalized ToM framework. Our model quantitatively cap-
tured several existing behavioral signatures of human inten-
tion and discovered new ones. Similar to humans, the model
displays the “Ulysses-constraint of freedom” as gradually bi-
asing against an open-ended path. It also explains why hu-
mans persistently pursue the same goal even after setbacks,
as shown in the “disruption resistance” results. Moreover, re-
sults indicate that for both human observers and ITO, it is
much easier to read intentions from trajectories of human ac-
tors and the intention model, as compared to the desire model
which simply maximizes the expected utilities. These results
support our core hypothesis that when facing conflicting de-
sires, people act not just to maximize the expected reward,
but also to better demonstrate their committed intentions.

One potential explanation for why humans act differently
from a rational MEU-based model is to reduce the compu-
tational cost. While humans are indeed limited by computa-
tional resources (Lieder & Griffiths, 2020; Gershman, 2021),
and committing to one intention can reduce the burden of
planning, this alone does not suffice to explain human behav-
ior in our experiments. First, when facing two equally desir-
able paths to one committed intention, the simplest solution
is to randomly sample one, but humans were systematically
biased to the path that binds themselves. Second, our results

indicate that the emergence of humans’ bias depends on when
they arrive at the crossroad. If the bias was due to the com-
putational limits, people should be less biased when arriving
later, as they had more time to make a decision close to the
optimal policy — however, our results suggested otherwise.

One surprising conclusion from the above experiments is
that humans act to better demonstrate their intention even
when alone. Here we offer two possible motivations for such
behavior. One is to avoid temptation. From a computa-
tional perspective, although such consideration requires ad-
ditional resources, it indeed helps save computational costs
in the long run — by constraining the freedom of choice like
Ulysses, the cognitive cost of resisting temptation were of-
floaded to the environment. Another potential motivation is
to increase social legibility. From an evolutionary perspec-
tive, the self-demonstration behavior can be considered as an
analogy to the unique morphology of the human eye. Unlike
chimpanzees, humans have evolved with a high color contrast
between the white sclera and the darker colored iris in order
to better convey their attention with different displacements
of the gaze (Kobayashi & Kohshima, 1997; Tomasello, Hare,
Lehmann, & Call, 2007). This cooperative eye hypothesis is
similar to Dennett’s hypothesis: while ToM is originally de-
veloped to understand others, due to evolutionary pressures
of cooperation and communication, it has been internalized
to monitor one’s own actions (Dennett, 1996). This internal-
ized social evaluation is also the foundation of Vygotsky’s
theory (Vygotsky & Cole, 1978), which has been supported
by empirical studies on children’s understanding of commit-
ment in collaboration (Tomasello, Carpenter, Call, Behne, &
Moll, 2005). From this perspective, the imagined observer we
proposed here is similar to concept of imagined audience in
developmental and social psychology (Piaget, 1952; Elkind
& Bowen, 1979). We would like to further highlight that both
motivations mentioned here rely on the self-censoring mech-
anism to make the intention more obvious. The two motiva-
tions do not contradict each other, since reducing temptation
through commitment helps the group focus on the same goal
and facilitates cooperation (Tang et al., 2022), and finding a
temptation-free path requires meta-cognition.

To model human intentional behavior in an individual task,
we ended up with a model that is surprisingly similar to the
work of showing versus doing in the context of multi-agent
communication (Dragan, Lee, & Srinivasa, 2013; Shafto,
Goodman, & Griffiths, 2014; Ho, Littman, MacGlashan,
Cushman, & Austerweil, 2016). For instance, a teacher may
want to demonstrate his pedagogical intention by carefully
picking examples to facilitate the student’s Bayesian infer-
ence of the teacher’s intention. The resemblance between our
model and theirs is striking given the differences in purpose of
the two lines of work: We aim to model human intentions in a
purely individual setting, while theirs focuses on communica-
tion between multiple agents. Such similarity shows that hu-
mans are indeed highly socialized creatures who, even when
acting alone, still communicate with themselves. This resem-
blance also suggests that the meta-cognition model proposed
here is hard to further simplify, as the demonstration model
we incorporate here is the most appropriate to our knowledge.
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