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Abstract

3D Object Detection for Self-Driving Vehicles

by

Kiwoo Shin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

3D object detection systems based on deep neural network become a core component of
self-driving vehicles. 3D object detection helps to understand the geometry of physical
objects in 3D space that are important to predict future motion of objects. While there
has been remarkable progress in the fields of image based 2D object detection and instance
segmentation, 3D object detection is less explored in the literature.

This dissertation is concerned with various challenges in 3D object detection for self-driving
vehicles. We mainly discuss how to improve the performance of 3D object detection system
as well as the computational efficiency of the detection pipeline.

The scope of this research lies in the field of 2D camera image vision, 3D LiDAR point clouds
processing, sensor-fusion based detection method, efficiency of detection pipeline, and novel
data augmentation method for 3D LiDAR point clouds. While the primary research focus
is on improvement of the detection performance in terms of precision and recall which are
core metrics for object detection task, also emphasized is the importance of practicality of
the proposed methods.

In Chapter 2, we discuss sensor-fusion based 3D object detection system. Sensor-fusion
based detection system for self-driving vehicles becomes an essential component for safety of
self-driving. It becomes crucial to find out optimal combination of multiple sensors to build
more accurate and efficient detection system. We mainly discuss how to use 2D camera
vision system and 3D LiDAR sensor together for accurate and efficient 3D object detection
system.

We first explore various methods in monocular pose estimation. A monocular pose estimation
is one of the research areas in computer vision. It predicts the location of objects in 3D space
by using single camera image. While most monocular pose estimation based 3D object
detection systems have not shown enough performance, the proposed approach in Chapter
2 utilizes the geometrical consistency assumption to narrow down the huge 3D search space
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into smaller one. Then, the proposed approach applies PointNet for further refinement of a
3D bounding box coordinates.

The proposed approach in Chapter 2, RoarNet(: RegiOn Approximation Refinement),
shows one of the best performances in 3D object detection task in KITTI dataset, which is
a standard benchmark for the self-driving vehicle detection.

In Chapter 3, we discuss about LiDAR point clouds based 3D object detection pipeline. We
analyze the weakness of the most 3D object detection systems which use end-to-end detection
pipeline for training and testing. One interesting observation on recent 3D object detection
systems is that even though predicted objects are proximal to ground truth objects, many
of those predictions are classified as false positive due to low quality in box regression task.

In this chapter, we introduce a practical method to improve the performance of 3D ob-
ject detection system. The proposed approach, epBRM V1(: end point Box Regression
Module), aims at improving the quality of 3D bounding box regression task, thus increasing
the overall performance of 3D object detection task. The proposed approach requires less
than 1 hour of training time and only 12ms of additional latency to improve the performance
of standard detection methods to the state-of-the-art 3D object detection methods.

In Chapter 4, we develop epBRM V2 which overcomes the limitation of epBRM V1 and
further improve the recall performance of the 3D object detection system. We improve the
previous baseline, which is epBRM V1, in two aspects: 1) building a more sophisticated
network structure for box regression task to improve the representation power of the 3D
LiDAR point clouds feature, 2) introducing a novel data augmentation method for 3D LiDAR
point clouds using tracklet information. These two simple modifications enable us to get
approximately 95% of recall and 80% of mAP which are 10.0% improvement in recall and
2.7% improvement in mAP compared to epBRM V1.
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Chapter 1

Introduction

A self-driving technology is one of the most active research area in both academia and indus-
try. A number of researchers in the fields of control, computer vision, artificial intelligence,
signal processing, and software/hardware architecture have been developing cutting-edge
methodologies for safe self-driving vehicles. Car makers, chip manufacturer, sensor compo-
nent makers, and many software companies are heavily investing to become the leader of
autonomous driving.

Recently, a remarkable progress in the field of artificial intelligence leads the rapid devel-
opment of self-driving vehicles. The computer vision society has developed super-human level
detection and segmentation methods which work in real-time. The human-robot interaction
researches help to understand the intention of on-road agents such as vehicles, pedestrians,
and cyclists and this helps to predict the future motion of each agent. The planning system
based on model predictive control and reinforcement learning is used to improve the safety
of self-driving systems.

Among the various components in self-driving system described above, we will mainly
discuss detection systems for self-driving vehicles. The scope of our research lies in object
detection, which classifies objects of interest and background by using camera image and/or
LiDAR sensor. Depending on the system requirement and computing resources, the on-
tology of objects of interest could be different at each detection system. For example, a
simple detection system considers only vehicles, pedestrian, and cyclists class while a more
sophisticated detection system might use a fine-grained classification rule which discrimi-
nates van, car, truck, bus, etc. In this dissertation, we are interested more in the former case
for research purpose.

The object detection is generally categorized into 2D object detection and 3D object
detection. The main difference between 2D object detection system and 3D object detection
system is that the latter one predicts the 3D geometry of the objects in 3D space while
the former one detects the objects only on 2D image space. To predict the location of
surrounding objects and plan a future trajectory of the ego-vehicles, the 3D object detection
systems are more useful for self-driving vehicles than the 2D object detection systems.

There are generally 7 coordinates which are predicted from 3D object detection systems:
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(x, y, z, height, width, length, heading). The (x, y, z) represent the location of
objects in 3D space. Depending on the coordinate system, depth is represented by x (in
LiDAR coordinate system) or z (in camera coordinate system). In this dissertation, we
follow LiDAR coordinate system. The (height, width, length) represent the dimension of
the objects. The heading represents the direction of the objects. The (z, height) is often
omitted in a detection system which works in bird’s eye view space.

There are three main sensors which are used for the 3D object detection systems: camera,
LiDAR, and Radar. While we admit that a Radar is precious sensor for estimating the
distance and velocity of moving objects, we focus only on camera sensor and LiDAR sensor
for research purpose in this dissertation. These two sensors are different in many aspects, so
we briefly summarize camera based detection system and LiDAR based detection system.

Camera based 3D object detection system

The camera based detection uses a camera as primary perception sensor. The camera is
widely used for perceiving visual information. The camera sensors are capable of providing
high resolution images and inexpensive. Therefore, the camera based detection systems
have been explored by a number of computer vision researchers for a long time, which brings
the biggest advantage of using camera based detection system. Not only the detection
tasks which aim to predict tight rectangular bounding boxes around the objects, the high
resolution images from camera sensor make it available to use segmentation techniques which
is pixel-level classification task.

However, a detection system which relies only on camera images shows weakness in pre-
dicting the location of objects in 3D space which is critical to on-road self-driving. The
monocular pose estimation is one of computer vision research area which predicts the
3D geometry of objects by using single camera image. From 60’s, there have been numerous
methodologies studied in the field of monocular pose estimation. However, those monoc-
ular pose estimation methods have not shown good performance in a 3D object detection
benchmark.

Recently, more researchers focus on using two or more cameras together to overcome
the limitation of monocular pose estimation methods. For example, two or more carefully
calibrated cameras are used together to approximate the depth information of the objects
based on triangular geometry. More recently, there are several researches to generate psuedo-
lidar point clouds from two images based on deep neural networks and apply LiDAR-based
detection method for 3D object detection task.

LiDAR based 3D object detection system

The LiDAR based object detection system uses 3D LiDAR point cloud which is reflected
from obstacles. The 3D LiDAR point cloud is an un-ordered set of 3D LiDAR points. Each
3D LiDAR point is generally represented as (x, y, z, i) where (x, y, z) represent the 3D
coordinates of the point and i represents the intensity of beam reflection.



CHAPTER 1. INTRODUCTION 3

The biggest advantage of using a LiDAR sensor is that the LiDAR provides highly precise
spatial information which can greatly improve the localization performance. In fact, once
you get a set of LiDAR points which belong to an object, you can approximate the location
of the object by simply taking a median and/or mean value of those LiDAR points.

Another advantage of LiDAR sensors is that it provides consistent output regardless of
light status. Unlike to the camera sensors which give dark images during the night time, the
light status doesn’t affect on the output of LiDAR sensors.

However, a sparsity of 3D LiDAR point clouds makes classification task difficult. A
density of LiDAR point clouds becomes very sparse outside of 70-100m boundary from the
LiDAR sensor. Therefore, only a few number of LiDAR points are reflected from the objects
in far fields. Moreover, for the small objects like pedestrian and cyclist, a number of LiDAR
points reflected from the objects is less than 20-50 in most cases even though those objects
are located proximal to the LiDAR sensors. As a result, it is difficult to discriminate traffic
pole and pedestrian using LiDAR point clouds even though they are located only 20-30m
away from the ego-vehicle.

Sensor-fusion based 3D object detection system

As described above, a camera sensor and a LiDAR sensor cannot be the perfect sensor
for self-driving vehicles when each sensor is used alone. The sensor-fusion based detection
systems tries to overcome the limitation of each sensor by using both sensors together in a
way that they can be supplement to each other.

For example, a high resolution images from camera sensor can be more useful for classify-
ing object and non-objects than sparse LiDAR point clouds. On the other hand, a set of 3D
LiDAR points can provide more precious information for regression task which predicts the
location of object than camera images. Therefore, more researchers focus on sensor-fusion
based detection system especially on how to build a better object detection pipeline using
multiple sensors together.

Chapter 2. Sensor Fusion based 3D Object Detection for Self
Driving Vehicles

In Chapter 2, we explore the sensor-fusion based detection systems for self driving vehicles.
There can be various approaches of using multiple sensors together for making combined
prediction. What is the best suite of sensors for accurate and efficient detection systems
for self driving vehicles is still a controversial topic in both research academia and industry.
This chapter is focusing on how to combine 2D camera vision and 3D LiDAR point clouds
for predicting the precise coordinates of 3D cuboid of the objects.

We first explore the characteristics of each camera sensor and LiDAR sensor. While
camera sensors can provide very dense and clear appearances of the objects, the lack of
spatial information makes it difficult to infer precise location of the objects in 3D space.
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In other hands, LiDAR sensors contain exact spatial information which makes it straight-
forward to predict the location of the objects while the sparsity of LiDAR point clouds may
lead to mis-classification between objects and non-objects.

Focusing on these characteristics, we explore the various methods to build an unified
detection system that each sensor can supplement the weakness of the other sensor. To
bridge the 2D detection from camera vision and 3D detection from LiDAR sensor, we discuss
the theoretical background behind the monocular pose estimation which uses geometrical
consistency between 2D bounding boxes and their corresponding 3D cuboids.

In this chapter, we introduce three major contributions for sensor-fusion based detection
system for self driving vehicles. First, we combine RoI pooling based feature extraction
with monocular pose estimation algorithm. This modification removes the need to do iter-
ative calculations required by the original monocular pose estimation, thus leads to faster
monocular pose estimation.

Second, considering the prediction error from 2D object detector, we provide mathe-
matical approach to get geometrically feasible locations where the objects can be located.
This greatly narrows down the search space that the LiDAR point clouds based 3D object
detectors are responsible for.

Lastly, we compare the proposed approach with other state-of-the-art 3D object detection
systems. Not only the normal status when the multiple sensors are well synchronized, but
we also consider more realistic status when the camera vision sensor and LiDAR sensors
are not temporally synchronized. In both cases, the proposed approach shows the better
performance than previous state-of-the-art 3D object detectors.

Chapter 3: In-depth Analysis on 3D Object Detection Pipeline
and Practical Method to Improve the Quality of 3D Bounding
Box Regression.

In Chapter 3, we discuss about how to improve the detection performance by increasing
the quality of 3D bounding box regression. The 3D object detection for self driving vehicle
is defined by the multi-tasks learning which predicts the location of objects as well as 3D
bounding box coordinates of those objects.

Most recent 3D object detection systems which are based on deep neural networks use
the end-to-end pipeline for training and evaluation. While building an end-to-end detection
pipeline is usually preferable for faster inference time and training efficiency, in-depth analysis
on comparing the localization performance and overall detection performance shows that
the many of predicted objects which are located proximal to the ground truth are classified
as false positive due to the low quality of bounding box regression. In other words, even
though the detection network predicts the location of object pretty well, the overall detection
performance is degraded due to low performance of box regression task.

In this chapter, we focus on developing a practical method to get the performance of
existing detection networks improved. The practicality of the proposed approach can be
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highlighted from the three aspects: a) the proposed approach should not impose heavy
computation in order to keep the real-time detection pipeline, b) the proposed approach
should be easily attachable on top of existing detection networks. c) the network of the
proposed approach should be easily trainable.

Based on the analysis which shows the box regression task performs poorly, we separate
the detection pipeline into a localization module, which is responsible for predicting the
location of objects and probability of objects’ existence, and a box regression module which
is responsible for predicting the precise coordinates of 3D bounding boxes. We use the
detection results from the existing detection networks as localization purpose and we measure
how much performance gain can we achieve by designing a box regression network.

To keep the box regression network small and computationally light weighted, the pro-
posed approach adopts spatial transformation mechanism into the regression pipeline. The
spatial transformation mechanism is the core idea to reduce the complexity of the task in
order to make even a small sized network be capable of predicting the precise coordinates of
the 3D bounding boxes. Runtime analysis shows that it takes less than 12ms for up to 20
objects around the ego-vehicle.

Since the proposed approach builds a small network for box regression task, it brings
us another benefit such that training a network takes really short time. We show that 30
minutes of training is enough for improving the detection performance to the stat-of-the-art
level.

The proposed approach can be attached to various existing detection networks which have
all different sensor configurations. We evaluate the proposed approach by using Frustum-
PointNet, AVOD-FPN, and PointPillars which all have different approach for 3D object
detection systems. Our analysis on validation set shows that the proposed approach performs
better than the state-of-the-art detection networks with various sensor configurations.

Chapter 4: Novel Data Augmentation Method for 3D LiDAR
Point Clouds using Tracklet information for Improved Recall
Performance.

In Chapter 4, we discuss a novel data augmentation method for 3D LiDAR point clouds to
improve the performance of 3D object detection system. It is expensive to get ground truth
labels from 3D LiDAR point clouds due to its sparsity and huge 3D space. While self-driving
companies and research institutes release several open dataset to the public, the number of
labels we can utilize are still very limited.

A data augmentation method is one of core techniques for training a deep neural network
when the number of training samples is limited. By applying several simple transformation
methods on input images and labels, a data augmentation method increases the number of
training samples which leads to generalization of the trained network.

While there have been numerous data augmentation methods explored for camera images,
a data augmentation method for 3D LiDAR point clouds has been less explored in the
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literature. Most commonly used data augmentation methods for 3D LiDAR point clouds
are horizontal/vertical flipping, global translation/rotation, jittering, frustum-cutout.

In this chapter, we introduce a novel data augmentation method for 3D LiDAR point
clouds which greatly improves the performance of 3D object detection task. The proposed
method utilizes the tracklet information which tracks a single object for multiple time stamps.
By using tracklet information, the proposed method can build very dense point clouds of the
objects.

The core idea behind the proposed data-driven augmentation method is based on mixup
between dense set of point clouds with ground truth labels and the sparse set of point clouds
sampled from training dataset. The proposed method can create a new set of 3D LiDAR
point clouds which has realistic pattern of 3D LiDAR point clouds as well as ground truth
label to be used as training samples.

We show by experiments that the proposed data augmentation method can improve the
box regression performance. And combined with the new localization method, the 3D object
detection performance of the proposed approach can become a comparable to the state-of-
the-art 3D object detection systems which rely on very complicated network structures.

Conclusion

The main focus of this thesis is to explore various methods in 3D object detection for self-
driving vehicles. Throughout the thesis, we explore the sensor-fusion based detection network
which uses 2D camera vision and 3D LiDAR sensor together, 3D LiDAR point clouds based
detection network, and data augmentation method for 3D LiDAR point clouds to enhance
feature representation and generalization of the detection networks. We hope our research
can contribute to the future research in 3D object detection for self-driving vehicles.
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Chapter 2

Sensor Fusion for 3D Object
Detection

2.1 Introduction

In this chapter, we mainly discuss about sensor-fusion based 3D object detection method. We
present RoarNet, a novel approach for 3D object detection based on sensor-fusion between
2D image and 3D LiDAR point clouds. Based on two stage object detection framework ([16,
44]) with PointNet [39] as our backbone network, we explore several novel ideas to improve
3D object detection performance.

The first part of our method, RoarNet 2D, estimates the 3D poses of objects from a
monocular image, which approximates where to examine further, and derives multiple can-
didates that are geometrically feasible. This step significantly narrows down feasible 3D
regions, which otherwise requires demanding processing of 3D point clouds in a huge search
space.

Then the second part, RoarNet 3D, takes the candidate regions and conducts in-depth
inferences to conclude final poses in a recursive manner. Inspired by PointNet, RoarNet 3D
processes 3D point clouds directly without any loss of data, leading to precise detection.

We evaluate our method in KITTI, a 3D object detection benchmark. Our result shows
that RoarNet has superior performance to state-of-the-art methods that are publicly avail-
able. Remarkably, RoarNet also outperforms state-of-the-art methods even in settings where
Lidar and camera are not time synchronized, which is practically important for actual driving
environment.

2.2 Contribution

Recently, 3D object detection has become a crucial component in various fields such as mobile
robots and autonomous vehicles. 3D object detection helps to understand the geometry of
physical objects in 3D space that are important to predict future motion of objects. While
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there has been remarkable progress in the fields of image based 2D object detection and
instance segmentation, 3D object detection is less explored in the literature.

3D detection algorithms can be divided into two groups: LiDAR-based approaches and
sensor-fusion-based approaches. LiDAR-based approaches rely solely on 3D point clouds,
where 3D point clouds may be used directly [73], or manipulated including projections onto
ground plane (i.e., bird’s eye view), depth maps (i.e., perspective view) [67, 34, 11, 51], etc.

In contrast, sensor-fusion-based approaches exploit both image and 3D point clouds
[iv18cwang, iv18zwang, 38, 24, 7, 31]. Sensor-fusion-based approaches have several ad-
vantages: (1) Using complimentary sensors can be more robust since each sensor has its own
weakness. (2) Within autonomous driving applications, computer vision algorithms conduct
many more tasks including lane line detection, traffic light recognition, object detection, etc.
Cameras are regarded as essential sensors, and there is little to no cost in using the images.
(3) Cameras typically output images around at 30 fps, whereas LiDAR outputs point clouds
around at 100 fps. Considering the safety aspect of autonomous driving, latency is very
important, and image-based object detection is inevitable. A good 3D detection algorithm
should exploit such advantages.

In this work, we propose a robust 3D fusion-based detector, named RoarNet (RegiOn
Approximation Refinement Network), which helps to improve 3D object detection perfor-
mance and reduce problems caused by sensor synchronization issue. RoarNet consists of two
parts: RoarNet 2D and RoarNet 3D.

The detection pipeline of our model consists of three components as in Figure 2.1. In-
spired by geometric interpretation for monocular images in [36], RoarNet 2D estimates the
3D poses of objects from a monocular image and derives multiple candidate locations that are
geometrically feasible, where the candidates are the input for RoarNet 3D. This scheme sig-
nificantly narrows down feasible 3D regions, which otherwise requires demanding processing
of 3D point clouds in a huge search space (Section 2.5).

Obtaining 3D region proposals predicted from 2D image, RoarNet 3D, a two-stage 3D
object detector, gradually refines a search space making its training process efficient. The
architecture of our model is analogous to standard two stage object detectors for 2D image
such as Fast-RCNN and Faster-RCNN [16, 44], and we adopt several modifications in order
to make training of each stage easier (Section 2.6).

The key difference compared to [38] is that our model does not filter out point clouds
by using 2D bounding box. Instead, our model takes the whole point clouds that are lo-
cated inside region proposals which have the shape of standing cylinders. This leads to
our model being more robust to sensor synchronization than state-of-the-art methods. We
compare our method to other state-of-the-art 3D detection models in both synchronized and
asynchronized conditions in Section 3.8.

We evaluate our model on the 3D object detection task, provided by the KITTI bench-
mark, and our experiments show that RoarNet outperforms the state-of-the-art fusion-based
3D object detection methods that are publicly available. We also evaluate our model in
settings where camera and the Lidar are not time synchronized and the result shows that
our model consistently performs better in these challenging settings.
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(a) geometric agreement search on 2D object detection

(b) 3D region proposals

(c) 3D box regression

(d) resulting 3D bounding boxes

Figure 2.1: Detection pipeline of RoarNet. Our model (a) predicts region proposals in 3D
space using geometric agreement search, (b) predicts objectness in each region proposal,
(c) predicts 3D bounding boxes, (d) calculates IoU (Intersection over Union) between 2D
detection and 3D detection.
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2.3 Related work

Monocular pose estimation

Due to the projection characteristics of camera sensors, monocular 3D pose estimation is very
challenging. To overcome such difficulty, previous works often rely on domain knowledge or
external data/information. [5] trains a network to predict 36 control points per each vehicle
that conveys 3D shape information.

However, this method requires additionally annotating the auxiliary control point, which
are very expensive to obtain. [36] proposes a novel method to predict physical dimensions
(i.e, height, width, length in meters) and an orientation of vehicle without any additional
data. Then, it can predict the location of object (i.e., X, Y, Z in the world coordinate) by
solving an over-constrained system of linear equations system. Since we find this method
useful, we explore the method in more detail in Section 2.5 where we modify the method to
be more computationally efficient.

3D point clouds processing

Since autonomous driving applications require very high level of accuracy in 3D pose esti-
mation that monocular algorithms cannot provide, many algorithms using Lidar sensors are
proposed. There are three popular representations to handle unstructured point clouds: (1)
The first representation is using a 3D voxel grid [71, 28, 11, 45, 65, 25, 46, 4, 43, 30, 68,
54, 10, 53, 51]. In autonomous driving applications, however, sparse points clouds generally
make voxel representation computationally redundant. (2) The second is to project an point
cloud onto one or more 2D planes [34, 51, 67]. These representations are usually compact and
efficient, and can be treated as images. However, information loss by projection is inevitable.
(3) The third one is to use the point clouds directly without any structured form.

PointNet [39, 40] showed how to digest point clouds directly for object classification
and segmentation, and Frustum PointNet (F-PointNet) [38] selects only necessary 3D points
utilizing 2D detection results (i.e., 3D points within a frustum region that a camera position
and a 2D bounding box make), and conducts detection using a PointNet scheme.

F-PointNet [38] and Aggregate View Object Detection (AVOD) [24] show the state-of-
the-art performance on the public KITTI dataset leader board. RoarNet outperforms these
methods in the standard 3D object detection, and our analysis shows that RoarNet shows
better robustness in an even more general setting.

2.4 Designing a RoarNet detector

The main idea behind RoarNet is to construct sequential networks that gradually refines a
search space at each step in order to assign each network a simple task, and thus leads to
efficient training and prediction.
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Figure 2.2: Architecture of RoarNet

RoarNet is structured to utilize advantage of both 2D image and 3D point clouds, those
contain supplementary information for 3D object detection. On the one hand, 2D image
with high resolution provides reliable objectness information. On the other hand, point
clouds provides exact spatial information of the objects. We design our model based on
these characteristics.

Figure 2.2 shows the architecture of RoarNet. The model first predicts the 2D bounding
boxes and a 3D poses of objects from a 2D image. For each 2D object detection, geometric
agreement search is applied to predict the location of object in 3D space.

The inverse projection method is essentially based on a monocular pose estimation algo-
rithm and we discuss a mathematical formulation behind the inverse projection method in
a more detail in Section 2.5.

Centered on each location prediction, we set region proposal which has a shape of standing
cylinder. Taking the prediction error in bounding box and pose into account, there can be
multiple region proposals for a single object.

Each region proposal is responsible for detecting a single object. Taking the point clouds
sampled from each region proposal as input, our model predicts the location of an object
relative to the center of region proposal, which recursively serves for setting new region
proposals for the next step.

Our model also predicts objectness score which reflects the probability of an object being
inside the region proposal. Only those proposals with high objectness scores are considered
at the next step.

At a final step, the model sets new region proposals at previously predicted locations. Our
model predicts all coordinates required for 3D bounding box regression including location,
rotation, and size of the objects.
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2.5 RoarNet 2D

Geometric agreement search

For our initial seeds of 3D region proposals, we utilize a method suggested by [36] for monoc-
ular pose estimation, which we call geometric agreement search:

Given that the 3D pose of an object can be represented by seven degrees of freedom
(localization in the camera coordinate X, Y, Z, physical dimensions of width, height and
length W,H,L, and heading angle Θ), a 2D bounding box window and the projection of its
3D pose (i.e., 3D box formed by X, Y, Z,W,H,L,Θ and camera projection matrix P ) should
agree.

[36] showed that (1) a network can regress {W,H,L,Θ} per object, (2) there are only
finite number of possible combinatorial configurations that a 3D box can locate to tightly fit
a given 2D box, and (3) at each configuration, translation X, Y, Z can be solved from known
(regressed) W,H,L,Θ using an over-constrained system of linear equations. Then, the best
configuration that minimizes projection error is selected.

More formally, for an object, let b2D be its 2D bounding box (from a 2D detector). At
each configuration c, one can calculate a 3D bounding box candidate bc3D as

bc3D = B(W,H,L,Θ; c, b2D) (2.1)

where B is the over-constrained linear equation system aforementioned. The best configu-
ration c∗ can be obtained by checking the agreement between b2D and the projection of 3D
box bc3D.

bcPROJ = T (bc3D;P ) (2.2)

c∗ = arg max
c∈C

IoU(b2D, b
c
PROJ) (2.3)

where T is projective transformation onto the image coordinate, IoU is a widely-used intersection-
over-union measure, and C is the finite configuration set.1

We illustrate the network structure of the original geometric agreement search by [36] and
our improved version in Figure 2.3. One drawback of [36] is that the {W,H,L,Θ} inference
and inverse projection process should be done after running a separate 2D object detection
and should be conducted for each detected vehicle (Figure 3.5a).

In other words, when an image includes k objects, there should k-time computation
of the network. Aiming better computation efficiency, we build an unified network that
combines the 2D object detection and {W,H,L,Θ} inference as illustrated in Figure 3.5c.
The 2D bounding boxes and {W,H,L,Θ}s of k objects can be inferred with only one forward

1We refer [36] for the details about the configuration set C, and the over-constrained system of linear
equations B.
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(b) RoarNet 2D architecture

Figure 2.3: Architecture of RoarNet 2D

calculation of the unified network. This improvement is comparable with the improvement
made by Faster-RCNN [44] over Fast-RCNN [16].

Specifically, the original algorithms takes extra 20ms (when k = 3) ∼ 72ms (when k = 9)
for pose prediction, whereas the counterpart of our architecture only takes around 1∼2ms
to its 2D Faster-RCNN detection regardless of k. 2

Spatial scattering

Note that the role of RoarNet 2D, as a 3D region proposer, is to provide proposals of higher
recall. Since the monocular pose estimation suffers from limited accuracy, it is necessary
to scatter our initial monocular pose estimation in order to increase the number of feasible
pose candidates, and therefore, increase recall: For each object (i.e., its bounding box b2D,
regressed pose XY ZWHLΘ, and the best configuration c∗), we first set a scattering range
by considering two extreme cases where the true physical size could actually be 1− s times
smaller and 1 + s times larger than the regressed size WHL (0 < s < 1), which results in
differently located 3D boxes by Equation (2.1):

2Admittedly, the exact computation time comparison may be ambiguous since [5] uses a separate 2D
detector, and one can use a very light-weight detector, whereas our unified architecture contains a built-in
FasterRCNN detector. For this reason, So we discuss only the overhead part of the pose inference part.
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bc
∗

3D

small
= B((1− s)W, (1− s)H, (1− s)L,Θ; c∗, b2D) (2.4)

bc
∗

3D

large
= B((1 + s)W, (1 + s)H, (1 + s)L,Θ; c∗, b2D) (2.5)

Recall that Equation (2.1) means the geometric constraint that the projection of the 3D
box of an object should match with its 2D box, i.e., for the same 2D bounding box, smaller
3D boxes result in closer locations to the camera origin. Given these two extreme boxes,
we divide the line of their two center points, p1 and p2, into an equal stride distance m.
RoarNet 2D detector finally provides

⌈
‖p1 − p2‖/m

⌉
3D points per object for RoarNet 3D

to start.3

We visualize the process of RoarNet 2D detector in Figure 2.4. RoarNet 2D detector
predicts 2D bounding boxes (Figure 2.4a) as well as their physical sizes WHL and heading
angles Θ, which lead to calculate their positions XY Z (color-filled boxes in Figure 2.4b). For
each object, we consider two extreme deviations (non-filled boxes in Figure 2.4b), and collect
the uniform linear subdivision between the center points of the extreme poses (colored dots
in Figure 2.4b).

Note that the geometric agreement search and spatial scattering scheme significantly
narrows down feasible 3D regions into a few linear regions, which otherwise requires a huge
search space. Moreover, by virtue of geometric agreement constraints, our resulting proposals
natively distribute (1) along the projection rays of the camera, and (2) in larger areas for
more challenging further objects without bells and whistles.

2.6 RoarNet 3D

Network architecture

The RoarNet 3D is designed to predict a 3D bounding box that optimally fits for a given
object by using point clouds. While building RoarNet 3D as a two-stage object detector,
the backbone network is inspired by the PointNet[39], which uses max-pooling layers in the
middle to get a global feature directly from unstructured point clouds. For more details, we
refer readers to [39, 38, 40]. In this work, we use a simplified version of PointNet shown in
Figure 2.5.

RoarNet 3D consists of two networks, called RPN (region proposal network) and BRN
(box regression network), those have same structure except for the number of output as
shown in Figure 2.5 and Table 2.1.

The location is predicted by 3 coordinates (tx, ty, tz) for (x, y, z) directions which is
relative to center of region proposals. If a center of region proposal is offset from the origin

3s = .5,m = 1.6 for experiments; s = .2,m = 1.25 for Figure 2.3.
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(a) 2D detection
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(b) Geometric agreement search and spatial scattering

Figure 2.4: RoarNet 2D. An unified architecture detects 2D bounding boxes and 3D poses
illustrated as color-filled boxes in (a) and (b), respectively. For each object, two extreme
cases are shown as non-filled boxes, and final equally-spaced candidate locations as colored
dots in (b).
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Figure 2.5: Our backbone network is a simplified version of PointNet without T-Net in the
original paper [39].

Number of
Outputs

RPN BRN

location 3 3
rotation 0 2*NR

size 0 4*NC

objectness 1 0

Table 2.1: Number of output at each network

by (cx, cy, cz), then the location prediction corresponds to:

x = cx + 2 ∗ (σ(tx) - 0.5) ∗mx (2.6)

y = cy + 2 ∗ (σ(ty) - 0.5) ∗my (2.7)

z = cz + 2 ∗ (σ(tz) - 0.5) ∗mz (2.8)

We constrain the location prediction be bounded by (mx,my,mz) from center of region
proposal.

The rotation angle is predicted by 2*NR coordinates (tr cls(i), tr reg(i))
NR
i=1 which is a hybrid

formulation of <cls+reg> structure. We equally divide [0, pi) to NR bins.
The size is predicted by 4*NC coordinates, (tsize cls(i), th(i), tw(i), tl(i))

NC
i=1 which is also a

hybrid formulation of <cls+reg> structure. We use K-Means method to get NC clusters.
The objectness is predicted by the output to which reflects the probability of object or

not object for each region proposal. We use sigmoid function to bound its value in a range
of [0.0, 1.0).



CHAPTER 2. SENSOR FUSION FOR 3D OBJECT DETECTION 17

2.7 Training and prediction

During training each network, we optimize the following multi-task loss for RPN and BRN:

LRPN = λobj ∗ Lobj + 1obj[Lloc] (2.9)

LBRN = 13D IoU<0.8
[
Lloc + Lrot-cls + 1rot-cls[Lrot-reg] + Lsize-cls + 1size-cls[Lsize-reg]

]
(2.10)

Lloc, Lrot-reg, and Lsize-reg are regression loss for location, rotation and size, which are
represented as huber loss. Lobj, Lrot-cls, and Lsize-cls are classification loss for objectness,
rotation and size, which are represented as cross-entropy loss. 1obj denotes if objectness is
true for a given region proposal. 13D IoU<0.8 is used for improving prediction performance for
more general case.

We train each network with batch of 512 for 500k iterations. Learning rate is 5e-3 for
initial 100k and 5e-4 for rest of steps. It takes about two days for training each network with
Titan X (not pascal).

Non-maximal suppression (NMS) is used to reduce redundant prediction at testing. We
apply NMS on bird’s eye view boxes with threshold of 0.05 to remove overlapping objects.

2.8 Dataset

We conduct our experiments in KITTI dataset, the 3D object detection benchmark. It
provides synchronized 2D images and 3D LiDAR point clouds with annotations for car,
pedestrian, and cyclist class. In this work, we focus on car class which has most training
examples.

The detection results are evaluated based on three difficulty levels: easy, moderate, and
hard and we evaluate on moderate level, a standard metric for performance evaluation.

3D object detection performance is evaluated at 0.7 IoU threshold. Following [38, 24, 3],
we split training set into train set of 3,717 frames and val set of 3,769 frames such that
frames in each split belong to different video clips.

2.9 Experiment settings

We evaluate our method in two settings.
First, we evaluate our method in the original KITTI evaluation setting where the Lidar

and the camera are well-synchronized each frame. This is a standard metric for ranking in
KITTI benchmark leaderboard.

Second, we evaluate our method in a more general case where the two sensors are not
synchronized. As we discussed in Introduction, in actual driving situations, images are
consumed for various tasks including traffic light recognition, lane line detection, object
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Method Easy Moderate Hard

MV3D [7] 71.09 62.35 55.12

VoxelNet [73] 77.47 65.11 57.73

UberATG-ContFuse [31] 82.54 66.22 64.04

F-PointNet (v2) [38] 81.20 70.39 62.19

AVOD (FPN) [24] 81.94 71.88 66.38

RoarNet 84.25 74.29 59.78

Table 2.2: 3D object detection performance publicly available on the KITTI test set, with
3D IoU threshold of 0.7

detection, object tracking, etc. at their maximum frequency, and one can not assume a
camera sensor and a Lidar sensor are perfectly synchronized to each other. Typically camera
frequency is 30 fps, which is higher than that of Lidar. So there could be at most around 30
ms time discrepancy between a set of point clouds and its corresponding image.

To simulate such cases, we randomly translate the whole point clouds and re-generate
ground truth labels according to the amount of translation of point clouds. This means
that we regard the Lidar as the primary sensor. We constrain the translation of point
clouds within 0.8m for x, y axis (i.e., parallel to the ground plane) and 0.2m for z axis (i.e.,
orthogonal to the ground plane).

2.10 Experiment results

Comparison of the 3D object detection performance

First, we evaluate RoarNet in a setting where the Lidar and the camera are synchronized,
and compare it to publicly available 3D object detection methods on the KITTI benchmark.
Table 2.2 shows that RoarNet shows state-of-the-art performance for 3D object detection in
both easy and moderate level metric.

Second, we compare RoarNet to the two state-of-the-art methods, AVOD (FPN) and
F-PointNet (v1) in a setting where sensors are not synchronized.

Figure 2.6 shows that RoarNet performs better than two state-of-the-art methods when
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Figure 2.6: A comparison of the 3D object detection performance in where Lidar and camera
are not time synchronized.

two sensors are not synchronized. When sensors are synchronized, all three methods show
the recall of 82.5%. When two sensors are a-synchronized by 0.8m, the recall of our model
degrades to 72.5%, while the recall of F-PointNet degrades to 67.5% and the recall of
AVOD (FPN) degrades to 65%.

Region proposals analysis

In this section, we analyze the effect of spatial scattering parameter s and objectness thresh-
old in RoarNet 3D (RPN) for refining a search space, as shown in Figure 2.8.

The smaller the value s, the higher confidence we have on monocular pose estimation.
However, only 26.3% of objects are captured in region proposals when we predict the location
of object directly from monocular pose estimation (s = 0). As we increase s, more objects
are captured in region proposals, but number of region proposals are also linearly increased,
which becomes the bottleneck of our detection pipeline. Aiming high recall, we use s = 0.5
in our implementation.

The search space is further refined by RoarNet 3D (RPN). In our implementation, we use
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(a) synchronization between camera and LiDAR timestamp

(b) asynchronization between camera and LiDAR timestamp

Figure 2.7: Example of simulation for time discrepancy between camera and LiDAR sensors

objectness threshold of 0.25, that gives 83.2% of recall with less than two region proposals
per ground truth object.

Network design analysis

In this section, we compare three network architectural designs shown in Figure 2.9.
Figure 2.9(a) represents a single stage 3D object detector, which predicts 3D bounding

box along with objectness in a single step. This approach is inspired by YOLO detector [42,
41], which shows promising results in a 2D object detection. However, (a) shows the recall
of 67.5% and mAP of 54.3%.

Without any further training step, we only modify the detection pipeline of (a) to use
location predicted at current step as region proposals for the next step. This simple mod-
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Figure 2.8: The effect of spatial scattering parameter s and objectness threshold

ification immediately improves the performance to 59.9% with an increase of 5.6% from
(a).

This result inspires us to build our final model, RoarNet 3D in Figure 2.9(c) that spe-
cializes each detection step to a specific task and remove redundant predictions. This mod-
ification leads significant performance improvement such that recall is 82.5% and mAP is
74.02%.



CHAPTER 2. SENSOR FUSION FOR 3D OBJECT DETECTION 22

sample points

extract 
global feature

fc layers

region proposals 
from 2D detection

location

rotation

size

objectness

sample points

extract 
global feature

fc layers

region proposals 
from 2D detection

location

rotation

size

objectness

use current location prediction

(a) single stage 3D detector (b) run (a) twice

sample points

extract 
global feature

fc layers

region proposals 
from 2D detection

location

objectness

use current location prediction

sample points

extract 
global feature

fc layers

location

rotation

size

(c) our final model, RoarNet 3D

Figure 2.9: A detection pipeline of several network architectures

Runtime analysis

First, we use ResNet-50 as a backbone network for RoarNet 2D and it takes around 43 ms per
frame. Second, RoarNet 3D (RPN) samples points from each region proposal predicted from
RoarNet 2D and batch processes sampled points to predict objectness score and location.

Runtime required for this step highly depends on spatial scattering parameter s. For
fast detection, we use s = 0.2 with 7.3 region proposals per object and it takes 35ms. For
submission to KITTI server, we use s = 0.5 and it takes 65ms. Third, RoarNet 3D (BRN)
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samples points from region proposals with high objectness score and batch processes to
predict 3D bounding box. It takes only 20ms as there are less number of region proposals
to be considered.

Average runtime per frame takes around 100–130ms, which may vary according to choice
of network structure and hyper parameters. Concurrently to this work, we develop new
technique to unify RoarNet 3D (RPN) and RoarNet 3D (BRN) into one for more efficient
computation and we will leave this for future work.

Weakness of RoarNet

RoarNet 2D sets region proposals in 3D space by using pose and bounding box predicted
from 2D images. This imposes weakness on detection pipeline when RoarNet 2D misses to
detect object from 2D images and/or pose prediction has more error than spatial scattering
method can compensate.

First, RoarNet 2D occasionally misses to detect object as shown in figure A. In this case,
no region proposals will be generated in 3D space.

Second, RoarNet 2D may generate false positive 2D bounding box predictions which
results in setting unnecessary region proposals in 3D space.

Third, geometric agreement search misbehaves when objects are located in the boundary
of images as 2D bounding box can be clipped out and only small part of full 2D bounding
box is considered in calculating region proposals.

Forth, RoarNet 2D sometimes make more error in pose prediction, especially for heading
angle prediction, than spatial scattering method can compensate. In an extreme case, dif-
ference between ground truth heading angle and predicted heading angle is 90’ which leads
to generating large number of region proposals in wrong locations, as shown in Figure D.

We think this implies a future research direction to improve detection performance.

2.11 Discussion and future research direction

We have proposed RoarNet, a new approach for 3D object detection from an 2D image and
3D Lidar point clouds. RoarNet refines search space recursively at each step in order to
make training and prediction efficient.

We first estimate 3D poses from a monocular input image, and derives multiple geometri-
cally feasible candidates nearby the initial estimates. We adopt a two-stage object detection
framework to further refine search space effectively from 3D point clouds. Our model shows
superior performance to state-of-the-art methods in KITTI, a 3D object detection bench-
mark.

RoarNet outperforms even in the setting where Lidar and camera are not time synchro-
nized, which is practically important results in order to extend current single frame based
detection into video frame based detection in the future research.
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(a) Object missed from 2D camera detector. Yellow box is false negative which is missed from the
2D detector.

(b) Tram is classified as vehicle. Yelow box is false positive detection from the 2D detector

(c) 2D bounding box is located at the boarder of image. This makes it difficult to apply geometrical
agreement search.

Figure 2.10: Example of failure cases from the RoarNet.
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Chapter 3

Efficient LiDAR 3D Object Detection
Algorithm

3.1 Introduction

In this chapter, we discuss an efficient method for LiDAR-based 3D object detection sys-
tem. We present an epBRM (end-point Box Regression Module), which is designed for
predicting precise 3D bounding boxes using LiDAR 3D point clouds. The proposed epBRM
is built with sequence of small networks and is computationally lightweight.

Our approach can improve a 3D object detection performance by predicting more precise
3D bounding box coordinates. Surprisingly, it takes less than 3 hours for training and
imposes small overhead on inference time, less than 12 ms latency for up-to 20 objects.

Instead of building unified structure for whole detection pipeline, this work focuses on
predicting 3D bounding box more precisely.

Separating a whole detection pipeline into a localization module and a box regression
module brings us two benefits: 1) we can build a network specifically designed for box
regression task which enhances efficiency of both training and inference, and 2) the design
of 3D object detection system becomes more flexible.

We conduct in-depth analysis of the effect of various spatial transformation mechanisms
applied on LiDAR 3D point clouds and the effect of localization module on 3D object detec-
tion performance.

We evaluate our approach on KITTI dataset[15], a standard 3D object detection bench-
mark for autonomous vehicles. The results show that the proposed epBRM enhances the
overlaps between ground truth bounding boxes and detected bounding boxes, and improves
3D object detection. We also evaluate the proposed method in KITTI test server, and the
results show the approach outperforms current state-of-the-art approaches.
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Figure 3.1: Many of predictions located close to ground truth objects(: GT) have 3D overlap
lower than 70%. ’Detected’ means that overlap between GT and prediction is greater than
70%.

Contribution

The main goal of this work is to improve quality of bounding box predictions in order
to increase recall of 3D object detection from LiDAR 3D point clouds. One interesting
observation on recent 3D object detection systems is that even though predicted objects are
located very close to ground truth objects, many of those predictions are classified as false
positive, meaning that overlap between ground truth object and prediction is lower than a
specific requirement.(see Figure 3.1)

This is mainly due to the characteristics of the domain where those detection systems
are applied to. In autonomous driving, the size of search space is usually 80m(side) X
70m(forward) from ego vehicle, which is very huge compared to the size of objects, such as
car, pedestrian and cyclist.

Moreover, the number of object, which can be used as training samples, is also limited.
Thus, the majority of search space is occupied by non-object area. During training process,
the network is mostly trained to classify object/non-object areas(localization task) and less
effort is made for predicting precise 3D bounding boxes(box regression task).

There have been several technical attempts to overcome such difficulty by tuning a weight
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localization 
module

box regression 
module

detection flow
location

objectness
3D bbox

Figure 3.2: Decomposing a detection pipeline into localization module and box regression
module allows us a flexibility in building detection system as well as enhanced efficiency in
training box regression task.

(a) localization module (b) sampling region (c) 3D bounding box regression (d) final detection

Figure 3.3: 3D bounding box regression pipeline. (a) The localization module predicts the
location of objects. (b) samples point clouds at each predicted location, (c) and predicts 3D
bounding box which fits to the object. (d) shows final detection results.

of each task and/or adopting focal loss to dynamically control weight of each task[33], but
those approaches have not been very successful.

In this work, instead of trying to find the best hyper-parameter by tuning process, we
turn our focus on more fundamental question. If having an unified network structure for both
localization task and box regression task degrades quality of detection, why not decomposing
those tasks into two networks and train them independently?

The main idea behind our proposed detection system is to decompose the whole detec-
tion pipeline into a localization task and a box regression task and train each task indepen-
dently(Figure 3.2). This approach has several advantages over having an unified structure
for both tasks.

First, a box regression network can be trained more efficiently, 1) with a network specifi-
cally designed for regression task, and 2) using training samples containing information about
3D bounding boxes only. In this work, we design new network structure specially designed for
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box regression task(Section 3.3). Moreover, the proposed box regression network no longer
needs to be trained with samples containing no information about objects(Section 3.5).

Second, a design of 3D object detection system becomes more flexible, which means
that any source of information about the location of objects can be used for localization
purpose. For example, not only deep neural network based approaches, but any sensor such
as Radar or camera can be used directly for localization purpose, or multiple approaches can
be combined together to generate more reliable location prediction.

While we mainly evaluate the proposed method using previous works in 3D object de-
tection, which use deep neural network as their main structure, we expect other sources can
provide valuable information about the location of objects. And we believe this is more
practical in actual driving environment.

Despite it is more beneficial to decompose a whole detection pipeline into localization task
and box regression task and train them independently, most 3D object detection systems
rely on building an unified network structure for whole detection pipeline. The main reason
behind building unified structure is to improve the detection speed because transitioning
between two independent networks slows down the detection speed.[shin2018roarnet, 38]

Therefore, to make the proposed approach more practical, the overhead imposed by
adopting box regression network should be little for real time object detection. To meet
such requirement, we design the epBRM with a small size network, which imposes only
12ms overhead for up to 20 objects(Section 3.6).

Moreover, by designing a small sized network, the network is capable of using more
training samples in a batch and this leads to stable convergence of network parameters
during training. Most of current detection systems which use whole 3D scene as input to the
network are capable of using only batch of 2 or 3 training samples per GPU due to lack of
memory. The proposed approach is capable of using batch of 512 or 1024 training samples
together during training.

We evaluate the proposed method by applying it to the result of current 3D object
detection systems, AVOD(FPN)[24], F-PointNet[38] and PointPillars[26], each of which is
used as localization module in our detection pipeline.

In this work, a localization module is responsible for predicting the location of object and
its corresponding confidence score. And epBRM is responsible for predicting all coordinates
required for a 3D bounding box, including location, rotation and size of object.

The evaluation result shows that the proposed approach improves the 3D object detection
performance immediately after 20k of training iteration, which takes only 80 minutes using
Titan X GPU(not pascal) and i7-6700k CPU.

3.2 Related work

In this section, we review recent works on 3D object detection system from point clouds and
image.
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Bird’s eye view based approaches

In early works in 3D object detection system, input feature is represented by projecting
LiDAR 3D point clouds onto 2D planes and used CNN-based detection network for pre-
diction[34, 51, 67]. A core problem shared by these approaches is a loss of information by
projection. Thus, these methods showed low performance in detecting small objects such as
pedestrian and cyclist.

Sensor fusion based approaches

The density of LiDAR 3D point clouds is sparse when the object is far from the LiDAR.
Several sensor fusion based approaches have been proposed to utilize 2D RGB images that
can provide higher resolution than LiDAR[7, 24, 31, 12, 17, 14, 66, 62, 32].

These methods concatenate features extracted from 2D images and LiDAR point clouds to
generate input feature for the region proposal network. These approaches improved detection
performance for small objects, but they required additional task for synchronization and
calibration between multi-sensors.

3D LiDAR point clouds based approaches

One approach in 3D object detection system is to convert Lidar 3D point clouds into voxels
and extracts voxelwise features for predicting 3D bounding boxes[73, 47, 27, 18, 60, 69,
61, 52, 8, 48]. Several works proposed feature representation based on 3D CNN, but they
required high computation[63, 29].

Another line of work in 3D object detection systems can be categorized between sensor fu-
sion based approach and 3D based approach, which is to use 2D object detection results as re-
gion proposals and apply PointNet[39, 40] to predict 3D bounding boxes[shin2018roarnet,
38].

One drawback behind these approaches is a slow inference speed due to the need for two
sequentially connected pipelines, one for 2D image detection and the other one for 3D point
clouds detection.

3.3 3D Bounding Box Regression Module(epBRM)

The main goal of our model is to improve the quality of bounding box regression task in
order to increase the recall of detection.

Most of recent object detectors are composed of two main tasks: localization task and
box regression task. In localization step, a detector predicts location of objects in a rough
manner, in a form of objectness score. Then, in regression task, the detector precisely
regresses bounding box that fits to the object.

Our observation on various 3D object detectors recently developed for autonomous vehi-
cles is that the performance of box regression task is seemingly worse than the performance
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of localization task. There can be multiple reasons explaining such phenomenon, but one
reasonable explanation would be that the number of objects and/or the size of object is very
small compared to the huge search space generally considered for autonomous driving.

Role and goal of epBRM

In this section, we define a role of epBRM as a component of 3D object detection pipeline.
Since our focus is to improve a performance of box regression task, we utilize several pre-
vious works in 3D object detection system for localization purpose, by using only location
prediction and ignoring all other predictions such as size and rotation of objects.

Note that the main purpose of epBRM is not discovering objects that are missed from
localization module, but predicting precise 3D bounding box coordinates by using point
clouds sampled around the location predicted from the localization module. Therefore, we
need to set a target distance(distbound), which represents the maximum distance between
ground truth object and predicted location of object from the localization module that we
are aiming for further refining a 3D bounding box. For objects located out of distbound from
the ground truth object, we do not aim for such detections to be further regressed.

There are two main factors for deciding a value of distbound: 1) a performance of local-
ization module, and 2) a representation ability of epBRM.

First, the value of distbound is in inverse relationship with the precision of localization
module. If localization module is capable of predicting precise location of objects, then
epBRM only needs to work well for samples with small error. In this case, we assign small
value for distbound. Opposite to such case, if the localization module performs poorly, then
epBRM should consider samples with large location prediction error and we set a large value
of distbound.

Second, the value of distbound is also closely related to a representation ability of network
used for epBRM. If we increase the value of distbound, it also increases the complexity of task
that epBRM is responsible for. If we constrain a representation ability of epBRM aiming for
computational efficiency, the value of distbound should also be decreased according to that.

In Section 3.5, we describe how we generate training samples for each value of distbound.
In Section 3.8, we evaluate the effect of distbound on various localization modules and its
effect on detection performance.

epBRM with spatial transformation mechanism

In this section, we explain reasons for adopting spatial transformation mechanism. Aiming
better computational efficiency and real time inference, we restrict the size of network for
epBRM at the cost of representation ability of network. This arises a need for additional
method to simplify box regression task in order for a network with low representation ability
be capable of predicting precise 3D bounding boxes.

Our approach is closely related to RoI pooling and anchor structure[44, 16], which are
core components in most of two stage object detectors. The main idea behind RoI pooling
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and anchor structure is to extract features at each pre-defined location in a similar form in
order to gradually simplify the task. Unlike 2D RGB image or voxel structure which have
dense representation of input feature, we directly use sparse representation of unordered set
of point clouds, which has a form of RNx3 for N point clouds with x,y,z coordinates.

To avoid voxelizing[73] and/or grouping 3D point clouds[40] which require extra process-
ing time, we insert spatial transformation mechanism[22] into epBRM to get similar effect
with pooling based approaches. In essential, our approach first transforms input point clouds
into a similar form each other and then predicts 3D bounding boxes. After that, we inverse
transform on predicted 3D bounding box to the original coordinate before transformation
applied to input point clouds.

We are aiming to predict 3D bounding box in a original coordinate unaffected by trans-
formation mechanism applied to input point clouds. For example, assume that we first
translate input point clouds by (x0, y0, z0) and a location of the object after translation is
predicted by (x, y, z). Then, the location prediction of the object in the original coordinate
should be adjusted as (x-x0, y-y0, z-z0). Therefore, for each transformation mechanism, its
corresponding inverse transformation mechanism should be defined to get prediction at the
original coordinate. If multiple spatial transformation mechanisms are sequentially applied,
then their corresponding inverse transformation mechanisms should be applied to the final
prediction in reverse order.

Furthermore, as we predict 3D bounding box that fits to the given object, we focus on
transformation mechanisms that preserve the structure of rectangular cuboid.

In this work, we are focusing on four spatial transformation mechanisms, translation,
rotation, scaling, and centering. They take the input point clouds P ∈ RNx3 with N point
clouds, and 3 dimensions for x, y, z coordinates and output θ, which is the transformation
parameter to be applied to P .

Translation and Centering The output of transformation mechanism is defined by
(tx, ty, tz) which represents the translation of P by x0, y0, z0 as following equations.

x0 = 2 ∗ (σ(tx) - 0.5) ∗ Tx,
y0 = 2 ∗ (σ(ty) - 0.5) ∗ Ty,
z0 = 2 ∗ (σ(tz) - 0.5) ∗ Tz

(3.1)

where σ(·) is sigmoid activation function. This has a same form with Equation (3.4) except
for the hyper parameters, (Tx, Ty, Tz) which constrain the maximum distance of translation.
In this work, we set (Tx, Ty, Tz) to the same values with distbound.

The difference between translation mechanism and centering mechanism is at whether
there exists target transformation parameter to be used during training. The spatial trans-
formation mechanisms introduced in [22] are learned without having target transformation
parameters. For those transformation mechanisms, the parameters are learned to extract
most informative feature for final prediction. Unlike such mechanisms, centering mechanism
aims to directly predict the center of object and relocate the object to the origin.
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Rotation The output of rotation mechanism is defined by tr which represents a clockwise
rotation of P around z axis by rotz as following equation.

rotz = 2 ∗ (σ(tr) - 0.5) ∗ Tr (3.2)

We set a value of Tr as π/4 to avoid excessive rotation of input point clouds.
Scaling The output of scaling mechanism is defined by (ts,xy, ts,z) which represent the

scaling of P on ground plane, scalexy and on z axis, scalez
1 as following equation.

scalexy = pow(Ts,xy, 2 ∗ (σ(ts,xy) - 0.5)),

scalez = pow(Ts,z, 2 ∗ (σ(ts,z) - 0.5))
(3.3)

We set a value of Ts,xy, Ts,z as 2.0, thus constrain scaling factors within [1
2
, 2] to avoid

distorting input point clouds.

Differentiable point sampler

Another important component of spatial transformer network[22] is differentiable image sam-
pling mechanism which allows backpropagation of loss through sampler into input features.

To avoid point segmentation task which disconnects input features and output loss[38],
we implement point clouds sampler by exploiting a characteristic of unordered set of point
clouds such that if one or many elements of a set are repeated, the set remains the same.

One possible approach is to replace all point clouds outside sampling region with any
point cloud inside sampling region. However, this requires additional computation and still
blocks backpropagation of loss through sampler.

In this work, we simply relocate all point clouds outside sampling region into the origin,
thus those point clouds become repeated elements in set of point clouds. This operation is
simple and fast, but may create new point cloud at the origin. We assume that the single
element at the origin has negligible effect on final prediction.

3D bounding box regression

After transformation applied to input point clouds, epBRM finally predicts coordinates for
3D bounding box, such as location, rotation and size of objects. We use confidence score
predicted from each localization module for scoring our predicted 3D bounding boxes.

Location is predicted by 3 coordinates (tx, ty, tz) for x, y, z direction relative to the origin
as following equation:

x = 2 ∗ (σ(tx) - 0.5) ∗ dx,
y = 2 ∗ (σ(ty) - 0.5) ∗ dy,
z = 2 ∗ (σ(tz) - 0.5) ∗ dz

(3.4)

1perpendicular to the ground plane
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The (dx, dy, dz) represents a maximum offset of center of an object from the origin. Aiming
finer prediction of location, we set values for (dx, dy, dz) as follows:

[dx, dy, dz]
T = 0.5 ∗ [Tx, Ty, Tz]

T (3.5)

Rotation is predicted based on hybrid formulation of classification and regression meth-
ods. We equally divide [0’, 180’) to NR bins and the rotation angle is predicted by 2*NR

coordinates (tr cls(i), tr reg(i))
NR
i=1. We use NR = 9, and each bin is responsible for 20.0’ of

rotation angle.
Size is predicted by 3 coordinates, (th, tw, tl), for height(h), width(w), and length(l). We

set anchor of size coordinates, (ha, wa, la). We use (1.50m, 1.57m, 3.33m) for car, (1.73m,
0.6m, 0.8m) for pedestrian and (1.73m, 0.6m, 1.76m) for cyclist. Then, the size of object is
predicted by:

h = hae
th , w = wae

tw , l = lae
tl (3.6)

3.4 Network structure

In this section, we describe a network structure for both transformation mechanism and 3D
bounding box regression task. We design epBRM as sequence of multiple PointNet by using
it as building block. Figure 3.4 shows a structure of the building block based on PointNet .
This structure is shared by transformation mechanism and 3D bounding box regression task
except for the number of output at the last layer.

In case of transformation mechanisms, we transform point clouds using output of net-
work, which is a transformation parameter to be applied to input point clouds(Section 3.3)
and sample point clouds inside sampling region(Section 3.3). Since we simply relocate point
clouds outside of sampling region into the origin, we again get n point clouds with 3 coor-
dinates with some repeated point clouds. During training, we use a half number of point
clouds used for testing as Table 3.1.

class training testing
car 256 512

pedestrian &
cyclist

128 256

Table 3.1: number of point clouds sampled for training and testing.
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Figure 3.4: the modular network structure used as a building block of epBRM. The same
structure is used for both transformation mechanism and the 3D bounding box regression
task.

3.5 Dataset: training samples

In this section, we describe how we generate training samples for epBRM including choice
of sampling region shape and data augmentation methods applied to input point clouds.

Unlike CNN based approaches which require rectangular shape and dense representation
of input feature, we directly use sparse representation of LiDAR 3D point clouds as input to
the network. Therefore we have more flexibility in selecting a shape of sampling region.

We aim for setting sampling region as tight as possible around object in order to exclude
redundant point clouds that are not belong to the object. Also, as we only have location
prediction from localization module, we need rotation-invariant sampling region. To satisfy
both requirements, we use cylinder shaped sampling region in this work.

Considering a prediction error from localization module, we set size of sampling region
slightly larger than ordinary size of objects. We sample point clouds inside a cylinder defined
by radius r and min/max value of point clouds (zmin, zmax) along z axis. (Table 3.2)

class radius(r) min height(zmin) max height(zmax)
Car 2.4 -0.5 2.5

Pedestrian 0.35 -0.5 2.5
Cyclist 0.8 -0.5 2.5

Table 3.2: the size of sampling region for each class

Now we describe data augmentation methods for generating training samples. Assume
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(a) Car (b) Pedestrian (c) Cyclist

Figure 3.5: shape of sampling region for each class

that the 3D bounding box coordinates of the ground truth object are given by locgt =
(locgt,x, locgt,y, locgt,z), sizegt = (hgt,wgt, lgt) and rotgt.

First, we sample all point clouds inside sampling region centered at locgt. Then, we
translate sampled point clouds by subtracting locgt from each point and rotate them by
-rotgt to align the object along y axis.

We change the size of object by multiplying sx, sy, sz for each x, y, z axis of point clouds
independently. sx, sy, sz are independently sampled from uniform distribution on the interval
[0.9, 1.1]. Then, the target value of size of object now becomes

sizetarget ← (hgt ∗ sz,wgt ∗ sy, lgt ∗ sx) (3.7)

After applying size augmentation, we rotate it back to original heading angle plus small
angle rz randomly sampled from uniform distribution on the interval [−pi/8, pi/8]. Then,
the target value of rotation of object now becomes:

rottarget ← rotgt + rz (3.8)

Finally, we sample locx, locy, locz independently from uniform distribution on the interval
[-distbound, distbound] according to the target of our box regression model.

loctarget ← (locx, locy, locz) (3.9)

3.6 Loss, training and inference

During training each network, we optimize the following multi-task loss:

Loss = Lloc + Lrot-cls + 1rot-cls[Lrot-reg] + Lsize (3.10)

+ Lloc center (3.11)
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If we use transformation mechanism such as translation, rotation and scaling, then we use
Equation (3.10) as a loss function. If we adopt centering mechanism in epBRM, then we use
Equation (3.11) as a loss function.

Lloc center, Lloc, Lrot-reg, and Lsize are regression loss for intermediate center location predic-
tion, location, rotation and size of bounding box regression, which are represented as huber
loss. Lrot-cls is classification loss for rotation, which is represented as cross-entropy loss.

For training a network, we use samples generated at Section 3.5. We use batch of 512
samples with fixed learning rate of 5e-4. We don’t apply non-maximum suppression on the
predictions.

Up to 20 objects, it takes 6.5ms for sampling point clouds at each location which is
predicted from localization module. When we adopt one transformation mechanism and
predict 3D bounding box, it takes 5.5ms for network inference.

3.7 Experiment setup

Dataset

We use KITTI dataset, the 3D object detection benchmark, to evaluate our approach. It
provides synchronized 2D RGB images and 3D LiDAR point clouds, carefully calibrated
with annotations on car, pedestrian, and cyclist class.

We mainly evaluate our method on the car class which has the most training samples.
For pedestrian and cyclist, we discuss in Section 3.8.

To evaluate our method, we split whole training set into train set of 3,717 frames and
val set of 3,769 frames frames. Frames in train set and frames in val set are extracted from
different video clips. 3D object detection performance is evaluated at 0.7 IoU threshold.

Localization module

To evaluate epBRM in 3D object detection benchmark, we utilize previous 3D object detec-
tion systems as localization modules. We select three 3D object detection systems publicly
available as open source: F-PointNet, AVOD(FPN), and PointPillars. Shown in Table 3.3,
each method is different in use of sensors and network structure.

Our model uses only the location and score predictions from those detectors and ignores
size and rotation predictions.

While our refinement model is agnostic to any type of 3D object detectors, the refinement
performance can be different at each detector. We discuss about this at Section 3.8

Therefore, we evaluate our method by using detection results from AVOD(FPN)[24],
F-PointNet(v1)[38], and PointPillars[26] which are introduced in earlier section.

We follow official instruction provided by authors of AVOD-FPN and PointPillars to
train each detection network. We use pre-trained model for F-PointNet(v1) provided from
author[cite]. We compare our result with all three classes: car, pedestrian and cyclist.
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method AVOD(FPN)[24] F-PointNet[38] PointPillars[26]

sensors LiDAR, camera LiDAR, camera LiDAR only

region proposals
fused LiDAR and im-
age feature

pretrained 2D detec-
tor

CNN based

Table 3.3: Comparison of 3D object detection systems. Explanations on AVOD(FPN) and
F-PointNet are from [13]

Evaluation metric

To evaluate our approach, we mainly focus on whether epBRM improves a quality of 3D
bounding box prediction. As well as recall and mAP of detection which are general evaluation
metrics for 3D object detection benchmark, we also measure ratio of detected ground truth
objects defined as follows:

ratio :=
num. of detected GT objects

num. of all GT objects
(3.12)

where the term ’GT’ represents ground truth and ’detected’ means that the overlap between
ground truth 3D bounding box and predicted 3D bounding box is greater than 70%.

This measurement considers all ground truth object regardless of its difficulty level and
visible size of object in RGB image plane, thus provides more reliable measurement.

3.8 Experiment results

Comparisons of transformation mechanism

As motivating experiment for our approach, we first evaluate various spatial transformation
mechanisms applied to input point clouds and their effect on 3D bounding box regression
task. In this experiment, we utilize PointPillars[26] as a localization module.

We train epBRM with each transformation mechanism for 20k iteration and reports the
evaluation results.

Table 3.4 shows the evaluation results of each transformation mechanism adopted in
epBRM as well as no transformation mechanism applied to input point clouds. We also
report performance of baseline 3D object detector, PointPillars[26] which is used as our
localization module.

Table 3.4 indicates that among the various transformation mechanisms applied, the cen-
tering mechanism is the most effective in improving 3D object detection performance.

Figure 3.6 shows the validation result of centering mechanism at every 5k until 55k iter-
ations. Note that epBRM immediately surpasses the baseline detector after 10k of training.
It takes approximately 40 minutes for each 10k iteration of training.
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transformation
mechanism

recall(†) mAP(†) ratio(‡)

none 85.0 75.52 73.23
translation 85.0 76.65 75.30

center 85.0 77.28 76.62
translation+rotation 82.5 73.73 72.97

center+rotation 85.0 75.90 75.45
center+scale 85.0 76.95 75.34
PointPillars 82.5 76.29 73.17

Table 3.4: a comparison of transformation mechanisms. The recall and mAP are evaluated in
moderate level(†). The ratio is evaluated for all difficulty levels(‡) following Equation (3.12).

Figure 3.6: Training progress of epBRM. Evaluation of car class in KITTI val set.

Effect of distbound

In this experiment, we compare effect of distbound on several localization modules. The pur-
pose of this experiment is to find optimal value of distbound that maximizes the performance
of epBRM when epBRM is applied to different localization modules. We again train epBRM
with centering mechanism for 20k iteration.

Figure 3.7 visualizes the evaluation results when epBRM is applied to each localiza-
tion module at different distbound. For PointPillars and AVOD(FPN), the value of ra-
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Figure 3.7: Effect of distbound on each localization module.

tio(Equation (3.12)) peaks when distbound is 0.15 and then gradually decreases after that.
For F-PointNet, the value of ratio peaks at distbound of 0.30 and then starts to decrease.

Table 3.5 reports the performance gains when epBRM is applied to each localization
module at optimal distbound found by this experiment.

Note that the performance improvement gained by applying epBRM is different at each
localization module. For example, epBRM greatly improves the performance of AVOD(FPN)
while less improvement is observed from F-PointNet. This result infers that 3D bounding
box prediction function of AVOD(FPN) is comparably worse than the F-PointNet.

Smaller objects: pedestrian and cyclist

Our approach is also applicable for predicting precise 3D bounding boxes for smaller objects
such as pedestrian and cyclist. Again, we train epBRM using fixed value of distbound as 0.15
for 20k iteration and evaluate the performance by applying it to each localization module.
Here, we omit the process of finding optimal value of distbound.

Evaluation using KITTI test set

We also evaluate the proposed approach by using KITTI test set by submitting detection
result to KITTI test server. Among several localization modules we evaluate so far, Point-
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car pedestrian cyclist

methods
dist
(m)

recall
(%)

mAP
(%)

ratio
(%)

dist
(m)

recall
(%)

mAP
(%)

ratio
(%)

dist
(m)

recall
(%)

mAP
(%)

ratio
(%)

AVOD(FPN)- 77.5 68.50 63.18 - 52.5 39.78 41.36 - 55.0 37.14 45.80
+ ours 0.15 82.5 77.02 68.24 0.15 55.0 41.54 44.04 0.15 57.0 37.61 48.38

F-
PointNet

- 82.5 71.36 62.06 - 72.5 55.40 59.12 - 75.0 53.85 62.91

+ ours 0.30 82.5 72.90 65.99 0.15 77.5 63.06 66.84 0.15 77.5 59.92 68.09
PointPillars- 82.5 76.29 73.17 - 77.5 58.95 69.30 - 77.5 61.22 62.60

+ ours 0.15 85.0 77.28 76.62 0.15 82.5 61.65 73.29 0.15 77.5 61.07 65.00

Table 3.5: Comparisons of 3D object detection performance on car, pedestrian and cyclist
class before/after applying epBRM to each localization module. The performances are eval-
uated at KITTI val set. The recall and mAP are evaluated in moderate difficulty level and
the ratio is evaluate in all difficulty level.

easy moderate difficult
car mAP recall mAP recall mAP recall

PointPillars(†) 78.17 90.0 68.71 80.0 65.91 75.0
+ ours 83.95 92.5 75.79 82.5 67.88 77.5

PointPillars(‡) 79.05 90.0 74.99 85.0 68.30 80.0

pedestrian mAP recall mAP recall mAP recall
PointPillars(†) 45.67 62.5 38.65 52.5 36.16 50.0

+ ours 50.38 67.5 43.90 60.0 40.91 57.5
PointPillars(‡) 52.08 67.5 43.53 57.5 41.49 55.0

cyclist mAP recall mAP recall mAP recall
PointPillars(†) 70.92 90.0 55.57 75.0 49.95 65.0

+ ours 70.52 90.0 56.94 75.0 51.70 67.5
PointPillars(‡) 75.78 92.5 59.07 77.5 52.92 67.5

Table 3.6: Evaluation results for car, pedestrian and cyclist at KITTI test set. (†) represents
reproduced result from our side. (‡) represents performance of PointPillars reported by Lang
et al. [26]

Pillars[26] shows the best performance in all categories, thus we apply epBRM to prediction
result from PointPillars. We train epBRM for 40k iterations, which takes approximately 160
minutes.

Table 3.6 reports evaluation result on KITTI test set before/after epBRM is applied. We
also reports original PointPillars result(‡) reported by Lang et al.[26] for reference. Note
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that epBRM improves the recall of detection in most cases.

3.9 Discussion and future research direction

In this work, instead of building a entire detection pipeline, we mainly focus on a box
regression task, one of core components in detection pipeline that aims to predict precise 3D
bounding box for objects. This approach brings us several benefits.

First, we can build a small network that specifically designed for predicting 3D bounding
box with short inference time.

We can also increase the number of training samples in a batch, which stabilizes training
process. As a result, our proposed approach, epBRM, greatly improves 3D object detection
performance within short time of training.

To build an efficient bounding box regression pipeline, we adopt transformation mecha-
nisms into epBRM. We evaluated various transformation mechanisms including translation,
rotation, scaling and centering. Among them, centering and translation mechanisms im-
proved the detection performance while rotation and scaling mechanisms didn’t improve the
performance.

For each baseline 3D object detector, which is used as localization module in our work,
we explored effect of value of distbound on 3D object detection. We observed that the optimal
values of distbound and performance improvement are different at each localization module.
For a 3D object detection system which has good localization performance, but under-
performs in box regression task, we can expect overall performance improvement by replacing
box regression function by epBRM.

Decomposing a whole detection pipeline into a localization task and a box regression task
brings us flexibility of design of detection system while imposing little overhead in inference
time. epBRM requires that the localization module provides reliable information about the
location of objects.

If the localization module fails to localize objects precisely, then no further attempt to
predict 3D bounding boxes will be made by epBRM. This also indicates our future research
direction.
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Chapter 4

Data augmentation for 3D LiDAR
point clouds

4.1 Introduction

In this chapter, we mainly discuss a novel data augmentation method for 3D LiDAR point
clouds. By using the proposed data augmentation method and the improved network struc-
ture of epBRM V1 which is discussed in Chapter 3, the performance of 3D object detection
is greatly improved compared to epBRM V1.

The data augmentation method is a core technique for training a deep neural network.
The data augmentation refers to a set of simple transformations which can be applied to
input features and ground truth labels. By applying several data augmentation methods,
the deep neural network can be trained by using more diversified training samples which
improves a generalization of the network as a result.

While a number of data augmentation methods for 2D camera images have been actively
explored, the data augmentation methods for 3D LiDAR point clouds have been less explored
in the literature. The horizontal/vertical flipping, global translation/rotation, point-level
jittering, frustum cutout are often used data augmentation methods for 3D LiDAR point
clouds.

More recently, researchers are trying to build a sophisticated LiDAR simulator to generate
pseudo LiDAR point clouds that can be used for training a deep neural network. However,
not only it requires deep understanding behind the physical characteristic of LiDAR sensor
and noises, the performance of detection networks trained on newly generated dataset have
not been promising.

Instead of building a LiDAR simulator, we develop a data-driven data augmentation
method for 3D LiDAR point clouds. The proposed method utilizes the tracklet information
which tracks a single object for multiple time stamps. The tracklet information helps to
densify a sparse 3D LiDAR point clouds. Then, the proposed approach mixes the dense
3D LiDAR point clouds with the sparse 3D LiDAR point clouds from the original training
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dataset to generate a new training dataset.
Additionally, we improve the representation ability of epBRM V1 using skip-connected

layers and deeper layers. These two simple modifications, one from a novel data augmenta-
tion for 3D LiDAR point clouds and the other one from network structure, greatly improve
the detection performance.
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4.2 Contribution

The main goal of this work is to improve the detection performance of epBRM V2 through-
out in-depth analysis on localization module and box-regression module. In this work, the
proposed approach mainly aims at improving the recall performance of overall detection task
while the epBRM V1 mainly explored the methodology to improve the quality of bounding
box regression.

In this work, we further improve the detection performance based on in-depth analysis
on both localization module and box regression module. While maintaining the overall
detection pipeline similar to epBRM V1, the proposed approach is based on three major
modifications which lead to significant improvement in detection performance: a) in-depth
analysis on a network specifically designed for predicting only the location of the objects, b)
a wide and deep layers with skip-connected path for better feature representation, c) a novel
data augmentation method for 3D LiDAR point clouds based on mixup methodology.

In Section 4.4, we explore the localization performance as standalone module. Instead of
using prediction results from the existing detection networks, the proposed approach trains
a network specifically designed for localization purpose only. This reduces the complexity of
the task that the network is responsible for.

The epBRM V1 uses the existing detection networks such as AVOD-FPN[24], Frustum
PointNet[38] and PointPillars[26] for localization purpose. This approach helps epBRM V1
to evaluate how much performance can be improved by using box regression network.

In epBRM V2, the proposed approach builds a localization module which is trained only
for predicting location of the objects. This approach enables us to carefully analyze the recall
and precision performance of the localization network as standalone module.(Section 4.6)

In Section 4.4, inspired by the recent improvement in structure of detection network, such
as StarNet[37] and skip-connected layers[19], the proposed approach builds an epBRM V2
which has better representation ability for box regression task. This approach improves the
recall performance of detection task to state-of-the-art.

In Section 4.6, we develop a novel data augmentation method for 3D LiDAR point clouds
based on mixup method. We provide detailed process of creating a new training sample. Our
proposed data augmentation method uses a tracklet information which is prevalent in most
public datasets for 3D object detection task such as KITTI[15], Waymo[55], nuScenes[2],
and ArgoVerse[6], etc.

4.3 Related works

Box regression module for detection pipeline

epBRM V1

The proposed approach is based on our previous work on epBRM V1[50]. The main objec-
tive of the epBRM V1 is to improve the detection performance by building a network which
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is specifically designed for box regression task. The epBRM V1 is inspired by the analy-
sis(Figure 3.1) which shows that many of predicted bounding boxes which are proximal to
the ground truths are regarded as false positive due to their low quality in regressing the
coordinates of 3D bounding boxes.

Instead of pursuing training a whole detection network in an end-to-end manner, the
epBRM V1 divides a detection pipeline into localization task and box regression task and
focuses only on training a box regression module. It uses location predicted from other 3D
detectors such as Frustum-PointNet[38], PointPillars[26] and AVOD-FPN[24] for localization
purpose.

In epBRM V2, which is the improved version of epBRM V1, we make further improve-
ments based on three approaches: a) instead of using existing detection networks for local-
ization purpose, the proposed approach builds a network specifically designed for localization
task, b) deeper and wider network structure with skip-connected layers enables the box re-
gression module to predict the high quality 3D bounding box coordinates, c) we develop a
new data augmentation method for 3D LiDAR point clouds which uses mixup methods[72]
and tracklet information from the dataset.

StarNet

Another milestone work which focuses on box regression module is StarNet[37]. StarNet also
separates the whole detection pipeline into proposal generation process and box regression
process. To generate proposal from 3D LiDAR point clous with high recall, StarNet uses
sampling based approach which uses the distribution of 3D LiDAR point clouds as sampling
parameters.

StarNet compares three sampling based approaches which generate proposals from 3D
LiDAR point clouds, a) random uniform sampling, b) fathest point sampling and c) hybrid
of two methods. While random uniform sampling method increases the probability of points
in a densely populated regions to be selected, farthest point sampling method maximizes the
spatial coverage of region proposals.

Unlike to the most modern detection networks which uses deep learned network for
proposal generation process, StarNet heavily relies on simple mathematical algorithm for
generating proposals. Instead of training a network for localizing objects, StarNet focuses
more on box regression module which is based on PointNet.

While epBRM V1 and StarNet share the similar network architecture, there are two main
differences between them, a) deeply connected layers between global features of PointNet,
b) mean pooling operation instead of max pooling operation to remove the order of LiDAR
point clouds feature. Figure 4.2 shows the differences between two networks.
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Figure 4.1: Network structure of epBRM V1.

Figure 4.2: StarNet architecture[37]. Global features from multiple layers are concatenated
together.

Synthesizing 3D LiDAR point clouds

Mixup of samples for enhancing generalization

Mix-up[72, 9, 23, 1, 20, 64, 56, 21, 59, 70, 58, 57] based approaches introduce a simple data
augmentation method which mixes two different samples into one to improve the generaliza-
tion and robustness of large neural networks. Given two training samples x and x

′
and their

corresponding labels y and y
′
, Mix-up first samples λ from asymmetric beta distribution and

mixes x and x
′

using the following equation.

xnew = x ∗ λ+ x
′ ∗ (1− λ) (4.1)

The mathematical derivation induced by the [72] proves that binary cross entropy loss
for classification task can use y as ground truth label for xnew. In other word, y

′
which is a
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ground truth label for x
′

could be omitted under this setting.
The parameter λ sampled from beta distribution plays a critical role in this result, while

we omit the derivation of cross entropy loss for mixed training samples because it is out
of scope in this paper. Intuitively, as λ ∼ Beta(0.1,1.1) is not symmetric, roughly 80% of
sampled λ has value higher than 0.9. This makes xnew looks more similar to x than x

′
and

mixing with x
′

works as noise being applied on x.
The proposed approach in epBRM V2 takes the similar idea of mixing up two different

samples into one with a bias on one of those samples. Unlike to the [72] which focuses on
classification task, the proposed approach in epBRM V2 focuses on box regression task. As
3D LiDAR point clouds defines the shape of objects, we cannot directly apply mixup method
by concatenating two set of 3D LiDAR point clouds into one.

Instead of mixing two samples by concatenating two set of 3D LiDAR point clouds, we
develop a novel approach for mixup process based on data-driven LiDAR simulator. What
we mix in the proposed approach are a) dense 3D LiDAR point clouds with ground truth
label which we name as ’prototype’ of 3D LiDAR point clouds and b) sparse 3D LiDAR
point clouds sampled from training set which provides the realistic pattern of LiDAR beam.
By mixing these two sources of information, the proposed approach can create new training
samples with a) ground truth label and b) realistic pattern of LiDAR point clouds.

4.4 epBRM V2

In this section, we discuss three major modifications from epBRM V1 to epBMR V2. The
modification can be summarized as followings: a) while epBRM V1 uses existing detection
networks for localization purpose, epBRM V2 uses the network trained only for localization
objective. b) the network structure of epBRM V2 is deeper and wider than the network
structure of epBRM V1. c) we develop a novel data augmentation method for 3D LiDAR
point clouds based on mix up method.

Localization module based on PointPillars

While epBRM V1 improves the detection performance by building an end-point box-regression
network on top of localization module, it uses the existing detection networks as its local-
ization module. Even though this approach makes it easy to analyze how much detection
performance gain does each baseline detection network get by box-regression network, the
fact that each detection network is not trained only for localization task degrades the their
localization performance.

The epBRM V1 uses several detection networks such as AVOD-FPN, Frustum-PointNet
and PointPillars as localization module. The epBRM uses the post-processed detection re-
sults from each detection network. The main part of post-processing is NMS operation which
removes the redundant predictions by calculating the similarity between each prediction. In
general, the similarity between predicted boxes is measured by the overlap between those
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boxes. If intersection over union between two boxes are higher than threshold, then we take
only one prediction which has the highest confidence score among those boxes.

In this work, we focus on PointPillars which shows the best detection performance among
the baseline detection networks which epBRM V1 uses as localization modules. Instead of
using the final detection output of PointPillars, we modify the network structure of Point-
Pillars so it predicts only the location of objects and probability of the objects existence. In
other word, the localization module for epBRM V2 is not trained for predicting dimension
and heading angle. This modification brings us important advantage in training a network:
a complexity of localization task is simpler than the complexity of whole detection task
which includes localization task as well as bounding box coordinates, so we can expect much
faster training and higher localization performance by removing redundant output and loss
function during the training.

However, as we remove the bounding box coordinate from the output of network, we
cannot use box overlap based NMS operation. Instead, the proposed approach uses proximity
based NMS operator which measures the similarity between predictions by the distance
between predicted locations.

Proximity based NMS

Non-maximal suppression (NMS) operation is one of post-processing methods which is used
to reduce the number of redundant predictions at validation and testing. Most detection
networks which use anchor based approach typically generate multiple predictions at each
anchor. In general, the distance between nearby anchors is a set as small to get high recall
performance. Therefore, the number of output of detection network before NMS operation
is usually very large.

It is well-known problem for most anchor based detection networks that several predic-
tions overlap each other, which degrades the overall detection performance. For example,
there might exist several predictions which correspond to a single ground truth. To reduce
such redundant predictions, NMS operation sorts all predictions using their confidence scores
and removes boxes one-by-one if each box has low confidence score and highly overlapped
with other predicted boxes with higher confidence scores.

The localization module for epBRM V2 predicts only the location of objects and their
corresponding confidence scores. Therefore, the proposed approach cannot measure the
similarity between predictions based on overlap between boxes. Instead of using overlap
between boxes, we use distance between two predicted locations to measure the similarity
between predictions.

Comparison of epBRM V1 and epBRM V2

We explore network structures recently developed by 3D object detection researchers. While
keeping a simple structure of the epBRM V1, the proposed approach has several modifica-
tions adopted from the recent improvements.
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Network structure

The proposed approach adopts skip-connection layers between global features of PointNet for
better representation ability of point clouds feature. The network structure of StarNet[37]
inspires us to build dense skip connection layers between each global feature output. The
skip-connection layer between very deep layers has been proven to be very effective to improve
detection performance. Figure AA shows the comparison between the epBRM V1 and the
new epBRM V2 network. As shown in Figure AA, epBRM V2 has wider and deeper network
structure with skip-connection between each global feature aiming for better represenation
learning.

Target distance

We conduct in-depth analysis on the effect of target distance. The target distance is defined
in a same way as it is first defined in epBRM V1. Here, we simply explain about target
distance of epBRM V1 and epBRM V2. For more detailed definition of target distance,
please refer Section 3.3.

The target distance represents the maximum distance between predicted locations from
the localization module and its nearest ground truth that we aims for further refining a 3D
bounding box by using a box regression module. Therefore the target distance sets a limit
of what box regression module is responsible for.

There are several things to consider for setting a proper value for target distance. First,
the target distance is affected by the performance of localization module. If we increase the
value of target distance, it means that we expect that even the prediction which is located
far from the ground truth can be refined by the box regression module. However, if the
localization module predicts the location of the object precisely, then a large value for the
target distance would be redundant.

Second, the target distance is affected by the representation capability of box regression
module. Increasing the target distance means that the complexity of the box regression
task increases as well. If we constrain a representation ability of box regression module in a
preference on a computational efficiency, the value of target distance should also be decreased
according to that.

The epBRM V1 uses the location predicted as a part of detection result from the AVOD-
FPN[24], Frustum-PointNet[38, 39, 40], and PointPillars[26]. This approach makes us pos-
sible to easily analyze how much detection performance gain we can get by building a box
regression module on top of various detection networks. However, we observe some predic-
tions located proximal to the ground truth are removed during the Non-Maximal Suppression
operation not because of wrong location predictions, but because of dimension and heading
which are not related to localization of objects.

In this work, the proposed approach is aiming to increase the value of target distance by
using the network with better representation power, in order to solve more complex bounding
box regression task using an epBRM V2. This modification leads epBRM V2 to a better box
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regression performance for the objects which are located comparably far from the ground
truth location compared to epBRM V1.

To summarize, 1) epBRM V2 aims at increase the recall performance of bounding box
regression task. 2) To increase the recall, the proposed approach also needs to consider the
predictions which are located far from the ground truth. 3) This requirement leads to increase
the value of target distance. 4) As target distance is increased, the network encounters more
complicated samples. With limited representation power of epBRM V1, this leads to degrade
the performance of bounding box regression task. 5) To precisely regress the bounding boxes
which are located far from the ground truth, the proposed approach needs to build a new
network, epBRM V2, which has better representation power. Aiming better representation
learning, we adopt deeper and wider network structure for epBRM V2 than the structure of
epBRM V1.

Loss function for box regression task

The final output of the box regression module is the coordinate of 3D bounding box of
each prediction which is represented as (x, y, z, l, w, h, yaw). In epBRM V1, the loss func-
tions for bounding box regression task are smooth L1 for (x, y, z, l, w, h) and hybrid of
classification and regression loss for yaw prediction. In epBRM V1, given a ground truth
(x̂, ŷ, ẑ, l̂, ŵ, ĥ, ˆyaw) and a prediction (x, y, z, l, w, h, yaw), the loss for bounding box regres-
sion task is given as follows:

Losscenter = Lsmooth(x, x̂) + Lsmooth(y, ŷ) + Lsmooth(z, ẑ) + Lsmooth(l, l̂) + Lsmooth(w, ŵ)

+ Lsmooth(h, ĥ) + LCE(yaw-cls, ˆyaw-cls) + 1
ˆyaw-cls[Lsmooth(yaw-reg, ˆyaw-reg)]

(4.2)

Note that loss for each coordinate is independent to the loss of other coordinates. This
approach assumes that each of coordinate is not correlated with others which is actually
a wrong assumption. Each corner of the 3D bounding box is calculated as a combination
of the center location of the object, (x, y, z) and dimension/heading angle of the object,
(l, w, h, yaw). To address the correlation between each coordinate, [24] uses an objective
function which uses the difference between 8 corners of predicted bounding box and ground
truth box.

Unlike to [24] which directly regresses the corner of the 3D bounding box, our proposed
approach predicts the center based bounding box encoding method, which represents box
as (x, y, z, l, w, h, yaw). However, unlike to loss function of epBRM V1(Equation (4.2)), the
epBRM V2 uses the difference between 8 corners of predicted boudning box and ground
truth box as augmented loss function, Losscorner.

Losscorner =
∑

c∈corners(8)

(Lsmooth(xc, x̂c) + Lsmooth(yc, ŷc) + Lsmooth(zc, ẑc)) (4.3)
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where (xc, yc, zc) is c th corner of predicted 3D bounding box and (x̂c, ŷc, ẑc) is c th corner
of ground truth 3D bounding box for c = 1, 2, ..., 8.

The overall loss function for epBRM V2 is sum of Losscenter and Losscorner where λ is
hyper-parameter which set as 1.0 in this work.

Loss = Losscenter + λ ∗ Losscorner (4.4)
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Figure 4.3: Network structure of module in epBRM V2. As in epBRM V1, we use spatial
transformation based approach for better representation capability. To use spatial transfor-
mation based approach, we take modular approach as shown in Figure 4.4. We apply same
network structure for two epBRM modules in Figure 4.4.
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Figure 4.4: Network structure of epBRM V2. The proposed approach first predicts the
center location of the objects. Then, the proposed approach moves all input point clouds in
order to place the predicted location at the origin. As a final ouput, the proposed approach
predicts the 3D bounding box coordinates. Note that two epBRM modules don’t share the
parameters.
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4.5 Data augmentation method for 3D LiDAR point

clouds

In this section, we describe our novel data augmentation method for 3D LiDAR point clouds
based on mixup of two set of point clouds from training samples. The proposed approach
aims at improving the generalization of the box regression network by increasing the number
of training samples as well as diversity among them which can help improving the quality of
bounding box regression.

The Figure 4.5 briefly describe the concept of mixup approach for 3D LiDAR point
clouds. Figure 4.6 and Figure 4.7 describe the overall process for creating a new dataset
which contains ground truth label and realistic pattern of 3D LiDAR point clouds.
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Figure 4.5: Conceptual explanation on how to create a new training sample from a prototype
3D LiDAR point clouds and training sample. The proposed approach is basically a data-
driven 3D LiDAR point clouds simulator which consumes an actual pattern of LiDAR point
clouds observed from training sample.
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t t + 1 t+N...

sample + translate + rotate

stack all LiDAR point clouds

mirror image

LiDAR point clouds prototype shape

(quantization for computational 
purpose)

from tracklet information

(a) LiDAR prototype generation process

Figure 4.6: Process to generate a dense 3D LiDAR point clouds from the tracklet information
which is generally provided from the dataset. We call the dense 3D LiDAR point clouds which
is an output of this process as Prototype
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project points onto each prototype

K new set of point clouds with label

New training samples generated

(a) LiDAR sample generation process using prototype shape

Figure 4.7: Steps to generate new training samples with labels and realistic pattern of LiDAR
point clouds. This mixup based approach uses LiDAR point clouds prototype generated by
Figure 4.6 and each training sample.
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Create a library of prototype 3D LiDAR point clouds from
tracklet

In this section, we describe how to create a library of prototype 3D LiDAR point clouds.
We define a prototype 3D LiDAR point clouds as a dense set of point clouds whose ground
truth label is known. Once we generate a library set which contains multiple prototype 3D
LiDAR point clouds, the proposed approach uses the library and their label to create new
training samples. The process of creating a new training sample using a library of prototype
is discussed in Section 4.5.

A density of prototype 3D LiDAR point clouds should be dense. However, a density of 3D
LiDAR point clouds is generally very sparse and it requires special equipment to get dense
3D LiDAR point clouds. Instead of using additional equipment to get dense 3D LiDAR
point clouds, our proposed approach exploits tracklet information which contains ground
truth labels which track each instance over the temporally continuous frames.

The biggest advantage of using tracklet information for creating a library of prototype 3D
LiDAR point clouds is that we can get these information very easily from the public dataset
such as KITTI[15], Waymo dataset from Waymo[55], nuScenese dataset from APTIV[2]
and ArgoVerse dataset from ArgoAI[6] provide tracklet information which is instance-level
ground truth labels tracking the objects throughout the continuous frames.

Figure 4.11 shows 5 frames which are temporally continuous. The ground truth labels
for each vehicle are given as a form of tracklet information. Figure 4.9 visualizes the Bird’s
Eye View image of 3D LiDAR point clouds as well as ground truth boxes which track the
black vehicle shown in Figure 4.11.
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(a) dataset captured at 0.0s

(b) dataset captured at 0.1s

(c) dataset captured at 0.3s

(d) dataset captured at 0.4s

(e) dataset captured at 0.5s

Figure 4.8: This figure shows the temporally continuous frames. A tracklet of the black
vehicle in this figure provides the information about the location and heading angle relative
to the ego-vehicle as well as dimension of the object. Figure 4.9 shows the Bird’s Eye View
image of LiDAR point clouds with labels of black vehicle.
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(a) Bird’s Eye View image of 5 sequential frames.

(b) LiDAR point clouds sampled using ground truth labels.

(c) LiDAR point clouds after aligning to the same yaw angle

Figure 4.9: Bird’s Eye View image showing the sampling process of 3D LiDAR point clouds
using tracklet information of black vehilcle shown in Figure 4.11. Tracklet provides the
heading angle of the object in multiple time frames. The proposed approach uses those in-
formation to align all LiDAR point clouds into the same direction so that we can concatenate
them together.
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A. Sampling 3D LiDAR point clouds around ground truth location

Tracklet is a set of the ground truth labels which captures the movement of each instance.
Depending on the datasets, it may contains information not only about location, heading
angle, dimension of the object but also the occlusion level, velocity, and etc.

In this step, we use location information extracted at each time stamp to sample point
clouds that belongs to the objects. Unlike to camera image, the 3D LiDAR point clouds is
an un-ordered set of spatial information. Therefore, we can easily build overlapped point
clouds by stacking point clouds which are sampled from all different time stamps.

As in [49] and [50], the proposed approach samples point clouds in a cylindrical sampling
region centered at the ground truth location of each time stamp.

Since all point clouds are sampled from different time stamp, the relative locations to
the ego vehicle are all different. As a result, we can see different pattern of 3D LiDAR point
clouds at each time stamp as shown in Figure 4.9.

B. Aligning all point clouds into the same configuration

The relative locations of an object to the ego-vehicle are different at each timestamp. To
create dense point clouds which can show the clear shape of the object, we have to align
each set of point clouds at a fixed location and fixed orientation. As shown at the third row
of Figure 4.9, we translate the point clouds to the origin and rotate all points around z axis
so all point clouds are aligned each other.

Without aligning all point clouds into the same heading angle, we cannot get clear pattern
on 3D LiDAR point clouds even though we stack them together.

Note that 3D LiDAR point clouds shown in left most figure can contribute to build front-
right part of vehicle while 3D LiDAR point clouds shown in right most figure can provide
information to construct back-right part of vehicle. Sampling point clouds from multiple
time stamp can provide more complete shape information about the objects.

As a result, while 3D LiDAR point clouds sampled at single time stamp can provide
only a fractional of the shape of an object, we can create a new 3D LiDAR point clouds by
reconstruction from the multi-directional views.
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(a) LiDAR point clouds stacked over multiple time stamps.

(b) LiDAR point clouds after mirroring process

(c) LiDAR point clouds (a) stacked with mirrored point clouds (b)

(d) 3D view of 3D LiDAR point clouds after mirroring process

Figure 4.10: Mirroring process of 3D LiDAR point clouds to build more dense prototypes.
This process uses the mirrored property of the objects.
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(a) BEV of concatenated point clouds

(b) 3D view of concatenated point clouds

(c) After quantization

Figure 4.11: Quantization process to control the density of point clouds
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Figure 4.12: Subset of prototype 3D LiDAR point clouds. The density of 3D LiDAR point
clouds of each prototype is much dense compare to the density of point clouds sampled from
single frame. Note that ground truth label of each prototype is known from the tracklet
information.
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C. Stacking all aligned point clouds

In this step, the proposed approach actually stacks all point clouds from multiple time stamp
so that it can create very dense point clouds of the objects.

D. Mirroring process

The proposed approach uses mirrored property of the objects to create even more complete
prototype 3D LiDAR point clouds as shown in Figure 4.10. Figure 4.10 (b) shows the
mirrored 3D LiDAR point clouds of Figure 4.10 (a). Figure 4.10 (c) and Figure 4.10 (d)
show the LiDAR point clouds after mirroring process.

In most case, only the half part of the vehicle is visible from the 3D LiDAR point clouds
because of the relative location between the object and the ego-vehicle. However, based on
the fact that most vehicles have mirrored shape around the axis, the mirroring process helps
to increase the density of point clouds which results in giving us a more clear shape of 3D
LiDAR point clouds than before.

E. Quantization applied to avoid too many points in small area

After processing 3D LiDAR point clouds as described above, the total number of point clouds
which consists the prototype can be excessive. The excessive number of point clouds requires
heavy computation for the latter step and high volume of memory to store the information.
Therefore, opposite to the previous steps which aims at increasing the density of 3D LiDAR
point clouds, this process removes the redundant point clouds by quantization.

While having a number of point clouds can provide dense and more complete shape of
prototypes, we apply quantization process on a set of point clouds to avoid excessive points
within the tiny space and control the density of point clouds in a proper level. This step
removes all points except for one within 0.05m x 0.05m x 0.05m space. Before applying
quantization, the proposed approach randomly permutes all point clouds.

Figure 4.12 shows the subset of prototype 3D LiDAR point clouds created by the processes
described above.
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Create a new training sample using a prototype and existing
training samples.

Figure 4.12 shows the subset of prototype 3D LiDAR point clouds created by the processes
described above. In this section, we describe how to generate new training samples which
will be used for training an epBRM V2.

Figure 4.5 visualizes the process of generating new training samples using a prototype
3D LiDAR point clouds and training samples. There are two source of information required
to create new training samples: a) ground truth label, b) realistic pattern of LiDAR point
clouds reflected from the vehicle.

Figure 4.7 briefly explains how the proposed approach creates a new training sample with
a ground truth label and realistic pattern of LiDAR point clouds.
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(a) Boundary of sampling region centered at point from training sample

(b) Activation of point of prototype. Red: point
from training sample, Blue: points from proto-
type which are located within the boundary from
red point, green: one of blue points which is ran-
domly sampled to be activated.

Figure 4.13: Activation of each point in prototype. The proposed approach calculates the
distance between each of the point from training sample and the point from prototype. For
each point of training sample, it randomly samples one point from the set of points within
the boundary. The boundary is given as spherical shape.
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A. Data-driven LiDAR simulator based on activation of point clouds

[35] uses the physical characteristic of the LiDAR equipment for building a raycasting engine
and deep learning based approach for raydrop simulator. In this work, the proposed approach
uses much simpler method which simulates the pattern of LiDAR beam reflection based on
data-driven method.

The proposed approach in this work is based on activation of each 3D LiDAR point of
the prototype. The activation of each point of prototype is decided by whether there exists
a point of training sample within the specific boundary.

Figure 4.13a and Figure 4.13b visualize how the proposed approach activates each point
in prototype 3D LiDAR point clouds.

Figure 4.14 shows how each training sample can be combined with prototype
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(a) training samples (side view)

(b) training samples (bird’s eye view)

(c) prototype 3D LiDAR point clouds (BEV view)

(d) activated points of prototype 3D LiDAR point clouds (side view)

(e) activated points of prototype 3D LiDAR point clouds (bird’s eye view)

Figure 4.14: Process of creating new training samples from the combination of training
samples and prototype 3D LiDAR point clouds.
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B. Clustering of prototype to avoid heavy computation

The proposed approach can generate new training samples which have novel shape and
realistic pattern of 3D LiDAR point clouds. However, one limitation of this approach is that
when the size of prototype and size of training sample are significantly different, the number
of activation will be significantly smaller than the number of point clouds from training
sample.

Assume that a prototype is generated from the large vehicle such as truck, and a training
sample is categorized as small vehicle such as mini-sedan. Since the size of two objects are
significantly different, no points of the prototype can be located within the boundary around
each of point of the training sample. This leads to no activation of point of prototype, thus
we get meaningless training sample from this combination.

Also, the number of combination available between prototype and training samples is
numerous which imposes heavy memory requirement as well as computation resources. For
example, from the KITTI dataset, we can generate 200 prototype LiDAR point clouds that
has at least 10k points after quantization and each of them can be combined with each of
training sample which is 20k. The total available number of combination is 200 * 20k = 4M.

To make this process more computationally efficient, the proposed approach generates
cluster of prototype 3D LiDAR point clouds based on the dimension of each prototype,
height, width, and length. The proposed approach applies K-Means clustering algorithm
for width, length and height of the prototypes. Figure 4.15 visualizes the cluster of size of
prototypes in 3D space.

The number of clusters, K, is a hyper-parameter we explore its effect by experiment.
Each cluster may contain different number of prototype LiDAR point clouds. For example,
a cluster with large or small objects may contain less number of prototype LiDAR instances
compared to a cluster with normal size objects.



CHAPTER 4. DATA AUGMENTATION FOR 3D LIDAR POINT CLOUDS 71

Figure 4.15: Visualization of clustering result. points with same color belong to same cluster.
The proposed approach generates 50 clusters out of 250 prototypes.
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4.6 Experiments

Dataset and metric

We evaluate the proposed method using KITTI dataset, the most frequently used 3D object
detection benchmark. In this work, we focus on car class which has most training examples
and symmetric shape around center axis. This property makes us easy to apply mirroring
process for creating a library of prototype 3D LiDAR point clouds.

The detection results are evaluated according to three difficulty levels based on the occlu-
sion/truncation/distance between the objects and the ego-vehicle. Among the three difficulty
levels which includes easy, moderate and hard, we evaluate the proposed method on moderate
level, which is a standard metric for evaluation.

For evaluating the localization module, we use 0.4m Euclidean distance based threshold
in 3D space. For 0.4m distance threshold, the predicted location is true positive if there
exists a ground truth object within 0.4m distance from the predicted location.

For evaluating the overall detection performance, we use 0.7 3D IoU threshold. If the 3D
IoU between predicted 3D bounding box and the ground truth 3D bounding box is greater
than 0.7, then the predicted 3D bounding box is true positive.

We evaluate the proposed method on training/validation set which are splitted from the
training samples. We follow standard method to split a whole training samples into smaller
training and validation set.[3, 24, 38]. In this work, training sample contains 3,717 frames
and validation sample contains 3,769 frames. Frames in each split doesn’t belong to same
video clips.

Performance of a localization module without bounding box
regression task

Problem statement

In this section, we mainly explore the localization performance as standalone module. The
epBRM V1 [50] analyzes its detection performance by using existing detection networks, such
as AVOD-FPN[24], Frustum PointNet[38], and PointPillars[26] as its localization module.
Since the PointPillars[26] shows the best performance among them, in this work, the proposed
approach re-uses the structure of PointPillars except for removing the 3D bounding box
related predictions from the last layer.

We explore the effect of the size of the pillars which controls the resolution of BEV
image of 3D LiDAR point clouds. The size of the pillars is in trade-off relationship between
computational cost and detection performance. If the size of pillars increases, it means that
resolution of BEV image decreases, thus reduces the computational cost. However, coarse
resolution generally leads to degraded detection performance.

As we remove the box regression task from the detection task and focus only on local-
ization task, we assume that even coarse resolution of pillars is good enough to achieve high
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localization performance. The proposed approach compares the localization performance in
different size of the pillar.

Reducing the computational cost is critical for most modern 3D object detection systems
for self driving vehicles which aim to detect objects in far distance for safety purpose. If 3D
object detection systems rely on high resolution BEV image, it becomes hard to meet the
requirements for real-time pipeline.

Experiment setting and result

In this section, we describe the experiment setting for training a localization module. We
mainly explain how to assign ground truth to anchors and proximity-based NMS operation.

For localization module, we follow the exactly same procedures for training a PointPillar
network[26], except for how to assign ground truths to anchors. Since the proposed approach
uses only location information, it cannot measure the similarity between pre-defined boxes
on anchors and ground truth boxes using IoU metric.

Instead, the proposed method measures the similarity between anchor location and
ground truth location using a distance between them. If the distance between the anchor
location and the ground truth location is within 1 m, then the proposed approach assigns
the ground truth to that anchor.

For NMS operation, we set NMSscore, the score threshold of NMS as 0.15 and NMSsim,
the similarity threshold of NMS as 0.5 m. This means that all predictions with confidence
score less than 0.15 will be removed from the evaluation. And if the distance between two
predicted location is less than 0.5 m, then one of those prediction which has lower confidence
score than the other will be removed from the evaluation.

The localization network is evaluated at each 5 epoch. We use batch size of 2 and initial
learning rate of 0.0002 with exponential decay. The localization performance of the proposed
approach is evaluated using a recall and a mean average precision(: mAP) metric.

Figure 4.16 shows that the recall and mAP of localization performance with 0.4m distance
threshold. We cannot see any performance degradation as we increase the size of pillar until
0.32m x 0.32m.

We can reduce the 4x computational cost by using 0.32m x 0.32m resolution of BEV
image instead of 0.16m x 0.16m resolution of BEV image while keeping the same localization
performance.

Proximity based NMS operation and precision-recall metric

In this section, we explore the effect of the NMSscore and the NMSsim on the localization
performance. The NMSscore is a parameter which decides whether to keep/discard the
prediction based on the confidence score. The detection networks keep only the prediction
which has confidence score higher than the NMSscore. Therefore, if a value of the NMSscore

is low, it means that most predictions are kept for evaluation, thus we get a high recall and
a low precision performance.
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Figure 4.16: A comparison of the localization performance in different resolution of BEV
image of 3D LiDAR point clouds.
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The NMSsim is used for measuring the similarity between two predictions and deciding
whether two predictions actually predicts the duplicated or not. If the distance between two
predicted location is lower than the NMSsim, we regard those predictions are duplicated and
keep only one of them which has higher confidence than the other. Therefore, if the value of
the NMSsim is low, most predictions are kept for evaluation, thus gets high recall and low
precision performance.

We conduct extensive experiments with various combination of NMSscore and NMSsim

to evaluate the performance of the proposed localization module. Since there exists numer-
ous number of combination available, we show the result which gives the best localization
performance. In this experiment, 0.40m x 0.40m of pillar resolution is fixed. To evaluate
the effect of the NMSsim, we fix the value of the NMSscore as 0.15. To evaluate the effect
of the NMSscore, we fix the value of the NMSsim as 0.5m.

Figure 4.17 show that the NMSsim of 0.5m and the NMSscore of 0.15 show the best
performance both in recall and mAP of the localization network. Unlike epBRM V1 which
relies on the detection results of AVOD-FPN[24], Frustum PointNet[38], and PointPillars[26],
we conduct extensive experiments to analyze various components which might affect the
localization performance.

Performance of epBRM V2

Problem statement

In epBRM V1, we get the optimal value of target distance for each detection network as
a result of experiments. Please refer Figure 3.7 about how we get the optimal value of
target distance for each detection network and Table 3.5 for the detection performance of
each network at their optimal target distance. The optimal target distance of PointPillars is
0.15m. This means that the epBRM V1 is only responsible for the localization predictions
which are actually within 0.15m from the ground truth objects.

While the epBRM V1 successfully improves the overall detection performance, we aim
further improvement by increasing the recall performance. To improve the recall performance
using a box regression network, the box regression network should be able to refine predictions
which located not only close to but also far from the ground truth objects. To precisely refine
the predictions located far from the ground truth, we need to increase the value of target
distance.

With a more sophisticated network structure of epBRM V2 compared to epBRM V1, we
evaluate the proposed approach in various target distances.

Experiment setting and result

The proposed approach is evaluated in various target distance from 0.1m to 0.5m. The
network structure of epBRM V2 is shown in Figure 4.3 and Figure 4.4. The objective
function for 3D bounding box regression task is stated by Equation (4.2), Equation (4.3),
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Figure 4.17: The effect of NMSscore and NMSsim on the localization performance

and Equation (4.4). In this experiment, the proposed approach applies only the general
data augmentation methods used in epBRM V1, and doesn’t apply the data augmentation
method for 3D LiDAR point clouds based on mixup.

Figure 4.18 shows that the target distance of 0.4m shows the best performance both in
recall and mAP. This result is surprising because the recall performance with target distance
of 0.4m is 95%. Note that the recall performance of localization module with 0.4m distance
metric is 97.5%. The epBRM V2 successfully regresses the coordinates of 3D bounding boxes
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Figure 4.18: The effect of target distance on epBRM V2

at roughly 95 / 97.5 = 97.4% of locations predicted from localization module.
Additionally, we apply our new data augmentation method for 3D LiDAR point clouds

with the best experiment configuration so far. From the tracklet information provided from
the KITTI dataset, we generate 350 set of prototype 3D LiDAR point clouds which have at
least 5k points in each prototype. Then, we generate the 40 clusters of prototype based on
their dimensions. Each training sample is assigned to one of the clusters and used for creating
a new training sample. If the newly created sample contains at least 5 points activated inside
a box, we add the new sample into the original training set. The total number of new training
samples created at this step is 127k which is approximately 12x more than the number of
original training samples.

This procedure is processed only once before the training and it takes approximately 2
hours in i7-6700k CPU with NVIDIA Titan X GPU with 12GB memory.

We compare the detection performance with and without mixup data augmentation
method. To make fair comparison, other general data augmentation methods such as ran-
dom scaling, random translation, random rotation, random horizontal flipping, occlusion,
random jittering, random drop out of points are applied for both networks.

Figure 4.19 clearly shows that mixup data augmentation improves the overall detection
performance compared to the naive data augmentation which are applied to both networks.
The recall for both networks are measured as 95%.
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Figure 4.19: A comparison of the detection performance about our proposed data augmen-
tation method for 3D LiDAR point clouds.

4.7 Discussion and future research direction

In this work, we focus on three topics: a) analysis on localization module and effect of
NMSscore and NMSsim, b) the optimal target distance when we use more sophisticated
network structure for box regression task, c) effect of data augmentation method based on
mixup of two set of 3D LiDAR point clouds.

First, throughout the extensive experiments, we explored various components that affect
the localization performance and got the best parameters for the localization network. The
analysis on localization performance showed that 97.5% of ground truth locations can be
detected with 0.4m accuracy by using the localization module.

Second, by building a more sophisticated network structure than epBRM V1, a repre-
sentation power of epBRM V2 was increased. Thus, the epBRM V2 could also refine the
objects whose initial location predictions are far from the ground truth. As more diverse
predictions could be further refined precisely by epBRM V2, the recall and mAP of overall
detection performance was significantly improved.

Finally, we develop a novel data augmentation method based on mixup of 3D LiDAR
point clouds. This augmentation method uses tracklet information which is prevalent in
most public datasets for 3D object detection. The analysis on mixup data augmentation
shows that it improves the overall detection performance by mAP of 0.5∼1.0%.

The proposed data augmentation method which uses the tracklet information is hard to
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be applied on deformable objects due to motion of the objects. For example, even a tracklet
information of the pedestrian is given, pose of the pedestrian such as hand position and/or
head position can be different at each time stamp. Therefore, it makes difficult to build a
prototype 3D LiDAR point clouds which is a dense set of point clouds with a clear shape of
the object. We think this implies the future research topic.
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Chapter 5

Conclusions and Future Works

In this dissertation, we mainly concerned with various challenges in 3D object detection for
self-driving vehicles. The topics we have discussed lie in the field of sensor-fusion based 3D
object detection, efficient detection pipeline using 3D LiDAR point clouds, practical methods
for training a 3D object detection network, design of high-performance detection network
using deeply connected layers, and a novel data augmentation for 3D LiDAR point clouds.

In Chapter 2, we discussed a sensor-fusion based 3D object detection system. The pro-
posed approach in Chapter 2, RoarNet, utilized both 2D camera image and 3D LiDAR point
clouds to get accurate 3D object detections. Using 2D camera images, a geometrical agree-
ment search and a spatial scattering method were proposed to narrow down the huge 3D
search space into smaller one. Then, the proposed approach used PointNet as backbone
network for further refinement of a 3D bounding box coordinates. The RoarNet showed one
of the best performances in 3D object detection task in KITTI dataset, which is a standard
benchmark for the self-driving vehicle detection.

In Chapter 3, we studied a practical method to improve the performance of 3D object
detection system. The analysis on the detection result revealed that considerable portion of
prediction results which are proximal to the ground truths are false-positive detections due
to low quality in box regression task. The proposed approach in Chapter 3, epBRM V1,
was designed for improving the quality of 3D bounding box regression task using 3D LiDAR
point clouds as input features. The proposed approach was built with sequence of small
networks and was computationally lightweight. A spatial transformation mechanism was
adopted into regression pipeline to recursively simplify 3D bounding box regression task.
The epBRM V1 took less than 1 hour of training time and only 12ms of additional latency
to improve the performance of standard detection methods to the state-of-the-art 3D object
detection methods.

In Chapter 4, we designed a high performance 3D object detection network based on
in-depth analysis on the effect of localization network, a new architecture for box regression
network, and a novel data augmentation method for 3D LiDAR point clouds processing. The
proposed approach, epBRM V2, re-designed a localization pipeline by using a proximity-
based non-maximum suppression operation. We proposed a new metric for evaluating a
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localization module of 3D object detection pipeline. Then, a new network architecture for
box regression module which was built with deeper and skip-connected layers improved the
3D object detection performance by large margin. Lastly, a new data augmentation method
for 3D LiDAR point clouds processing was proposed for further improvement of the 3D
object detection pipeline.

In the remainder of this chapter, we suggest several promising research topics in 3D
object detection systems for self-driving vehicles. We mainly discuss 3D object detection
systems for understanding the intention of objects, abnormality detection to guarantee safe
self-driving systems, and continual learning method for 3D object detection systems. These
topics reflect our perspective on 3D object detection system to build safe self-driving systems.

Understanding the intention of objects

In most standard self-driving systems, the 3D object detection results are mainly consumed
by prediction module which is responsible for predicting the future motion of dynamic agents.
Since each on-road agent continuously interacts with other agents, it is crucial to understand
the intention of each object for predicting their future motion.

Multi-frames 3D object detection becomes an active research topic for forecasting
a future trajectory. As a part of self-driving systems, a 3D object detection result can be
used for predicting the future trajectory of on-road agents. Since each on-road agent tends
to keep their motion at least for a short duration of time, detection results from several
temporally continuous frames helps to predict what will happen in a few second. Recently,
many researchers are exploring various methods to build an unified pipeline for both detection
and prediction modules together as an end-to-end manner so that features representation
can be learned jointly for detection and prediction.

Human pose estimation can be used for predicting the intention of pedestrians more
accurately. While current 3D object detection systems aim at predicting the tight 3D bound-
ing boxes around the objects, it is not enough to recognize the intention of objects. Human
poses which are predicted from the detection module can be supplemental information to
understand the intention of objects. To drive safely urban roads which are crowded with a
number of pedestrians, we believe that a human pose estimation will play a crucial role for
whole autonomy systems.

Abnormality detection

To guarantee a safety of self-driving vehicles, the autonomy systems must be able to react
properly when they encounter abnormal circumstances. For 3D object detection systems,
the abnormality may include a) encountering an object in a long-tailed distribution, b)
occasional sensor failure.

An object in a long-tailed distribution refers to the object which are rarely seen
during the normal driving situation. A debris and/or pot holes are examples of object in
a long-tailed distribution. Not only the static objects, but also dynamic objects such as
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pedestrians and animals walking on a freeway can be another example of objects in a long-
tailed distribution. Since most deep learning based 3D object detection systems are trained
with the dataset where the majority of distribution is collected from normal driving situation,
it is challenging to train a detection network for rarely seen objects. However, considering
that the most accidents are caused when a driver encounters abnormal situation, the 3D
object detection systems must be able to deal with an rarely experienced situation.

Sensor failure means that when one of sensors in detection system fails to operate prop-
erly. General on-board camera vision systems for self-driving vehicles collect images from
more than 5 or 6 camera sensors every 30ms. Each image from different camera sensor is
processed independently. Therefore, failure in one camera sensor may cause inconsistency
between several camera sensors. Additionally, inconsistency in detection results from differ-
ent sensor types such as LiDAR, camera and RADAR can lead to severe detection failure.
The 3D object detection systems should be able to deal with sensor-failure cases for safe
self-driving system.

Continual learning for 3D object detection systems

The 3D object detection systems for self-driving vehicles can be incrementally upgraded or
entirely replaced by other systems even after the original system is being used for deployment.
Continual learning is the idea of training a network continuously in order to adapt the change
of external world environment. The continual learning enables the incremental development
of more sophisticated detection systems.

It is often required to add new features to the currently deployed detection models. The
new features may include the improvement of detection performance, change of sensors, new
training dataset, and/or addition of new attributes to be predicted by the detection models.
In such cases, the detection model needs to be trained to adapt such external changes, which
requires long training time and heavy computation resources if the network is trained from
the scratch. The continual learning method can mitigate the time and computation required
for adopting new features into detection models.
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