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Summary
Personalized optimal decision making, finding the optimal decision rule (ODR) based on individ-
ual characteristics, has attracted increasing attention recently in many fields, such as education,
economics, andmedicine. CurrentODRmethods usually require the primary outcome of interest
in samples for assessing treatment effects, namely the experimental sample. However, in many
studies, treatmentsmayhave a long-termeffect, and as such the primary outcomeof interest can-
not be observed in the experimental sample due to the limited duration of experiments, which
makes the estimation of ODR impossible. This paper is inspired to address this challenge bymak-
ing use of an auxiliary sample to facilitate the estimation of ODR in the experimental sample.We
propose an auGmented inverse propensity weighted Experimental and Auxiliary sample-based
decision Rule (GEAR) by maximizing the augmented inverse propensity weighted value estima-
tor over a class of decision rules using the experimental sample, with the primary outcome being
imputed based on the auxiliary sample. The asymptotic properties of the proposedGEAR estima-
tors and their associated value estimators are established. Simulation studies are conducted to
demonstrate its empirical validity with a real AIDS application.
KEYWORDS:
Augmented inverse propensity weighted estimation; Auxiliary data; Individualized treatment
rule; Optimal treatment decisionmaking

1 INTRODUCTION
Personalized optimal decision making, finding the optimal decision rule (ODR) based on individual characteristics to maximize the mean outcome
of interest, has attracted increasing attention recently inmany fields. Examples include offering customized incentives to increase sales and level of
engagement in the areaof economics (Turvey2017), developing an individualized treatment rule for patients tooptimize expected clinical outcomes
of interest in precision medicine (Chakraborty &Moodie 2013), and designing a personalized advertisement recommendation system to raise the
click rates in the area of marketing (Cho, Kim, & Kim 2002).
The general setup for finding the ODR contains three components in an experimental sample (from either randomized trials or observational

studies): the covariate information (X), the treatment information (A), and the outcome of interest (Y). However, current ODRmethods cannot be
applied to caseswhere treatments havea long-termeffect and theprimaryoutcomeof interest cannotbeobserved in theexperimental sample. Take
the AIDSClinical Trials Group Protocol 175 (ACTG175) data (Hammer et al. 1996) as an example. The experiment randomly assignedHIV-infected
patients to competitive antiretroviral regimens, and recorded their CD4 count (cells/mm3) and CD8 count over time. A higher CD4 count usually
indicates a stronger immune system. However, due to the limitation of the follow-up, the clinical meaningful long-term outcome of interest for the
AIDS recovery may be missing for a proportion of patients. Similar problems are also considered in the evaluation of education programs, such as
the Student/Teacher Achievement Ratio (STAR) project (Chetty et al. 2011; Word et al. 1990) that studied long-term impacts of early childhood

0Abbreviations:ACTG175, AIDSClinical Trials GroupProtocol 175; AIPW, augmented inverse propensityweighted; CI, confidence interval; GEAR, auG-
mented inverse propensity weighted Experimental and Auxiliary sample-based decision Rule; I.I.D., independent and identically distributed; ODR, optimal
decision rule
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education on the future income. Due to the heterogeneity in individual characteristics, one cannot find a unified best treatment for all subjects.
However, the effects of treatment on the long-term outcome of interest can not be evaluated using the experimental data solely. Hence, deriving an
ODR tomaximize the expected long-term outcome based on baseline covariates obtained at an early stage is challenging.
This paper is inspired to address the challenge of developingODRwhen the long-term outcome cannot be observed in the experimental sample.

Although the long-term outcome may not be observed in the experimental sample, we could instead obtain some intermediate outcomes (also
known as surrogacies or proximal outcomes,M) that are highly related to the long-term outcome after the treatment was given. For instance, the
CD4 and CD8 counts recorded after a treatment is assigned, have a strong correlation with the healthy of the immune system, and thus can be
viewed as intermediate outcomes. A natural question is whether an ODR to maximize the expected long-term outcome can be estimated based
on the experimental sample (that consists of {X,A,M}) only. The answer is generally no mainly for two reasons. First, it is common and usually
necessary to have multiple intermediate outcomes to characterize the effects of treatment on the long-term outcome. However, when there are
multiple intermediate outcomes, it is hard to determine which intermediate outcome or what combination of intermediate outcomes will lead to
the best ODR for the long-term outcome. Second, to derive the ODR that maximizes the expected long-term outcome of interest based on the
experimental sample, we need to know the relationship between the long-term outcome, intermediate outcomes and baseline covariates, which is
generally not practical.
In this work, we propose using an auxiliary data source, namely the auxiliary sample, to recover themissing long-term outcome of interest in the

experimental sample, based on the rich information of baseline covariates and intermediate outcomes. Auxiliary data, such as electronic medical
records or administrative records, are now widely accessible. These data usually contain rich information for covariates, intermediate outcomes,
and the long-term outcome of interest. However, since they are generally not collected for studying treatment effects, treatment information may
not be available in auxiliary data. In particular, in this work, we consider the situation that an auxiliary data consisting of {X,M,Y} is available,
where Y is the long-term outcome of interest. Note it is also impossible to derive ODR based on such auxiliary sample due tomissing treatments.

1.1 RelatedWorks
There is a huge literature on learning theODR, includingQ-learning (Qian&Murphy2011; Watkins&Dayan1992; Y. Zhao,Kosorok,&Zeng2009),
A-learning (Murphy 2003; Robins, Hernan, & Brumback 2000; Shi, Fan, Song, & Lu 2018a), value search methods (Nie, Brunskill, & Wager 2020;
Wang, Zhou, Song, & Sherwood 2018; B. Zhang, Tsiatis, Laber, & Davidian 2012 2013), outcomeweighted learning (Y. Zhao, Zeng, Rush, & Kosorok
2012; Y.-Q. Zhao, Zeng, Laber, & Kosorok 2015; Zhou, Mayer-Hamblett, Khan, & Kosorok 2017), targetedminimum loss-based estimator (van der
Laan & Luedtke 2015), and decision list-basedmethods (Y. Zhang, Laber, Davidian, & Tsiatis 2018; Y. Zhang, Laber, Tsiatis, & Davidian 2015).While
none of thesemethods could derive ODR from the experimental sample with unobserved long-term outcome of interest.
Our considered estimation of the ODR naturally falls in the framework of semi-supervised learning. A large number of semi-supervised learn-

ing methods have been proposed for the regression or classification problems (Chakrabortty, Cai, et al. 2018; Chapelle, Scholkopf, & Zien 2009;
Chen, Hong, Tarozzi, et al. 2008; Zhu 2005). Recently, Athey, Chetty, Imbens, and Kang (2019) studied the estimation of the average treatment
effect under the framework of combining the experimental data with the auxiliary data. They proposed to use the surrogate index and clarified the
comparability and surrogacy assumptions, which allowed them to impute the missing outcomes in the experimental data based on the regression
model learned from the auxiliary data using baseline covariates and intermediate outcomes. However, as far as we know, no work has been done
for estimating theODR in such a semi-supervised setting.

1.2 Contributions
Our work contributes to the following folds. First, to the best of our knowledge, this is the first work on estimating the heterogeneous treatment
effect and developing the optimal decision making for the long-term outcome that cannot be observed in an experiment, by leveraging the idea
fromsemi-supervised learning andextending the frameworkofAthey et al. (2019).Methodologically,wepropose an auGmented inverse propensity
weighted Experimental and Auxiliary sample-based decision Rule, named GEAR. This rule maximizes the augmented inverse propensity weighted
(AIPW) estimator of the value function over a class of interested decision rules using the experimental sample, with the primary outcome being
imputed based on the auxiliary sample. Theoretically, we show that the AIPW estimator under the proposed GEAR is consistent and derive its
corresponding asymptotic distribution under certain conditions. A confidence interval (CI) for the estimated value is provided.
The rest of this paper is organized as follows.We introduce the statistical framework for estimating the optimal treatment decision rule using the

experimental sample and the auxiliary sample, and associated assumptions in Section 2. In Section 3, we propose our GEAR method and establish
consistency and asymptotic distributions of the estimated value functions under the proposed GEAR. Extensive simulations and sensitivity studies
are conducted to demonstrate the empirical validity of the proposed method in Section 4, followed by an application to ACTG 175 data in Section
5.We conclude our paper with a discussion in Section 6. The technical proofs are given in the supplementary article.
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2 STATISTICAL FRAMEWORK
2.1 Experimental Sample and Auxiliary Sample
Suppose there is an experimental sample of interest E. LetXE denote r-dimensional individual’s baseline covariates with the supportXE ∈ Rr , and
AE ∈ {0, 1} denote the treatment an individual receives. The long-term outcome of interest YE with supportYE ∈ R cannot be observed, instead
we only obtain the s-dimensional intermediate outcomesME with supportME ∈ Rs after a treatmentAE is assigned. DenoteNE as the sample size
for the experimental sample, which consists of {Ei = (XE,i,AE,i,ME,i), i = 1, . . . ,NE} independent and identically distributed (I.I.D.) across i.
To recover the missing long-term outcome of interest in the experimental sample, we include an auxiliary sample,U, which contains the individ-

ual’s baseline covariatesXU, intermediateoutcomesMU, and theobserved long-termoutcomeof interestYU, with supportXU,MU,YU respectively.
However, treatment information is not available in the auxiliary sample. Let NU denote the sample size for the I.I.D. auxiliary sample that includes
{Ui = (XU,i,MU,i,YU,i), i = 1, . . . ,NU}.
We use R = {E,U} to indicate the missingness and identification of each sample, where R = E implies the experimental sample with miss-

ing long-term primary outcome and R = U means the auxiliary sample with missing treatment information. Thus, these two samples can also be
rewritten as one joint sample {(Xi,Ri,AiIRi=E,Mi,YiIRi=U), i = 1, . . . ,NE + NU}, where I(·) is an indicator function.

2.2 Assumptions
In this subsection, wemake five key assumptions in order to introduce theODR. For the experimental sample, define the potential outcomesY∗E(0)
andY∗E(1) as the long-term outcome thatwould be observed after an individual receiving treatment 0 or 1, respectively. Let the propensity score as
the conditional probability of receiving treatment 1 in the experimental sample, i.e. π(x) = PrE(AE,i = 1|XE,i = x). As standard in causal inference
by Rubin (1978), we assume:
(A1). Stable Unit Treatment Value Assumption (SUTVA):YE = AEY

?
E(1) + (1− AE)Y

?
E(0).

(A2). No Unmeasured Confounders Assumption: {Y∗E(0),Y∗E(1)} ⊥⊥ AE | XE.

(A3). 0 < π(x) < 1 for all x ∈ XE.
To impute themissing long-term outcome in the experimental samplewith the assistance of the auxiliary sample, we introduce the following two

assumptions, the comparability assumption and the surrogacy assumption.
First, the comparability assumption states that the population distribution of the long-term outcome of interest Y is independent of whether

belonging to the experimental sample or the auxiliary sample, given the information of population baseline covariatesX and population intermedi-
ate outcomesM as follows.
(A4). Comparability Assumption:Y ⊥⊥ R | X,M.
Here, (A4) is also known as ‘conditional independence assumption’ made in Chen et al. (2008), and has an equivalent expression as YE |

{ME,XE} ∼ YU | {MU,XU} proposed in Athey et al. (2019). When (A4) holds, we have a direct conclusion of the equality of the conditional mean
outcome given baseline covariates and intermediate outcomes in each sample, stated in the following corollary.
Corollary 2.1. (Equal ConditionalMean) Under (A4),

E[YE|ME = m,XE = x] = E[YU|MU = m,XU = x]. (1)
Remark 1. It is shown in Section 3 that (A4) can be relaxed to Equation (1) for deriving the proposedmethod.
We further define the missing at random (MAR) assumption in the joint sample as: {Y,A} ⊥⊥ R | X,M; and give the following corollary to show

the relationship between (A4) and theMAR assumption.
Corollary 2.2. (MARAssumption)

{Y,A} ⊥⊥ R | X,M −→ Y ⊥⊥ R | X,M.

Remark 2. Corollary 2.2 is a direct result of joint independence implyingmarginal independence. Though (A4) is untestable due to themissing long-
termoutcome in the experimental sample, one can believe (A4) holds if there exists strong evidence about the reasonability of theMARassumption
in the joint sample.
Second, the surrogacy assumption states that the long-term outcome of interest in the experimental sample is independent of the treatment

conditional on a set of baseline covariates and intermediate outcomes as below.
(A5). Surrogacy Assumption:YE ⊥⊥ AE | XE,ME.
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Remark 3. The above assumption is first proposed in Athey et al. (2019). The validation of the surrogacy assumption relies on the ‘richness’ of
intermediate outcomes that are highly related to the long-termoutcome of interest. Similarly, it is infeasible to check the surrogacy assumption due
to themissing long-term outcome in the experimental sample.
We illustrate the statistical framework of the joint sample under above assumptions by a direct acyclic graph in Figure 1. Graphically, A and Y

have no common parents except forX, encoding (A2);R andY have two common parents,X andM, encoding (A4); when fixingX andM,A andY are
independent, encoding (A5).

2.3 Value Function andOptimal Decision Rule
A decision rule is a deterministic function d(·) that maps XE to {0, 1}. Define the potential outcome of interest under d(·) as Y∗E(d) = Y∗E(0){1 −
d(XE)}+Y∗E(1)d(XE),whichwould be observed if a randomly chosen individual from the experimental sample had received a treatment according
tod(·), wherewe suppress thedependenceofY∗E(d)onXE.We thendefine thevalue functionunderd(·) as theexpectationof thepotential outcome
of interest over the experimental sample as

V(d) = E{Y∗E(d)} = E[Y∗E(0){1− d(XE)}+ Y∗E(1)d(XE)].

As a result, we have the optimal treatment decision rule (ODR) of interest defined to maximize the value function over the experimental sample
among a class of decision rules of interest as dopt(·) = argmind(·) V(d). Suppose the decision rule d(·) relies on a model parameter β, denoted as
d(·) ≡ d(·;β). We use a shorthand to write V(d) as V(β), and define β0 = argminβ V(β). Thus, the value function under the true ODR d(·;β0) is
defined asV(β0).

3 PROPOSEDMETHOD
In this section, we detail the proposed method by constructing the AIPW value estimator for the long-term outcome based on two samples. Imple-
mentation details are provided to find the ODR. The consistency and asymptotical distribution of the value estimator under our proposed GEAR
are presented, followed by its confidence interval. We also provide the inverse propensity-score weighted value estimator and its related theories
in Appendix A. All the proofs are provided in the supplementary article.

3.1 AIPWEstimator for Long-TermOutcome
To overcome the difficulty of estimating the value function due to the missing long-term outcome of interest in the experimental sample, one
intuitive way is to impute the missing outcome YE with its conditional mean outcome given baseline covariates and intermediate outcomes (total
common information available in both samples).
Denote µE(m, x) ≡ E[YE|ME = m,XE = x], and µU(m, x) ≡ E[YU|MU = m,XU = x]. Under Corollary 2.1, we have µE(m, x) = µU(m, x). Here,

µE(m, x) is inestimable because of the missing long-term outcome. We instead use µU(ME,XE) to impute the missing YE and give the following
lemma as amiddle step to construct the AIPW value estimator for the long-term outcome.
Lemma 1. Under (A1)-(A5), given d(·;β), we have

V(β) = E

[
I{AE = d(XE;β)}µU(ME,XE)

AEπ(XE) + (1− AE){1− π(XE)}

]
.

Next, we propose the AIPW estimator of the value function for the long-term outcome in the experimental sample. To address the difficulty
of forming the augmented term when the long-term outcome of interest cannot be observed, we show that augmenting on the missing long-term
outcome is equivalent to augmenting on the imputed conditional mean outcome of interest µU(ME,XE), by the following lemma.
Lemma 2. Under (A1)-(A5), given d(·;β), we have

EYE|XE
{YE|AE = d(XE;β),XE} = EME|XE

{µU(ME,XE)|AE = d(XE;β),XE},

where EA|B means taking expectation with respect to the conditional distribution ofA givenB.
According to Lemma 1 and Lemma 2, given a decision rule d(·;β), the value functionV(β) can be consistently estimated through

V?n,AIP(β) =
1

NE

NE∑
i=1

[
νi +

I{AE,i = d(XE,i;β)}{µU(ME,i,XE,i)− νi}
AE,iπ(XE,i) + (1− AE,i){1− π(XE,i)}

]
,
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where νi ≡ E{µU(ME,i,XE,i)|AE,i = d(XE,i;β),XE,i} presents the augmented term. Here, the propensity score π can be estimated in the experi-
mental sample, denoted as π̂, and the conditional mean µU can be estimated in the auxiliary sample, denoted as µ̂U. Then, by replacing the implicit
functions inV?n,AIP(β), it is straightforward to give the AIPWestimator of the value functionV(β) as

V̂AIP(β) =
1

NE

NE∑
i=1

[
ν̂i +

I{AE,i = d(XE,i;β)}{µ̂U(ME,i,XE,i)− ν̂i}
AE,iπ̂(XE,i) + (1− AE,i){1− π̂(XE,i)}

]
,

where ν̂i ≡ Ê{µ̂U(ME,i,XE,i)|AE,i = d(XE,i;β),XE,i} is the estimator for νi. We define β̂G = argmaxβV̂AIP(β), and then propose the GEAR as
d(X; β̂G)with the corresponding estimated value function as V̂AIP(β̂

G).

3.2 Implementation Details
3.2.1 Class of Decision Rules
TheGEAR can be searchedwithin a pre-specified class of decision rules. Popular classes include generalized linear rules, fixed depth decision trees,
threshold rules, and so on (Athey & Wager 2017; Rai 2018; B. Zhang et al. 2012). In this paper, we focus on the class of generalized linear rules.
Specifically, suppose the decision rule takes a form as d(XE;β) ≡ I{g(XE)

>β > 0}, where g(·) is an unknown function. We use φX(·) to denote
a set of basis functions of XE with length v, which are “rich” enough to approximate the underlying function g(·). Thus, the GEAR is found within a
class of I{φX(XE)

>β > 0}. For notational simplicity, we include 1 in φX(·) so that β ∈ Rv+1. With subject to ||β||2 = 1 for identifiability purpose,
themaximizer for V̂AIP(β) can be solved using any global optimization algorithm. In our implementation, we apply the heuristic algorithm to search
for the GEAR. The architecture of the proposed GEAR is illustrated in Figure 2.

3.2.2 EstimationModels
The conditionalmean of the long-termoutcomeµU(m, x) can be estimated through any parametric or nonparametricmodel. In practice, we assume
µU(m, x) can be determined by a flexible basis function of baseline covariates and intermediate outcomes, to fully capture the underlying true
model. Similarly, one canuseaflexiblebasis functionofbaseline covariates and the treatment tomodel theaugmented termaswell as thepropensity
score function. Note that anymachine learning tools such as RandomForest or Deep Learning can be applied tomodel terms in the proposed AIPW
estimator. Our theoretical results still hold under these nonparametricmodels as long as the regressors have desired convergence rates (see results
established in Farrell, Liang, andMisra (2018); Wager and Athey (2018)).

3.2.3 Estimation of the Augmented Term
To estimate the augmented term νi, we need three steps as follows.
Step 1. First, wemodel µU(m, x) through the auxiliary sample {XU,MU,YU} as µ̂U(m, x).
Step 2. Second, we plug {ME,XE} of the experimental sample into µ̂U(m, x) and get µ̂U(ME,XE) as the conditional mean outcome of interest to

impute themissingYE.
Step 3. At last, we fit µ̂U(ME,XE) on {AE,XE} in the experimental sample, and get ν̂i.

3.3 Theoretical Properties
We next show the consistency and asymptotic normality of our proposed AIPW estimator. Its asymptotic variance can be decomposed into two
parts, corresponding to the estimation variances from two independent samples. As mentioned in Section 3.2, our AIPW estimator can handle
various machine learning or parametric estimators as long as regressors have desired convergence rates. To derive an explicit variance form, we
next focus on parametric models.
We posit parametric models for π(x) ≡ π(x; γ) and µU(m, x) ≡ µU(m, x;λ) with true model parameters γ and λ. Let φX(X) and φM(M) to

represent appropriate basis functions forX andM, respectively.Without loss of generality, we posit basis model for the augmented term such that
E{µU(m, x;λ)|A = 0,X = x} ≡ φX(x)>θ0, andE{µU(m, x;λ)|A = 1,X = x} ≡ φX(x)>θ1 with truemodel parameters θ0 and θ1.

3.4 Technical Conditions
The following conditions are needed to derive our theoretical results:
(A6). Suppose the density of covariates fX(x) is bounded away from 0 and∞ and is twice continuously differentiable with bounded derivatives.
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(A7). Both π(x; γ) and µU(m, x;λ) are smooth bounded functions, with their first derivatives exist and bounded.
(A8). Model for µU(m, x;λ) is correctly specified.
(A9). Denote t =√NE/NU and assume 0 < t < +∞.
(A10). The true value functionV(β) is twice continuously differentiable at a neighborhood of β0.
(A11). Either themodel of the propensity score or themodel of the augmented term is correctly specified.
Here, (A6) and (A10) are commonly imposed to establish the inference for value search methods (Wang et al. 2018; B. Zhang et al. 2012). (A7)

is assumed for desired convergence rates of π̂ and µ̂U. To apply machine learning tools, similar assumption is required (see more details in Farrell
et al. (2018); Wager and Athey (2018)). From (A8), we can replace the missing long-term outcome with its imputation, and thus the consistency
holds. Evaluations are provided in Section 4.2 to examine the proposed method when (A8) is violated. (A9) states that the sizes of two samples are
comparable, which prevents the asymptotic variance from blowing up when combining two samples in semi-supervised learning (Chakrabortty et
al. 2018; Chen et al. 2008). (A11) is included to establish the doubly robustness of the value estimator, which is commonly used in the literature of
doubly robust estimator (Dudík, Langford, & Li 2011; B. Zhang et al. 2012 2013).

3.5 Theoretical Results
The following theorem gives the consistency of our AIPWestimator of the value function to the true value function.
Theorem 3.1. (Consistency) Under (A1)-(A9) and (A11),

V̂AIP(β) = V(β) + op(1), ∀β.

Remark 4. When the model for µU(m, x) is correctly specified, our AIPW estimator is doubly robust given either the model of the propensity
score or the model of the augmented term is correct. To prove the theorem, we establish the theoretical results with their proofs for the inverse
propensity-score weighted estimator as amiddle step. Seemore details in Appendix A.
To establish the asymptotic normality of V̂AIP(β̂

G), we first show the estimator β̂G has a cubic rate towards the true β0.
Lemma 3. Under (A1)-(A11), we have

N
1/3
E ||β̂

G − β0||2 = Op(1), (2)
where || · ||2 is the L2 norm, andOp(1)means the random variable is stochastically bounded.
Based on Lemma 3, we next give the asymptotic normality of√NE

{
V̂AIP(β̂

G)− V(β0)
} in the following theorem.

Theorem 3.2. (Asymptotic Distribution) Under (A1)-(A11),√
NE

{
V̂AIP(β̂

G)− V(β0)
} D−→ N(0, σ2

AIP), (3)
where σ2

AIP = tσ2
U + σ2

E, σ2
U = E[{ξ(U)i }

2], and σ2
E = E[{ξ(E)i }

2]. Here, ξ(E)i and ξ(U)i are the I.I.D. terms in the experimental sample and auxiliary
sample, respectively.
Remark 5. From Theorem 3.2, the asymptotic variance of the AIPW estimator has an additive form that consists of the estimation error from each
sample. Proportion of these two estimation variances is controlled by the sample ratio. In reality,NU is usually larger thanNE. WhenNU/NE →∞,
we have t→ 0, and thus the estimation error from auxiliary sample can be ignored. Our result under this special case is supported by Chakrabortty
et al. (2018) where they consideredNU/NE →∞ for a regression problem.

3.6 Variance Estimation and Confidence Interval
Next, we give explicit form of ξ(E)i and ξ(U)i from the proof of Theorem 3.2 to estimate σAIP. Denote π̇(x; γ) ≡ ∂π(x; γ)/∂γ and µ̇U(m, x;λ) ≡
∂µU(m, x;λ)/∂λ. Let

H1 ≡ lim
NE→+∞

1

NE

NE∑
i=1

φX(XE,i)π̇(XE,i; γ)
>,H2 ≡ lim

NU→+∞

1

NU

NU∑
i=1

[
φX(XU,i)

φM(MU,i)

]
µ̇U(MU,i,XU,i;λ)

>,

H3 ≡ lim
NE→+∞

1

NE

NE∑
i=1

(1− AE,i)φX(XE,i)φX(XE,i)
>,H4 ≡ lim

NE→+∞

1

NE

NE∑
i=1

AE,iφX(XE,i)φX(XE,i)
>,
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G1 ≡ lim
NE→+∞

1

NE

NE∑
i=1

ri(1− 2AE,i)π̇(XE,i; γ)µU(ME,i,XE,i;λ)

s2i
,G2 ≡ lim

NE→+∞

1

NE

NE∑
i=1

ri

si
µ̇U(ME,i,XE,i;λ),

G3 ≡ lim
NE→+∞

1

NE

NE∑
i=1

−
riqi(1− 2AE,i)π̇(XE,i; γ)

s2i
,G4 ≡ lim

NE→+∞

1

NE

NE∑
i=1

[
1−

ri

si

]
φX(XE,i){1− d(XE,i;β0)},

G5 ≡ lim
NE→+∞

1

NE

NE∑
i=1

[
1−

ri

si

]
φX(XE,i)d(XE,i;β0),

where ri ≡ I{AE,i = d(XE,i;β0)}, si ≡ AE,iπ(XE,i; γ) + (1− AE,i){1− π(XE,i; γ)}, and qi ≡ φX(XE,i)
>θ0 + φX(XE,i)

>(θ1 − θ0)d(XE,i;β0).
Then, the I.I.D. term in the experimental sample is

ξ
(E)
i ≡

ri{µU(ME,i,XE,i;λ)− ν∗i }
si

+ ν∗i − V(β0) + (G>1 + G>3 )H−1
1 φX(XE,i){AE,i − π(XE,i; γ)}

+ G>5 H−1
4 φX(XE,i)AE,i{µU(ME,i,XE,i;λ)− φX(XE,i)

>θ1}+ G>4 H−1
3 φX(XE,i)(1− AE,i){µU(ME,i,XE,i;λ)− φX(XE,i)

>θ0},

for ν∗i ≡ E{µU(ME,i,XE,i;λ)|AE,i = d(XE,i;β0),XE,i}. And the I.I.D. term in the auxiliary sample corresponds to

ξ
(U)
i ≡ G>2 H−1

2

[
φX(XU,i)

φM(MU,i)

]
{YU,i − µU(MU,i,XU,i;λ)}.

By plugging the estimations into the pre-specified models, we could obtain the estimated ξ̂i(E) and ξ̂i(U). Then the variance σ2
E and σ2

U can be
consistently estimated by σ̂2

E = N−1
E

∑NE
i=1{ξ̂i

(E)}2 and σ̂2
U = N−1

U

∑NU
i=1{ξ̂i

(U)}2, respectively. Thus, we can estimate σAIP through
σ̂AIP ≡

√
tσ̂2

U + σ̂2
E, (4)

based on Theorem 3.2. Therefore, a two-sided 1− α confidence interval (CI) forV(β0) under the GEAR is[
V̂AIP(β̂

G)−
zα/2σ̂AIP√

NE
, V̂AIP(β̂

G) +
zα/2σ̂AIP√

NE

]
, (5)

where zα/2 denotes the upperα/2−th quantile of a standard normal distribution.

4 SIMULATION STUDIES
In this section, we evaluate the proposed method when the model of the conditional mean of the long-term outcome is correctly specified and
misspecified in Section 4.1 and Section 4.2, respectively. Additional sensitivity studies of the assumption violation are provided in Section 4.3.

4.1 Evaluation under Correctly SpecifiedModel
Simulated data, including baseline covariatesX = [X(1),X(2), · · · ,X(r)]>, the treatmentA, intermediate outcomesM = [M(1),M(2), · · · ,M(s)]>,
and the long-term outcomeY, are generated from the followingmodel:

X(1),X(2), · · · ,X(r) iid∼ Uniform[−1, 1], A
iid∼ Bernoulli(0.5),

M = HM(X) + ACM(X) + εM, Y = HY(X) + CY(X,M) + εY,

where εM and εY are random errors followingN(0, 0.5). Here,A in the auxiliary sample is used only for generating intermediate outcomes such that
the comparability assumption is satisfied. Note that Y is generated for the auxiliary sample only. GivenX andM, we can see Y is independent of A,
which indicates the surrogacy assumption.
Set r = 4 and s = 2. We consider following two scenarios with differentHM(·),CM(·),HY(·), andCY(·).

S1 :


HM(X) =

[
X(3)

X(1)

]
,CM(X) =

[
4{X(1) − X(2)}
4{X(4) − X(3)}

]
,

HY(X) = −1+ X(2) + X(4),CY(X,M) = M(1) +M(2).

S2 :



HM(X) =

[
{X(1)}2X(3) + sin{X(4)}
{X(1)}3 − {X(2) − X(4)}2

]
,

CM(X) =

[
4{X(1) − X(2)}
4{X(4) − X(3)}

]
,

HY(X) = −1+ X(2) + X(4),CY(X,M) = M(1) +M(2).

Under Scenario 1 and 2, we have the parameter of the true ODR as β0 = [0, 0.5,−0.5,−0.5, 0.5]> with subject to ||β0||2 = 1, which can be
easily solved based on the function CM(·) that describes the treatment-covariates interaction. The true value V(β0) can be calculated by Monte
Carlo approximations, as listed in Table 1. We considerNU = 400 for the auxiliary sample and allowNE chosen from the set {200, 400, 800} in the
experimental sample.
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To apply the GEAR, we model the conditional mean outcome µU(m, x) and the augmented term vi in the auxiliary data via a linear regression.
Here, the model of µU(m, x) is correctly specified by noting that Y is linear in {X,M} under Scenario 1 and 2. The GEAR is searched within a class
of d(XE;β) = I(X>E β > 0) subjecting to ||β||2 = 1, through Genetic Algorithm provided in R package rgenound, where we set ‘optim.method’ =
‘Nelder-Mead’, ‘pop.size’ = 3000, ‘domain’=[-10,10], and ‘starting.values’ as a zero vector. Results are summarized in Table 1, including the estimated
value under the estimated rule V̂AIP(β̂

G) and its standard error SE{V̂AIP}, the estimated standard deviation E{σ̂AIP} by Equation (4), the value
under the estimated rule V(β̂G) by plugging the GEAR into the true model, the empirical coverage probabilities (CP) for 95% CI constructed by
Equation (5), the rate of the correct decision (RCD)made by the GEAR, and the L2 loss of β̂G (||β̂G − β0||2), aggregated over 500 simulations.
FromTable 1, it is clear that both the estimatedGEARand its estimated value approach to the true as the sample sizeNE increases in all scenarios.

Specifically, our proposedGEARmethod achievesV(β̂G) = 0.86 in Scenario 1 (V(β0) = 0.87) andV(β̂G) = 0.19 in Scenario 2 (V(β0) = 0.20) when
NE = 800. Notice that the `2 loss of β̂G decays at a rate that is approximately proportional toN−1/3

E , which verifies our theoreticalfindings in Lemma
3. Moreover, the average rate of the correct decision made by the GEAR increases withNE increasing. In addition, there are two findings that help
to verify Theorem 3.2. First, the estimated standard deviation of value function is close to the standard error of the estimated value function, and
gets smaller as the sample sizeNE increases. Second, the empirical coverage probabilities of the proposed 95% CI approach to the nominal level in
all settings. Note that there is no strictly increasing trend of the empirical coverage probabilities due to the fixed sample sizeNU = 400.

4.2 Evaluation underModelMisspecification
We consider more general settings to examine the proposed method when the model of µU(m, x) is misspecified. The data is generated from the
samemodel in Section 4.1.We fix {

HM(X) =

[
X(3)

X(1)

]
,CM(X) =

[
4{X(1) − X(2)}
4{X(4) − X(3)}

]
,

and set following three scenarios with differentHY(·) andCY(·).

S3 :


HY(X) = {X(1) + X(3)}{X(1)}2

+ sin{X(4)} − {X(2) − X(4)}2,
CY(X,M) = M(1) +M(2).

S4 :

{
HY(X) = {X(1)}3 + {X(2)}2 + X(3),

CY(X,M) = M(1) + X(4)M(2).
S5 :

{
HY(X) = X(2) − {X(4)}2,
CY(X,M) = 0.25{M(1) − X(3)}2 +M(2).

Under Scenario3,wehave the trueODR is still linearwhile the trueODRs for Scenario4 and5arenon-linear due to theirCY(·) involving covariates-
surrogacy interaction. Table 2 lists the true valueV(β0) for each scenario.
We apply the proposed GEAR with the tensor-product B-splines for Scenario 3-5, respectively. Specifically, we first model µU(m, x) with the

tensor-productB-splines of {XU,MU} in the auxiliary sample. Thedegree andknots for theB-splines are selectedbasedonfive-fold cross validation
to minimize the least square error of the linear regression. Then, we search the GEAR within the class of I{φX(XE)

>β > 0}, where φX(·) is the
polynomial basis with degree=2. Here, the augmented term is fitted by a linear regression of µ̂U(ME,XE) on {AE, φX(XE)}. We name the above
procedure as ‘GEAR-Bspline’. For comparison, we also apply the linear procedure described in Section 4.1 as ‘GEAR-linear’ without taking any basis.
One may note both procedures model µU(m, x) incorrectly. Reported in Table 2 are the empirical results under GEAR-Bspline and GEAR-linear
aggregated over 500 simulations.
It can be seen from Table 2 that the GEAR-Bspline procedure performs reasonably better than the linear procedure under non-linear decision

rules. Specifically, in Scenario 3 with only the baseline function HY(·) non-linear in X, GEAR-linear performs comparable to GEAR-Bspline, as the
linearmodel canwell approximate the non-linear baseline function. In Scenario 4 and5withmore complex non-linear functionCY(·), GEAR-Bspline
outperforms GEAR-linear in terms of smaller bias and higher empirical coverage probabilities of the 95% CI. For example, GEAR-Bspline achieves
V(β̂G) = 2.43 in Scenario 4 (V(β0) = 2.59) with coverage probability 92.0% and V(β̂G) = 2.77 in Scenario 5 (V(β0) = 3.03) with coverage
probability 92.4%whenNE = NU, while GEAR-linear can hardly maintain an empirical coverage probability over one third in Scenario 5 due to the
severe model misspecification. Note that because of the interaction between X andM in CY(·), the model assumption is still mildly violated even
applying the GEAR-Bsplinemethod. Thus, the empirical coverage probabilities of the 95%CI decreases as the sample sizeNE increases.

4.3 Sensitivity Studies
In this section, we investigate the finite sample performance of the proposed GEAR when the surrogacy assumption is violated in different extent,
i.e. part of the information related to the long-term outcome cannot be collected or captured through intermediate outcomes. We consider the
following Scenario 6 with r = 2 and s = 2.

S6 :

{
HM(X) =

[
0

X(1)

]
,CM(X) =

[
−0.5+ 0.4X(1) − 0.6X(2)

0.5+ 0.6X(1) − 0.4X(2)

]
,HY(X) = X(2),CY(X,M) = M(1) +M(2),
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where the true parameter of the ODR is β0 = [0, 1/
√
2,−1/

√
2]> with the true value 0.333. We use the following M(1)

par as one contaminated
intermediate outcome we collected instead of the originalM(1) asM(1)

par = M(1) + A(1 − l){−0.5 + 0.4X(1)},where the parameter l chosen from
{0, 0.2, 0.4, 0.6, 0.8, 1} reflects the uncollected information related to the long-termoutcome.When l = 1, we have the information of intermediate
outcomes is fully collected. However, under l ∈ {0, 0.2, 0.4, 0.6, 0.8}, the surrogacy assumption cannot hold anymore, since the long-term outcome
is still dependent on the treatment given the information ofM andX.
Following the same estimation procedure as described in Section 4.1, we summarize the simulation results over 500 replications in Table 3 for

l = {0, 0.4, 0.8}. Figure 3 and Figure 4 show how the bias of V(β̂G) towards the true value and the average rate of the correct decision made by
the GEAR change as the parameter l (that indicates the uncollected information of intermediate outcomes) changes, respectively. Based on the
results, our proposedmethod still has a reasonable performancewhen the surrogacy assumption ismildly violated. Specifically, the proposedGEAR
achievesV(β̂G) = 0.314 in Scenario 6 (V(β0) = 0.333) with an empirical coverage probability as 90.8%under l = 0.8 andNE = 800. In addition, it is
clear that includingmore intermediate outcomes that are highly correlated to the long-term outcome, could help to explain the treatment effect on
the long-term outcome according to Figure 3 and Figure 4. Similarly, to conduct sensitivity analysis when the comparability assumption is violated,
we consider the settings in Scenarios 1 and 2 but withCY(X,M) = M(1) + 0.8M(2) for the auxiliary sample. The results are summarized in Table 4.

5 REALDATAANALYSIS
In this section, we illustrate our proposed method by application to the AIDS Clinical Trials Group Protocol 175 (ACTG 175) data. There are 1046
HIV-infected subjects enrolled in ACTG175, whowere randomized to two competitive antiretroviral regimens in equal proportions (Hammer et al.
1996): zidovudine (ZDV) + zalcitabine (ddC), and ZDV+didanosine (ddI). Denote ‘ZDV+ddC’ as treatment 0, versus ‘ZDV+ddI’ as treatment 1. Here,
since the long-termAIDS recovery is not recorded in thedataset,weuse themeanCD4count (cells/mm3) at 96±5weeks as the long-termoutcome
of interest (Y). A higherCD4 count usually indicates a stronger immune system.However, about one-third of the patientswho received treatment 0
or 1 have a missing long-term outcome, which forms the experimental sample of interest. Due to the limited availability of AIDS electronic medical
records data, in this paper we use the rest complete dataset in ACTG 175 as the auxiliary sample by ignoring its treatment information to just
demonstrate ourmethod.
To be specific, in the experimental sample (NE = 376), 187 patients were assigned to treatment 0 and 189 patients to treatment 1. The propen-

sity score function is estimated through a logistic regression in the experimental sample. The auxiliary sample consists ofNU = 670 subjects with
observed long-termoutcome.Weconsider r = 12baseline covariates used in (Tsiatis, Davidian, Zhang, & Lu2008): 1) four continuous variables: age
(years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline; 2) eight categorical variables: hemophilia, homosex-
ual activity, history of intravenous drug use, Karnofsky score (scale of 0-100), race (0=white, 1=non-white), gender (0=female), antiretroviral history
(0=naive, 1=experienced), and symptomatic status (0=asymptomatic). Intermediate outcomes contain CD4 count at 20± 5 weeks and CD8 count
at 20±5weeks. It can be shown in the auxiliary data that intermediate outcomes are highly related to the long-termoutcomevia a linear regression
ofYU on {XU,MU}. We apply our proposed ‘GEAR-linear’ and ‘GEAR-Bspline’ described in Section 4.2 to the ACTG 175 data, respectively. Here, to
avoid the curse of high dimensionality, we only take the polynomial basis on the continuous variables with degree as 2. Reported in Table 5 are the
estimatedmean outcome for each treatment as V̂AIP(0) and V̂AIP(1), the estimated value V̂AIP(β̂

G)with its estimated standard deviation σ̂AIP, the
95%CI for the estimated value, and the number of assignments for each treatment.
It is clear that the proposedGEAR estimation procedurewith the B-spline performs reasonably better than the linear procedure. Next, we focus

on the results obtained from the GEAR-Bspline method in the experimental sample of interest. Our proposed GEAR-Bspline method achieves a
value of 344.2with a smaller standard deviation as 9.9 comparing toGEAR-linear (10.1) in the experimental sample. TheGEARwithB-spline assigns
187 patients to ‘ZDV+ddI’ and 189 patients to ‘ZDV+ddC’, which is consistent with the competitive nature of these two treatments.

6 DISCUSSION
In this paper, we proposed a new personalized optimal decision policy when the long-term outcome of interest cannot be observed. Theoretically,
we gave the cubic convergence rate of our proposed GEAR, and derived the consistency and asymptotical distributions of the value function under
the GEAR. Empirically, we validated our method, and examined the sensitivity of our proposed GEAR when the model is misspecified or when
assumptions are violated. There are several other possible extensionswemay consider in futurework. First,weonly consider two treatment options
in this paper, while in applications it is common to have more than two options for decision making. Thus, a more general method with multiple
treatments or even continuous decision marking is desirable. Second, we can extend our work to dynamic decision making, where the ultimate
outcome of interest cannot be observed in the experimental sample but can be found in some auxiliary dataset.
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DATAAVAILABILITY STATEMENT
Simulated data and the associated R codes for implementing the proposed GEARmethod are provided in the Supporting Information.
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FIGURE 1 A direct acyclic graph illustrating assumptions (A2), (A4), and (A5) in the joint sample. White nodes represent observed variables, and
grey nodes are variables withmissing values.

FIGURE 2 The architecture of the GEAR.



12 Cai, H. ET AL

TABLE 1 Empirical results under the GEAR for Scenario 1 and 2.

Scenario 1 Scenario 2
NE = 200 400 800 200 400 800

V(β0) 0.87 0.20
V̂AIP(β̂

G) 0.89 0.89 0.88 0.24 0.24 0.22
SE{V̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
E{σ̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
V(β̂G) 0.85 0.86 0.86 0.18 0.18 0.19
CP (%) 94.6 94.8 94.8 95.0 94.4 94.8
RCD (%) 95.9 96.6 97.3 95.0 95.8 96.7
||β̂G − β0||2 0.12 0.09 0.07 0.14 0.11 0.09

TABLE 2 Empirical results under the GEAR for Scenario 3-5.

GEAR-Linear GEAR-Bspline
NE = 200 400 800 200 400 800

S3 V(β0) = 1.20
V̂AIP(β̂

G) 1.25 1.22 1.22 1.26 1.23 1.22
SE{V̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
E{σ̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
V(β̂G) 1.18 1.19 1.19 1.16 1.18 1.18
CP (%) 95.2 96.0 92.6 94.0 95.4 94.4

S4 V(β0) = 2.59
V̂AIP(β̂

G) 2.37 2.34 2.34 2.55 2.51 2.49
SE{V̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
E{σ̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
V(β̂G) 2.32 2.32 2.33 2.41 2.43 2.44
CP (%) 77.6 66.2 55.2 94.6 92.0 90.0

S5 V(β0) = 3.03
V̂AIP(β̂

G) 2.44 2.40 2.40 3.00 2.97 2.93
SE{V̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
E{σ̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
V(β̂G) 2.30 2.32 2.32 2.72 2.77 2.79
CP (%) 31.6 17.4 11.8 96.0 92.4 87.8
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TABLE 3 Empirical results under the GEAR for Scenario 6 when l = {0, 0.4, 0.8}. Note the true value is 0.333.

l = 0 l = 0.4 l = 0.8

NE = 200 400 800 NE = 200 400 800 NE = 200 400 800

V̂AIP(β̂
G) 0.546 0.494 0.470 0.505 0.472 0.434 0.470 0.434 0.401

SE{V̂AIP} 0.154 0.113 0.091 0.156 0.113 0.086 0.156 0.118 0.088
E{σ̂AIP} 0.158 0.118 0.092 0.160 0.120 0.093 0.162 0.121 0.093
V(β̂G) 0.265 0.276 0.284 0.285 0.296 0.298 0.293 0.306 0.314
CP (%) 73.8 72.8 69.4 82.4 81.8 81.8 86.6 86.6 90.8
RCD (%) 79.5 80.2 81.5 83.0 84.9 85.2 84.7 87.0 89.3
||β̂G − β0||2 0.457 0.413 0.371 0.388 0.322 0.306 0.358 0.288 0.232
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FIGURE 3 The trend of the bias ofV(β̂G) under the GEAR over the parameter l.
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FIGURE 4 The trend of the average rate of the correct decisionmade by the GEAR over the parameter l.
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TABLE 4 Empirical results under the GEARwhen (A4) is violated.

S1 withCY = M(1) + 0.8M(2) S2withCY = M(1) + 0.8M(2)

NE =200 400 800 NE =200 400 800

V(β0) 0.87 0.20
V̂AIP(β̂

G) 0.71 0.71 0.71 0.19 0.19 0.18
SE{V̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
E{σ̂AIP} 0.02 0.01 0.01 0.02 0.01 0.01
V(β̂G) 0.68 0.68 0.68 0.14 0.15 0.15
CP (%) 88.2 81.8 62.8 94.4 94.2 93.0
RCD (%) 94.5 95.2 95.5 93.9 94.8 95.2

TABLE 5Comparison results for ACTG 175 data.

Linear B-spline
V̂AIP(0) 327.8 325.7
V̂AIP(1) 333.6 328.4

V̂AIP(β̂
G) [SD] 351.4 [10.1] 344.2 [9.9]

95%CI for V̂AIP(β̂
G) (331.7, 371.1) (324.7, 363.8)

Assign to ‘ZDV+ddC’ 145 189
Assign to ‘ZDV+ddI’ 231 187

How to cite this article:Cai H, LuW, and Song R (2021), GEAR: OnOptimal DecisionMaking with Auxiliary Data, Stat., 2021;xx:x–x.

APPENDIX
A INVERSE PROPENSITY-SCOREWEIGHTED ESTIMATOR
In this appendix section, we provide the inverse propensity-score weighted (IPW) value estimator and its related theories as a middle step. All the
proofs are provided in the supplementary article.

A.1 IPWEstimator for the Long-termOutcome
According to Lemma 1 and the law of large number, the value functionV(β) can be consistently estimated by

Vn(β) =
1

NE

NE∑
i=1

I{AE,i = d(XE,i;β)}µU(ME,i,XE,i)

AE,iπ(XE,i) + (1− AE,i){1− π(XE,i)}
.

Weposit parametricmodels forπ(x) ≡ π(x; γ) andµU(m, x) ≡ µU(m, x;λ)with the truemodel parameter γ andλ, respectively. Then the above
Vn(β) can be rewritten as themodel-based form,

V?n (β) =
1

NE

NE∑
i=1

I{AE,i = d(XE,i;β)}µU(ME,i,XE,i;λ)

AE,iπ(XE,i; γ) + (1− AE,i){1− π(XE,i; γ)}
,

where π(x; γ) can be estimated in the experimental sample, denoted as π(x; γ̂), and µU(m, x;λ) can be estimated in the auxiliary sample, denoted
as µU(m, x; λ̂). Then, by replacing the implicit functions in V?n (β) with their parametric estimators, it is straightforward to give the following IPW
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estimator for the value functionV(β),

V̂(β) =
1

NE

NE∑
i=1

I{AE,i = d(XE,i, β)}µU(ME,i,XE,i; λ̂)

AE,iπ(XE,i; γ̂) + (1− AE,i){1− π(XE,i; γ̂)}
. (A1)

Define β̂ = argmax
β

V̂(β)with subject to ||β||2 = 1 for identifiability purpose, with the corresponding estimated value function V̂(β̂).

A.2 Theoretical Results of the IPWEstimator
First, we establish some theoretical results for the IPWestimator as amiddle step to prove the results for the AIPWestimator. Here, we use φX(X)
and φM(M) to represent appropriate basis functions for X and M, respectively. The following theorem gives the consistency result of our IPW
estimator for the value function to the true.
TheoremA.1. (Consistency)When (A1)-(A9) and (A11) hold, given ∀β, we have

V̂(β) = V(β) + op(1).

Next, we establish the asymptotic normality of√NE

{
V̂(β̂) − V(β0)

} through the following lemma that states the estimator β̂ has a cubic rate
towards the true β0.
Lemma 4. Under (A1)-(A11), we have

N
1/3
E ||β̂ − β0||2 = Op(1), (A2)

where || · ||2 is the L2 norm.
We next show the asymptotic distribution of V̂(β̂) as follows.

TheoremA.2. (Asymptotic Distribution)When (A1)-(A11) are satisfied, we have√
NE

{
V̂(β̂)− V(β0)

} D−→ N(0, σ2
IPW), (A3)

where σ2
IPW = tσ2

U + σ2
E,I, and σ2

U = E[{ξ(U)i }
2] and σ2

E,I = E[{ξ(E,I)i }2].
Here, ξ(U)i ≡ G>2 H−1

2

[
φX(XU,i)

φM(MU,i)

]
{YU,i − µU(MU,i,XU,i;λ)} is the I.I.D. term in the auxiliary sample, and ξ(E,I)i ≡ G>1 H−1

1 φX(XE,i){AE,i −

π(XE,i; γ)} + {AE,iπ(XE,i; γ) + (1− AE,i){1− π(XE,i; γ)}}−1I{AE,i = d(XE,i;β0)}µU(ME,i,XE,i;λ) − V(β0) is the I.I.D. term in the experimental
sample.
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