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Abstract 

Prediction categories in the Critical Assessment of Structure Prediction (CASP) experiments 
change with the need to address specific problems in structure modeling. In CASP15, four new 
prediction categories were introduced: RNA structure, ligand-protein complexes, accuracy of 
oligomeric structures and their interfaces, and ensembles of alternative conformations. This paper 
lists technical specifications for these categories and describes their integration in the CASP data 
management system.  
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1 | INTRODUCTION 
 
CASP is a well-established experiment for tracking progress in computational methods for 
calculating protein structure from amino acid sequence and related challenges 1-4. While the core 
of CASP has remained unchanged since its inception, the scope changes frequently, with some 
categories becoming obsolete while new ones are introduced. Following the major advances in 
single protein structure modeling seen at CASP14, three categories were discontinued for round 
15: contact prediction, refinement, and third-party model accuracy estimation for monomeric 
targets. At the same time, discussions among the organizers and advisory board members as well 
as a survey of the modeling community established interest in the new categories of RNA structure, 
protein-ligand complexes, accuracy of oligomeric structures and their interfaces, and ensembles 
of alternative conformations. CASP launched pilot experiments in all these areas, exploring, where 
possible, collaborations with groups involved in the existing or recently discontinued related 
experiments. In CASP15, the new categories have yielded interesting results, and their assessment 
is discussed in dedicated papers in this journal special issue 5-8. The main goal of this paper is to 
address technical issues of introducing the new categories in CASP and serve as a point of 
reference for format specifications and details on how the experiment was conducted.  
 
2 | METHODS 
 
Introducing a new category into CASP requires planning data workflows, designing formats and 
technical parameters for new types of models, and incorporating those into the existing CASP 
infrastructure. Subsections 2.1-2.4 below describe the implementation details for four new 
CASP15 categories. 
 
2.1 | RNA structure prediction. Prediction of RNA structure from nucleic sequence is a 
challenging task as RNA molecules, like proteins, can fold into a wide variety of 3D shapes. 
Several research groups have been actively working in this area, and in 2010 Eric Westhof 
pioneered a CASP-like RNA-Puzzles challenge 9 to track the state of the art in the RNA structure 
prediction and provide a forum for discussing methodological advances. Over the course of 12 
years (2010-2021) there were 22 evaluated RNA-Puzzles challenges, which attracted the attention 
of around 10 returning participants 10. In 2022, on the initiative of Rhiju Das, Eric Westhof and 
CASP organizers, the RNA-Puzzles joined forces with CASP, and RNA structure prediction 
became a prediction category in CASP15. This helped expand the target and predictors base of the 



RNA-modeling experiment (12 targets, 25 research groups in CASP15), stimulate development of 
new RNA prediction methods through the exchange of ideas and techniques with the protein 
prediction community, where deep learning methods recently made a significant impact on the 
modeling accuracy 11,12, increase visibility of the field, and use CASP’s standardized platform for 
managing predictions and evaluating and comparing different prediction methods.  
 
To incorporate RNA prediction into CASP, we adhered as closely as possible to the requirements 
and recommendations of the RNA-Puzzles experiments 9. 

 
2.1.1 | RNA prediction format (https://predictioncenter.org/casp15/index.cgi?page=format#TS). 
Similarly to protein structure prediction, a CASP RNA submission file starts with the CASP header 
including format specification code, target identifier, author identifier, and description of methods 
used for modeling. The file can include up to five RNA 3D models, each encompassed by the 
MODEL/END keywords. Models are formatted according to the established standards of the 
RNA-Puzzles community 9:  

• 3D coordinates are provided for the complete list of atoms for all nucleotides from the 
target FASTA file.  

• only natural nucleotides (A, C, G, U) are allowed.  
• if present, modified monomeric units are transformed into unmodified ones by discarding 

atypical atoms.  
• only atoms from the following sets – (C2, C4, C6, C8, N1, N2, N3, N4, N6, N7, N9, O2, 

O4, O6) for nucleobases, and (C1', C2', C3', C4', C5', O2', O3', O4', O5', OP1, OP2, P) for 
sugar-phosphate backbone are allowed.  

 
In case of protein-RNA complexes, protein chains are designated with letters (A, B, C, ...) and 
RNA chains with numbers (0, 1, 2, ...). 
 
An example of RNA prediction is provided in Example 3 on the CASP15 format page 
https://predictioncenter.org/casp15/index.cgi?page=format.  
 
2.1.2 | Preparation of targets and model templates. The CASP organizers prepare a FASTA file 
with the sequence of targeted RNA. The file begins with a header containing target ID (e.g., 
>R1117) and chain IDs (i.e., numbers from 0 to 9) of all strands in the target structure. The body 
of the file includes nucleic acid sequence(s). In addition, the organizers generate a 3D structure 
template using the RNA-Puzzles formatting tool 13. The template is a PDB file containing all the 
required ATOM records with zeroed coordinate values. The information on targets is 
communicated to participating groups via the CASP web portal (e.g., 
https://predictioncenter.org/casp15/target.cgi?id=30&view=all ).  
 
Prior to submission, predictors can verify compatibility of their models with the provided 
templates by running the RNA-Puzzles tool that checks the number and ordering of residues and 
atoms in the submission 13. If a prediction file does not comply with the requirements, error 
messages are reported to a log file. Non-compliant files can be reformatted with the 
rna_pdb_toolsx.py script available from the rna-tools toolbox 13,14.  
 

https://predictioncenter.org/casp15/index.cgi?page=format#TS
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2.1.3 | Setting the acceptance system. At the target release time, each target is assigned a 
prediction time window, which is typically 3 days for servers and 3 weeks for expert groups. RNA 
structure models are accepted within the specified prediction window via email or dedicated CASP 
prediction submission webform. The CASP submission system automatically checks submissions 
for compliance with the deadlines and format requirements and provides feedback to predictors. 
The prediction format is checked with the same tools used to generate model templates (section 
2.1.2). If a prediction is rejected, an error message is sent to the submitter, and they have until the 
target deadline to fix the reported issue(s) and resubmit. Accepted predictions are stored in the 
CASP system and eventually evaluated after the target structure becomes available.  
 
The same submission rules apply to other prediction categories discussed further in this paper.  
 
2.1.4 | RNA evaluation measures. Predictions in the RNA category are assessed by checking their 
geometric plausibility and comparing them with target structures. When alternative target 
structures were available, given the early stage of RNA modeling, we reported the best score per 
model. Evaluation measures include Clashscore 15, Root Mean Square Deviation (RMSD) 16, Local 
Distance Difference Test (lDDT) 17, Template Modeling score (TM-score) 18, and Global Distance 
Test - Total Score (GDT-TS) 19. These are commonly used measures in protein-CASP evaluation 
that are also adopted here for RNA evaluation. However, none of these measures are suitable for 
assessing RNA-specific components, like canonical (G-C, A-U, G-U), non-canonical, and stacking 
interactions between the nucleobases that contribute to RNA folding and stabilization. Proper 
prediction of only canonical interactions is usually insufficient to obtain a good model of an RNA 
molecule (example in Figure 1), while prediction of non-canonical interactions is very valuable 
but hard to achieve due to high computational demands. We additionally consider an RNA-specific 
measure, Interaction Network Fidelity (INF) 13,20, which evaluates different types of RNA 
interactions in models. Calculation of these measures requires prior determination of RNA 
interactions from the atomic coordinates. This is done using 2D structure annotators such as 
RNAView 21, MC-Annotate 22, ClaRNA 23 or FR3D 24, which provide base pairs and their 
classification 25. Given two sets of interactions, one for the model and another for the target, we 
identify true positives (correctly predicted base pairs), false positives (unpredicted base pairs), and 
false negatives (incorrectly predicted base pairs), and then calculate the INF score as the Matthews 
correlation coefficient 26. The score ranges from [0.0, 1.0], with higher scores indicating better 
prediction of base-base interactions. The INF score is determined for all interactions (INF_all), 
and separately for canonical (Watson-Crick, INF_WC), non-canonical (non-Watson-Crick, 
INF_nWC), and stacking (INF_stacking) interactions.  
 



 
Figure 1. Two models of PreQ1 class I type III riboswitch superimposed with the target structure 
(R1117, green). Model R1117TS119_3 (orange, panel B) correctly reproduces all canonical base 
pairs at the same time not reproducing any non-canonical interactions and having the RMSD of 
9.90 Å. Model R1117TS287_2 (blue, panel A) misses 7% of canonical base pairs but is a much 
better model with the RMSD of 2.25 Å and non-canonical interactions reproduction rate of 39%. 
RMSD scores were computed on the 2-30 fragment. 
 
Many RNA targets were derived from low-to-medium resolution (4-7 Å) cryo-EM maps. To 
remove bias and modeling uncertainties potentially present in the reference structures, we 
additionally evaluated predictions by directly comparing them to maps. After docking models into 
maps, predictions were scored with five different measures: CCmask (cross-correlation masked by 
the area around the model), CCpeaks (cross-correlation masked by the model and the highest density 
peaks in the map), MI (mutual information), SMOC (segment-based Mander's overlap coefficient), 
and AI (atomic inclusion) 27,28. It is worth noting that model-independent measures are known to 
overinflate scores for compressed models with unrealistic geometries. Thus, when using these 
scores, it is important to first filter out models with poor topology scores or, alternatively, combine 
these scores with geometric scores, such as Clashscore. 
 
2.2 | Protein-ligand complexes.  
The ligand topic is not new to CASP: in CASPs 6 through 10 predicting ligand binding sites was 
a sub-challenge in the function prediction category 29-32. Given the recent advances in the accuracy 
of protein modeling methods 11,12, CASP organizers decided to include prediction of protein- and 
RNA- small molecule ligand complexes into the scope of CASP15 experiment hoping to boost 
development of methods in this area. Participants are provided with the sequence and 
stoichiometry of protein (or RNA) receptors, Simplified Molecular Input Line Entry System 
(SMILES) codes of bound ligands, and are asked to predict structures of protein- (RNA-) ligand 
complexes.  
 
2.2.1 | Macromolecule-ligand complex prediction format (https://predictioncenter.org/casp15/ 
index.cgi?page=format#LG). One important requirement for the ligand prediction format was the 
need to encode atom connectivity in a robust and reliable manner, as the correct atom connectivity 
is required for symmetry correction, a necessary step in accurate ligand assessment. Unfortunately, 

https://predictioncenter.org/casp15/%20index.cgi?page=format#LG
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the PDB format, which is commonly used in CASP, is not able to reliably encode connectivity for 
arbitrary ligands. The MDL molfile format 33 is a common format for ligands which was used in 
earlier ligand docking challenges such as D3R 34-37. This is a text-based, fixed column format that 
besides atom coordinates also encodes the bonds. Unlike the PDB format, atoms are not named 
and only identified by their element and connectivity. The format allows reporting additional 
properties such as charge, valence, or isotope, but those were not required nor used here. Bonds 
between atoms are encoded explicitly, one by line, together with the bond type (single, double, 
triple, or aromatic) and stereochemistry. The format also includes header lines, a COUNTS line, 
which can help check the integrity of the file, and an M END line which indicates the end of the 
ligand data. 
 
For CASP15, we devised a hybrid submission format where the receptor's model (protein or RNA) 
and ligand model are submitted as separate files in the same spatial frame of reference. The 
receptor is submitted in the PDB format, while the ligand in MDL (see below for details). Similarly 
to the regular protein structure submission, a CASP ligand submission (LG format) starts with a 
CASP header including format specification code, target identifier, author identifier, and 
description of the modeling method. Two new keywords are introduced: the LIGAND keyword, 
which defines ligand name and the beginning of the ligand data, and the POSE keyword, which 
defines the pose number for the selected ligand. Participants are allowed to submit up to 5 poses 
of a given ligand for a selected receptor model.  
 
An example of LG prediction is provided in Example 6 on the CASP15 format page.  
 
2.2.2 | Preparation of targets and model templates.  
A FASTA file of the receptor sequence is prepared by the CASP organizers. For known small 
molecules, SMILES are retrieved from the PDB component dictionary. In the case of novel small 
molecules (not present in the PDB component dictionary), SMILES are provided by the 
experimentalists. In both cases, SMILES are compared and modified based on those derived from 
the PDB coordinates. If necessary, stereochemistry is assigned using the 
AssignStereochemistryFrom3D function from RDKit, and the protonation state adjusted by 
manually editing the SMILES based on the visual inspection of protein-ligand interactions.  
 
The relevance of each small molecule is decided case by case for each target. Only biologically 
relevant small molecules are retained. Common crystallographic reagents and ions are ignored if 
not interacting with the small molecules or part of a structural motif (e.g., zinc binding motif). 
 
A script to prepare prediction templates (MDL files) is provided by the CASP organizers. It is 
implemented in python 3 and RDKit python bindings (http://www.rdkit.org/) . The script initially 
converts the input SMILES strings to RDKit Mol objects using the rdkit.Chem.MolFromSmiles 
method. At this stage, the Mol objects contain only the information related to small molecule 
properties, like atom types and bond formation. Coordinate section is added to the Mol objects 
using the RDKit’s ETKDG method 38. Subsequently, the Mol objects are written to the MDL-
formatted file 33, which can be used as a ligand submission template.  
 
2.2.3 | Setting up the acceptance system. Validation of ligand predictions is performed with 
scripts written in python 2.7 and RDKit. Initial checks verify the CASP header section (availability 

http://www.rdkit.org/


and correctness of PFRMAT, TARGET, AUTHOR, and MODEL/END records). Once 
submissions have passed this phase, ligand models are converted to RDKit Mol objects and 
compared with the template for downstream evaluation. Each molecule in the submitted file is 
validated by comparison with a reference Mol object generated from the corresponding SMILES 
string as described above. To validate the submissions, comparisons of the following parameters 
are undertaken: 

• number of atoms and their types,  
• number of bonds,  
• bond types and atom types in bond pairs (e.g., C-C Single, or C=O Double). 

 
Additionally, to account for atom connectivity and chirality in submitted models, the maximum 
common substructures between the submitted and reference ligands are calculated using the 
FindMCS function in RDKit. To pass the validation, a molecule must have a maximum common 
substructure equal to the number of atoms in the reference model.  
 
Finally, a validation report is created showing the results of the validation process to aid in 
troubleshooting invalid submissions.  
 
2.2.4 | Macromolecule-ligand complex evaluation measures. Previous ligand docking 
challenges like Teach Discover Treat (TDT) 39, Continuous Evaluation of Ligand Prediction 
Performance (CELPP) 40 and Drug Discovery Data Resource (D3R) 34-37 have used two main types 
of metrics to assess how well participants can model receptor-ligand complexes. These evaluated 
how close a predicted ligand is to the target within the binding site in absolute terms with the 
RMSD metric, and how well the native receptor-ligand interactions are reproduced. CASP 
experiment brings additional assessment challenges: (1) because the receptor structure is not given 
but rather modeled, ligands in the model and reference complexes can be bound to different 
configurations of binding sites, and thus calculation of any superposition-based scores requires 
preliminary alignment of binding pockets with ligands in two complexes, which is not a trivial 
task; (2) chain mapping needs to be established; (3) incomplete ligands in some targets require 
partial graph matching for the symmetry correction; and (4) multiple copies of ligands in the targets 
and models have to be mapped (assigned) uniquely, in order to avoid scoring target or predicted 
ligands multiple times. 
 
To address these challenges, we developed two scores, which are described in more detail in the 
CASP15 Ligand Assessment paper 7. The Binding-Site Superposed, Symmetry-Corrected Pose 
Root Mean Square Deviation (BiSyRMSD) score defines the binding sites and the superpositions 
to compute RMSDs between target’s and model’s ligands. The Local Distance Difference Test for 
Protein-Ligand Interactions (lDDT-PLI) measure assesses how well native contacts between the 
receptor and the ligand are reproduced in the model with an lDDT-based metric and symmetry 
correction. When used in combination, these scores give a better account of modeling receptor-
ligand complexes.  
 
2.3 | Estimation of model accuracy (EMA) for oligomeric targets.  
The EMA category has been an integral part of every CASP experiment starting with CASP7 41-

48. It has attracted the attention of many developers, with over 70 methods tested in the previous 
CASP experiment 48. An emphasis on the importance of this category led to very positive 



developments in protein structure prediction as modelers now routinely integrate quality estimates 
into their modeling pipelines. In particular, the CASP14-winning AlphaFold2 method offers 
reliable estimates of global and local accuracy of their models 10,11.  

In CASP15, the focus of the EMA category shifted from predicting accuracy of single-
sequence proteins to multi-molecular complexes.  
 
2.3.1 | Model accuracy prediction format (https://predictioncenter.org/casp15/index.cgi 
?page=format#QA). For global (whole model) accuracy prediction (QMODE1), participants are 
asked to submit a fold similarity score (SCORE, in 0-1 range), which estimates the similarity of 
model’s overall fold to the target’s one, and an interface similarity score (QSCORE, also in 0-1 
range), which evaluates reliability of quaternary structure interfaces. Submitting the QSCORE is 
optional, and predictors can skip it by putting ‘X’ symbol in the corresponding place of a QA 
prediction (see the link above). In QMODE2 (local accuracy), in addition to the QMODE1 scores, 
the predictors are asked to assign confidence scores to the interface residues of the model, 
indicating their likelihood of being present in the native structure's interface. Interface residues are 
identified as having contact with at least one residue from a different chain, with a Cβ-Cβ distance 
not exceeding 8Å (or Cα, if the residue is Glycine).  
 
Examples of EMA predictions in QMODE1 and QMODE2 are provided in Example 5 on the 
CASP15 format page.  
 
2.3.2 | Submission collecting process. EMA predictions in CASP15 are requested for all (and 
only) multimeric targets. In contrast with previous CASPs, EMA targets are released after all 
models (and not only server models) are collected on the corresponding structure prediction target. 
A tarball with assembly predictions from all CASP groups is created the next day after the TS 
target closure, and a link to the tarball file is pushed to the EMA servers and posted at the CASP15 
website. All EMA groups, regardless of their type (i.e., ‘server’ or ‘human’) have 2 days to return 
accuracy estimates for TS models included in the tarball file. The predictions are checked with the 
verification scripts, and successful predictions are saved for subsequent evaluation.  
 
2.3.3 | EMA evaluation measures. Global predictions were compared with established evaluation 
metrics possessing the desired attributes. This is the oligomeric Template Modelling score (TM-
score) 49 for overall topology (SCORE) and the contact based QS-score 50 which is interface centric 
(QSCORE). To ensure a comprehensive evaluation, these metrics were supplemented with 
additional measures. An oligomeric GDT-like score, referred to as oligo-GDTTS, was employed 
for overall topology analysis, and a variant of the interface centric DockQ score 51. Notably, DockQ 
evaluates pairwise interfaces, necessitating the introduction of a weighted average metric—termed 
DockQ-wave—to effectively score higher-order complexes. Local predictions were compared 
against the per-residue lDDT 17 and CAD (AA-variant) 52 scores, which assess the accuracy of 
relative atom positions in the neighborhood, including neighboring chains. Conceptually the scores 
are contact-based, but do not penalize for added contacts, which is relevant in case of incorrect 
interfaces. To address this limitation, two novel local variants of the QS-score and DockQ have 
been introduced: PatchQS and PatchDockQ. All evaluation metrics are described in detail in the 
CASP15 EMA Assessment paper 6. 
 
 

https://predictioncenter.org/casp15/index.cgi?page=format#LG
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2.4 | Ensembles of alternative conformations. 
Following the success of deep-learning methods for single structures, it is increasingly important 
to assess methods for predicting ensembles of alternative conformations. While deep learning and 
other methods have the potential to generate ensembles in some circumstances, these abilities have 
never been rigorously tested. In CASP15, we made a first attempt to include this category. For 
CASP purposes, we categorize ensembles 8 as: (1) cases where a macromolecule populates 
multiple conformations under the same environmental and chemical conditions (including 
intrinsically disordered proteins or parts of proteins; vibrational motion; local alternative 
conformations; ‘ghost’ conformations which are present at low level but are dominant in other 
conditions; and folding intermediates.). (2) Cases where a macromolecule adopts different 
conformations in response to environment or chemical change (ligand binding; macromolecular 
complex formation; post-translational modification; mutations; and crystal, pH and other 
environmental changes). A third category of ensembles we consider is the set of conformations 
consistent with the experimental data. The latter is an increasingly important category both because 
of the now common high accuracy of the computed structures and the inclusion of lower resolution 
data in CASP.  
 
Targets for alternative conformers do not require separate prediction formats as they are 3D 
structures routinely processed in CASP, but they do require a mechanism for submitting multiple 
models. In CASP15, this need was handled in two different ways. In some cases, different 
alternative conformations were treated as separate targets. In particular,  

• two targets were assigned for modeling an isocyanide hydratase represented by a wild-type 
structure (target T1110) and its one-point mutant T1109, where amino acid D183 was 
changed to A183, 

• two targets (R1107 and R1108) were assigned for modeling human and chimpanzee 
CPEB3 ribozymes, which differ by a single nucleic acid A30 (human) → G30 
(chimpanzee), 

• two pairs of targets (TR1189 and TR1190) were assigned for modeling complexes of the 
metabolite repressor protein (RsmA) and a non-coding RNA (RsmZ). Both complexes 
contain one RNA molecule but different number of protein molecules (6 in TR1189 and 4 
in TR1190), 

• five targets (T1158v0-v4) were assigned for modeling a type IV ABC transporter, where 
five different conformations have been observed, depending on environmental conditions 
(ligand binding).  
 

In other cases, participants were encouraged to submit multiple conformers using the standard 
CASP five models target format. This approach was used for  

• three kinases (CASP targets T1195-T1197), each of which has two to three sets of 
experimental coordinates representing different conformations,  

• the Holliday Junction complexes (targets T1170, H1171, H1172), some subunits of which 
are deformed due to the contact with DNA and other protein molecules in the complex, 

• RNA origami target R1138, which was solved in a kinetically trapped young state and the 
mature state, 

• SL5 domain of the RNA betacoronavirus structure BtCoV-HKU (CASP target R1156), 
where one of the helices accepted multiple relative conformations with respect to the 
remainder of the structure.  



 
3 | CONCLUSION 
 
This paper summarizes the technical aspects of new prediction categories in CASP15 and can serve 
as a reference point for future predictors. The systems for handling RNA/ligand/multimer-EMA 
predictions in CASP15 were implemented shortly before the start of the experiment and, as such, 
were not extensively tested. Based on the feedback from CASP15 assessors and predictors, we 
plan to improve the system by further automating the process of verifying RNA and ligand 
submissions and ensuring better compliance of models with the required format. This investment 
of time and effort should pay off at the assessment stage with a more seamless evaluation of 
predictions. Since the PDB format is becoming obsolete, we will motivate predictors and 
developers of the evaluation measures used in CASP to support the PDBx/mmCIF format in their 
tools and methods. For the RNA category, we will work to further incorporate and standardize 
evaluation measures which assess the base-base interaction network. This will require setting 
community-accepted standards in identification and annotation of RNA interactions 22. Further, 
we will work to improve measures comparing predictions to raw data to assess low-resolution 
targets. For the ligand prediction category, we need to improve the set of targets with more 
interesting ligand modeling challenges, possibly by tapping into unreleased structures from 
pharmaceutical companies. We will also improve the acceptance system by validating the identity 
of submitted ligands in a more robust manner, and we would like to consider introducing metrics 
for self-assessment of the accuracy of ligand poses within the receptor. For evaluating ensembles 
of alternative conformations, we will explore acceptance of multi-model entities, with optional 
probability weights, as submissions. 
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