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Abstract

Natural killer (NK) cells are innate immune cells known for their cytolytic activities towards

tumors and infections. They are capable of expressing diverse killer immunoglobulin receptors

(KIRs), and KIRs are implicated in susceptibility to Crohn’s disease (CD), a chronic intestinal

inflammatory disease. However, the cellular mechanism of this genetic contribution is unknown.

Here we show that the ‘licensing’ of NK cells, determined by the presence of KIR2DL3 and

homozygous HLA-C1 in host genome, results in their cytokine reprogramming, which permits
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them to promote CD4+ T cell activation and TH17 differentiation ex vivo. Microfluidic analysis of

thousands of NK single cells and bulk secretions established that licensed NK cells are more

polarized to pro-inflammatory cytokine production than unlicensed NK cells, including production

of IFN-γ, TNF-α, CCL-5, and macrophage inflammatory protein (MIP)-1β. Cytokines produced

by licensed NK augmented CD4+ T cell proliferation and IL-17A/IL-22 production. Antibody

blocking indicated a primary role for IFN-γ, TNF-α, and IL-6 in the augmented T cell proliferative

response. In conclusion, NK licensing mediated by KIR2DL2/3 and HLA-C1 elicits a novel NK

cytokine program that activates and induces pro-inflammatory CD4+ T cells, thereby providing a

potential biologic mechanism for KIR-associated susceptibility to CD and other chronic

inflammatory diseases.

INTRODUCTION

NK cells are components of the innate immune system primarily known for cytolytic

targeting of tumor cells and virally infected cells. Despite their apparent role in the

development of many chronic inflammatory diseases,(1–6) their functional role in

pathogenesis is poorly understood. Recent human genome-wide association analysis has

uncovered gene expression networks of NK cells implicated in inflammatory bowel disease

pathogenesis.(7) However, due to the complex roles and functional proficiencies of NK cell

subpopulations, the biologic mechanisms of their involvement in chronic inflammatory

diseases, and the ones pertinent to inflammatory bowel disease, remain uncertain.(1–4, 8, 9)

KIR genes are predominantly expressed by NK cells, and are one element of the receptor

repertoire controlling NK cell activation, proliferation, and effector functions that mediate

surveillance and host defense for microbial infection and malignancy.(10, 11) The genetic

combination of killer immunoglobulin-like receptors (KIR) with their respective HLA class

I ligands is associated with multiple autoimmune disorders, infectious diseases, and cancers.

(5, 6) However, the functional mechanisms accounting for these disease associations,

particularly for the inhibitory class of KIRs, are poorly understood. The KIR gene family is

comprised of 14 functional genes (seven activating, six inhibitory, one bi-functional) and 2

pseudogenes.(12) The KIR locus exhibits haplotypes with extensive variations in number

and types of KIR genes. Among the inhibitory KIRs, KIR2DL1 recognizes HLA-C2

allotypes, KIR2DL2 and KIR2DL3 recognize HLA-C1 allotypes, KIR3DL1 recognizes

HLA-Bw4.(5, 12) Accordingly, functional pairings of cognate HLA and KIR genes in an

individual haplotype is quite heterogeneous, which confounds studies of their biologic

function.

This study was prompted by the elevated genetic susceptibility for Crohn’s disease (CD) in

patients bearing the inhibitory KIR2DL2/3 with its cognate ligand HLA-C1.(13–15) This

association was puzzling, since NK-target interaction via inhibitory KIR ligation suppresses

NK effector function.(2, 16) One potential explanation is the licensing effects of inhibitory

KIRs during NK differentiation. Licensing is a maturational process, induced by signaling of

select inhibitory KIR genes with their cognate HLA ligands during NK differentiation that

confers expanded functional competence of NK cells. Since the presence of relevant pairs of

inhibitory KIR and cognate HLA genes are stochastic, healthy individuals genetically vary
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in the presence or abundance of licensed NK cells. Also, while the known NK cell functions

affected by licensing include augmented target cell killing and IFN-γ production(16, 17),

there has been little study of NK licensing on other aspects of NK cell function: regulation

of inflammation and adaptive immunity, or the scope of licensing-related cytokine and

chemokine production.(18)

Mechanistic studies of human NK cell licensing are challenging due to the complex genetic

composition of KIR-HLA combinations,(12) and the conflicting roles inhibitory and

activating KIRs play in licensing. Therefore, we focused on individuals homozygous for the

KIR A haplotype (termed AA haplotype), a common genotype (~30% worldwide) which

contains inhibitory KIRs for three key HLA class I ligands (HLA-C1, HLA-C2 and HLA-

Bw4) but only one single activating KIR.(12, 19) Different inhibitory KIR-HLA class I

ligand pairs confer various levels of strength for NK licensing (Table S1).(20) The most

potent pair is KIR2DL3/HLA-C1; the second strongest pair is KIR3DL1/HLA-Bw4; while

KIR2DL1/HLA-C2 has minimal licensing effect. Since AA haplotype individuals have

KIR2DL3 and KIR2DL1, we consider individuals with homozygous HLA-C1 (abbreviated as

HLA-C1C1) strongly licensed individuals, and individuals with HLA-C1/HLA-C2 or

homozygous HLA-C2 (abbreviated as HLA-C2+) weakly licensed or unlicensed individuals.

Therefore, we aimed to investigate the potential of NK licensing in the KIR associated

Crohn’s disease susceptibility. Here we show that NK cells from genetically licensed

healthy subjects and CD patients efficiently augment antigenic CD4+ T cell proliferation,

and this augmentation is mediated by soluble molecules secreted by licensed NK cells.

Licensed NK cell supernatant also dramatically promotes TH17 cells, a signature CD4+ T

helper subset in CD. Multiplexed cytokine study of CD cohort demonstrated that genetically

licensed and unlicensed NK cells exhibit consistent and distinct cytokine profiles, with

licensed NK cells distinguished by high-output, pro-inflammatory, poly-cytokine

expression. Selected cytokines among this output account for the capacity of licensed NK

cells to efficiently augment antigenic CD4+ T cell proliferation and TH17 polarization.

MATERIALS AND METHODS

Clinical samples

Clinical samples were collected according to protocols approved by the institutional review

committee of Cedars Sinai Medical Center (CSMC) and of UCLA. CD patient, previously

genotyped for HLA and KIR(13), were randomly chosen, consented and called back by

CSMC. 455 out of 1306 CD patients are AA haplotype, 28 were consented for callback

blood donation, and all 20 subjects who returned for for collection were included for study.

Healthy donors were recruited at UCLA Clinical and Translational Research Laboratory,

and genotyped by the UCLA Immunogenetics Center.

Cell isolation

PBMCs were isolated by Ficoll-Paque (GE Healthcare, Chalfont St Giles, England) density

gradient centrifugation. Human NK cells were purified either from whole blood using the

RosetteSep Human NK cell enrichment Cocktail, or from PBMC using Human NK cell
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negative selection kit (StemCell Technologies, Vancouver, BC, Canada). Human Treg-

depleted T cells were purified from PBMC using a human T cell enrichment kit and CD25

positive selection kit; CD4+ T cells were purified from PBMC using a human T cell

enrichment kit and CD4 positive selection kit (StemCell Technologies, Vancouver, BC,

Canada). The purity of isolated NK cells and T cells were confirmed to be above 90%.

NK-T cell co-culture and blocking assays

Before co-culture, round bottom 96-well plates were coated with anti-CD3/CD28 antibody

(R&D Systems, Minneapolis, MN) in PBS at 1.5 ug mL−1 at room temperature for 2 hours,

or at 0.5 ug mL−1 at 4°C overnight. T cells were stained with 0.2 uM CFSE (Invitrogen,

Carlsbad, CA), and co-cultured with NK cells for 3 days in 96-well plates at 1 × 106 cells

mL−1 in presence of 2 ng mL−1 (26 I.U) IL-2 with complete RPMI 1640 medium,

containing 10% fetal bovine serum (FBS), 100 I.U mL−1 penicillin 100 ug mL−1

streptomycin, 10mM HEPES buffer, 2 mM glutamine (Cellgro, Manassas, VA), and 5 ×

10−5 M 2-mercaptoethanol (Sigma, St. Louis, MO). Blocking antibodies for OX40 ligand

and 2B4 (CD 252 and CD244, R&D Systems, Minneapolis, MN) were added to the co-

culture at concentration of 10 ug mL−1. Neutralizing antibodies, for IL-6, IFN-γ, TNF-α,

and isotype control mouse IgG1κ (eBioscience, San Diego, CA), and their combinations

were added to the co-culture at 1.25 ug mL−1. The recombinant cytokines IL-6, IFN-γ, and

TNF-α (R&D Systems, Minneapolis, MN) was each added to a final concentration of 20 ng

mL−1, comparable to the concentration measured for these cytokines in NK cell three-day

culture media analyzed by multiplex ELISA chip. For transwell assay, 24-well plates were

used; NK cells were placed on the filter side of a 1.0 um pore-sized transwell (BD Falcon,

San Jose, CA), and CFSE-stained T cells were placed on the plate side of the transwell.

TH17 differentiation assay

Before culturing, round bottom 96-well plates were coated with 1 ug mL−1 anti-CD3 (R&D

Systems, Minneapolis, MN) in PBS for 2 hours at room temperature, and washed with 5%

human AB Serum RPMI media (Lonza, Rockland, ME). Total CD4+ T cells were purified

and stimulated with 0.2 ug mL−1 soluble anti-CD28, primed with different percentages of

NK supernatants, and in the presence or absence of various cytokine combinations. At Day 6

or 7, CD4+ T cells were resuspended, washed once with media, and expanded with 2 ng

mL−1 (26 I.U) IL-2 plus the same conditions provided for priming. At Day 14, the cells were

stimulated with PMA/Ionomycin and Brefeldin A for 5 hours. Cells were then surface

stained with anti-CD3, intracellularly stained with anti-IFN-γ, anti-IL-22, and anti-IL-17A,

followed by flow using LSRII (BD Biosciences, San Jose, CA).

Multiplex cytokine ELISA assay

CD NK cells were isolated using Human NK cell negative selection kit (StemCell

Technologies, Vancouver, BC, Canada). NK cells were cultured for 3 days in round-bottom

96-well plate at 1 × 106 cells mL−1 in 2 ng mL−1 (26 I.U) IL-2 with complete RPMI 1640

medium. Then media samples were collected, stored at −80°C. Before analysis, samples

were thawed, concentrated 4 times, and assayed as one batch. The initial protein panel was

chosen to incorporate immune function markers, consisting primarily of cytokines and
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chemokines that could be secreted by NK cells. The final NK secretion antibody panel was

chosen to incorporate non-redundant secretions detectable at NK three-day culture.

Single cell multiplex cytokine analysis

Frozen aliquots of PBMC were thawed and recovered overnight. Bulk NK cells were

purified using human NK cell enrichment kit; CD3−CD56dimKIR2DL3+

KIR3DL1−KIR2DL1− and CD3−CD56dimKIR2DL3− NK subsets sorted by FACS. All cells

were prepared on ice, and immediately analyzed by a single cell microchip. Briefly, the

microchip proteomics platform is based upon isolating individual or a small number of cells

into several thousand ~600 pL volume microchambers, with each chamber equipped with a

miniaturized antibody array. These chips permitted the simultaneous measurement of 19

protein markers in each microchamber. After loading onto the SCBC, the cells were

stimulated with 5 ng mL−1 PMA and 500 ng mL−1 ionomycin for 12 hours at 37°C, and the

microchip was imaged to count cell numbers within each microchambers. After cells were

washed off, the fluorescence readouts were generated by an ELISA immunoassay and were

quantified using a GenePix 4400A array scanner and custom-built software algorithms.

Antibodies

The following antibodies and cell tracer were used staining for flow analysis: FITC-

conjugated anti-CD158b (BD Biosciences, San Jose, CA), anti-IFN-γ (eBioscience, San

Diego, CA); CFSE; PE-conjugated anti-IFN-γ (BD Biosciences, San Jose, CA), anti-TNF-α,

anti-IL-22, anti-Granzyme B (eBioscience, San Diego, CA), anti-GM-CSF (R&D Systems,

Minneapolis, MN); PerCP-conjugated anti-CD3 (BD Biosciences, San Jose, CA); APC-

conjugated anti-CD158a (Miltenyi Biotec, Bergisch Gladbach, Germany), anti-CD4 (BD

Biosciences, San Jose, CA), anti-IL-17A (eiBoscience, San Diego, CA); strepavidin-PerCP;

PE-Cy7-conjugated anti-CD56, anti-CD14 (BD Biosciences, San Jose, CA), Vioblue-

conjugated anti-3DL1 (Miltenyi Biotec, Bergisch Gladbach, Germany), eFluor 650NC-

conjugated anti-CD3 (ebBioscience, San Diego, CA). anti-mouse IgG κ/Negative Control

Compensation Particles. The use of antibody for staining was performed per manufacturer’s

instructions with proper titrations. Antibodies used for cytokine assays are IL-2, IL-6, IL-10,

IL-15, IL-13, CCL-4 (MIP-1β), CCL-5, CXCL-10, CCL-2, CXCL-8, IFN-γ, TNF-α, TNF-β,

granzyme B, TGF-β1 (R&D Systems, Minneapolis, MN), IL-4, IL-12, GM-CSF, and

perforin (eBioscience, San Diego, CA).

Flow cytometry and cell sorting

Phenotypic analysis of PBMC was performed using flow cytometry after staining of cells

with fluorescence dye–conjugated antibodies. Labeled cells were analyzed with a

FACSCalibur flow cytometer using CellQuest software, or LSR II (BD Biosciences, San

Jose, CA) using FACSDiva software (BD Biosciences, San Jose, CA) at UCLA Flow

Cytometry Core, and data analysis was performed using FlowJo (Tree Star Inc., Ashland,

OR). Cells were sorted for CD3−CD56dim KIR2DL3+ KIR3DL1− KIR2DL1− and CD3−

CD56dim KIR2DL3−, using Aria I equipped with FACSDiva software (BD Biosciences, San

Jose, CA).
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Statistical analysis and data access

Most data analyses involved comparison of continuous variables, so the Student’s two-tailed

unpaired t test was used; P values of less than 0.05 were regarded as significant. All

cytokine data were normalized before biostatistical analysis. GraphPad Prism (San Diego,

CA) was used for statistical analysis and graphing. To uncover and visualize patient groups

based on these parameters, we used Principal Component Analysis (PCA) and Hierarchical

Clustering (HC), box-plot and scatter-plot analysis were performed in R package using

custom-written codes. Microchip data from this study is available from our lab website

(http://www.its.caltech.edu/~heathgrp/).

RESULTS

Licensed NK cells from HLA-C1C1 CD patients strongly promote the proliferation of
autologous CD4+ T cells

Pro-inflammatory CD4+ helper T cells are the main effectors in induction and perpetuation

of intestinal inflammation.(21, 22) As a major cellular component of innate immunity, NK

cells demonstrably cross-talk with the adaptive immunity arm.(3, 19, 23–25) Since NK cells

can stimulate or inhibit T cell activation via multiple mechanisms,(26–29) we first asked if

strongly and weakly licensed NK cells from CD patients differentially modulated T cell

proliferation in vitro. We isolated blood NK cells and autologous T cells from CD patients

(Table 1), and co-cultured them in the presence of immobilized anti-CD3/CD28 and IL-2 at

2 ng·mL−1 (26 IU). At day 3, CD4+ T cell proliferation was measured via CFSE dilution

(Figure 1A). CD4+ T cell proliferation was augmented linearly with the number of licensed

NK cells present (Figure 1B, R2=0.996). Using linearity (R2>0.85) as a quality control

criterion, 12 patient assays were selected for genetic correlation analysis. At a NK:T ratio of

1:1, NK cells from HLA-C1C1 patients were significantly more potent than those from

HLA-C2+ patients, and NK cells from HLA-Bw4/Bw4 patients were significantly more

potent than those from HLA-Bw6+ individuals within the HLA-C2+ subset. Thus, three

distinct levels of NK function were observed: HLA-C1C1 Bw6+ > HLA-Bw4/Bw4 > Bw6/+

HLA-C2+ (Figure 1C), and this order conformed to KIR licensing strength (Table S1).(20)

To investigate the nature of interaction between NK and CD4+ T cells, we neutralized the

surface co-stimulatory molecules 2B4 and OX40 ligand, expressed by NK cells to promote

CD4+ T cell activation.(27–29) Surprisingly, augmentation was fully preserved when these

surface molecules were blocked (Figure 1D). To assess if this interaction was contact-

dependent at all, NK cells were separated from T cells using 1 μm pore transwells, only

allowing soluble mediators to communicate between the sides. Separating NK and CD4+ T

cells did not affect CD4+ proliferation at all (Figure 1E), suggesting that NK augmentation

of CD4+ T cell proliferation was mainly mediated by soluble molecules secreted by licensed

NK cells.

NK cells from HLA-C1C1 CD patients exhibit elevated pro-inflammatory cytokine
production and polyfunctionality

Multiple cytokines and chemokines are produced by NK cells,(18) but little is known about

the scope of cytokine reprogramming by KIR-mediated NK licensing. Therefore, we
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cultured NK cells for 3 days under the same condition used for NK-T cell co-culture

experiments, and quantitated the level of a panel of cytokines in the NK supernatant using a

multiplex ELISA chip, which can simultaneously analyze up to 19 cytokines.(30, 31) When

supernatants of NK cells from HLA-C1C1 (strongly licensed) and HLA-C2+ (weakly

licensed) CD patients were compared, NK cells from HLA-C1C1 patients were significantly

more robust producers of 9 cytokines (Figure 2A). This was specific to NK cells, as cytokine

production by T cells was indistinguishable between HLA-C1C1 and HLA-C2+ patients

(data not shown). The core differences resided in CCL-5 and MIP-1β chemokines important

for neutrophil and T cell recruitment); and, IFN-γ, TNF-α, IL-6, and IL-4 (pro-inflammatory

cytokines known to play a role in CD) (Figure 2A). In contrast, both types of NK cells

produced negligible IL-12, IL-15, or IL-10 (Fig. 2A), as their levels were at or below the

background detection threshold. Hierarchical clustering (Figure 2B) showed that HLA-C1C1

and HLA-C2+ patients were completely separated, demonstrating their distinct secretion

capacities. To assess native NK cell activation state (CD69 expression), we compared 6

subjects (3 HLA-C1C1 and 3 HLA-C2+). At the time of isolation, the frequency of CD69+

cells was significantly elevated in HLA-C1C1 NK cells compared to HLA-C2+ NK cells

(data not shown, p=0.018); CD69 expression was in most cultures stable after 24 hours in

low dose IL-2. This observation suggested a potential positive correlation between CD69

expression and licensing-induced NK cell cytokine capacity.

NK cells from HLA-C1C1 healthy subjects have comparable CD4+ T cell proliferation-
augmenting capability

To investigate if NK cells from AA haplotype licensed healthy donors have similar levels of

functionality as licensed CD patients, we assessed their effects in CD4+ T cell co-culture.

Using the same co-culture assays described earlier, we observed that CD4+ T cell

proliferation increased linearly with the number of licensed NK cells present in the co-

culture (Figure 3A and B, R2=0.949). At an NK:T ratio of 1:1, the effect on CD4+ T cells by

NK cells from the 2 HLA-C1C1 healthy subjects was comparable that that of NK cells from

HLA-C1C1 patients (Figure 3C and Figure 1C).

NK cells from HLA-C1C1 patients contain a subset dominating the response

We speculated whether this secretion difference reflected a homogeneous functional change

in the NK cell population, or instead a mosaic of cellular heterogeneity. Therefore, we

assessed cytokine secretion profiles of individual NK cells at the single cell level using

single cell barcode chips (SCBCs),(30) a high-throughput microfluidics platform. With

SCBCs, single cells or a small number of cells are separated into thousands of

microchambers on a chip, where the production of 19 cytokines is simultaneously and

independently measured during a 12-hour period. This technology has been extensively

validated, and its utility in studying immune cell response has been demonstrated, as well as

compared to standard flow assays. (30)

We compared single NK cell cytokine secretion between 2 HLA-C1C1 and 2 HLA-C2+ CD

patients, NK cells from HLA-C1C1 patients exhibited a higher output of multiple cytokines,

including TNF-α, MIP-1β, GM-CSF, IFN-γ, IL-2, IL-6, and CXCL-10 (Figure 4A, B and

Supplementary Figure 1). PCA analysis of the single cell data showed that NK cells with
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from HLA-C1C1 patients contained a subset that produced effector proteins (CCL-5, TNF-α,

IFN-γ, MIP-1β, and IL-6), which in contrast was barely detected in NK cells from HLA-C2+

patients (Figure 4C). When the composition of cells producing 1, 2, 3, 4, 5, and >5 cytokines

was characterized, we observed a more polyfunctional phenotype of NK cells from HLA-

C1C1 patients (Figure 4D). This analysis established that NK cells from HLA-C1C1 patients

exhibited a higher output of multiple cytokines and greater cytokine polyfunctionality at the

single cell level, distinguished by a subset producing effector proteins (CCL-5, TNF-α, IFN-

γ, MIP-1β, and IL-6). These findings together demonstrated that NK cells from CD patient

with licensing genotypes were reprogrammed in a mosaic fashion for enhanced production

of cytokines contributing to a chronic inflammatory state in vivo.

NK cells expressing KIR2DL3 are predominately responsible for the elevated cytokine
production and polyfunctionality in HLA-C1C1 individuals

A simple mechanistic explanation for the mosaic pattern of NK cytokine expression is the

underlying developmental heterogeneity of NK cells. During NK cell development, KIRs

are stochastically expressed, resulting in a composite of licensed and unlicensed NK cells in

individuals with licensing genotypes.(32) Accordingly, when such a subject is HLA-C1C1,

KIR2DL3+ NK cells are licensed, and the KIR2DL3− NK cells are unlicensed. We therefore

sorted licensed (CD3−CD56dimKIR2DL3+KIR3DL1−KIR2DL1−) and unlicensed

(CD3−CD56dimKIR2DL3−) subsets (>95% purity), and evaluated their cytokine production

at the single cell level using SCBCs. Compared to KIR2DL3− NK cells,

KIR2DL3+KIR3DL1−KIR2DL1− NK cells co-expressed elevated levels of CCL-5, MIP-1β

IFN-γ and TNF-α (Figure 5A). To look at the data from a different angle, the majority

(65%) of KIR2DL3− NK cells did not secret any cytokine. In contrast, 99% of

KIR2DL3+KIR3DL1−KIR2DL1− NK cells secreted at least one cytokine, with one third

expressing two cytokines (typically CCL-5+MIP-1β+), another third expressing three

cytokines (mostly IFN-γ+MIP-1β+CCL-5+); a substantial fraction (10%) produced four

cytokines (Figure 5B).

Analysis of ~1,500 single NK cells resolved them into two clusters (hierarchical clustering

in Figure 5C and PCA in Supplementary Figure 2). One cluster, predominated by

KIR2DL3+KIR3DL1−KIR2DL1− NK cells was polarized towards a pro-inflammatory state

(effector proteins such as TNF-α, IFN-γ, and chemokines). A second cluster, predominated

by KIR2DL3− NK cells, was polarized towards a more regulatory state (including IL-4,

TNF-β, TGF-β1, IL-10). Taken together, licensing mediated by KIR2DL3/HLA-C1

interaction conferred pro-inflammatory immune mediator production program in NK cells.

IFN-γ, TNF-α, and IL-6 account for the capacity of licensed NK cells to augment CD4+ T
cell proliferation

To evaluate whether the cytokines produced by licensed NK cells could indeed promote

CD4+ T cell proliferation, we neutralized IL-6, IFN-γ, TNF-α, or their combinations in NK-

T co-cultures (Figure 6). Neutralization of TNF-α alone had a great impact on CD4+ T cell

proliferation, and this effect was specific compared to IgG1κ isotype control. Neutralization

of IL-6 or IFN-γ alone had measurable but modest effects, but their combination markedly

reduced CD4+ T cell proliferation, suggesting synergistic interaction between them. We
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further evaluated T cell proliferation in the absence of NK cells, in which exogenous

cytokines were added at 20 ng·mL−1, comparable to that produced by licensed NK cells

(data not shown). IFN-γ or TNF-α had marginal effects, but the addition of IL-6 or all three

greatly facilitated CD4+ T cell proliferation. This indicates that IL-6 might not be necessary

to augment CD4+ T cell proliferation in the presence of other cytokines produced by

licensed NK cells, but it was sufficient to carry the proliferating effect alone. These cytokine

depletion and addition results demonstrated that CD4+ T cell proliferation mediated by NK

cells does not rely solely on one particular cytokine, but rather depends on the balance of

multiple key cytokines.

Secreted products of NK cells from HLA-C1C1 individuals potently promoted TH17
differentiation

T helper 17 (TH17) cells are crucial drivers for multiple chronic inflammatory diseases,

including CD,(33, 34) but there is little information about if or how NK cells might affect

TH17 induction or activity. The foregoing results indicated that NK cells from HLA-C1C1

individuals are robust producers of several cytokines, notably IL-6, which is critical for

TH17 differentiation.(33, 35, 36) After validating conditions for cytokine induced formation

of IL-17A and IL-22 producing TH17 cells (Supplementary Figure 3A), we determined if the

supernatant of NK cells from HLA-C1C1 healthy individuals could promote TH17

differentiation from total CD4+ T cells. Indeed, NK supernatants from an HLA-C1C1

healthy individual (AA haplotype), titrated into CD4+ T cell cultures, strongly induced the

levels of IL-17A+, IL-22+, and IL-17A+IL-22+ T cells (Figure 7A and B). These effects

were observed with licensed NK supernatants alone, or in combination with IL-23, IL-1β, or

both IL-1β and IL-23 (Supplementary Figure 3B).

Using the IL-23 plus NK supernatant condition, we analyzed NK cell supernatants from

three different healthy subjects with a licensing genotype (AA haplotype, HLA-C1C1). All

of them showed strong TH17 differentiation responses (Figure 7C). Among the licensed NK-

derived cytokines, IL-6 is a likely candidate to promote Th17 cell differentiation. However,

blocking IL-6 alone didn’t detectably affect Th17 differentiation (Supplementary Figure

3C). These findings demonstrate the capacity of licensed NK cells to secrete immune

mediators that can strongly promote TH17 differentiation, either alone or synergistically

with IL-23 and IL-1β.

Discussion

Through a combination of advances in genotyping technologies, statistical advances and

collaborative efforts, there have been spectacular advances in the understanding of the

genetic contribution to complex diseases. Arguably, studies into the inflammatory bowel

diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC), have yielded the most

successful results with over 160 susceptibility loci now identified through a succession of

genome-wide and more targeted approaches.(34, 37, 38) The rapidity of gene discovery in

IBD has far out-paced an understanding of both the functional and clinical consequences of

associated variants and bridging this ‘genes to biology’ gap requires significant investment

and progress if the full benefits of genetic advances are to be realized. We and others have
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previously identified associations between IBD and genetic variation at the killer cell

immunoglobulin-like receptor (KIR) locus.(13, 14, 39) KIR genes are predominantly

expressed by NK cells, and are one element of the receptor repertoire controlling NK cell

activation, proliferation, and effector functions that mediate surveillance and host defense

for microbial infection and malignancy.(10, 11) The relevance of this locus together with the

role of NK cells in the development of IBD has recently been further highlighted with the

publication of the IBD genome-wide association studies/Immunochip study.(39)

Besides IBD, the genetic presence of strong NK licensing KIR/ligand pairs (KIR2DL3/

HLA-C1 or KIR3DL1/HLA-Bw4) also affects several other important chronic inflammatory

diseases: elevated susceptibility to CD, Celiac disease, spondyloarthropathy, psoriatic

arthritis; enhanced resolution of Hepatitis C virus (HCV) infection; and, slower progression

in HIV-1 infection.(40–46) Understanding the nature of KIR contribution to disease

susceptibility or protection is crucial for developing diagnostic and treatment strategies.

However, biologic study of KIR-mediated disease association has been challenging due to

the polymorphic composition and functions of KIR haplotypes, and the independent

assortment of their cognate HLA class I ligands. By focusing on the simplified AA

haplotype, which ‘tag’ most of the inhibitory KIRs that are involved in licensing and lack

most of the activating KIRs, we were able to identify KIR-mediated licensing as a major

mechanism to reprogram NK cell cytokine capacity. We further showed that, in accord with

the distinct cytokines produced by licensed NK cells, they have the capacity to augment

CD4+ T cell activation and TH17 differentiation, which provides a mechanistic basis for

their genetic association to IBD and other chronic inflammatory diseases.

The distinct NK cytokine program induced by KIR licensing appears to be a genetic trait

independent of disease status. Thus, NK cell licensing determined cytokine program was

preserved in both CD and healthy cohorts (Figures 2–4 and Supplementary Figures 1–2);

and functionally, licensed NK cell cytokines from both CD and healthy subjects comparably

augmented CD4+ T cell polarization (Figure 1 and 3). The exceptional breadth and pro-

inflammatory cytokine profile of licensed NK cell is an important finding of this study, as

well as the evidence that this cytokine production lowers the threshold for CD4+ T cell

activation. Another striking finding was the selective capacity of licensed NK cell cytokines

to efficiently drive IL-17A and IL-22 production. This is in part attributable to NK-derived

IL-6; however, other NK-produced cytokines may also be involved, since in several culture

conditions, TH17 polarization by NK cell supernatants exceeded that expected for IL-6 alone

and blocking IL-6 alone didn’t affect Th17 differentiation (Figure 7 and Supplementary

Figure 3). Licensed NK cells synergize with IL-23 and IL-1β to facilitate TH17

differentiation, indicating that licensed NK cell secretory products can collaborate with other

cells in the local tissue compartment (dendritic cells or macrophages) to promote a more

pro-inflammatory environment shaping CD4+ or CD8+ T cell responses.(47, 48) Further

studies of unlicensed and licensed cells from healthy individuals will be required to validate

and refine the effects of NK licensing in Th17 differentiation.

NK cells are not abundant and are functionally heterogeneous, posing significant challenges

to understand individual cell behavior. We improved and utilized a single cell proteomics

microchip for high-throughput, highly multiplexed, tailored analysis of cytokine expression

Lin et al. Page 10

J Immunol. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



capacity of NK cells. This microfluidic platform permits detection of ~ 40 different protein

products per individual cell, and up to 1000 cells in a single experiment; and for the first

time, allows us to identify the striking distinctions between licensed and unlicensed NK cell

subsets, and the commonality within each subset.

Finally, as the pathogenesis of Crohn’s Disease is ultimately driven by intestinal

lymphocytes; it is desirable to investigate properties of licensed NK cells resident in the

gastrointestinal tract. However, the practicalities of such a study are quite difficult. Less than

10% of patients are genetically informative (KIR AA haplotype with HLA-C1/C1

genotypes); and even at a major IBD clinical center, intestinal resections from 10 patients

would require 2 years to accrue. The alternative of colonscopic biopsy sampling is also

technically unsuitable. Due to the low abundance of CD3−CD56+ NK cells in the

intraepithelial and lamina propria compartments (~18.5% and ~10%, respectively(49, 50)),

and low cellular yield per biopsy (1–2 million lymphocytes per 2 mm2 biopsy(51)), ~20

biopsies from each patient are required for a minimal experiment, which is beyond the

number permitted for research sampling. We also note that IBD is a systemic disease with

>40% of IBD patients having extra-intestinal manifestations. In this context, the study of

NK cells from peripheral compartments is relevant to IBD disease biology.

Bridging the ‘gene to biology’ and ‘bench to bedside’ divides is one of the major challenges

currently facing researchers. Our study addresses this challenge through mechanistic finding

of the pro-inflammatory role of licensed NK cells on adaptive immunity. This offers a fresh

biologic diagram accounting for the impact of KIR-HLA genetics on IBD and other chronic

inflammatory diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. NK cells from genetically licensed CD patients strongly augment autologous CD4+ T
cell proliferation
NK cells and autologous T cells were isolated from AA haplotype CD patient peripheral

blood, stimulated with anti-CD3 and anti-CD28, and co-cultured in 2 ng mL−1 (26 I.U) IL-2

for three days. (A) Histograms of CD4+ T cell CFSE dilution after co-culturing with NK

cells at the NK/T ratios as indicated, for a representative C1C1 CD patient (gated on

CD4+CFSE+ cells). The number within each graph indicates the percentage of cells

proliferated. (B) Correlation between NK/T ratio and change in CD4+ T cell division

number in log scale, calculated as mean CFSE intensity at co-culture/mean CFSE intensity
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of T cell alone. (C) Comparison of change in CD4+ T cells division number at NK/T = 1:1,

among C1C1Bw6/+, Bw4/Bw4, and C2+Bw6/+ AA haplotype patients. (n = 4, student t test,

two-tailed. ** p < 0.005; *** p < 0.0005). (D) Histograms of CD4+ T cell CFSE dilution in

the absence of (left two) or in the presence (right two) of the indicated blocking antibodies at

10 ug mL−1 (gated on CD4+CFSE+ cells). (E) Histograms of CD4+ T cell CFSE dilution at

the indicated NK/T ratio without physical separation of NK cells and T cells (left two) or

with separation by 1.0 um pore size transwells (right one) (gated on CD4+CFSE+ cells). The

numbers in each histogram indicates the percentage of proliferating cells.
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Figure 2. NK cells from HLA-C1C1 patients have distinct cytokine secretion patterns compared
to those from HLA-C2+ patients in bulk culture
(A) Univariate comparison of cytokine production level of bulk culture NK cells from HLA-

C1C1 CD patients with (licensing, solid dot) and HLA-C2+ patients (unlicensed, open

square) genotypes. The vertical axis shows the fluorescence intensity. (n = 4 to 5, P values

are calculated using two tailed student t test, adjusted for multiple comparison by FDR, * p

< 0.05; ** p < 0.005; *** p < 0.0005). The dash-line indicates the detection threshold.

Secretion profiles were measured by multiplex ELISA. (B) Hierarchical clustering of the

bulk cytokine production profile of NK cells from HLA-C1C1 (red) and HLA-C2+ (blue) CD

patients. Each row represents one protein indicated on the right, and each column represents

one patient. (n= 4 to 5).

Lin et al. Page 18

J Immunol. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. NK cells from HLA-C1C1 healthy subjects have comparable CD4+ T cell – augmenting
capacity as HLA-C1C1 CD patients
(A) Histograms of CD4+ T cell CFSE dilution after co-culturing with NK cells at the NK/T

ratios as indicated, for a representative HLA-C1C1 healthy subject (gated on CD4+CFSE+

cells). The number within each graph indicates the percentage of cells proliferated. (B)

Correlation between NK/T ratio and change in CD4+ T cell division number in log scale,

calculated as mean CFSE intensity at co-culture/mean CFSE intensity of T cell alone. (C)

Change in CD4+ T cells division number at NK/T = 1:1 from two HLA-C1C1 healthy

subjects.
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Figure 4. NK cells from HLA-C1C1 patients contain a subset of NK cells polarized for pro-
inflammatory cytokines production
(A) Univariate comparison of TNF-α production of NK cells from licensed (#0919, #1130,

red) and unlicensed (#0125, #0811, blue) CD patients. The numbers in each graph indicate

the percentage of microchambers that are positive for TNF-α signals. (B) Heatmap of

cytokine secretion capacity for all the cytokines and all the CD patients analyzed. Each row

represents one cytokine, and each column represents the percentage of microchambers that

are positive for the cytokine. The color scale shows the difference in standard deviation. (C)

PCA single NK cell measurements from the four CD patients. Percentage of variation

explained by each component is shown in parentheses for each axis. The composition for

each component is indicated on the left of the plots. (D) Bar graph of NK cell

polyfunctionality. Different colors denote the percentages of single NK cells producing 1, 2,

3, 4, 5, or > 5 cytokines.
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Figure 5. KIR2DL3+ NK cell subset is responsible for the enhanced pro-inflammatory cytokine
production see in HLA-C1C1 individuals
Peripheral blood NK cells from an AA haplotype HLA-C1C1 healthy donor were sorted for

KIR2DL3+KIR3DL1− KIR2DL1− (licensed) and KIR2DL3− (unlicensed) NK subsets,

stimulated with PMA/ionomycin, and analyzed using SCBC. (A) 2-D scatter plot of

representative cytokine production levels from licensed (red) and unlicensed (blue) NK cell

subsets. Axis units are fluorescence intensity, and the value in each gated quadrant is the cell

percentage. (B) Polyfunctionality plot showing the composition of NK subsets secreting 0,

1, 2, 3, 4, 5, and > 5 cytokines in licensed (red) and unlicensed (blue) NK cell subsets. The

frequency for each major category is shown. (C) Hierarchical clustering of cytokine

measurements from single licensed (red) and unlicensed (blue) NK cell subsets. Each

column represents one single cell, and each row presents one cytokine. The color scale

shows the difference in standard deviation. Results are representative of three independent

experiments.
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Figure 6. Neutralizing IFN-γ, TNF-α, and IL-6 in NK-T cell co-culture ameliorated CD4+ T cell
proliferation
NK and autologous CD4+ T cells were isolated from an AA haplotype licensed individual,

stimulated with anti-CD3 and anti-CD28, and co-cultured in 2 ng mL−1 (26 I.U) IL-2 for 3

days. (A) Histograms of CD4+ T cell CFSE dilution without or with the indicated

neutralizing antibodies. The number in each histogram indicates the percentage of cells

proliferated (gated on CD4+CFSE+ cells). (B) Bar plot of CD4+ T cells division number at

NK/T = 1:1 from the AA haplotype healthy individual. (Mean ± SEM, n = 2 to 6, two-tailed

student t test, * p < 0.05; ** p < 0.005; *** p < 0.0005). More than three experiments were

performed.
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Figure 7. Supernatant of licensed NK cells drives human TH17 cells differentiation in vitro
Freshly isolated CD4+ T cells were stimulated with anti-CD3 and anti-CD28, and cultured

in the presence of indicated cytokine with or without licensed NK cell supernatants for 6–7

days. CD4+ T cells were expanded for another 6–7 days in 2 ng·mL−1 (26 IU) IL-2 with the

same condition provided for priming. (A) 2D scatter plot of IL-17A and IL-22 intracellular

production under the conditions indicated (gated on CD4+ cells). Numbers in each quadrant

represents the percentage of cell in that quadrant. (B) Line plot of the abundances of IL-22+

(green triangle), IL-17A+ (purple cross), and IL-17A+IL-22+ (red square) populations at

different amounts of NK supernatant. This result is representative of three independent

experiments. (C) Bar plot of the percentages of IL-17A+ (left panel), IL-22+ (middle panel),

and IL-17A+IL-22+ (right panel) CD4+ T cells after differentiating with 50% NK cell

supernatants from three licensed healthy donors. M stands for media with the same amount

of IL-2 used for NK three-day culture. All assays have been supplemented with 50 ng·mL−1

IL-23. (n = 2, two-tailed student t test, * p < 0.05). (0502 and 0911 are AA haplotype, 0711

has an extra KIR2DL2)
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