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Abstract

A key problem in cognitive science concerns how the brain
binds together parts of an object into a coherent visual ob-
ject representation, One difficulty that this binding process
needs to overcome is that different parts of an object may be
processed by the brain at different rates and may thus become
desynchronized. Perceptual framing is a mechanism that resyn-
chronizes cortical activities corresponding to the same retinal
object. A neural network model based on cooperation between
oscillators via feedback from a subsequent processing stage is
presented that is able to rapidly resynchronize desynchronized
featural activities. Model properties help to explain perceptual
framing data, including psychophysical data about temporal
order judgments. These cooperative model interactions also
simulate data concerning the reduction of threshold contrast
as a function of stimulus length. The model hereby provides
a unified explanation of temporal order and threshold contrast
data as manifestations of a cortical binding process that can
rapidly resynchronize image parts which belong together in
visual object representations.

Introduction

The primate visual system performs the complex task of an-
alyzing the visual environment in several stages. At the first
stage, the retina, the incoming image is transduced into neu-
ral signals. These signals are then transmitted to the lateral
geniculate nucleus (LGN) and from there to the striate cortex
(V1). Cells in all these stages have comparatively small re-
ceptive fields, with the biggest being in V1. Striate receptive
fields have at most a diameter of about one degree in the fovea
(Hubel & Wiesel, 1968). Unlike the receptive fields of cells
in the retina and the LGN, receptive fields of striate neurons
tend to have a preferred orientation. These cells fire optimally
when a bar of their preferred orientation is in their receptive
fields. Since the receptive fields are rather small, it can be said
that striate neurons respond to local features, and hence they
decompose the retinal image into its main local orientations.

It is known that the latency of the response onset of retinal
and geniculate neurons is variable, even to identical stim-
uli (Shapley & Victor, 1978; Sestokas & Lehmkuhle, 1986).
Moreover, the latency depends on stimulus parameters. More
luminant stimuli are processed faster than less luminant stim-
uli, and higher spatial frequencies are processed faster than
lower spatial frequencies (Bolz, Rosner, & Wissle, 1982;
Sestokas & Lehmkuhle, 1986).

Since most images from a real environment contain a va-
riety of luminances and spatial frequencies, processing of
different parts of an image may happen at different rates, so
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that the cortical representation of the image may be desyn-
chronized. As long as the retinal image is constant, this does
not cause serious problems. However, when there is motion
in the retinal image, the visual system needs to ensure that
all the parts corresponding to the same retinal image are pro-
cessed together, to avoid false conjunctions that could impair
recognition of objects in a scene. Under extreme conditions,
such as the rapid presentation of visual stimuli, it can happen
that false conjunctions do occur (Intraub, 1985).

Perceptual framing is the process whereby the parts of an
image are resynchronized (Varela, Toro, John, & Schwartz,
1981). In the present study, a neural network model is pre-
sented that exhibits perceptual framing. That is, temporally
offset inputs to the network are resynchronized. The present
study also shows that perceptual framing can be implemented
with the same type of horizontal connections that have been
postulated in a model of form perception and perceptual
grouping (Grossberg & Mingolla, 1985a, 1985b).

Another issue that has to be solved by the visual system is
that information in the visual cortex is spatially distributed.
How does this information get bound together into coherent
object representations? This is necessary since the interpre-
tation of an image, which includes the recognition and the
localization of objects in the image, requires global informa-
tion. The anatomy of visual cortex suggests that horizon-
tal connections within each area, and feedback connections
between different areas, occur at multiple processing stages
(Felleman & Van Essen, 1991; Gilbert, 1993). The present
study focuses on interactions between neighboring neurons
via feedback from subsequent processing stages. It is shown
that horizontal integration within the visual cortex can en-
hance performance of single cortical cells, and thus can form
a starting point for the global understanding of visual images.

Perceptual Framing

Perceptual framing is the process of binding together parts of
neural representations corresponding to the same image that
may have come temporally out of register due to early pro-
cessing. Bottom-up convergence of signals in visual cortex
does not suffice as a mechanism for resynchronization, if only
because cortical cells have a fast rate of integration (Mason,
Nicoll, & Stratford, 1991), yet the responses of cortical cells
within the first Sms after response onset is a 95% accurate
predictor of the entire response strength (Celebrini, Thorpe,
Trotter, & Imbert, 1993; Oram & Perrett, 1992). It has also
been shown that synchronization cannot be mediated by a
clocking mechanism such as the cortical alpha-rhythm (Gho



& Varela, 1989).

Here we model how synchronization of distributed corti-
cal activities can temporally realign out-of-phase image parts.
The results model data showing that cortical activities syn-
chronize in the cat and in the monkey when a stimulus is
present in the visual field (Eckhorn, Bauer, Jordan, Brosch,
Kruse, Munk, & Reitboeck, 1988; Gray & Singer, 1989),even
when the receptive fields of the units recorded do not overlap.

This synchronization property of the neural network model
means that if two stimuli are presented at two different loca-
tions, separated by a stimulus onset asynchrony (SOA), then
the neural activities at the locations corresponding to those
stimuli are separated by a smaller amount of time. This is
how perceptual framing manifests itself in this model. Syn-
chronization can only occur for SOAs that are not too big, so
that perceptual framing only occurs for small SOAs.

A way to test this notion of perceptual framing is to link
it to temporal order judgments (TOJs) of two separate visual
stimuli. When perceptual framing breaks down, two stimuli
will be perceived as successive, and thus it will be possible for
observers to identify their temporal order. Hirsch and Sherrick
(1961) have found a psychometric function of the accuracy of
TOJs as a function of the stimulus onset asynchrony. Their
results are shown in Figure 1. At an SOA of 20ms, observers
can tell the temporal order with 75% accuracy.
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Figure 1: Accuracy of temporal order judgment as a function
of SOA. Comparison between experimental results and the
model proposed. SOA indicates the time by which stimulus
one (e.g. the “right stimulus™) leads the other stimulus in a
two stimulus presentation task. The ordinate gives the per-
cent responses that stimulus one appeared first. Solid line:
results from experimental study. Dashed line: results from
simulation of the model.

Spatial Pooling
Spatial summation is the effect that when stimuli are very
small (typically smaller than the size of a striate receptive

field), then an increase of stimulus size leads to a reduction
of threshold contrast (Thomas, 1978). These experiments
were conducted under the assumption that spatial summation
only occurs within the range of a receptive field, and hence
little data are available that indicate cooperative interactions
over sizes that go significantly beyond a single receptive field.
Gilbert (1993) has, however, reviewed evidence challenging
the classical notion of a receptive field in the light of psy-
chophysical, anatomical and physiological evidence suggest-
ing the existence of extensive lateral interactions,
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Figure 2: Comparison between psychophysical data and com-
puter simulations. Normalized threshold contrast as a func-
tion of normalized stimulus size. Solid line: results from
experimental study. Dashed line: results from simulations.

The present authors are aware of only one study that com-
pares contrast thresholds when stimulus lengths go beyond
that of the diameter of a single striate receptive field. Essock
(1990) showed a reduction of threshold contrast up to grating
lengths of 5.5 degrees. The results of Essock (1990) are re-
plotted in Figure 2. It can be seen how the threshold decreases
with increasing stimulus length. The length over which pool-
ing occurs is too long to allow an explanation within a striate
receptive field, thus suggesting some kind of horizontal corti-
cal cooperation. In the present study we call this effect spatial
pooling to distinguish it from spatial summation proper.

Description of the Model

Grossberg and Mingolla (1985a, 1985b) developed a model
called the Boundary Contour System (BCS) for the genera-
tion of emergent boundary segmentations by the visual cortex.
This model was later adapted to show that cortical synchro-
nization of neural activities does not require the presence of a
central clocking mechanism (Grossberg & Somers, 1991). In
the present study, we further develop and modify this model.
There are two layers, one consisting of fast-slow neural os-
cillators (Ellias & Grossberg, 1975), and the other of bipole
cells, that receive input to two separate receptive field lobes,
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in addition to receiving direct bottom-up input. In the present
simulations, bipole cells fire if at least two of its three re-
ceptive zones are activated. The architecture of the model is
shown in Figure 3,

Figure 3: The architecture of the model proposed. A layer
of fast-slow oscillators is coupled via a layer of bipole cells.
In contrast to previous versions of the model, there is a direct
signal from each oscillator to its corresponding bipole cell
which facilitates boundary completion.

In the simulations two stimuli of the same length are pre-
sented to different locations of the neural network, separated
by an SOA. The internal time difference At is the minimal
time between peaks of neural activity of the fast neurons at
the two sites corresponding to the stimuli. For different SOAs
we found the internal time difference At for the corresponding
neural signals in our model. The time of the response peak
corresponding to each of the two stimuli is a random vari-
able, and the mean of the difference between the two random
variables corresponding to the two stimuli is the internal time
difference At. The probability that each of those neural sig-
nals occurs at any given time follows the normal distribution,
where the mean of the first signal can be set to zero, and the
mean of the second can be set to At. The standard deviation
of the time of the peak response ¢ is the same for both, and
has been reported to be 6ms (Maunsell & Gibson, 1992; Zack,
1973). The probability that the signal corresponding to the
first stimulus is perceived first can be found by taking the
difference of the two random variables, which is also a nor-
mal distribution, with mean At and standard deviation /20
Thus the probability that the first stimulus in a two stimuli
paradigm is perceived first, and hence that the temporal order
of the stimuli is perceived correctly is given by

peo(2L)

V2o
where @ is the cumulative normal distribution function. Each
SOA leads to a different value for Af, and hence a different
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probability P. In Figure 1 the experimental results of Hirsch
and Sherrick (1961) about temporal order judgments and the
simulation results are compared. The simulations match the
data closely.

We also tested the model against psychophysical data on

spatial pooling (Essock, 1990) by finding the minimal inputs
necessary to yield oscillations (and therefore activities above
baseline level) for different input sizes. The results from
the simulations and from the experiment were normalized.
Nommalization was performed by dividing the input (or the
contrast) by the value at which it asymptotes for large stim-
ulus sizes. Since smaller stimuli require more contrast to be
detected, the normalized contrast for these stimuli is greater
thanone. Size was also normalized with respect to the asymp-
toting size. The normalized experimental data and computer
simulations are shown in Figure 2. The difference between
the two curves at small stimulus lengths can be attributed to
the fact that in the present study it was assumed that the stim-
ulus spans the full size of the cortical receptive fields. Had we
taken into account that very small stimuli only excite parts of
the receptive field of a single neuron, and thus the bottom—up
input is weakened and needs to be compensated by higher
contrast, the match would be very good. However, in this
study the focus was on lateral interactions via feedback.

Discussion
In this study, we have shown data about that perceptual fram-
ing and spatial pooling can be quantitatively explained using
a model neural process of cortical cooperation across space
and time. Such an architecture helps to bind perception of a
whole with its parts, and thus provides a key step in the global
integration of a percept. It is also known that synchroniza-
tion of convergent neural inputs drive long-term potentiation
(LTP) (Bliss & Collingridge, 1993). Thus perceptual framing
may be utilized not only for recognition, but also for learning
about the visual environment. Indeed it is known that per-
ceptual learning can occur quickly, with effects lasting for a
long time (Kamni & Sagi, 1993). Together these results sug-



gest that perceptual framing can set up a resonant state that
drives learning processes, as in Adaptive Resonance Theory
(Grossberg, 1976, 1980).

Appendix: Details of the model

In the simulations of the model there were 64 oscillators ar-
ranged along a ring. Each oscillator consisted of two nodes
each, one fast and one slow. The activity of the fast node is
denoted by z;, of the corresponding slow node by y;. The
index ¢ denotes the position of the oscillator, and ranges from
1 to 64. Oscillators with indices differing by one are neigh-
bors. Since the oscillators are arranged as aring, units indexed
by 1 and 64 respectively are also neighbors. This structure
was chosen to avoid edge effects. Care was taken to ensure
that input was sufficiently far removed from the wrap around
position to avoid undesirable side effects. The input to the
network is denoted by I; and it is position specific. Associated
with every oscillator there is a bipole cell, whose activity is
denoted by z;. The equations governing the oscillators are

% = —Azi+(B - zi) (Cfo(z:) + fo(zi) + L)
—Dz; fo(wi)
dyi o
-&t_ = E(.T., yl)
where the signal function f, is given by
0= gr e

and A, B,C, D and E are parameters of the network. The
parameters n, and Q, determine the signal function of the
oscillator. The equation governing the bipole cells is

zi = [fo(Li) + fo(R) + Ffo(Ci) = Tep]*
where

[z]* = max(z,0),

and the bipole signal function is
]
b =g

and F and I'.p; are parameters. The parameters n, and Q,
determine the signal function of the bipole cell. The bottom
up input to bipole cells is given by

L; = i Y folzi-j)
ji=l

R; = é Zfo(ri+j)
i=1

Ci = folzi)

where w is the halfwidth of the kernel. The initial conditions
of the network where chosen to be z; = 0.15, y; = 0.15, and
z; = 0 for all i. The initial value of the slow variable is main-
tained by tonic input, which is quenched when an input comes
on. Scaling of time was done by taking into account recent
findings that the period of oscillations in primates is about 15
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ms (Eckhomn, Frien, Bauer, Woelbern, & Kehr, 1993). It was
found that putting a timestep of 1 unit in the model equal to
1 ms yields good results. The integration stepsize used was
H = 0.1 ms. The parameters used throughout this report are
A=1,B=1,C=20,D=333,F=01,F=05,n, =
4,Q,=09,n,=5Q,=0001,Tpy=1,w=6.

In the temporal order judgment simulations, each node re-
ceived a constant level of background activity (I; = 0.15).
Two nodes received an input (/; = 0.65) which lasted for 250
ms. The first input (i = 33) comes at simulation onset, the
second input (i = 34) comes on later by an amount specified
with SOA.

In the spatial pooling simulations the background activity
was set to zero, (o avoid unwanted lateral interactions. For
each stimulus size all units that received input received the
same value. Threshold input was the lowest value (up to 0.01)
that led to oscillations.
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