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ABSTRACT OF THE DISSERTATION

Study on Disordered and Dissipative Quantum Spin Systems

by

Jian Wang

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Sudip Chakravarty, Chair

Disorders and dissipations play the key role in the understanding of quantum coherent sys-

tem. In this thesis, I’m using numeric method plus theoretical analysis to answer the ques-

tions: What are the low energy modes in disordered quantum spin system? How will envi-

ronment dissipation damp the spin system’s quasi-particle excitation quantitatively? There

are three parts in my thesis. Part 1 is the study of disordered quantum Ising chain. Part 2

is a numerical method for analytic continuation. Part 3 is the study of dissipative quantum

Ising chain.

Part 1: Dynamical structure factor S(k, ω) is calculated for the one-dimensional (1D)

transverse field Ising model and its recent extension to include a three spin term with

quenched binary disorder. We study the low energy modes for lattices as large as 256 sites.

We show that the intense zero energy modes appear whenever the binary disorder straddles

two different topological winding numbers. We argue that these are Majorana modes, which

reside on the boundaries of the rare regions. The size distribution of Majorana pairs has

a fractal behavior at the critical points. With the longer ranged interactions a spin glass

transition is observed as well.

Part 2: A simple method for numerical analytic continuation is developed. It is designed

to analytically continue the imaginary time (Matsubara frequency) quantum Monte Carlo

ii



simulation results to the real time (real frequency) domain. Such a method is based on

the Padé approximation. We modify it to be a linear regression problem, and then use

bootstrapping statistics to get the averaged result and estimate the error. Unlike maximum

entropy method, no prior information is needed. Test-cases have shown that the spectrum

is recovered for inputs with relative error as high as 1%.

Part 3: In this section, I generalize the (0+1)-dimensional spin-boson problem to the

corresponding (1+1)-dimensional version. Monte Carlo simulation is used to find the phase

diagram and imaginary time correlation function. The real frequency spectrum is recovered

by my newly developed Padé regression analytic continuation method in part 2. We find

that, as dissipation strength α is increased, the sharp quasi-particle spectrum is broadened

and the peak frequency is lower. The quasi-particle excitation picture will eventually break

down when α is large enough. According to the behavior of the low frequency spectrum, we

classify the dynamical phase into three different regions: weakly damped, linear k-edge, and

strongly damped.
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CHAPTER 1

Disordered quantum Ising chain

1.1 Introduction

Transverse field Ising model (TFIM) is a prototype to study quantum phase transitions

[40, 13] , it describes a variety of quantum magnets ranging from LiHoF4 [39] to CoNb2O6

[10]. It is also a theoretical model to understand adiabatic quantum annealing [11, 9, 38],

where the gap closing is important in this problem. With the paper by Kitaev [24] , TFIM

can also be a play ground of topological quantum computation, where Majorana zero modes

are supported at the boundaries.

In the pure system, the TFIM is well understood. However, disorder is inevitable in

reality. It can come from numerous sources. Instead of universal power law near pure sys-

tem quantum critical point, thermodynamic properties will be highly singular in disordered

systems, including log-normal distribution of gaps [5], activated scaling, exponentially slow

dynamics, and so on. These can be understood as rare region effects. There has been work

on disorder effects on Majorana modes [28, 16, 27] , and the low energy distribution, but

little is known about the spatial distribution of the Majorana modes, and their relation

with Griffiths-like rare regions. In this paper, we will clarify the relation of rare regions,

exponentially slow dynamical excitations, and the exponential degeneracy of Majorana zero

modes.

The outline of this chapter is as follows: in section 1.2, the problem is stated quite

generally, including three spin interactions studied recently, and the method of calculating

spin-spin correlation function, and the dynamical structure factor are given. In section 1.3,

the condition for emergent low energy model in disordered system is given for 2-spin model
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with binary transverse field disorder. And the nature of phase transition is explained.

In section 1.4, we will argue that these low energy modes are Majorana zero modes

(MZM) at the boundaries of Griffiths like rare region by comparing the spin-spin correlation

function and the lowest energy Majorana eigenvectors. The size distribution of MZM is also

calculated, at the critical point the most probable size is 1/5 of the system length; we also

notice a self similar distribution.

In the Section 1.5, disordered longer range interaction is explored. The rare region

induced Majorana zero modes picture is similar to the 2-spin case. As a result of frustration

from the longer range interaction, we also notice a spin-glass phase transitions in this case.

1.2 The Hamiltonian

Transverse field Ising chain with longer range interaction with disorder:

H = −
L∑
i=1

hiσ
z
i −

L−1∑
i=1

λ1iσ
x
i σ

x
i+1 −

L−2∑
i=1

λ2iσ
x
i σ

z
i+1σ

x
i+2 (1.1)

where i is the site. L is the size of 1-D system with open boundary condition. Here hi is

quenched transverse field, λ1i is two-spin couplings and λ2i is three-spin couplings, they can

be of constant value, or random variables satisfying certain distributions.

The spin-spin correlation function, is calculated using the ground state average 〈· · · 〉 and

the disorder ensemble average · · ·

C(r, t) := 〈σxi (t)σxj (0)〉 (1.2)

Since our disorder averaged system is translational invariant, we use r as the distance be-

tween two sites. The dynamical structure factor S(k, ω) is the time and spatial Fourier

transformation of the spin-spin correlation function:

S(k, ω) =

∫
dt

∫
dr eiωte−ikrC(r, t) (1.3)
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1.2.1 Jordan Wigner and the spin-spin correlation function

From Jordan-Wigner transformation the system can be expressed in terms of single particle

fermion operators to solve the eigenvalues and eigenvectors for a given lattice with a given

disorder configuration

H =
L∑
i=1

hi(c
†
i − ci)(c

†
i + ci)−

L−1∑
i=1

λ1i(c
†
i − ci)(c

†
i+1 + ci+1)

−
L−2∑
i=1

λ2i(c
†
i − ci)(c

†
i+2 + ci+2) (1.4)

The spin-spin correlation function in terms of fermion operators is given by

〈σxi (t)σxj (0)〉 = 〈(c†1(t) + c1(t)) · · · (c†j(0) + cj(0)〉. (1.5)

Using Wick’s theorem, the right hand side can be expressed as a Pfaffian of a 2i + 2j − 2

dimensional matrix. Each element in the matrix is a free two-fermion correlator.

Suppose we have the eigenvalues {εi}and eigenvectors {vi} of the quadratic fermion

Hamilton kernel H =

 A B

−B −A

. Our the questions is, how to recover < σxi (t)σxj (0) >

from the result of {εi} {vi} , (i = 1, 2, · · · , 2L)

Replace spin by fermion operators,

σxi (t) =

(
i−1∏
m=1

(
c†m(t) + cm(t)

)(
c†m(t)− cm(t)

))(
c†i (t) + ci(t)

)
(1.6)

The correlation function can be written as:

< σxi (t)σxj (0) >=<

(
i−1∏
m=1

(
c†m(t) + cm(t)

)(
c†m(t)− cm(t)

))(
c†i (t) + ci(t)

)
(

j−1∏
n=1

(
c†n(0) + cn(0)

)(
c†n(0)− cn(0)

))(
c†j(0) + cj(0)

)
>

(1.7)

L.H.S. of Equation (1.7) is a 2(i + j − 1) fermions operator correlation function. Applying

Wick’s theorem, such a structure can be decomposed as a Pfaffian sum of two fermions

correlation.
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Therefore, the problem can now be asked as how to calculate:

<
(
c†m(t)± cm(t)

)(
c†n(t′)± cn(t′)

)
> (1.8)

the strategy is to expand site fermion operators c† c in terms of free fermion operators γ† γ,

these expansion coefficient will involve {vi}, and the free fermion correlations < γ†i (t)γj(t
′) >

will involve {εi}

The goal of this subsection is to calculate two fermion correlation Eq. (1.8) using the

free fermion γ† γ.

Ĥ =
(
c† c

)
H

 c

c†

 =
(
c† c

)
V DV −1

 c

c†

 =
(
γ† γ

)
D

 γ

γ†

 (1.9)

H is the kernel matrix, D and V are 2L × 2L number valued matrices of {εi} {vi} , (i =

1, 2, · · · , 2L) , assuming the εi are in descending order.

D2L×2L =



ε1
. . .

εL

εL+1

. . .


=



ε1
. . .

εL

ε̄L
. . .


(1.10)

V2L×2L =

v1 v2 ... vL vL+1 ... v2L

 (1.11)

(
c† c

)
= (c†1, c

†
2, ..., c

†
L, c1, c2, ..., cL) is operator valued row vector c

c†

 = (c1, c2, ..., cL, c
†
1, c
†
2, ..., c

†
L)T = (c† c)† is operator valued column vector.

The Hamiltonian represented with gamma is decoupled.

Ĥ =
L∑
i=1

(
εiγ
†
i γi + ε̄iγiγ

†
i

)
=

L∑
i=1

(εi − ε̄i)γ†i γi +
L∑
i=1

ε̄i (1.12)
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Theoretically (εi− ε̄i) = εi−ε2L+1−i is equivalent 2εi, when {εi} is arranged in descending

order, because the p-h symmetry εi+ε̄i = εi+ε2L+1−i = 0, however, in numerical calculations,

the relative error |εi+ε̄i||εi| becomes very large, when |εi| is also close the zero. This subtlety

warns us that, we shouldn’t use half of eigenvalue and eigenvectors. The aim Equation

(1.12), is to give us the ground state average

< γi(t)γ
†
j (0) >= δije

+i(εi−ε̄i)t

Now, going back to the goal of solving Equation (1.8), we need to expand c†i ± ci in terms

of gamma: c† + c

c† − c

 =

 1 1

−1 1

 c

c†

 =

 1 1

−1 1

V

 γ

γ†

 (1.13)

The Hermitian conjugate:(
c† + c −c† + c

)
=
(
γ† γ

)
V †

1 −1

1 1

 (1.14)

The column vector times the row vector, and then take the ground state average, it will

gives result of Equation (1.8):〈c† + c

c† − c


t

(
c† + c −c† + c

)
0

〉
=

 1 1

−1 1

V

〈γ†
γ


t

(
γ† γ

)
0

〉
V †

1 −1

1 1

 (1.15)

〈 γ

γ†


t

(
γ† γ

)
0

〉
=

δije+i(εi−ε̄i)t 0

0 0

 (1.16)

Equation (1.15), is a 2L× 2L matrix, the compact form is given by:

Mt = SV

Pt 0

0 0

V †S†

1 0

0 −1


The p-h symmetric of the system require that, when we diagonalize the Hamiltonian

kernel H = V DV −1, V has also to be taken in the symmetric form of:

V =

X Y

Y X

 H =

 A B

−B −A


5



Numerically, this is not going to happen, we have to regulate the column vectors, to satisfy

the symmetry. In order to solve this subtly, I am going to follow two steps:

1. Change the basis

Change the basis from (c†, c) to (c† + c, c† − c)

φ 0

0 ψ

 =

X + Y 0

0 X − Y

 c† + c

c† − c

 =

φ 0

0 ψ

γ† + γ

γ† − γ


Under this new basis, the Hamiltonian kernel becomes: 0 MT

M 0

 where M = A+B MT = A−B

2. Singular value decomposition (SVD) [36]

M = φΛψT (1.17)

SVD is numerically stable. Here:

The diagonal terms of Λ are eigenvalues of the system, they are non-negative.

ψ and φ are orthogonal matrices.

From the result of Equation (1.17), we can then calculate Equation (1.8).

c† + c

c† − c

 =

φ 0

0 ψ

γ† + γ

γ† − γ

 (1.18)

〈γ† + γ

γ† − γ


t

(
γ† + γ −γ† + γ

)
0

〉
=

 P −P

−P P

 (1.19)
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P = δije
+i(εi−ε̄i)t = ei2Λt

Mt =

φ 0

0 ψ

 Pt −Pt

−Pt Pt

φ† 0

0 ψ†

1 0

0 −1



The equivalence of the basis. It can be shown that, these representations are equiv-

alent, provided:

V =

X Y

Y X

 φ 0

0 ψ

 =

X + Y 0

0 X − Y


The constraint

V †V =

X† Y †

Y † X†

X Y

Y X

 =

I 0

0 I


is equivalent to

X†X + Y †Y = I (1.20)

X†Y + Y †X = 0 (1.21)

We can make some modification (1.20) ± (1.21), to have

(X ± Y )†(X ± Y ) = I

Which is the complete information of orthogonalness of φ and ψ:

ψ†ψ = φ†φ = I (1.22)

Note: the above is for column orthogonalness, the row orthogonalness can be derived

from V V † = I

Comments: the benefit of φ ψ over X Y is , the former is decoupled from each other.

7



Majorana basis. We can also multiple an 2
√
−1 to the c†i−ci, making the basis Majorana

fermions operators. ai
bi

 =

 c†i + ci

−i(c†i − ci)

 (1.23)

Ĥ =
(
a b

) i
2

 0 B − A

A+B 0

a
b

 (1.24)

ai and bi are Majorana fermion operators at site i satisfying

a†i = ai b†i = bi {ai, aj} = 2δij {bi, bj} = 2δij {ai, bj} = 0 (1.25)

The kernel

 0 −MT

M 0

 is skew-symmetric matrix. The canonical form [24] is given by:

Hcanonical =
i

2

∑
m

2εmãmb̃m (1.26)

Where ãm, b̃m are Majorana operators, satisfying the same commutation as Equation 1.25.

It can be prove that, they are related by right and left singular vectors of SVD M = φΛψT :

ãm =
∑
i

φmiai (1.27a)

b̃m =
∑
i

ψmibi (1.27b)

1.2.2 The Pfaffian technique for spin-spin correlations

Equation (1.8) can be labeled as:

ML,hi,λi,λi(±,±,m, n, t, t′) =<
(
c†m(t)± cm(t)

)(
c†n(t′)± cn(t′)

)
> (1.28)

=

〈c† + c

c† − c


t−t′

(
c† + c −c† + c

)
0

〉1 0

0 −1


8



From here we can construct many physical quantities, with the help of Pfaffian. Construc-

tion of < σxi (t)σxj (0) >

< σxi (t)σxj (0) >= Pf(S)

Here S is a 2(i+ j− 1) dimensional skew-symmetric matrix, its elements are taken from the

elements of matrix M0 and Mt in Equation 1.8.

Sm,n = Mt′(m
′, n′) m < n (1.29)

The indexes mapping relation can be found by expanding Equation 1.7

1. m < n ≤ (2i− 1)

t′ = 0

m′ = [m/2] + L ∗ [if m%2 == 0]

n′ = [n/2] + L ∗ [if n%2 == 0]

2. m ≤ (2i− 1) < n

t′ = t

m′ = [m/2] + L ∗ [if m%2 == 0]

n′ = [(n− (2i− 1))/2] + L ∗ [if (n− (2i− 1))%2 == 0]

3. (2i− 1) < m < n

t′ = 0

m′ = [(m− (2i− 1))/2] + L ∗ [if (m− (2i− 1))%2 == 0]

n′ = [(n− (2i− 1))/2] + L ∗ [if (n− (2i− 1))%2 == 0]

Here [m/2] means the celling, e.g. [1/2] = 1 [2/2] = 1 [3/2] = 2

[if m%2 == 0] gives one or zero, depends on the reminder.

For m > n , it is given by Sm,n = −Sn,m
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After we got the 2(i+ j − 1)× 2(i+ j − 1) dimensional matrix, we are going to calculate

its pfaffian. The actual numeric algorithm for Pfaffian are carried out, using method given

in Xun’s paper [22].

Figure 1.1 is an example of spin-spin real time calculations, the spin is chosen on the

same site. The axis are real and imaginary part of < X20(t)X20(0) >. At time zero, the

value starts at (1, 0), then it evolves in a spiral pattern. The second graph, show the same

system, but with longer evolving time, the orange trajectory, is irregular. This is a boundary

effect, the correlation feels the boundary after certain time.
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(a) spiral patterns

(b) longer time, boundary effects

Figure 1.1: Real and imaginary part of z(t) =< σx20(t)σx20(0) >

80 sites, paramagnetic phase: h = 1 λ1 = 0.8

(a) the regular spiral pattern

(b) at longer time, the boundary influence come in ,the irregular pattern.
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Figure 1.1 is in paramagnetic phase (h = 1, λ1 = 0.8), the spin-spin correlation will

approach zero after long enough time. In Figure 1.2, I show a critical point dynamics

(h = λ1 = 1). Compared with Figure 1.1, the critical dynamics of Figure 1.2 is slower,

and more irregular: it start from point (1, 0) at zero time, evolve in a spiral way shifting

to the left. Then after passing throw the imaginary axis, it moves in a irregular pattern.

It remains a question, whether this is due to the finite size boundary effect, or due to the

critical behavior. Or does irregular pattern have something to do with chaos.

Figure 1.2: Plot of spin-spin correlation z(t) =< X20(t)X20(0) > at quantum criticality

h = λ1 = 1 , with 80 sites system

the critical dynamics is slow, and irregular compared to the paramagnetic phase dynamics

Figure 1.1

1.2.3 Pure system

Figure 1.3 is the phase diagram of the pure 3-spin model [32]. The transverse field h = 1 is

set to unity. The horizontal line λ2 = 0 corresponds to the transverse field Ising model, with

critical point at e. In this phase diagram, the n = 1 regions correspond to the magnetically
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ordered regions.

To explore the dynamics in the phase diagram, we plot a few examples of S(k, ω) in

figure FIG.1.4 (h = 1, λ1 = 0.5, λ2 = 0) ; FIG. 1.5 (h = 1, λ1 = 1, λ2 = −0.5); FIG. 1.6

(h = 1, λ1 = 1, λ2 = 1). Note that Fig. 1.6 is in the magnetically ordered region n = 1; m2

has been subtracted from the spin-spin correlation function, and the excitation is two-particle

continuum.

1.3 Emergent low energy modes in disorder chain

In this chapter, let’s only consider the 2-spin interaction H2 = −
∑L

i=1 hiσ
z
i −

∑L−1
i=1 σ

x
i σ

x
i+1

with λ1 = 1 and λ2 = 0, the random transverse field has the binary distribution: the larger

field hL and the smaller field hS, with probability PL +PS = 1 As P is changed from 0 to 1,

we will show that, for 0 < hS < 1 < hL there is a phase transition as we change P , and there

will be low energy emergent modes. Consider, hL = 3.0, PL = 0.6, and hS = 0.2, PS = 0.4

For these parameters we get the spectra shown in Fig. 1.7. The spectral density has a very

strong peak near the zero energy ω = 0, and near k = 0. At high energies, the spectra breaks

up into horizontal stripes. The central question of this paper is to understand what is the

natural of the low energy signals.
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λ1
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b c d

e

n=1

n=0

n=2

n=2

n=0

(a) theoritical prediction

(b) numerical result (color is magnetization per site)

Figure 1.3: Pure system phase diagram of 3-spin model H. The transverse field is taken

to be unity. The labels n = 0, 1, 2 are the topological numbers, denoting pairs of Majorana

modes at open boundaries.
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Figure 1.4: The dynamical structure factor 120 sites, paramagnetic phase: h = 1 λ1 =

0.5 λ2 = 0

Figure 1.5: Dynamical structure factor of pure system h = λ1 = 1 λ2 = −0.5, 120 sites the

dispersion curve has a dip at non-zero k value, that gap can also be closed at non-zero k by

tuning parameters
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Figure 1.6: Dynamical structure factor of pure system h = λ1 = λ2 = 1, 120 sites this is in

the two particles continuum region, single spinon excitation is forbidden in this n = 1 phase

Figure 1.7: S(k, ω) of a 2-spin model: the quenched disorder transverse field hi satisfies

binary distribution with P (hi = 3.0) = 0.6 and P (hi = 0.2) = 0.4

To answer the question, let’s fix hS and hL, and take P as a tuning parameter. Then it

can be converted into another question: how do the zero energy modes emerge as a function

16



of P? We plotted the density of states in Fig. 1.8. There are 11 graphs for different P values.

The PL = 0.6 corresponds to Fig. (1.7). Notice that, density of state ρ(ω) and integrated∫
S(k, ω)dk are related, but not identical.

In FIG. 1.8, the two extreme cases P = 0 and P = 1 are gapped, with no zero energy

modes. For intermediate values, we can see the zero energy modes.
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Figure 1.8: 11 density of state plots for system with binary transverse field disorder. All of

the graphs have the same large field hL = 3.0 and small field hS = 0.2, the difference is their

binary disorder percentage. The two extreme D.O.S. plots on the top P = 0% and in the

bottom P = 100% correspond to pure system in ferromagnetic phase and in paramagnetic

phase. From top to bottom, the probability of large field is increasing, the probability of

small field is decreasing

In FIG 1.9, we plot the density of states near the zero energy, on a log-scale. It capture
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the details about how the gap is closed. We find that, near P = 0.6 the zero mode disappears.

Figure 1.9: Density of state plot near zero energy of FIG 1.8. The horizontal axis is in log10

scale. This detailed study shows that, although the gap looks closed for all disorder case in

FIG. 1.8, there is a optimal percentage, where the closing is the best

From Fig. 1.8, we can also find the excitations are grouped into three regions.

1. hL − 1 < ω < hL + 1 corresponds to the excitations in the paramagnetic region.

2. 1 − hS < ω < 1 − hS corresponds to the ferromagnetic phase. The two-particle

continuum excitations is not obvious in S(k, ω) graph.
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3. ω < ω0 corresponds to the emergent low energy modes.

The energy is always bounded by these groups, no matter what the disorder is. For the

emergent low energy modes do not always exist. By tuning hL, hS, we find:

• It exists when large field and small field straddle the critical point 0 < hS < 1 < hL.

For the cases of 1 < hS < hL or 0 < hS < hL < 1 , no low energy mode emerges, no

matter what P is.

• In the proper case 0 < hS < 1 < hL, there is a value of P which generates maximum

numbers of low energy modes, and the gap is minimized. We will show that such a

point is the infinite randomness fixed point, give by lnhi = ln Ji [?]

1.3.1 The critical point

In the two extreme cases in Fig. 1.8, i.e. with no disorder, P = 0. represents the ferromagnetic

phase, and P = 1 represents the para-magnetic phase. At an intermediate value of PL the

system must have a quantum phase transition. The critical value of PC is given by:

lnhi = ln Ji

hPCL h1−PC
S = 1

PC =
lnhS

lnhS − lnhL
(1.30)

In Fig. 1.10 the magnetization is plotted, for hS = 0.2 hL = 3.0, the vertical line

is the critical value PC = ln 0.2
ln 0.2−ln 3.0

≈ 0.5943. The magnetization is calculated by m =√
〈σx+∞(0)σx0 (0)〉, with 129 random configurations for the ensemble average. Due to the ran-

domness, the magnetization takes large computational resources in the averaging procedure.
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Figure 1.10: Magnetization as a function of binary distribution parameter P , the random

transverse field hi ∼ Pδ(h − hL) + (1 − P )δ(h − hS) . hL = 3.0 hS = 0.2 we can see the

critical behavior predicted by PC = lnhS
lnhS−lnhL

= 0.59

The Fig. 1.11 is the energy gap plotted against P . In our calculation, we choose peri-

odic boundary condition for the fermions. We also choose logarithmic scale for the energy.

Without the log-scale, they all look close to zero; see Fig. 1.8.
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Figure 1.11: Log of energy gap as a function of binary distribution parameter P , the

random transverse field hi ∼ Pδ(h− hL) + (1− P )δ(h− hS) . hL = 3.0 hS = 0.2 we can see

the critical behavior predicted by PC = lnhS
lnhS−lnhL

= 0.59. Notice that the ensemble average

is typical average,it is mean{εgapi}, not the min{εgapi}

The Figs. 1.8, 1.10, and 1.11 have already shown that, the critical point exists, and it

is predicted by Eq. (1.30). The Figs. 1.12 and 1.13 demonstrate the activated scaling at

the quantum critical point; the energy gap is proportional to e−α
√
L
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Figure 1.12: Gap distributions for different system sizes. horizontal axis is log of energy

gap log(∆E); vertical axis is the distribution count. system size from right to left L =

32, 48, 64, 80, 96, 112, 128, 114; average of 10000 random samples

Figure 1.13: The collapse of the data in Fig. 1.12. The horizontal axis is rescaled by the

squared root of the system size. This collapse only happens at the critical point PC = 0.59
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1.4 Griffiths-like phase and the Majorana zero modes

In the last section we have shown that there is a phase transition as a function of P , and

the low energy modes emerge close to the critical point. In this section, we will explore the

nature of the low energy modes.

1.4.1 Disorder induced rare regions

We know that in a pure system, Majorana modes exist at the boundaries of a topologically

non-trivial phase. In a disordered system, since the system is not uniform, it is possible that

a spatial region is in the non-trivial phase, while the surrounding is still in the trivial phase.

Thus the low energy Majorana zero modes are created by rare regions of magnetization, the

“Griffiths phase”.

To understand, let’s plot the equal time spin-spin correlation function for a specific

random configuration:

< σxnσ
x
m > (1.31)

n and m run from 1 to L; so this plot contains the correlation of each pair at equal times.

Here are some important properties: (1) the diagonal term is always unity, < σxnσ
x
n >= 1;

(2) it is symmetric under m↔ n; (3) it is real because, < σxnσ
x
n >

∗=< σxnσ
x
n >

From Fig. 1.14, one can see the rare regions clearly by watching which site is correlated

with which site.
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Figure 1.14: Equal time spin-spin correlation < σxnσ
x
m > , the horizontal axis is m the

vertical axis is n, the color is the strength of < σxnσ
x
m >

It is a spin-spin correlator plot: hL = 3.0 with 60% probability and hS = 0.2 with 40%

probability. We can see the cluster of rare regions A,B,C,D,E. The largest region A spans

about 30 sites from 125 to 160, it is where the small field hS = 0.2 are gathered. Since

the field is weak there, the spins tend to be coupled by interaction, and correlated to form

magnetic order. Although, at certain sites, the cluster may contain large field, the cluster is

not broken by it. At a coarse grained level, it is single giant spin.

The quadratic fermion Hamiltonian in Eq. 1.4, can also be rewritten in the of Majorana

representation: ai = c†i + ci and bi = i(c†i − ci) The Hamiltonian is then

H = i

L∑
i=1

hibiai + i

L−1∑
i=1

λ1ibiai+1 + i

L−2∑
i=1

λ2ibiai+2 (1.32)

Equation 1.32 can be solved with singular value decomposition, into decoupled Majorana

pairs:

H = i

L∑
n=1

εnãnb̃n (1.33)
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The Fig. 1.15 shows the five lowest eigenvectors of ãn =
∑

i ψniai and b̃n =
∑

i φnibi, the

vertical axis labels the eigenenergy εn = Λnn.

These Majorana pairs are the eigenstates representing the many-body excitations. From

top to bottom, those Majorana pairs in Fig. 1.15 correspond to the rare regions A,B,C,D,E

in Fig. 1.14

• Majorana pairs reside at the boundary of magnetic rare regions.

• If the magnetic rare region’s boundary is not sharp, the Majorana mode will span a

large distance

• When the Majorana pairs get closer, their energy increase
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Figure 1.15: Five lowest eigenvectors, titles are the energy εn, index n is in ascending order

of eigen-energy. The horizontal axis is the lattice site, the vertical axis is the value of ψni

and φni. The orange and blue curves correspond to decoupled Majorana pairs real part

ãn =
∑

i ψniai and imaginary part b̃n =
∑

i φnibi. A,B,C,D,E graphs correspond to the rare

regions in FIG. 1.14

1.4.2 The separation between the Majorana zero mode pairs

The separation size of a Majorana pair is defined by:

sn = |
∑

i i|ψin|2∑
i |ψin|2

−
∑

i i|φin|2∑
i |φin|2

| (1.34)

the n labels the different eigenmodes; i is the lattice site. The above definition works for any

Majorana eigenvectors (not necessarily the zero mode) . But we are interested in the behavior
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of the low energy modes, because for high energy modes, ψin and φin will significantly overlap,

and sn will be trivially small.

We define n = 1 to be the lowest energy mode (eigenvalues are in ascending order). Then

sn will be the largest separation distance. We plot the distribution of relative sizes, sn/L,

for a random ensemble, at the critical point (infinite randomness fixed point).

Figure 1.16: The distribution of the size of Majorana pair seperation at the critical point

P = PC = 60%

We can see from the Fig. 1.16, at the critical point, that the separation distance of

Majorana pairs scales linearly with the system size, all system sizes collapse. This is fractal

behavior, the distribution of rare region size, looks the same at all length scale. And the size

distribution is very broad. large sizes have high probabilities.

In contrast, in Fig. 1.17 is plotted the size distribution in the off-critical case. The

distribution is very narrow, most of them is less than 0.3 of the system size. These don’t

collapse on the same distribution curve, as the system size increases; the distribution shifts

to the left, which means that the relative size of rare regions are getting smaller and smaller.

This does not mean that the rare regions will vanish in the thermodynamic limit L → ∞.

The the size of the rare regions may still grow as s1 ∼ Lθ, but with θ < 1. And the
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macroscopic number of zero modes will contribute to the non-universal power law behavior

of the thermodynamics properties.

Figure 1.17: The distribution of the size of Majorana pair seperation, off the critical point

P = 40%

Now, the low energy mode in the previous chapter can be explained by the emergent

Majorana modes. The Eq. 1.34 is much easier to calculate than the spin-spin correlation

function, and the rare region information can be derived from the Majorana picture.

1.5 Disorder with longer range interaction

1.5.1 Induced Majorana modes

Let λ1 be non-zero. The results are given in Fig. 1.18 and Fig. 1.19; the rare region diagram

is shown in Fig. 1.20. Due to the competition between λ1 and λ2, the Majorana zero mode

oscillation pattern shifts to a new k value, between 0 and π. In Fig. 1.18, we can see the

zero energy modes exist below the minimum of the dispersion curve. This is a very general

phenomenon, the zero mode in the disordeed system is usually located where the pure system
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has the smallest gap. The calculation is carried with the following Hamiltonian. Note that,

the rare region C is inside another rare region A in Fig. 1.19.

H = −
L∑
i=1

hiσ
z
i − 0.4

L−1∑
i=1

σxi σ
x
i+1 +

L−2∑
i=1

σxi σ
z
i+1σ

x
i+2

hi =


hL = 1.6 probability = 95%

hS = 0.1 probability = 5%

(1.35)

Figure 1.18: S(k, ω) for the binary distribution of the transverse field: P (hL = 1.6) = 95%

p(hS = 0.1) = 5%; here λ1 = 0.4 λ2 = −1.0
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Figure 1.19: Five lowest eigenvectors, titles are the energy εn, index n is in ascending order

of eigen-energy The horizontal axis is the lattice site, the vertical axis is the value of ψni

and φni. The orange and blue curves correspond to decoupled Majorana pairs real part

ãn =
∑

i ψniai and imaginary part b̃n =
∑

i φnibi. A,B,C,D,E graphs correspond to the rare

regions in FIG. 1.20
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Figure 1.20: Equal time spin-spin correlation < σxnσ
x
m > , the horizontal axis is m the

vertical axis is n, the color is the strength of < σxnσ
x
m >

1.5.2 Spin glass phase

In the three spin problem, we set the transverse field and the next nearest coupling to be

h = 1 λ2 = −0.3

The nearest couplings λ1i are chosen to be random variables, satisfying the uniform distri-

bution. [λ1− δJ, λ1 + δJ ]. With λ2 provides frustration and λ1i provides disorder, we expect

to see a spin-glass phase transition for enough disorder strength δJ

The spin glass [SG] order is defined by:

χSG =
[ L∑
i,j=1

〈σxi σxj 〉2
]

There are L2 terms in the summation, the square parenthesis corresponds to disorder average.

• When all sites are correlated, deep in the SG phase,

χSG ∼ L2
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• In the other extreme case, non-SG phase, i and j are correlated only within some

distance ξ

χSG ∼ ξL

In the Fig. 1.21, we plot χSG/L
2

Figure 1.21: Spin glass order for different system sizes. There is a phase transition near the

disorder strength δJc ≈ 4

Figure 1.22: Zoom of the plot of the spin glass order Fig. 1.21, the critical point is near

δJc ≈ 4
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1.6 Conclusion

In this paper, We have shown that, quenched binary disorder can induce rare regions, and

there can be zero energy Majorana modes at the boundaries of these regions. The existing

condition of low energy mode is, the disorder parameters have to take values from different

phases. The quality(gap closing and number percentage) of the low energy mode will reach

a peak value at the infinite randomness fixed point. The separation distance distribution of

lowest energy Majorana mode pairs, is defined. This quantity is very easy to calculate. We

have shown it will have fractal behavior at the critical point, at the most probable size of

Majorana mode is about 1/5 of the system size. With longer range interaction turning on,

the rare region induced MZM picture still hold, and a spin-glass phase transition is observed

as the result of both frustration and disorder.

1.7 Diagonalizing a Hamiltonian with particle-hole symmetry

After the Jordan-Wigner transformation, we get a single particle Hamiltonian Equation (1.4),

we can also write it in a compact Nambu basis Ψ† = (c†1, · · · , c
†
L, c1, · · · , cL)

H = Ψ†

 A B

−B −A

Ψ (1.36)

where A = 1
2
(M + MT ) and B = 1

2
(M −MT ). M is an L × L dimensional matrix, which

contains all the information of transverse fields and couplings:

M =



h1 −λ11 −λ21

h2 −λ12 −λ22

h3 −λ13
. . .

. . . . . . −λ2,L−2

. . . −λ1,L−1

hL


(1.37)
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We can diagonalize the Hamiltonian kernel

 A B

−B −A

 and get 2L eigenvalues and

eigenvectors. But this method doesn’t take advantage of the particle-hole symmetry of the

Hamiltonian kernel. That is, if

x
y

 is an eigenvector with eigenvalue ε, then

y
x

 is also

an eigenvector with eigenvalue −ε.

For ε close to zero, the ±ε pairs will have great relative error. If the system has multiple

zero modes, the mixing error is even more complicated. Unfortunately, these zero Majorana

modes are just our interest points. We need an new eigenvalue solver, taking advantage of

the particle-hole symmetry. Then I asked a question on math.stackexchange.com [36]. The

solution is to use the singular value decomposition of M (SVD).

M = φΛψT (1.38)

The columns of φ and ψ gives the coefficients in Majorana representation Equation (1.32)

b̃n =
∑
i

φinbi ãn =
∑
i

ψinai εn = Λnn

1.8 A numerical method to calculate Pfaffian

I’m using a very simple and effective method of calculating Pfaffian for any 2N × 2N skew-

symmetric matrix invented by Xun Jia’s in the paper [22]

Let X be an 2N × 2N skew-symmetric matrix, with decomposition :

X =

 A B

−BT C

 . (1.39)

. Then  I2 0

BTA−1 I2N−2

X

I2 −A−1B

0 I2N−2

 =

A 0

0 C +BTA−1B

 (1.40)
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We have:

det(X) = det(A) det(C +BTA−1B) (1.41)

Equation (1.41) gives us a iteration method. Each iteration, we find an A =

 0 a12

−a12 0


from the X, such that |a12| is the largest(for stability purpose). Then recall that pf ∼

√
det

up to an undetermined sign, but the sign of pf(A) = a12 is clear, so we have:

pf(X) = a12 pf(C +BTA−1B) (1.42)

Before next iteration step, set:X ′ → C +BTA−1B, then do it again and again, we expect to

see the final result looks like:

pf = a12a
′
12a
′′
12a
′′′
12a
′′′′
12 · · ·

Notice that, the matrix A doesn’t have to be in the position shown in Equation (1.41), but we

can always trivially exchange the columns 1↔ i and rows 2↔ j , making A =

 0 aij

−aij 0


to be A =

 0 a12

−a12 0


FIG. 1.23 is a benchmark test of three different algorithm for Pfaffian calculation. The

other two algorithms are by M. Wimmer [58]. During the benchmarking, I’m using random

complex valued skew-symmetric matrices, with increasing size from 20 to 300. The Pfaffian

value given by the three methods are all agree with each others, within machine precision.

We can see that, Jia’s method ranks the 2nd fast. Not the fastest, but I should stress that,

the implementation algorithm is far more simpler that Wimmer’s method.
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Figure 1.23: Benchmark test of Pfaffian, horizontal axis is the size of matrix, vertical axis

is the average computing time in seconds
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CHAPTER 2

Numerical analytic continuation by rational function

regression

2.1 Introduction

One of the bottlenecks of quantum Monte Carlo study is how to perform a reliable analytic

continuation from imaginary time to real time. Two major families are the Padé method [50,

4, 19, 33, 44, ?] and the kernel based maximum entropy method [21, 45, 15, 26, 61, 2, 14,

34, 17, 41, 3, 42, 48]. They both have their pros and cons [18, 43]. The Padé method needs

very accurate imaginary time input data. The maximum entropy method requires a priori

information.

In this work, we are going to use the Padé method by casting it to a standard rational

function regression problem. In order to estimate the error, bootstrapping statistics is used

to generate an ensemble of imaginary input data. Compared with the traditional kernel

based method, the rational function representation is more natural, because the zeros and

poles will capture all the information, if the physical system is made of finite elements of

RLC (resistor-inductor-capacitor) components.
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2.2 The statement of the problem

2.2.1 Notations

The spectral function ρ(ω) is a R → R>0 function. The analytic Green function G(z) is a

C→ C function. They are related by:

G(z) =

∫ +∞

−∞
ρ(ω)

1

ω − z
dω (2.1)

The analytic Green function, is compact and elegant, because the Matsubara Green function

and the retarded Green function can be represented as imaginary and real part of the analytic

Green function:

GM(ωn) = G(iωn) (2.2)

GR(ω) = G(ω + i0+) (2.3)

The spectral function

ρ(ω) = − 1

π
Im[GR(ω)] (2.4)

contains all the information of the dynamics. And it is easy to get the entire G(z) from ρ(ω)

by integrating Eq. 2.1 directly. However, it is hard to recover ρ(ω) from the information of

GM(ωn) via:

GM(ωn) =

∫ +∞

−∞
ρ(ω′)

1

ω′ − iωn
dω′ (2.5)

This is an inverse problem. GM comes from Monte Carlo simulation, with error, and ωn’s

are discrete and finite.

2.2.2 Statement

Input: estimated Matsubara frequency Green function with the error GM(ωn) ± δGM(ωn)

for ωn ∈ {Ω, 2Ω, · · · , NΩ}, where Ω = 2π
β

1

1We are using Boson Matsubara frequencies throughout this paper. However, identical considerations
apply for Fermionic Matsubara frequencies. Also, in a better treatment, the error of Matsubara Green
function would be an N×N co-variant matrix. But here we treat GM (ωn) as independent random variables.
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Output: the estimated spectral function and its uncertainty ρ(ω)± δρ(ω)

2.2.3 Test

A good method to test is as follows:

Generation: choose a test function ρTrue(ω)

Encryption: use Eq. 2.1 and 2.2 to generate GM
True(ωn), then add random noise δGM(ωn)

to get GM(ωn)

Recovery: using δGM(ωn) and GM(ωn) in the last step as input, use the Padé Regression

method to get the output ρ(ω)± δρ(ω)

Comparison: compare the recovered ρ(ω) and the original ρTrue(ω)

2.3 The method

2.3.1 Polynomial Fitting and regression

As a warm up, let’s first take a look at the Taylor approximation of real-to-real mapping

functions: Given N points (xi, yi = f(xi)) , our motivation is to find out a polynomial

pM(x) = a0 + a1x+ a2x
2 + ...aMx

M (2.6)

which can be used to fit the unknown function form y = f(x). There are three situations of

the polynomial degree:

• M + 1 < N over-determined fitting

• M + 1 = N unique fitting

( number of parameters {ai} = number of equations {yi = f(xi)} )

• M + 1 > N under-determined fitting

To determine the coefficient ai, we can solve a linear equation with vandermonde ma-
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trix.

XA = Y (defined as below)

x0
1 x1

1 x2
1 . . . xM1

x0
2 x1

2 x2
2 . . . xM2

...

...

x0
N x1

N x2
N . . . xMN





a0

a1

a2

...

aM


=



y1

y2

y3

...

yN


(2.7)

A = X−1Y

It has to be stress that: (1) The vandermonde matrix is problematic matrix, with larege

condition number, numerically unstable to inverse. So, the expediency solution is to make

the matrix dimensional smaller, within the computer’s precision. (2) In the cases, other

than unique fitting, X is not a square matrix anymore, we can generalized the definition of

A = X−1Y such that ||XA− Y || is minimized, which is the least square fitting.

2.3.2 Rational function method

The Padé method assumes that the analytic Green function G(z) takes the form of a rational

function

QL,M(z) =
pL(z)

pM(z)
=
a0 + a1z + a2z

2 + ...aLz
L

b0 + b1z + b2z2 + ...bMzM
(2.8)

Where L and M are the degrees of the polynomials; as a normalization convention, we shall

also choose b0 = 1. The idea is to use (L+M+1) complex parameters {a0, a1, · · · , aL, b1, · · · , bM}

to represent an arbitrary G(z). Instead of using the value of ρ(ω) on discrete ω to represent

G(z), as in the maximum entropy method. An alternative form of Eq. 2.8 can be more

physicially meaninguful, it is given by:

QL,M(z) =
pL(z)

pM(z)
=
a0(z − A1) · · · (z − AL)

(z −B1) · · · (z −BM)
(2.9)
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There are L zeros and M poles, and a complex amplitude a0. As a result of causality, G(z)

should be analytic in the upper half plane. In a reasonable regression, all Bi should be in the

lower half plane, or Bi should be canceled by Aj in the upper half plane. Also, for physics

problems with symmetry, the distribution of zeros and poles should have those symmetries.

This reduces the degrees of freedom of the parameters.

2.3.3 The regression problem

As a regression problem, our input data are N Matsubara frequencies zn = iΩn, and the

values of Green function un = G(zn) at these frequencies. The output are the coefficients

ai and bi in the rational polynomial of Eq. 2.8. There are N equations, and L + M + 1

parameters to be fit. N of those Eq. 2.8 can be written in a linear regression form: Eq. 3.24

and Eq. 2.11 2. Where the matrix XXX and the vector yyy contain input data, the vector βββ

contains the parameters to be calculated.



−u1z
1
1 −u1z

2
1 . . . z0

1 z1
1 z2

1 . . .

−u2z
1
2 −u2z

2
2 . . . z0

2 z1
2 z2

2 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

−uNz1
N −uNz2

N . . . z0
N z1

N z2
N . . .





b1

b2

...

...

a0

a1

a2

...



=



u1

u2

...

...

...

...

uN−1

uN



(2.10)

XXXN×(L+M+1)βββ(L+M+1)×1 = yyyN×1 (2.11)

Eq. 2.11 is the compact form of Eq. 3.24

2the equal sign “=” in Equation 3.24 and 2.11 should be understood in a linear regression manner: find
βββ, such that ||XXXβββ − yyy||2 is minimized
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Sub-index n in zn and un labels one Matsubara frequency point, and they are all at the

n-th row of XXX.
[
nth row of XXX

]
βββ = un has the same meaning of Eq. 2.8

2.3.4 Choice of L and M

In (2.11), we can normalizes and set b0 = 1, then parameters degrees of freedom is 2L+2M+2,

and the N complex points give us 2N equations, therefore:

• L+M + 1 < N over-determined fitting

• L+M + 1 = N unique fitting

• L+M + 1 > N under-determined fitting

In the unique fitting case, people’s experience is, N
2
≈ M 6 L ≈ N

2
gives the best fitting

performance. The degree of nominator is no less than the degree of denominator. To be

more precise, the so called diagonal Pade polynomial:

• if N = 2n , then L = n , M = n− 1

• if N = 2n+ 1, then L = M = n

As a rule of thumb, in this paper we take:

L ≈M ≈ N/2

The argument is as follows: For too large M and L, the model might be over-fitting. In

the case of L + M + 1 = N , the number of equations is the same as the numbers of fitting

parameters. For small L, and M , we are afraid that, there will not be enough poles and zeros

to represent G(z). L ≈M tends to cancel zeros and poles, and the real G(z) only contain a

few poles. In a fully developed Bayesian method, both βββ and L,M are taken as estimation

random variables. But for simplicity, we are going to choose the most representative N/2

value as L and M
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2.3.5 Bootstrapping statistics

In the Padé method [50], single XXX and yyy are used to generate a single βββ without error

estimation. Here, we treat XXX and yyy as the mean value of a distribution with standard errors

δXXX and δyyy. These errors come from Monte Carlo result: ui and δui.

The idea of bootstrapping statistics is to generate an ensemble of input data: {XXX} and

{yyy}. Then perform the regression individually to get an ensemble of {βββ}, and then get a

collection of spectrum {ρ(ω)}. From the ensemble of spectrum, we take the best estimation

and its uncertainty as mean{ρ(ω)} and std{ρ(ω)} (standard deviation). Compared to the

traditional model based regression and error estimation, bootstrapping is simple and nat-

ural — various slightly different inputs are thrown into this black-box , then we check the

difference among those output spectra. If those outputs are close to each other, it indicates

the spectrum recovery is reliable.

Now, we need to generate those resamplings, {XXX} and {yyy}. It is done by replacing the

best values ui in Equation (3.24) by a distribution of themselves. Our assumption is that the

Monte Carlo estimation of Green function value ui has a normal distributionN (ui, δui). This

is a result of the central limit theorem. In this paper, we take the relative error δui
ui
≤ 1%. The

assumption is even better satisfied for smaller relative errors. The procedure is summarized

as follows:

• Generate an ensemble of resampling {XXX}, {yyy}. This is done by replacing the best value

ui in Equation (3.24), with its distribution ui → N (ui, δui) = N (ĜM(ωn), δGM (ωn))

• Perform least square linear regression for individual input data pair βββ = XXX−1yyy so that

we have an ensemble {βββ}

• Use {βββ} to generate {ρ(ω)} and then calculate mean{ρ(ω)} and std{ρ(ω)}

The number of resamplings is defined as N. It should be large enough, so that mean{ρ(ω)}

and std{ρ(ω)} (std stands for standard deviation) converge. Our answer is therefore given
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by

ρ(ω)± δρ(ω) ≈ mean{ρ(ω)} ± std{ρ(ω)} (2.12)

Notice that the estimated error δρ(ω) is not std{ρ(ω)}√
N

. δρ(ω) is the variation of the output

spectrum, subject to slightly different input data. It represents the robustness of such “input-

blackbox-output” system (Fig. 2.1), therefore should be std{ρ(ω)}. Eq. 2.12 is asymptotically

reliable as the relative error δρ/ρ becomes smaller and smaller. If this relative output error

is larger than order 1 (for example 1
3
), we need to continue Monte Carlo simulation for a

higher precision u± δu, and then use it as the input data of the blackbox.

Such bootstrapping doesn’t take too much time to run, the major time cost still comes

from Monte Carlo. In a problem with N = 35 Matsubara frequency points, taking N = 20000

resamplings for good convergence, it only costs one minute in a laptop. The overall time

complexity is O(NN3), as it performs O(N3) linear regression βββ = XXX−1yyy for N times. The

choice of discrete lattice ω only affects the plotting.
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Figure 2.1: A schematic of the method. (1) The Monte Carlo data ui and δui is used to

generate an ensemble of Matsubara spectra. (2) Perform linear regression individually. (3)

Get an ensemble of real spectra. Check the relative error of those spectra, if too large, then

we need longer time Monte Carlo calculation for a smaller δui/ui.

2.4 Test cases

Two factors can change the testing results, which we should be aware of. The first factor

is the number of Matusbara frequency data points N and the interval Ω = 1
β
. They should

be chosen such that the most of the spectral weight is within the range [−NΩ, NΩ], or

say
∫ −NΩ

+NΩ
ρ(ω)dω ≈ 1(normalized ρ(ω)). The second factor is the relative error of input

data η = δu/u. We take η = 10−15, 10−6, 10−4, 10−3, 10−2, representing the error of most

diagrammatic expansion or Monte Carlo simulation. In this section, we are going to use a

piece-wise linear function (Fig 2.2) as the test spectrum; more test cases are given in the

appendix.
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2.4.1 Input data with small error

In Fig. 2.2, the orange curve is the exact test spectral function. The blue curve is a Padé

recovery from blurred imaginary Green function with machine precision percentage error

(10−15).

Figure 2.2: Padé approximation spectrum recovery, number of input Matsubara frequency

points N = 35; error of input Matsubara frequency Green function η = 10−15. The orange

curve is the piece-wise linear test function, the blue curve is the recovered spectrum. They

agree very well, except for a few sharp tuning points

In Fig. 2.3, a lot of poles and zeros are paired together; it probably means that N = 35
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parameters correspond to over-fitting. But this pairing-canceling mechanism makes the result

robust, even for over-fitting parameters. This is also the reason why, we approximately chose

L ≈ M ≈ N/2 in section 2.3.4. Also, as a result of causality, the upper half plane should

have no poles. We see that all the poles are cancelled by zeros in the upper half plane.

The locations of zeros and poles, and the coefficient a0 in Eq. 2.9 carry all the information.

Actually, it is the zeros and poles, which are closest to the real axis that will mostly influence

the shape of the spectral function. In other other words, if some zeros or poles are far away

from the origin, it will have very little influence in the result. This is the second reason for

the robustness.
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Figure 2.3: Distribution of zeros and poles. Input fitting points N = 35 , degree of nominator

polynomial L = 17, degree of denominator polynomial M = 17. There are exactly 17 poles

on the complex plane. In the upper half plane, the zeros cancels the poles (removable

singularity), thus making it analytic (causality). The poles close to the real axis has a huge

influence on the shape of the approximation spectrum ρ(ω): they are the most important

part of Padé approximation.

2.4.2 Input data with large error

Here we consider η = 10−6, 10−4, 10−3, 10−2 are large error compared with η = 10−15. The

computational time scales as [CPU Time] ∝ 1/σ2 = ( u
δu

)2. Clearly, we cannot have machine

precision Monte Carlo data for really large systems. Below is a test with large error in
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the input Matsubara frequency data. Fig. 2.4 is an ensemble of recovered real frequency

spectrum using bootstrapping statistics. The relative error of input Matsubara frequency

data is 0.0001%. Fig 2.5 is the averaged value and error bars.

Figure 2.4: The {ρ(ω)} ensemble. Each ρ(ω) curve is one recovery using Padé regression,

there are 30 of them in the plot. The input data’s relative error is η = 0.0001% (6 significant

digits).
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Figure 2.5: 6 significant digits input recovery. Red dots are the mean{ρ(ω)}, the blue error

bars are std{ρ(ω)} . The relative error of the output spectrum is less than 1
3
, detailed shape

is reliable.

Figures 2.6, 2.7, and 2.8 give the results of relative error 0.01%, 0.1%, 1% respectively.

We can see that, the 0.01% result still gives the accurate locations of double peaks ω = 1, 2.5,

and the valley at ω = 1.5, and linear shape of the curves. Even for the 1% error data, our

method generates a very reasonably recovered spectrum, it locates the spectrum’s location

0 < ω < 3 and gives the correct peak height around 1 to 1.5. Notice that, for such test

spectrum, double peak triangles, is a difficult function to recover. In the appendix, a family
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of physically sensible spectrum are tested.
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Figure 2.6: 4 significant digits input recovery. Red dots are the mean{ρ(ω)}, the blue error

bars are std{ρ(ω)} . The relative error is of order one, the detailed shape is not reliable.
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Figure 2.7: 3 significant digits input recovery. Red dots are the mean{ρ(ω)}, the blue error

bars are std{ρ(ω)}. The relative error is of order one, the detailed shape is not reliable.

In order to check that η = 1% recovery is not an accident, we shift the double triangle
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Figure 2.8: 2 significant digits input recovery. Red dots are the mean{ρ(ω)}, the blue error

bars are std{ρ(ω)}. The relative error is at order one, the detailed shape is not reliable.

spectrum horizontally by -4,-2,0,2 to get four difference test functions (Fig. 2.9), we can see

that the recovered spectrum all falls in the correct range. And the performance is surprisingly

well for the lower frequency blue curve, because its spectral weight is closer to the imaginary

axis.

However, if we want to recover the detailed shape of an unknown spectrum, we should

really check the error bar std{ρ(ω)}. When the error bar is large (same order as the value),

the detailed shape is not reliable, which is the case of Fig. 2.6 2.7 2.8. In the case of Fig. 2.5,

the error bar is no larger than 1
3

of the best value, we are then sure that the detailed shape

is reliable.

2.5 Conclusion

In this chapter we use rational function to represent the physical system. A matrix form is

constructed, to convert it to a standard linear regression problem. Bootstrapping statistics

is applied, to get best estimation and estimated errors. For high precision recovery, the
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Figure 2.9: Spectrum recovery for 1% relative error input data. Solid curves are the recovered

spectrum; dashed curves are the original test function, they are shifted by 2 for comparison.

There are 4 pairs, same color is the pair. We can see that, the position of spectrum falls in

the correct range of each original test function, the magnitude is also at the same order of

the test function. The blue curve agrees reasonably well. This method performs better for

low frequencies, because low frequency points are closer to imaginary axis’ input data.

error gives information about whether or not we need to increase the Monte Carlo data’s

accuracy. For low precision recovery, our method still gives correct position and amplitude

of the spectrum even for 1% relative error input data. This regression form can be used

for further study, either combined with maximum entropy, or machine learning methods

[61, 2, 14]. Future work can also be done utilizing the symmetry aspect of zeros and poles

and the fully Bayesian choices of L and M .
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2.6 Recovery test for more functions

Below, a few other functions are given as examples. The dashed green thick line is the exact

spectral function. The other 4 solid lines are Padé regression recovered results for different

relative errors, ranging from 1% to 0.001% First of all, we see that, this method all gives the

correct location of spectral weight, even for 1% error. Secondly, Lorentzian curves are exactly

recovered, (single peak 0.1 %, double peak 0.001%), because they are rational functions. For

the Gaussian curve, we cannot recover the detail shape, but the location of the peak is still

accurate. For the semicircle and square, the exact shapes are not recovered, but the starting

and the ending frequencies agree reasonably well. As the error gets smaller, the more peaks

is added to approach the exact result.
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Figure 2.10: Dashed line is the Lorentzian distribution test spectrum. Colored solid lines

are recovered spectra with different input errors.
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Figure 2.11: Dashed line is the double Lorentzian distribution test spectrum. Colored solid

lines are recovered spectra with different input errors.
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Figure 2.12: Dashed line is the Gaussian distribution test spectrum. Colored solid lines are

recovered spectra with different input errors. As the input accuracy is increasing, neither

mean{ρ(ω)} nor std{ρ(ω)} converge. Gaussian analytic function is a very special case.

56



-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 1%

0.1%

0.01%

0.001%

exact

Figure 2.13: Dashed line is the semicircle distribution test spectrum. Colored solid lines are

recovered spectra with different input errors.
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Figure 2.14: Dashed line is the square distribution test spectrum. Colored solid lines are

recovered spectra with different input errors.
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2.6.1 Other possible methods

2.6.1.1 Maximum Entropy Method

Give an input vector b and a kernel matrix A (very large conditional number.), our aim is

to recover the vector x , from the relation:

AN×MxM×1 = bN×1

This is called the inverse problem. The difficulty lies in A−1 is often ill defined, prob-

lematic to calculate. The formal solution x = A−1b is not going to work. Therefore,

people use optimization point of view, the question becomes, to find a nice x such that,

||Ax−b|| =
∑

i |(
∑

j Aijxj)− bi|2 is minimized. However, the input data {bi} may has error

{σi}, the smaller error bi should have greater priority to be fit, therefore we divide that part

by σi, we target function becomes
∑

i |
(
∑
j Aijxj)−bi

σi
|2. In practical problems, the vector x

may subject to some constraint, or a default model D [15]

2.6.1.2 Cauchy-Riemann equation

Rewrite G(z) as real and imaginary parts:

G(z) = G(x+ iy) = U(x, y) + iV (x, y) (2.13)

since G(z) is analytic in the upper half plane, it must satisfy the Cauchy-Riemann con-

dition, in that domain: 
∂xU = ∂yV

∂yU = −∂xV
(2.14)

or written in a decoupled form 
∆U = 0

∆V = 0

∇U · ∇V = 0

(2.15)
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Equation 2.14 or 2.15 and the Matsubara frequency data, can be served as the input of a

PDE initial value problem, we are trying to solve the values on the real axis boundary.

It is possible to use neuron network method to solve PDE.

2.6.2 Properties of analytic Green functions

The spectrum A(ω) or ρ(ω) contains all the information of analytic Green function. There

are many different definition conventions, up to a coefficient of π, 2π, (−1), i. This is my

convention:

G(z) =

∫ +∞

−∞

A(ω0)

z − ω0

dω0 (2.16)

GR(ω) = G(ω + 0+) (2.17)

GM(ωn) = G(iωn) (2.18)

A(ω) = − 1

π
Im[GR(ω)] (2.19)

To prove 2.19, we need to understand

1

ω + iε− ω0

=
(ω − ω0) − iε

(ω − ω0)2 + ε2
≈ 1

ω − ω0

− i ε

(ω − ω0)2 + ε2

Recall the Cauchy-Lorentz distribution P = (1/π) γ
(x−x0)2+γ2

, when γ → 0 the distribution

looks like a delta peak δ(x− x0), therefore

lim
ε→0+

1

ω + iε− ω0

= P.V.
1

ω − ω0

− iπδ(ω − ω0)

The equation above should be understood in the context of integrate kernel. Plug it into

2.16, we have:

GR(ω) = G(ω + 0+) =

[
P.V.

∫ +∞

−∞

A(ω0)

ω − ω0

dω0

]
+ i

[
(−π)A(ω)

]
With

[
Re
]

+ i
[
Im
]

the structure now is very clear, we have proved 2.19 #

Cauchy’s integral formula

f(z) =
1

2πi

∫
f(ξ)

ξ − z
dξ (2.20)
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Cauchy’s differentiation formula

f (n)(z) =
n!

2πi

∫
f(ξ)

(ξ − z)n+1
dξ (2.21)
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CHAPTER 3

Spectra of the dissipative spin chain

3.1 Introduction

Dissipation plays an important rule in quantum phase transitions [7, 25, 8, 55, 23, 35, 49,

54, 31, 60]. There can be localization-delocalization transitions and coherence-decoherence

transitions as the dissipative strength is tuned. Dissipative dynamics is also the bottleneck

to build a reliable quantum computer. [20] However, exactly solvable dissipative quantum

systems are few and far between and often numerical approaches are needed, However,

extracting reliable real time dynamics from numerical simulation in the imaginary time

simulation is difficult. Ironically, it is the real time results that are mostly relevant to

experiments.

In this section, we are going to extend the (0+1) dimensional [12, 51] spin-boson system

to (1+1) dimension. It is a transverse Ising chain, with each spin coupled to a Ohmic bosonic

heat bath. We use Monte Carlo method [59, 47, 29, 6] to explore the system and generate

imaginary time spin-spin correlations [57, 46, 56]. For analytic continuation to the real time,

we use our newly developed Padé Regression method [53] to get the real time dynamical

spectra.

In the limit of no dissipation, the real frequency spectrum can be exactly solved via

Jordan-Wigner transformation [37, 62, 52]. Hence our quantum Monte Carlo and the analytic

continuation methodology can be checked to some extent by comparing with the exact results

in the case of no dissipation Fig. 3.6. In Sec. II we define the model and describe the Monte

Carlo simulation in III. In Sec. IV we discuss the results and the conclusions are discussed

in V.
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3.2 Single spin in a dissipative bath

Each spin is coupled to a Ohmic heat bath independently.

HiD := HiI +HiB = ασzi
∑
n

(
b†in + bin

)
+
∑
n

ωb†inbin (3.1)

HiD is the dissipation Hamiltonian at spin site i. When α = 0, the spin σi and environment

are decoupled, there is no dissipation. The general dissipative spin problem can be written as

Eq. (3.2), where the first part Hamiltonian only involves spins, the second part Hamiltonian

is a summation over Eq. (3.1) for every spin.

Hno dissipation +
⊕∑
i

HiD (3.2)

Spin-boson problem (0+1 D) is a single spin with dissipation. When α is small, the two

level system are non degenerate, the particle are de-localized in double well potential; when

α is large, the two levels system gets two degenerate ground states, the particle can be in

either of the double wells potential, localized.

∆σz1 +H1D (3.3)

degenerate ground states↔ symmetry broken

A broken symmetry in the classical ensemble means the quantum system has degenerate

ground state.
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Figure 3.1: Finite size scaling, notice the 1.020± 0.005 comes from the periodic long range

interaction 1
sin2(πr/L)

Figure 3.2: A physical picture of the dissipation effect. When the particle has large dis-

sipative interaction with its environment, the particle is trapped locally. The environment

“knows” the particle’s position
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Let’s focus on the dynamics of the quantum spin system. The power spectrum is defined

as:

S(ω) = Im[χ(ω)]/ω (3.4)

χ(ω) = Fourier Transform[〈σz(t)σz(0)〉Θ(t)]

We can see, when the dissipation strength is zero. The spectrum is a sharp delta function

peak, it’s the isolated two level system. As alpha is increasing, the peak center is shifted

down, the peak is getting broaden. Finally, the peak is centered at zero frequency. It’s

because the system get doubly degenerate ground states.

Figure 3.3: Spectrum of (0+1)D spin-boson model for different dissipation strength.

The above calculation is using quantum Monte Carlo simulation and analytic continu-

ation. It can be applied to any Hpure spin system + Hdissipation models. The pro is, this is a

universal method. The con is, the Monte Carlo simulation need lots of computer resources.

Our goal is to calculate the spin-spin correlation function 〈si(t)sj(0)〉 of these dissipative

Ising model. Or the equivalent power spectrum in frequency or momentum space.
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3.3 Spin chain in a dissipative bath

The model has 3 parts: HS is the transverse field Ising chain, HB is the dissipative bosonic

bath, HI is the coupling of the Ising chain with the bath. The influence of environment

to the i-th spin in the Ising chain can be completely describe by the correlation Ji(ω) =∑
k c

2
i,kδ(ω−ωi,k). By assuming Ohmic bath, we are assuming that the correlation takes the

linear form at low frequency: J(ω) = 2παωe−ω/ω0 , where ω0 is some high energy cut off, it

doesn’t affect the lower energy physics.

H = HS +HI +HB (3.5)

HS = −∆
L∑
i=1

σxi − J
L∑
i=1

σzi σ
z
i+1

HI =
L∑
i=1

N∑
k=1

ci,k

(
a†i,k + ai,k

)
σzi

HB =
L∑
i=1

N∑
k=1

ωi,k(a
†
i,kai,k +

1

2
)

Path integral formalism is carried out to map the quantum Hamiltonian into classical

action [7]. The dissipative Bosonic heat bath is traced out, leaving a 1/r2 longer range

interaction in imaginary time (∝ τ), α becomes A0. sin2 is for the periodic boundary

condition. [30]

Table 3.1: classical-quantum mapping

quantum classical relation

L N1 L = N1

β N0 β = N0

J K1 J = K1

∆ K0 tanh(∆) = exp(−2K0)
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S classical action = −K1

∑∑
si,τsi+1,τ

−K0

∑∑
si,τsi,τ+1

−α
2

∑∑
τ<τ ′

si,τsi,τ ′
( π
Nτ

)2 1

sin2
(
π
Nτ
|τ − τ ′|

) (3.6)

3.4 Quantum Monte Carlo method

The Monte Carlo simulation is carried out on system sizes N0 × N1 = 128 × 64 with Wolff

clustering updating algorithm. The total updating steps are [Jump]× 226. Here we update

every [Jump] steps to keep the samples as uncorrelated as possible [1]. In order to increase

the acceptance rate of long range interaction in the imaginary time, N0, direction, cumulative

probability method is applied [29]. We ran on a single CPU core for two weeks; the relative

error for the I[ωn, k] (see below) is less than 0.1%.

3.4.1 Updating

In this part, we are going to focus on the Monte Carlo updating algorithm. I am using the

Wolff cluster updating method. The essential part of Swendsen-Wang or Wolff algorithm, is

to draw bonds between site i and j with probability:

p = 1− exp(−2Kijδsi,sj) (3.7)

To understand Eq. (3.7), let’s take a look at two spin system S = Ks1s2
1 There are four

states in total, their unnormalized probability can be written as:

↑↑= eK , ↑↓= e−K , ↓↑= e−K , ↓↓= eK

The partition function can be written as

Z = Zsame + e−2KZdiff = (1− e−2K)Zsame + e−2K(Zdiff + Zsame)

1H = −Js1s2, the probability P ∝ e−βH = e−β(−J)s1s2 = eKs1s2 = eS where S is the action, K absorbs
inverse temperature β and coupling J , wish the sign does not confuse you.
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= pZconnected + (1− p)Zunconnected

When two partion functions (Zdiff + Zsame) are added with equal weight, that means there

is no energy difference between them. No bond need to be added as constraint. However, in

the case of Zsame, it is a constraint (a bond), and the overall weight is given by p = 1−e−2K .

That’s the probability to given a constraint bond, because there is a case that the spins are

the same but not connected. After drawing the bonds, we just flip the cluster’s spin. This

completes one update.

3.4.1.1 Pseudo-codes

Algorithm 1 Wolff algorithm

1: Selection a spin i, append to Q

(Whenever a spin is append to Q, it is also added to wasQ)

2: repeat

3: Pop the head j out of Q

4: Find j’s neighbour append to Q

neighbour:={ same color and never in Q and probability okay }

5: until nothing in the Q

6: Flip all elements in wasQ

To get the neighbour of j, we need extra array wasQ[k] to chech if k was in Q. Also,

I am trying to use hashing instead of converting index from i to (i0,i1,i2,...) then find

neigbhours. The neigbour index searching is done many times, so it is wise to use hashing

get save repeating calculations. There are two hashing arrays hashingK[i][h] (h=1,2,3,...,2d

) and hashingA[i][h] (h=0,1,2,...,N0-1), they are storing the index of nearest neigbhour

and long range neighbour respectively. Their dimensions are: (N0 × · · · × Nd) × 2d and

(N0×· · ·×Nd)×N0. Notice that the two neigbours in N0 are repeating in two hashing arrays.

There is no problem for that, because they represent different couplngs. The couplings are

additive in terms of connective probabilities.
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3.4.1.2 Sampling long range interaction bonds

As the acceptance rate p = 1 − e−2K is very low for the long range interaction bonds, we

don’t want do N0 times to see who is connected by bond. A general problem can be stated

as follows:

Give probability p1, p2, · · · , pm , we wish to select several numbers. Here, pi means the

probability to select i. Instead of running m times rand() ≤ pi comparison. We can use the

accumulated probability technique.

C01 = p1

C0j = (1− p1) · · · (1− pj−1)pj

C0m = (1− p1) · · · (1− pm−1)pm

C0,m+1 = (1− p1) · · · (1− pm−1)(1− pm)

C0j means the probability to select j start from 0. Nothing is selected between 0 and j. For

the sites after j, it is to be determined later. C0,m+1 means nothing is selected among the m

numbers. All the accumulated probability summed up to 1.
∑m+1

i=1 C0,i = 1

Suppose we get j after one selection. Then we should do the same jump as start from

0.

Cj,j+1 = pj+1

Cj,k = (1− pj+1) · · · (1− pk−1)pk

Cj,m = (1− pj+1) · · · (1− pm−1)pm

Cj,m+1 = (1− pj+1) · · · (1− pm−1)(1− pm)

This procedure is done iteratively, until we hit the end. The last few element need to be

carefully treated. Cm,m+1 = 1 means to exit this procedure.

Cm−1,m = pm

Cm−1,m+1 = (1− pm)

Cm,m+1 = 1
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Algorithm 2 Luijten algorithm

1: Prepare p1, · · · , pm and C01, · · · , C0m, C12, · · · , C2m, C23, · · · , Cm−1,m

Begin at 0, set i=0

2: repeat

3: Generate a [0,1) random number r

4: Locate j such that Cij ≤ r < Ci,j+1

5: Set i = j, push j to Q

6: until i = m+1

7: Flip all elements once in Q

3.4.1.3 Time complexity notes

There are a few places, where time complexity can be improved.

1. Locate i such that a[i] ≤ r < a[i + 1]. For an array a[N] with length N, simple

method would take O(N) time. If we use order list data structure, the search time

becomes O(log(N)).

2. Check if s[j] is already in the cluster. This is done many times in one update

loop. I should create a global variable flag[i] to show if i is already in the cluster. This

takes only O(1) time to check. But the drawback is, we need to reset flag[i] to zero

every loop, which takes O(N) time. Anyway this runs every loop, and we can combine

this O(N) reset zero procedure with the cluster flip together. Then it should in total

cost O(cluster size) time each loop.

3. No wasQ is needed. Flip the sign at the same time of push to the Q. s[loc] is flipped

during the cluster growth: this prevents revisiting sites already included in the cluster.

In case of anti-ferromagnetic coupling, the sites should be connected if the have opposite

sign. To increase the CPU speed of accessing the sites and the neighbours of a site. We are

using the hashing rules as follows:
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Algorithm 3 Wolff algorithm 2

1: Selection a spin i, append to Q

(whenever a spin is append to Q, also flip the sign)

2: repeat

3: Pop the head j out of Q

4: Find j’s neighbour append to Q

neighbour:={ same color and probability okay }

5: until nothing in the Q

1. Rule for sites. Suppose the dimension runs for N0, N1, N2, · · · . The site (i0, i1, i2, · · · )

where in = 0, 1, · · · , Nn − 1. The FORTRAN notation

s = i0 +N0 ∗ (i1 +N1 ∗ (i2 + · · · ))

2. Rule for sites’ neighbour The general philosophy is “(1) lower index dimension

comes first; (2) long range first, nearest neighbour second; (3) if site collides, first

absorbs second (4) left first, right second; ”

3. 0+1 D with long range N0

hashing[N0][N0 − 1]

4. 1+1 D with long range N0, N1

hashing[N0 ∗N1][(N0 − 1) + 2]

3.4.1.4 Programs

1 c l a s s I s i n g

2 {

3 i n t dimension ;

4 vector<int> N;

5 vector<doube> K;

6 double A;

70



7

8 i n t ∗ s ;

9 i n t ∗ f l a g ;

10

11 i n t hashingK ;

12

13 updating ( )

14 {

15 Q

16 wasQ

17 }

18 }

Code 3.1: Ising.h

Each simulation’s input is:

• Dimension d

• Length vector N0, N1, N2, · · ·

• Nearest coupling vector K0, K1, K2, · · ·

• Long range coupling in 0-direction A0

To store the spin array s[i0, i1, · · · , id−1] in d-dimensional space, I am using Fortran order

(column-major order) array, then the index becomes one dimension s[i]

i = i0 +N0 ∗ (i1 +N1 ∗ (i2 + · · · ))

The zeroth dimension data is stored continuously, as there is long range interaction in the

dimension naturally. The power spectrum I[k0, k1, · · · , kd−1] is the absolute squared FFT of

s[i0, i1, · · · , id−1]
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s̃[k0, k1, · · · , kd−1] = FFT
[
s[i0, i1, · · · , id−1]

]
(3.8)

I[k0, k1, · · · , kd−1] = |s̃[k0, k1, · · · , kd−1]|2 (3.9)

To store d-dimensional I into one-d, I’m using the same FORTRAN order. All of the

indices kp and ip are periodic in Np

3.4.2 Order parameters

Order parameters are key to understand phase transitions. Instead of magnetization, Binder

ratio is more often used in Monte Carlo simulation, because of its scale invariant property.

m =
1

[R]

∑
i∈R

si (3.10)

〈|m|〉 =
1

T

T∑
n=1

∣∣∣∣ 1

[R]

∑
i∈R

si

∣∣∣∣ (3.11)

〈m2〉 =
1

T

T∑
n=1

(
1

[R]

∑
i∈R

si

)2

(3.12)

〈m4〉 =
1

T

T∑
n=1

(
1

[R]

∑
i∈R

si

)4

(3.13)

The index m = 1, 2, 3, · · · , T labels the Monte Carlo step. R is region of interests. It does

not have to be the entire region. For example, in the two qubits problem. R1 and R2 are

the two spins respectively.

R2 =
〈m4〉
〈m2〉2

(3.14)

U2 = 1.5− 0.5R2 (3.15)

In the infinite system size limit, Binder ratio R2 takes 1 at magnetic ordered phase, and

takes 3 at disorder phase (as a result of Gaussian distribution). The value of Binder ratio is

dimensionless, it is scale invariant. We can define a U2 which takes 1 in the ordered phase

and 0 in the disordered phase.
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3.4.2.1 Correlation

Due the periodic boundary condition, the correlation function is also periodic is space (and

imaginary time)

〈correlation〉 =
1

T

T∑
n=1

(∑
i∈R

s1is2i

)
(3.16)

Figure 3.4: Spin-spin correlation function is a periodic function.

3.4.3 Spin-spin correlation

The standard method Given 2D Ising spin s[τ, x] = ±1 on a discrete lattice with periodic

boundary condition, where τ ∈ {0, 1, 2, · · ·N0 − 1} is in the imaginary time direction and

x ∈ {0, 1, 2, · · ·N1−1} is in the spatial direction, our goal is to calculate spin-spin correlation

function c[τ, x] = 〈s[0, 0]s[τ, x]〉. Here 〈· · · 〉 is the Monte Carlo average. Since our problem is

translational invariant. We also have c[τ, x] = 〈s[1, 1]s[1+τ, 1+x]〉 = 〈s[1, 2]s[1+τ, 2+x]〉 =

· · · = 〈s[τ0, x0]s[τ0+τ, x0+x]〉 for any initial site τ0, x0. Therefore we can write the correlation
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function as:

c[τ, x] =

〈
1

N0N1

N0−1∑
τ0=0

N1−1∑
x0=0

s[τ0, x0]s[τ0 + τ, x0 + x]

〉
(3.17)

We need to perform N0N1 multiplications to get one value of c[τ, x]. There are N0N1 values

of c[τ, x] for each index [τ, x]. Therefore, to get a 2D correlation function c[τ, x], we need

O((N0N1)2M) total multiplications. Where M is the Monte Carlo updating steps. Then we

can perform a 2D discrete Fourier transform on c[τ, x] to get the I[ωn, k]

I[ωn, k] =
1√
N0N1

N0−1∑
τ=0

N1−1∑
x=0

ei(τωn+xk)c[τ, x] (3.18)

If we make the analytic continuation from Matsubara frequency iωn to real frequency ω, the

function I[ωn, k] becomes S[ω, k]. It is the dynamical structure factor of the quantum spin

system.

A faster method The convolution theorem and fast Fourier transform can make the above

calculation faster. The acceleration is from O((N0N1)2M) to O(N0N1 log(N0N1)M). The

equation is given by

I[ωn, k] =

〈∣∣∣∣s̃[ωn, k]

∣∣∣∣2〉 (3.19)

Where s̃[ωn, k] is the 2D discrete Fourier transformation of the Ising spin field s[τ, x]

s̃[ωn, k] =
1√
N0N1

N0−1∑
τ=0

N1−1∑
x=0

ei(τωn+xk)s[τ, x] (3.20)

We have used the fact that the order of the Fourier transform and the summation can be

exchanged due to linearity. Equation (3.20) and 3.19) will give the same I[ωn, k] as Eqs. (3.17)

and (3.18), but with a logarithmic acceleration.
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Figure 3.5: Fourier transformation of 2D spin-spin correlation function.

3.4.4 Analytic continuation

To begin, we have a classical system of size N0 × N1 = 128 × 64. Consider the correlation

C[τ, x] = 〈s[τ0, x0]s[τ0 + τ, x0 + x]〉 and perform a 2D discrete Fourier transformation on

C[τ, x], to get I[ωn, k], which is also the quantum G(iωn, k). The values of ωn, k run through

discrete points in the Brillouin zone. Where Ω = 2π
β

= 2π
N0

is the Matsubara frequency

interval.

G(iωn, k) ≡ I[ωn, k] (3.21)

ωn = 0,Ω, 2Ω, · · · , (N0 − 1)Ω

k = 0,
2π

N1

, 2
2π

N1

, · · · , (N1 − 1)
2π

N1

(3.22)

G(iωn, k)→ G(ω + i0+, k)→ S(ω, k) (3.23)
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The analytic continuation Eq. (3.23) is done for each fixed k value, using our newly

developed Páde regression method [53]. The Páde regression assumes the analytic function

G(z) takes the specific form of a rational function PL(z)
PM (z)

= a0+a1z+···+aLzL
1+b1z+···+bMzM

. The polynomial

in the numerator is of degree is L and the denominator is of degree M . Therefore there are

L + M + 1 parameters to be determined. Given N Matsubara points, there are N fitting

equations G(zn = iωn) = un (n = 1, 2, · · · , N). We then modify the problem to a linear

regression problem: given X and y find the β that minimizes ||Xβ − y||2. Here the explicit

form of XN×(L+M+1)β(L+M+1) = yN is in Eq. (3.24)



−u1z
1
1 −u1z

2
1 . . . z0

1 z1
1 z2

1 . . .

−u2z
1
2 −u2z
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2 z1
2 z2

2 . . .
...
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...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

−uNz1
N −uNz2

N . . . z0
N z1

N z2
N . . .





b1

b2

...

...

a0

a1

a2

...
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=



u1

u2

...

...

...

...

uN−1

uN



(3.24)

Starting from this standard linear regression problem, we can apply Bayesian inference

to choose the optimal L and M or use bootstrapping to estimate the error.

3.5 Result

3.5.1 Calibration

Let’s first look at the case without dissipation. This is just the transverse field Ising model;

the exact spectrum is ε(k) =
√

∆2 + J2 − 2∆J cos(k). Therefore we can use the exact

result to verify our Monte Carlo plus analytic continuation approach. The classical-quantum

mapping, will map K0 = 0.136, K1 = 0.2, N0 = 128, N1 = 64 to the quantum parameter

∆ = 1, J = 0.2, β = 128, L = 64.
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Fig 3.7 is the S(ω, k) result for each individual k. Lower momenta have always higher

spectral weight. We can also see the symmetry of the spectrum, S(ω, k) and S(ω, 2π − k)

have the same shape: Fig 3.6 is the color version. The blue dashed line is the exact spec-

trum ω(k) =
√

1 + 0.22 − 2× 0.2 cos(k), we can see that the exact result and the analytic

continuation agree reasonably well.

Figure 3.6: S(ω, k) of transverse field Ising chain ∆ = 1.0, J = 0.2 with no dissipation,

α = 0. The recovered spectrum is compared with the exact result (the dashed blue curve).

The broadening is due to two reasons (1) finite size (classical N0 = 128) or the finite

temperature effects (quantum T = 1/β = 1/N0) ; (2) our current Monte Carlo imaginary

time correlation function has 5 significant digits (relative error 10−5), which is still a large

error.

3.5.2 Spectrum with dissipation

We turn on the dissipative strengths to be α = 0.05, 0.1, 0.2, 0.3, 0.5. Fig. (3.8 3.9 3.10

3.11 3.12 ) are the spectral plots for individual k. Fig. ( 3.13 3.14 3.15 3.16 3.17) are the

corresponding density plots of S(ω, k). From these results, we can see that as the dissipation
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strength is increased, the energy peak is shifted down. The energy distributions also get

broadened, implying shorter life time of the quasi-particle excitation.

Figure 3.7: Transverse field Ising chain ∆ = 1.0, J = 0.2 with no dissipation α = 0. Each

curve is S(ω, k) with fixed k value.

The energy gap is more subtle. Only in the non-dissipative system, can we observe a clean

energy gap. As the dissipation is turned on a little bit, it forms a pseudo-gap, and closes

softly. At low energies S(ω) ∝ ωδ, we can classify the gap closing into three cases: δ > 1

soft closing, δ = 1 linear closing, δ < 1 hard closing. The low energy exponent δ = δ(α, k) is

a function of dissipation strength α, and momentum k.

For α = 0.1, see Fig 3.9. The spectral curve is convex at low energy for all momentum.

δ(0.1, k) < 1 For α = 0.2, see Fig 3.10. It’s very interesting. At low momentum, the

spectrum is convex δ > 1, while at high momentum, the spectrum is concave δ < 1. And

there exist a special momentum kc such that the dispersion is linear δ(α, kc) = 1, which

divides the convex and concave regions. (in the α = 0.2 case, it is kc ≈ π
2
, π) For α = 0.3,

see Fig 3.11. The spectrum shifts to low frequency and the gap is closing. The low energy
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Figure 3.8: Transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.05. Each

curve is S(ω, k) with fixed k value.

Figure 3.9: Transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.1. Each

curve is S(ω, k) with fixed k value.
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Figure 3.10: Transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.2. Each

curve is S(ω, k) with fixed k value.

Figure 3.11: Transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.3. Each

curve is S(ω, k) with fixed k value. The k = 0 curve changes violently near zero frequency,

we use dashed line to interpolate.
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Figure 3.12: Transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.5. Each

curve is S(ω, k) with fixed k value. The k = 0 curve changes violently near zero frequency,

the peak will be out of the graph. We use dashed line to interpolate.

Figure 3.13: S(ω, k) of transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.05.
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Figure 3.14: S(ω, k) of transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.1.

Figure 3.15: S(ω, k) of transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.2.
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Figure 3.16: S(ω, k) of transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.3.

Figure 3.17: S(ω, k) of transverse field Ising chain ∆ = 1.0, J = 0.2 with dissipation α = 0.5.
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shape is concave (δ < 1) for all momenta.

3.5.3 Three dynamical phases

As dissipation is turned on, the low momentum spectrum gets damped faster than the high

momentum, in terms of the δ value. Therefore we can classify the system into three different

regions:

1. Weakly damped region

2. Linear k-edge region

3. Strongly damped region

In Fig 3.18, the schematics of these three regions are plotted. Fig 3.19 is the phase

diagram. The light yellow and grey region correspond to the magnetically disordered and

ordered phases in the imaginary time simulation. Green, red, blue dots correspond to the

three dynamical phases of the real time spectra.

Figure 3.18: A schematic showing three dynamical phases (from left to right: weak damped

α = 0.1, linear k-edge α = 0.2, strong damped α = 0.3 ). The horizontal axis is k, the

vertical axis is ω, same as Fig. (3.14,3.15,3.16). The band is colored green if δ(k) > 1 , blue

if δ(k) < 1 and red if δ(k) = 1.

In the limit of zero dissipation, it is the transverse field Ising model, which is an integrable

system. For each k the excitation has infinite life time. In the limit of large dissipation, the
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Figure 3.19: Phase diagram of dissipative Ising chain. Vertical axis J is the nearest neighbour

σzi σ
z
i+1coupling, horizontal axis α is the dissipation strength, transverse field is set to ∆ = 1

or K0 = 0.136. The yellow and grey regions are the disordered and ordered magnetic phases

from the imaginary time simulation [57]. Green, red, and blue dots represent weakly damped,

linear k-edge, and strongly damped regions respectively.

Hamiltonian is dominated by the environmental noise term. The quasi-particles will decay

faster than its energy time scale. In the intermediate dissipation range, low momentum will

not have quasi-particle excitation, while high momentum will. The critical damping edge

momentum kc, is given by S(α, ω, kc) ∝ ω.

3.6 Conclusion

To summarize, we have used extensive quantum Monte Carlo simulation, plus the rational

function (Padé) regression method to recover the spectra of the dissipative Ising chain. As
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the dissipation strength is increased, the spectral speak is broadened and lowered in energy.

Quasi-particle picture S(ω, k) = δ(ω − ω(k)) does not hold; 1
ω−ω′(k)−iω′′(k)

is generalized to

an arbitrary rational function. According to lower energy exponent of S(ω, k) ∼ ωδ(k) three

dynamical regions are introduced to understand the role of dissipation.
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APPENDIX A

Python package for transverse field Ising chain

The software package works as follows. The input are coefficient of Hamiltonian, which is

represented by M . If it is the disordered system, then the input should be an ensemble of

Ms. We are using the input to create an object. Then use that object to calculate various

physical quantities.

A.1 Transverse field Ising model package (tfim)

In the following github repository, the folder “package” contains the code.

https://github.com/Jian2017/python package for tfim 0.0

1 c l a s s t f im ( ob j e c t ) :

2 de f i n i t ( s e l f ,M) :

3 re turn none

4

5 de f c o r r e l a t o r e q u a l t i m e ( s e l f , i , j ) :

6 re turn # equal time c o r r e l a t o r o f s i t e i and s i t e j

7 de f c o r r e l a t o r e q u a l t i m e M a t r i x ( s e l f ) :

8 re turn # a matrix

9

10 de f co r r e l a to r dynamic s ( s e l f , i , t , j ) :

11 re turn # c o r r e l a t o r o f s i t e i and j at time t

12 de f c o r r e l a t o r d y n a m i c s s e c t o r ( s e l f , i , j , dt , tSteps ) :

13 re turn # a s e c t o r

14 de f Swk( s e l f , i , j , dt , tSteps ) :

15 re turn # a sec to r , the dynamical s t r u c t u r e f a c t o r
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16

17 de f correlator dynamics AABB ( s e l f , i , t , j ,AABB) :

18 re turn # out o f time order c o r r e l a t o r

19 de f corre lator dynamics sector AABB ( s e l f , i , j , dt , tSteps ) :

20 re turn # a s e c t o r o f OTOC

21

22 de f orderParameter 1 ( s e l f ) :

23 re turn # magnet izat ion

24 de f orderParameter 2 ( s e l f ) :

25 # t h i s i s the Edward−Anderson order parameter

26 # f o r a s i n g l e quenced c o n f i g u r a t i o n

27 # d i s o r d e r average need to be done , f o r b e t t e r convergence

Code A.1: tfim.py

1 from package . hami l tonian import s implePureHamiltonian

2 from package . PPFtfim import ∗

3 import matp lo t l i b . pyplot as p l t

4

5 M=simplePureHamiltonian (20 ,1 ,1 , −0 .3) #c r e a t e Hamiltonian matrix

6 t=t f im (M) #c r e a t e the t r a n s v e r s e f i e l d I s i n g model ob j e c t us ing matrix M

7

8 mat=t . c o r r e l a t o r e q u a l t i m e M a t r i x ( )

9

10 p l t . matshow (mat)

11 p l t . c o l o rba r ( )

12 p l t . show ( )

Code A.2: Create an object t.

A.2 Pfaffian package

The the following github repo is the python package assessing the Pfaffian. The time com-

plexity is O(N3): https://github.com/Jian2017/python package assessing pfaffian
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1 import numpy as np

2 from pf import pf

3

4 N=20

5 X=np . random . random ((2∗N,2∗N) )

6 S=X. t ranspose ( )−X

7

8 pf (S) # eva lu t i ng the p f a f f i a n o f matrix S

Code A.3: the Pfaffian package
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APPENDIX B

Matlab package for Padé regression

The essential code is in the file “PadeRegression.m” in the following repository:

https://github.com/condensedmatter/PadeRegression Matlab

1 f unc t i on [ rho best , r h o e r r o r ]= PadeRegress ion ( z , u r ea l , u imag , e r r u r e a l ,

err u imag , x ,RR)

2 %% average over RR Pade−Regre s s i ons

3 % best value and standard e r r o r i s produced

4 rho ensemble=ze ro s (RR, s i z e (x , 2 ) ∗ s i z e (x , 1 ) ) ;

5 par f o r R=1:RR

6 rho ensemble (R, : )=PadeRegressionOne ( z , u r ea l , u imag , e r r u r e a l , err u imag ,

x ,R) ;

7 end

8 rho be s t=mean( rho ensemble ) ;

9 r h o e r r o r=std ( rho ensemble ) ;

10 end

Code B.1: Bootstrapping size is RR.
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APPENDIX C

CPP codes for longer range Ising model

The cpp source codes are in the following github repository:

https://github.com/condensedmatter/SpinBosonND cpp

C.1 Updating and FFT spectrum

1 #inc lude <cmath> //exp ( )

2 #inc lude <random> // c l a s s my random {} ;

3 #inc lude <numeric> // accumulate ( ) ;

4

5 c l a s s I s i n g {

6 bool ∗ s ; // po in t e r to the I s i n g f i e l d

7

8 I s i n g ( i n t N0 , double K0, double A0) ;

9 I s i n g ( i n t N0 , i n t N1 , double K0, double K1, double A0) ;

10 I s i n g ( i n t N0 , i n t N1 , i n t N2 , double K0, double K1, double K2, double A0) ;

11

12 void updating ( ) ;

13 void updating ( i n t n) ; // update n t imes

14 }

Code C.1: Ising.h

1 #inc lude <f f tw3 . h>

2

3 c l a s s powerSpectrum{

4 double ∗ m spectrum ; // output i s here
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5

6 powerSpectrum ( i n t N0 ) ;

7 powerSpectrum ( i n t N0 , i n t N1) ;

8 powerSpectrum ( i n t N0 , i n t N1 , i n t N2) ;

9

10 void c a l c u l a t e ( bool ∗ s ) ; // input i s here

11 }

Code C.2: calculate powerSpectrum.h

This header file calculates the power spectrum of s and stores it in m spectrum.

C.2 Averaging and saving files

1 c l a s s w r i t e F i l e s {

2 w r i t e F i l e s ( i n t seed ) ; // c r e a t e a f i l e wr i t i ng obj , seed as part o f name

3 void save ( vector<double> vd ) ; // save spectrum vd as ”00 seed 00count . txt ”

4 }

5

6 c l a s s Summation{

7 std : : vector<double> c ;

8 Summation ( i n t s p i n s i z e , i n t sumN) ; // i n i t i a l i z e

9 void add ( double ∗ s ) ;

10 void ave ( ) ;

11 }

Code C.3: file generator.h

C.3 Main program

Random seeds need to be changed each time when we add a new parallel Monte Carlo

process. This main function takes argv[1] as the parameter for different seeds.

1 #inc lude ” f i l e g e n e r a t o r . h”

2 #inc lude ” ca lcu late powerSpectrum . h”

3 #inc lude ” I s i n g . h”

4
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5 #inc lude <iostream>

6 #inc lude <s t r i ng>

7 #inc lude <ctime>

8

9 i n t main ( i n t argc , char const ∗argv [ ] ) {

10

11 // l a r g e enough

12 i n t thremoLOOPS=1000∗500;

13 i n t LOOPS=1000000;

14

15 // s e t to be optimal by main pro j 1 . cpp

16 i n t sumN=800000;

17 i n t J=610;

18

19 // s e t seed from arguments

20 i n t seed =3;

21 seed=std : : s t o i ( argv [ 1 ] ) ;

22 rng . mt . seed ( seed ) ;

23

24

25

26 // t h i s i s the phys i c s parameters

27 i n t N0=128;

28 i n t N1=64;

29 double K0=0.136;

30 double K1=0.2;

31 double alpha =0.2 ;

32

33 I s i n g e1 (N0 , N1 , K0, K1 , alpha ) ;

34 powerSpectrum pw(N0 , N1 ) ;

35

36 /∗∗∗∗∗∗ parameters are above t h i s l i n e ∗∗∗∗∗∗∗∗∗∗ ∗/

37

38 Summation s ( e1 . Ntotal , sumN) ;
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39 w r i t e F i l e s w( seed ) ;

40

41 e1 . updating (thremoLOOPS) ;

42

43 f o r ( s i z e t i = 0 ; i < LOOPS; i++) {

44 std : : cout << i << ’ \n ’ ;

45 s . ze ro ( ) ;

46 f o r ( s i z e t j = 0 ; j < sumN; j++) {

47 e1 . updating ( J ) ;

48 pw. c a l c u l a t e ( e1 . s ) ;

49 s . add (pw . m spectrum ) ;

50 }

51 s . ave ( ) ;

52 w. save ( s . c ) ;

53 }

54

55 re turn 0 ;

56 }

Code C.4: main proj 2.cpp

C.4 Submitting job arrays in cluster

First we need compile above c++ source codes.

1 #! / bin /bash

2 FFTW3 HOME=”/u/ l o c a l /apps/ f f tw3 / cur rent ”

3

4 echo $FFTW HOME

5 . /u/ l o c a l /Modules/ d e f a u l t / i n i t /modules . sh

6

7 module load i n t e l /13 . c s

8 module load gcc / 4 . 9 . 3

9
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10 g++ −s t a t i c −std=c++11 main pro j 2 . cpp −o main pro j 2 −I$FFTW3 HOME/ inc lude −

L$FFTW3 HOME/ l i b − l f f t w 3 −lm

Code C.5: compile.sh

After this step, we have “main proj 2” executable file, we need to set the permission by

command “chmod 777 main proj 2”

1 #! / bin /bash

2 echo $SGE TASK ID

3 . / main pro j 2 $SGE TASK ID

Code C.6: jobarray.sh

1 #! / bin /bash

2 qsub −cwd −V −N PJ − l h data =1024M, h r t =24:00:00 −M $HOME −m bea −t 1−500:1

jobarray . sh

Code C.7: submit500.sh

The above syntax is used for Hoffman2 cluster. To submit more jobs:

1 #! / bin /bash

2 . / submit500 . sh

3 . / submit1000 . sh

4 . / submit1500 . sh

5 . / submit2000 . sh

Code C.8: all submit.sh
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