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1 Abstract 

We calculate the two loop f3 function in the lightcone form of N=2 Yang 

Mills. The result is zero in agreement with other calculations using regular­

ization by dimensional reduction. All integrals involved are infrared finite. 

Supersymmetry makes so many graphs finite that only three topologically 

distinct 2 loop graphs need be computed. 
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2 Intrpduction type of divergent four point function. Section 4 contains the computation of 

the two loop counterterm for the four point function. Possible extensions of 

An important issue for supersymmetric field theories is the choice of reg- this work are mentioned in section 5 and appendices contain notation, Feyn-

ulator. In the particular scheme of regularization by dimensional reduction man rules, some lightcone integrals and proof of the cancellation theorem. 

(RDR) a breakdown is known to occur [1] for N=2 Yang Mills at the three 

loop level. While this breakdown does not stop us from discussing one and 

two loop finite theories it does interfere with finiteness proofs to all orders. 

While we do not offer a suitable regulator we can use some of the results 

developed here to prove the graph by graph finiteness of N=4 Yang Mills. 

This has already been done in the conventional formalism by Lindgren [2]. 

For N =2 Yang Mills, why do we need another computation of the two loop 

(3 function when it is already known to vanish [3,4] within RDR? Due to the 

difficulty of doing lightcone integrals and until recently the lack of a suitable 

1/P+ prescriptipn [5] no one has done any complete 2 loop calculation in tl).e 

lightcone gauge [6]. Hopefully, this work will encourage more such efforts. 

Working in the lightcone gauge we encounter no offshell infrared infinities 

in any graph. As opposed to a previous calculation [3] there are no infrared 

divergent, ultraviolet finite integrals involved. Finally, the infinite part of the 

2 loop counterterm is independent of the one loop subtraction prescription. 

This paper is organized as follows. Section 2 reviews N=2 Yang Mills 

and the one loop results concerning it. In section 3 we classify the divergent 

graphs by their external leg configurations. It turns out that there is only 1 
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3 Features of N=2 Yang Mills 

The lightcone form of N=2 Yang Mills has been discussed by several 

authors [7,8]. Throughout we shall use the formulation of reference [7]. In 

this formulation there are 2 independent superfields t/J , t/J* which depend on 

2 8's only and the lagrangian involves no explicit 8's only a/ 88's. As such we 

write the Feynman rules (fig. 1) in momentum space for both the x,.'s and 

the 8's. So in addition to the usual 4-momentum integral each loop carries 

an integral over the two Grassmann or 8 momenta. We discuss this further 

in the next section. 

This theory realizes Lorentz symmetry nonlinearly and therefore the 

wavefunction, three point, and four point renormalization constants are equal 

to one another provided we can regulate the theory in a covariant fashion. 

RDR at the one loop level produces equal renormalization constants as shown 

in [7]. 

Also the infinite part of the two loop counterterm is independent of the 

finite one loop subtraction constant. The one loop renormalized two and four 

point couplings are schematicaly ZtjJtjJ• and ZtjJ2tjJ• 2 where Z=1+C2f7r2·g2 jf. 

+g2B at one loop [7] and we have included the effect of adding an arbitrary 

finite subtraction constant B. Our subtraction scheme must respect Lorentz 

symmetry so B is the same for all four renormalization constants. So the four 

point coupling gets an additional factor Z and the propagator recieves a 1/Z. 
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As we will see in the next section the only infinite four point functions have 

external line connections as in figure 2. From figure 2 we see the only eff~ct of 
_,..: 

one loop counterterms on the four point function is to multiply the one' loop 

infinite graph by Z 2 ·1/ Z 2=1. So the infinite part of the two loop, four point 

counterterm will be independent of the finite part of the one loop countert-

erm. Similar considerations demonstrate the two loop scheme independence 

of the infinite parts of the propagator and three point counterterms. 
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4 Classification of Divergent Diagrams 

What greatly simplifies calculation of the two loop counterterms is the 

small number of graphs contributing to the four point counterterm. Analy-

sis of the loop integrals over (J momenta is central. Circulating in each loop 

along with ordinary four-momentum p11 are 2 (J momenta p1, p2 and they are 

integrated over f clp2ap1. For purposes of power counting p1 ~ m
112. 8 mo-

menta appear in four point vertices and one type of three point vertex and 

then only in the combination (called brackets) [p, q~ = (p, q) 1 (p, q) 2 where . . 
(p, q), = P+Ci;- q+Pi· One fact (cancellation theorem) we need about brack-

ets is: if I= [qt. q2D · · · [q2n-1• q2nD (n brackets in all) and the q;'s are linear 

combinations of ~ n independent momenta then I = 0 identically. The proof 

is in the appendix. This theorem immediately implies the vanishing of all 

vacuum diagrams since an l loop diagram must have 2::1 brackets to 'satu-

rate' the 8 momenta integrals but the brackets contain only I independent 

momenta. 

We wish to determine which configurations of external legs produce di-

vergent diagrams. First some general powercounting considerations. Each 

loop has a d)clp1clp2 integration; this is 4-1=3 powers of p. Each vertex has 3 

powers of p and each propagator -3 powers. So the total degree of divergence 

D of a diagram is D=3·loops -3·internal lines +3·vertices -external powers 

=3·(loops -internal lines +vertices) -external powers= 3 -external powers. 

6 
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Examining the Feynman rules and considering all possible ways a line or pair 

of lines can be external we see that every external vertex (a vertex with at 

least one external line) carries at least one power of external momentum. So 

it suffices to consider graphs with three or fewer external vertices. Another 

easily proven topological relation is that the number of brackets in a graph 

is, l-1 + (number of outgoing external lines), where l= number of loops. 

First we will classify the divergent four point functions with two incoming 

and two outgoing lines (fig 3). Such !loop graphs have 1+1 brackets. Those 

graphs with 3 external vertices are listed in fig.4. They always contain a four 

point vertex with 2 external lines. The only configurations for external lines 

from this vertex which contribute only 1 external power of momentun are in 

fig.S. So among the graphs of fig.4 the divergent candidates have 8 momenta 

integrals that are one of the two following forms: 

I d~l ... d~,[X, qt][q2, q3D ... [q21, q21+1D (3.1) 

I d~l ... d~,[X, Y~[qt, q2D ... [q21-1> q21D (3.2) 

where the total number of brackets is 1+1. X andY are external momenta 

while the q; are linear combinations of internal and external momenta. The 

most pessimistic analysis ,which we always use, would say expression 3.1 

=X1X 2q!1+2 + 0 (X!X1X 2) corresponding to D=O for the diagram. In fact 

expression 3.1 equals X 1X 2X!q!1 + 0 (X!X1X 2) which implies D=-2. This 
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follows from the cancellation theorem. Say the only external vertex factor 

we got from 3.1 was X1X 2. This factor comes from the first bracket. The 

remaining terms are polynomial in X! (X+ is any external momentum) and 

setting the external momentum equal to zero in the remaining I brackets 

gives the coefficent of the leading (~) term of this polynomial. But this 

coefficent consists of the product of I brackets depending on I independent 

momenta and by the cancellation theorem this product vanishes identically. 

So the form of 3.1 is as stated. 

Applying the same sort of argument as above to expression 3.2 shows 

it to have the form ~X, Y]X!+more optimistic terms. Therefore diagrams 

with IJ momenta integrations as in 3.2 are also convergent. 

Having shown the diagrams with 3 external vertices to be finite we ex-

amine those with 2 external vertices. Such diagrams have 2 external four 

point vertices, each vertex with 2 external legs. For such diagrams the IJ 

momentum integral either vanishes or has the form 

J d~1 • • • d~1 ~Y, Z][X, ql][q2, qs] · · · [q21-2,q21-1D (3.3) 

where there are 1+1 brackets in all and X,Y,Z are external momenta. Using 

arguments similar to those before, 3.3 has the form [Y, Z]X!q!1+2 provid-

ing 1 more external power than the most pessimistic estimate. So the only 

diagrams with two external vertices that diverge have external vertex config-

urations as in fig.S. Examining them we see that only diagrams of the type 
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So far we have only discussed four point functions with two incoming 
~ ~l . 

and two outgoing lines. Other variations of incoming and outgoing lines are 

possible, however their divergence would correspond to counterterms in the 

lagrangian of a form not present from the begining (e.g. ¢2¢>•2). Such terms 

can be ruled out on the basis of renormalizability. Furthermore an analysis 

like the one above shows them to be finite. 

Examining the other Green functions in the theory we can compute their 

degree of divergence from their external line configurations. As expected, the 

only other divergent graphs are 2 and 3 point functions and their external 

line configurations are listed in figs. 7 and 8. Every divergent graph has only 

2 external vertices, therefore the corresponding Feynman integrals depend on 

only one external momentum. There are a large number of types of divergent 

two point functions. 

We have discussed the divergence of diagrams as a whole implicitly as-

suming a negative D implies convergence of the corresponding diagram. This 

is false but there is only one exception, a certain one loop propogator dia-

gram. This is discussed in [7] and presents no essential difficulty. -<t·:_ 

\ _ . .:_ ~ 
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5 Calculation of the Two Loop Counterterms ator of a Feynman integral we have terms like, p; (p- q); with ij running 

over transverse indices. Since as a theory N=2 Yang Mills is only defined 

.As noted previously, Lorentz symmetry forces the four renormalization in four dimensions the continuation of Feynman integrals in dimension does 

constants to be equal. This is only true so long as we have a regulator which not come naturally. Mechanically, the difficulty for N=2 Yang Mills is in 

obeys the symmetry. At one loop RDR produces a counterterm proportional continuing the integrals of table 1 to arbitrary transverse dimensions. How-

to the lagrangian, as required [7]. H we were certain our.regulator would ever this is possible since the infinite parts of integrals in table 1 involve in 

produce equal renormalization constants the best calculational method is to the numerators only the quantity (p, q)• (q, p) = -p~q}- q!~} +2p+q+PT ·qT, 

evaluate the divergent part of the four point function at the required number with qT=transverse components of q,._ The above quantity can obviously be 

of loops. At more than one loop this would involve the fewest number of continued in it's transverse dimension. 

graphs. So we will calculate Z4-point and assume the Lorentz Ward identities Before calculating the two loop graphs remember that as illustrated in 

hold at two loops. fig.2, the one loop counterterms inserted in one loop infinite graphs make 

There are six graphs contributing at two loops to the infinite part of the no contribution to the two loop counterterm. Also, since the renormalized 

four point function. They and their corresponding integrals are listed in coupling 9R and the bare coupling are related by gh_=g2 j Z (g2
, E) there is no 

fig.9 and table 1. Notice that each graph, especially those with a one loop 1/E2 part in the SUm of the six graphs, only (at most) a simple pole in E. 

propagator insertion, are offshell infrared finite in contrast to the calculation Adding together the six graphs in fig.9 we get: 

in the N=1 superfield formalism using the Fermi-Feynman gauge where the 

result is IR divergent [3]. RDR for lightcone theories consists of continuing 

the integrals in the transverse number of dimensions ( e.g. in the directions 
-g•c2 
--2 . (BV) · [21 + 11 + 4/2 +Is+ Is+ 2/s] 

4:rr8 
(4.1) 

other than P+ and p_). This has been done in ordinary Yang Mills [6,9] and 

gravity [10] and there the continuation is unambiguous since the theories where BV is the bare four point vertex. Using the identity (p, q) (q,pr = 

themselves can be formulated in any number of dimensions. As a result we p+q+ (p + q) 2 
- P+ (P+ + q+) q2 

- q+ (P+ + q+) p2 which is also valid for the 

naturally get tensor integrals in the transverse dimensions; in the numer- extension in transverse dimension we get: 

10 11 
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2I + I1 + 4I2 + Is + Is + 2Ia = 

I:: (p + q)2 (p ~ q- X)2 q2 1:2 - (p _
1 

X)2] 

+I (P+ + q+)
2 

. 1 [ 1 1 ] 
p+q+ (p + q)2 (p + q _ X)2 q2 p2 - (p _ X)2 

-41 (P+ + q+) 1 
P+ p2 (p + q)" (p + q- X)2 

+I P+ 2 1 2 
q+ p2 (p + q) (p + q _ X) q2 

l
p2 1 

+ +~--~07~~~----~ 
q! P2 (p _ X)2 (p + q)2 (p + q _ X)2 

(4.2) 

In the above f = f d4-'pd-'-•q and X= incoming momenta- outgoing momenta 

on one of the e~ternal vertices. By power counting the first two integrals in 

4.2 are finite and after the shift of variable q -+ q - p the p integration in 

the third integral is f d4-'pfp+p2 =0. Feynman parameterizing the denom-

inators and using two integrals given in the appendix the RHS of equation 

4.2 becomes 

11"
4
-< [! ~ 2'] 11"

4
-< [ 2 4 2'] X~· ~:2 + f--; - )(~· ~ + ~--; = 0 + finite(4.3) 

The in:tegrals were calculated using the 1/P+ prescription of reference [5]. 

It is interesting that the graphs with double pole parts (first, second and 

fifth graph in fig 9) cancel against each other when only their double pole 

part is expected to cancel. This is most easily seen by adding together the 

graphs with only single pole parts (third,fourth and sixth graphs in fig.9 ). 

We need 4I2 + Is + Ia. Using the formulas in the appendix we calculate 

12 
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I2 =- 2£ 
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I 211"4 
s=­

f 

fJ. 

Ia = 0 

which implies 4I2 + Is + Ia = 0. ~hether this generalizes to higher loops is 

unknown. 

So in agreement with previous covariant calculations [3] utilizing RDR , 

the {3 function has zero contribution at two loops in the minimal subtraction 

scheme. In addition to the previously mentioned infrared finiteness the sim-

plicity of the present calculation should encourage further work in multiloop 

lightcone computations. 

13 



6 Extensions and Conclusion 

The real consistency check for RDR in the lightcone formalism at two 

loops would be to calculate the propagator and both three point countert­

erms. We have not done this but it is a prerequisite for the three loop 

calculation. At three loops there'does not appear to be any problem'in con­

tinuing the integrals in transverse dimensions for the divergent part of the 

four point function. However, since RDR breaks down in the conventional 

formalism at three loops [1] it is likely to break down in the lightcone for­

malism at three loops also. The vanishing of the infinite part of the two 

loop counterterm implies the infinite part of the three loop counterterm is 

independent of the finite one loop subtraction constant. Since the insertion 

of the one loop counterterm in the two loop graphs in all possible ways gives 

the contribution of the one loop counterterm to the three lo9p divergence, 

and this quantity is just 1/Z·( sum of two loop graphs) = 1/Z ·finite,the 

stated result follows. 

In conclusion we have calculated the two loop (3 function in N=2 Yang 

Mills by considering the divergent part of the four point function . The com­

putation is greatly simplified by the small number of graphs that are infinite. 

There are no UV finite, IR divergent integrals encountered in the computa­

tion, It is hoped that the classification of divergent graphs will be an aid to 

a lightcone proof of ~2 loop finiteness. It is also hoped that this two loop (3 

14 
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function computation will encourage higher loop lightcone computations in 

other models where there is no problem continuing in transverse dimensions, 

like Yang Mills. 
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8 Appendix on Notation 

Throughout the metric is (- + + + ). The notation used in the Feynman 

rules is 

P = Pt + ip2 P+ =Po+ Ps 

p* = Pt - ip2 P- = Po - Ps 

(p,q) = pq+- qp+ (p,q)* = p*q+- q*p+ 

[p, qD = (p+ql - q+:pl) (p+q-2 - q+:p2) 

:P1 , P2, q1 , q2 are the Grassmann momenta. 

17 



9 Proof of the Cancellation Theorem all, throw away any one bracket and the inductive hypothesis insures the 

existence of a closed chain. So some number j ~ 1 of the brackets contain 
It suffices to prove J = (qt. q2) 1 · · · (q2n-l• q2n) 1 = 0 when the q's are linear 

the only instance of j numbers. In the previous example, j=2 and 2 and 
combinations of :::; n momenta. Write the 2n q's in terms of n momenta p;, 

5 occur once each. Forgetting about the j aforementioned brackets, we are 
qi = :L1 AikPk where some of the p's may vanish if there are less than n 

left with N-j brackets chosen from among N-j numbers, and by the inductive 
independent momenta. Abbrevating Ut. j 2) = (Pi., p;.) 1 J becomes 

hypothesis there exists a closed chain among them. 

n The second case is easier. If among the N brackets each of the numbers 
J = L A1j1 • • ·A2nin (jl>j2) •• · (j2n-t.i2n) 

;l···h,.=l 
(a1) . 

1, · · · N occurs e:kactly twice then we have the closed chain 

. Each term in the sum a1 vanishes since every term contains a closed chain 

and closed chains vanish. For example, (1,2)(1,3)(3,4)(5,1)(1,4) contains the (1, a2) (a2, a3) (a3, a4) · · · (an-1• an) (an, 1) 

closed chain (1,3)(3,4)(4,1) (from their definition (a,b)=-(b,a) ). Proving 

closed chains vanish is just a calculation utilizing the identity; 

(P(ll,p(2l) (P(2)p(3l) ... (P(n-ll,p(nl) = 

p~),,, p~-1) (P~)JJl2),., JJln) _ p~l)p~)JJl3),,, Jilnl +,,, + ( -1t+l JJll),,, JJln-l)p~nl) 

with p(1) = p(n). This identity is also very useful for computing the 0 mo-

menta integrals occuring in loop graphs. 

So it suffices to show that if it. · · · i2n are chosen in any way from the 

set 1,- · ·n then Ut.i2) (j3,j4) · · · (j2n-1.i2n) contains a closed chain. This is 

obviously true for n=1 or 2. Assume it's true for n :::; N- 1. There are 

two cases to consider. First, among the N brackets each number from the 

set 1 · · · N does not occur exactly twice. If one number does not occur at 

18 19 

.. ,.-•1 • -·--, 



~ ,, 
" ./ 

10 Light Cone Integrals 

The only two integrals we need that are not special cases of tensor inte-

grals evaluated in dimensional regularization are: 

f 
d4-•q r (a - 2 + !.) wa-3+• 

-,-----~-____,= - i1T2-~ 2 
q+ [wq2 + 2l· q + m2t - r (a) l+ 

[[wm2- ~ft-2+~ - [wm2-~2t-2+~] 

f . d4-•q . 2-'-r (a- 2 + i) wa-2+• 
q~ [wq2 + 2l· q + m2t = -m • r (a) l~ 

. [[wm2- ~ft-2+~ - [wm2- ~2]a-2+;t] 
+

. 2_._r (a -1 + i) a'-H•L 1 
l1T • w --

r (a) l+ [wm2 -lft-1+~ 

. The metric is ( - + + + ) and both results were obtained by parameterizing 

denominators, Wick rotating and then doing the transverse and longitudinal 

integrals in sucession. Here lT= transverse components of l,.. 

20 
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12 Figure and Table Captions 

Table 1. f = J d2pLd2-'PT f d2qLd2-'qT 

Figure 1. Feynman rules,_ momentum flows in arrow's direction and the four 

point vertex is represented as a sum of asymmetric four point vertices. 

Figure 2. One loop counterterm contributions to the two loop (J function. 

Only this configuration of external legs will produce an overall divergent four 

point function at any number of loops. 

Figure 3. A class of four point functions which are analyzed for divergences. 

Figure 4. Four point function with three external vertices. Arrows on the 

external lines and the adjoining lines have been omitted as they can be 

labeled in many different ways. 

Figure 5. The only configurations of four point vertices with 2 external lines 

that contribute 1 external power. At right is the form of the corresponding 

bracket, X,Y= external momenta q='= internal momenta. 

Figure 6. The only configuration of external lines producing a divergent four 

point function; 

Figure 7. General form for the divergent three point functions. 

Figure 8. The external vertex configurations for the divergent propagator 

graphs. 

Figure 9. Divergent graphs and their corresponding expression. The I's are 

listed in table 1, BV= bare four point vertex (unsymmetrized). 
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13 Table 1 

I -1 _!_ (q,p) (p,qr - -
- q! p2 (p + q)• (p + q _ X)2 q2' 

I -I (P+ + q+)2 (q, v) (p, qr 
1 - q!v! p2 (P + q)4 (P + q _ X)2 q2 

I _ 1(P++q+) 2 
1 I _ 1(P++q+) (p-X,qr(q,p) 

2- q! p2 (p + q)4 (p + q _ X)2, 3- q!P+ p2 (p _ X)2 (p + q)2 (p + q _ xf'1; 

Is= I p2 (p- x/q2 (q- X)'' 
[, -I p+q+ 1 
e - (P+ _ q+)2 p2 (p _ X)2 q2 (q _ X)2 

23 

r; ·-:· 



"' I 

b 

c 

b 

c 

', b.(/ 
a,p'~ 

e,p / ~ -
/ d,q"-.... 

a 

Figure 1 

"'-- b,(/ 
a,p'~ 

e,p / ~ + permutations 

/ d,fi""-. 

I 
..;:!" 
N 
I 



7/Z 

liZ 

Fig.2 

z I 
Lr'l 
N 
I 



,-.-, 

Fig.3 

I 
\0 
N 

I 



/' .... '. 



Fig.5 



Fig.6 

I 
0'\ 
N_ 
I 

.~ 

\_. 



vv 
• 



+ . 
t 

I ,...., 
("") 

I 



.. ~-
-.~t 

7> 
2 

/ 
--'-- (BV) I 

~ 
/ ---------g4c2 ____ - --- --

~ 4"8 
2 

(BV) I 1 

;t-_~•C: (BV)~ 
~ "8 

Figure 9 

-32-

~. . 

4 
/ . -g•c: (BV) Is 

~ 4"8 

~:) ·. / ... -g'Cl (BV) I, 
.A...-8 

~ 
5 

6>~ / - ~94Cf(~~l~~ 
.~ 2"8 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



-~ ..... ~-
.~ 

LAWRENCE BERKELEY LABORATORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

'#, .-•• 

~-~-C. 

0 

~ ' 




