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Abstract

This article uses an analytical approach to determine the dilution of an unsteadily-generated solute in an unsteady
solvent stream, under cyclic temporal boundary conditions. The goal is to find a simplified way of showing equivalence
of such a process to a reference case where equivalent dilution is defined as a weighted average concentration. This
derivation has direct applications to the ventilation of indoor spaces where indoor air quality and energy consumption
cannot in general be simultaneously optimized. By solving the equation we can specify how much air we need to use in
one ventilation pattern compared to another to obtain same indoor air quality. Because energy consumption is related
to the amount of air exchanged by a ventilation system, the equation can be used as a first step to evaluate different
ventilation patterns effect on the energy consumption. The use of the derived equation is demonstrated by

representative cases of interest in both residential and non-residential buildings.
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Nomenclature

A dilution rate

C concentration

f fractional time in the period T
N dilution

r fractional dilution rate in the step
S solute source strength

t time

T period

w weighting

Greek

€ ventilation effectiveness
Subscript

*

reference case

Abbreviations

ACH

Air Change Rate



VOC  Volatile Organic Compounds

1 Introduction

The issue being addressed in this article is how to treat a cyclic process in which a variably generated solute is being
diluted by a variable flow-rate solvent in a stream. The goal is to find a simplified way of showing equivalence of such a

process to a steady-state one.

1.1 Target Application

The motivation for this work is to find ways of showing equivalence in determining indoor air quality in buildings when
both sources and ventilation rates vary over time. A key step in designing a building is determining the correct amount
of ventilation and the optimal system with which to provide it. There is no shortage of guidance on how much
ventilation to use. The standard of care for ventilation system design in the US is probably the 62 series of ASHRAE
standards (62.1-2004 for non-residential buildings [1] and 62.2-2007 for residential buildings [2]). In Europe the
standard EN15251-2007 [3] gives recommended ventilation rates for non-residential buildings but countries specify

design ventilation rates in their national codes.

When ventilation rates are stated in terms of airflow rate per person (e.g. I/s pr. person) or airflow rate per floor area
(e.g. /s pr. m?), we generally assume a constant airflow during the entire period of interest. There are, however, a
variety of reasons why one might want to design and operate the ventilation system with variable amounts of

ventilation airflow. For example:

e There may be periods of the day when the outdoor air quality is poor and one wishes to reduce the amount of
outdoor air entering the building;

* Equipment operating for other reasons (e.g. economizer operation) can provide exogenous ventilation from the
point of view of indoor air quality and energy savings can be achieved by lowering the designed mechanical
ventilation to account for it

* Energy or power costs may make it advantageous to reduce ventilation for certain periods of the day;



¢ Some HVAC equipment may make cyclic operation more attractive than steady-state operation such as
résidential or small commercial systems that tie ventilation to heating and cooling system operation; and

* The generation of pollutant indoors may vary over time, e.g., depending on occupancy such that adjusting the
ventilation rate according to the demand can improve indoor air quality and potentially save energy.

e Different times of the day may be more important than others (e.g. because different number of occupants are

present) and can be weighted differently.

Regardless of the reason, the designer or decision-maker needs a method to determine how two ventilation systems
compare for the purposes of providing acceptable indoor air quality. ASHRAE Standard 62.1-2004 does not directly
address these issues; 62.2-2004 does address intermittent ventilation compared to continuously operated ventilation
system in a limited way. The standard EN15665 [4] sets out criteria to assess the performance of residential ventilation

systems concerning hygiene and indoor air quality.

1.2 Ventilation Background

Ventilation is principally used to maintain acceptable indoor air quality by controlling indoor contaminant
concentrations and minimizing occupant exposures to the contaminants. Whole-building ventilation dilutes
contaminants in the indoor air with air that does not contain those contaminants, and is normally used for controlling
unavoidable, generic or non-specific contaminants. When specific contaminant sources can be identified, they are best
dealt with directly through source control methods including local exhaust. For example, bathroom and cooking
contaminants (including water vapor) are best addressed by exhaust fans in those spaces. Volatile Organic Compounds

(VOC) are often best addressed by changes in composition or use of specific materials.

If ventilation rate and contaminant concentration were linearly related, the average concentration would be
proportional to the average ventilation and straightforward methods could be used to determine the effectiveness of a
ventilation system with variable flow rates. Unfortunately, ventilation and concentration are dynamically and inversely
related through the mass continuity equation, which leads to a typically non-linear relationship between ventilation and

concentration.



Solutions to the continuity equation always involve an air change rate (ACH)* appropriate to the problem at hand.
A'Ithough’ we are often more accustomed to dealing with ventilation in terms of specific airflow rates, the efficacy of a
ventilation system with variable air flow rates will depend on the air change rate, so it is important to keep typical rates
in mind for some specific, but common occupancies. A related parameter of interest is the turn-over time, which is the
inverse of the air change rate. It is the characteristic time in which the concentration of a contaminant responds to a

change in ventilation rate.

One can derive typical air change rates and turn-over times from literature and from standards using specific ventilation

rates, typical occupant densities, and typical geometry of the space in question.
TABLE 1

The turn-over times in table 1 vary from 6 minutes to 6 hours, indicating that different occupancies will behave quite
differently at a variety of configurations. The use of such quantities to explore the spatial dependency of ventilation is
also important for large spaces, but will not be discussed here. Sandberg and Sjoberg [9] developed much of the

nomenclature used in this field to deal principally with spatial variation.

Sherman and Wilson [10] followed by Yuill [11, 12] have already solved the continuity equation for the general case and
defined (temporal) ventilation effectiveness,’ €, as a measure of how good a given, time-varying, ventilation pattern is at
providing acceptable IAQ. As in those cases, we limit our analysis to contaminants with a linear dose-response and no
other loss mechanism (e.g. sorption or deposition). ASHRAE Standard 136 [13] uses this kind of approach to convert
time-varying envelope air leakage into an effective seasonal ventilation rate. Sherman [14] studied the case of
equivalent dilution of a steadily generated source for intermittent ventilation compared to constant ventilation. These
results have been included in ASHRAE standard 62.2 by allowing intermittent ventilation provided that the ventilation
rate is raised outside the off period. This paper expands on the work by Sherman to also consider variable source

generation, variable flow rates and variable weighting of the concentration. The purpose of this paper is to develop

! The term “air change rate” does not discriminate between, infiltration, natural ventilation, or mechanical ventilation. 1t simply
denotes that air is being exchanged between indoors and outdoors—somehow.
2 We will also use the term efficacy as a synonym for (temporal) ventilation effectiveness.



approaches for determining the indoor air quality equivalency of different ventilation systems based on fundamental
p'rinciples of mass balance. The approaches are demonstrated using a few representative cases of interest in both

residential and non-residential buildings.

2 Problem Definition
Consider the situation in which we have a small amount of solute being generated at a known time-varying rate M e
inside a solvent filled space of volume V. This space is being flushed by the solvent at a known, time-varying ratem_,,,,,

to yield a time varying solute concentration, C. The relationship between these quantities is constrained by the

conservation of mass as follows:

VC + solvent C — solute (1)

p solvent p solute

Assuming constant densities for solvent and solute eq. 1 can be expressed by:

C+AC=S (2)
Where A=1i1.,,,,., [V P,onen IS the dilution rate of the solvent stream and S =11, /V 0, iS the source strength of
the solute.

We are investigating the problem of a system that is unsteady, but in cyclic equilibrium over some known period, T. This
means that the concentration, the solute source strength and the dilution rate take on same value when the time

changes one period: C(t =T)=C(t), S¢—-T)=S(@) and A(t—-T) = A(t).

We seek to evaluate some test system that performs dilution equivalent to a reference case. We define the dose, d, as
the quantity that we wish to hold constant in determining equivalent dilution and the dose is calculated as the weight-

integrated concentration over the cyclic period, T:

d :D]C(z‘)W(t)dt (3)



Where W is the weighting function: mW(t)dt =T . The weighting function allows us to emphasize parts of the cyclic

period heavier than others or to omit parts of the cyclic period by using a zero value weighting factor when solving for

equivalent dose.

2.1 Reference case

Before proceeding further, we consider the reference case to compare our test case with. We select as our reference
the case conventionally called perfect dilution, which we define as that time varying reference dilution rate A+(t) that
holds the concentration constant at some steady state value, C-. By inspection of equation 2 the time-varying reference

dilution rate is:

S()
A(t) = 4
(t) C (4)
In our reference case the dose is then:
d=[JCwydt=CT (5)

Let us now define the efficacy as the ratio of the amount of solvent required in the reference case compared the amount
in the test case under consideration. The amount of solvent used in the reference case, N-, is the integrated reference

dilution rate over the cyclic period:

N, = [ﬁ A.(t)dt (6)
In the same ways is the amount of solvent used in the test dilution system, N, given:

NE[ﬁA(r)dt (7)
From equation 9 and 10 we calculate the efficacy:

A (t)d
e=——w ()t—& (8)

- [j4@ar "N



The efficacy is a measure of how much solvent we need to use in our test system compared to the reference case to
obtain the same dose. The efficacy can be used as a target or optimization parameter in the design process. We can
design our test system to match some target efficacy that often will be unity, as we then provide dilution equivalent to
our reference case. The efficacy can also be used as an optimization parameter in designing systems that provide same

dose but use less solvent.

3 Derivation of dose for cyclic, unsteady driving forces

We want to derive an equation for equivalent dilution in our test and reference case and we use dose as the quantity
that we wish to hold constant in determining equivalent dilution. To evaluate the dose (eq. 6) in our test case, we need
to solve the continuity equation (eq. 2) for the concentration, C(t). The standard integral form of an inhomogeneous,

first-order, linear differential with arbitrary coefficients can be used to do this:
C(0) = C@,)§(t.1,)+ [SEEw, 1) (©)
fo

Where C(t,) is the known constant of integration representing the concentration at some reference time, t,. For
simplicity we have defined the following function:

—IA(u)du
Et,t)=e "’ (10)
Our process is cyclic over the period T and the concentration therefore takes on the same value when the time changes

one period. This also means that t, in our constant of integration is arbitrary and the constant of integration itself is a

solution to the differential equation. The time-varying concentration in our cyclic process is then given by:

] SEHE,tdt'
C() =1L 11
0= ey -

The derivation of the time-varying concentration can be found online in the paper’s supplementary data in section 1.
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By substituting the time varying concentration (eq. 11) into the expression of the dose {eg. 3) we can calculate the dose

for any test system with variable dilution rates, solute source strength and weightings by the following double integral:

[ﬁ /40 ,J.S(t’)cf(t,t’)dt’dt
d — =T (12)
(1-6(71,0))

With the derived expression of the dose (eq. 12) for an unsteady but cyclic test system we can compare this to the dose
in our reference case of perfect dilution (eq. 5). Depending on which parameters are known we can use the equivalency

equation in different ways.

If we know the solute source strength, S(t), and the time-varying dilution rate in our test system, A(t), is completely
specified we can determine what the steady-state concentration, C-, in our reference case of perfect dilution would be.
Sometimes we are trying to design a system that produces a dose equal to that in our reference case and we can use
equation 12 as the constraint on the test system that makes that true. Our problem then reduces to finding that test

dilution pattern that gives us the target dose.

Because we defined our time varying reference dilution rate A+(t) as that which holds the concentration constant at
some steady state value, Cs, see equation 4, we do not need to individually know the solute source strength, S(t), and

the steady state concentration, C-, but only the presumed dilution for perfect dilution, A(t).

4 Step Function

The applications we consider further on will only involve situations in which the weightings, solute source strength and
dilution rates are all step-wise constant with one step at time t., see figure 1. Any of the three parameters can change at
the step t; or they must remain the same through the cyclic period, T. In other words, they have to change at the same

time or not change at all.

FIGURE 1 (black and white)
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Because of the step-wise constant profiles we can expand the dose equation (eq. 12) into a sum of integrals where the
parametérs are constant. We can thereby set up an analytical expression for equivalent dose in our reference and test
case (eq. 5 equals eq. 12). This analytical expression can be simplified using the following definitions: weighting of the
two periods: Wt + W,(T —,) =T , reference dilution: N, = 4, ¢, + 4,,(T —t,), test dilution: N = A+ A,(T-1),
fraction of time in the step: /' =1, /T, non-dimensional test dilution rate in the step: » = 4T /N, and a non-
dimensional réference dilution rate in the step: 7, = AT /' N, . The non-dimensionalized dilution rates, r and r», will be 1

when the dilution rate does not change through the cyclic period and they will be 0 when the dilution rate during one of

the two periods is zero. The parameters r, r- and W1 can take on values in the interval [0,T/t.].

By introducing the variables: Z = fr and ¢ = f2[(r - ».)(» — W,)] the equation for equivalent dilution can be reduced

to:

N, = N (13)

40 2 4 2/(Coth[N—Z}+Coth{MD
Z(1-2Z) N(Z(1-2)) 2 2

For detailed derivation see the online supplemental data section 2.

® and Z are only introduced to simplify the equation and they also allow us to more easily investigate the behavior of
our step wise constant problem in its space of solutions. In equation 13 it is worth noting that Z is symmetrical around %

as replacing Z by (1-Z) yields the same result,

We can derive a recursive expression for the efficacy, but at the expense of breaking the symmetries of Z:

1—[—¢——Z(1/8-l)j(N*)(Coth[N*Z}+Coth[N*(l_2)}— 2¢ ]
la-2) 2 2 2¢ N.Z
- ¢

1- 2
(1-2)

(14)

12



Because we consider a step-wise constant system we only need to know the ratio of the reference dilution rates (or
solute source strength) in the two periods to estimate the efficacy of the system. However, if we only know the ratio we

cannot calculate the actual dose.

5 Discussion

5.1 Phase space of ® and Z

Before discussing the actual phase space of the efficacy it is important to realize that the allowable phase space of the
parameters ® and Z is limited. The maximum value ® occurs when the product: (r - r+)(r - W1) is as large as possible.
This occurs at two points; the first is when r« and W1 equals 0, hence ®,,,, = Z>. Because Z is symmetrical around %, ®pax
= (1-2)* for Z > %. The minimum value of ® occurs when one of the differences: (r-r« or (r- W1)is positive and the
other is negative. Because r- and W1 take on values in the interval [0;1/f], ®min =- Z(1-Z). The limits of ® are thereby

given by: —~Z(1-2Z) < ¢ < Maximum(Z’,(1-Z)*) . Figure 2 shows the allowed phase space of ® and Z. It is seen that

O goes from zero to unity when Z=0 (or Z=1), but when Z=1/2, ® goes between +0.25.
FIGURE 2 {black and white)

5.2 Intermittent Dilution
In the limiting situation where there is no dilution during one of the two steps Z equals either 0 or 1. We call this limit
Intermittent Dilution. If we take the limit of equation 14 when Z approaches zero (or unity) we get the following

expression for the efficacy:

£y = 1 : (15)
1-p+¢ (N/2)Coth[7}

Where we have used the subscript on the efficacy to show that it is for a solution where one of the two steps has no
dilution. Sherman [14] solved the case of intermittent dilution when the solute source strength and weighting were
constant during the cyclic period. In that specific case of intermittent dilution ® approaches the following limit:

13



¢ 1 (16)

For that application the solution was more conveniently expressed as a recursive relationship between the efficacy and
the reference dilution, N.. We can also express the more general intermittent dilution solution (eq. 15) in that form as

follows:

1-g (N. /2)CothD* }

)

& =
0 1*¢

(17)

5.3 Phase space of efficacy

Let us know examine the phase space of the efficacy by the equation for equivalent dose (eq. 13). Figure 3 is a plot of
the efficacy vs. reference dilution rate at a representative value of ®= 0.25. A mesh of curves for different values of Z is
graphed spanning the full range of Z. The lower bounding curve is for Z=0 (or Z=1 corresponding to the intermittent

dilution limit) and the upper curve is for Z=1/2.
FIGURE 3 {black and white)

For reference dilution values, below approximately 2, the efficacy is independent of Zand the solution for intermittent
dilution provides sufficiently accurate results. As the reference dilution gets higher the efficacy approaches an
asymptote that is very much dependent on Z. Taking the limit of the general equivalency equation (eq. 14) for high

dilution rates we find that efficacy asymptotically approaches a limit given by:

P S (18)

1+—¢_
(Z(1-2))
This suggests that for practical problems one may choose to use the efficacy equation for intermittent dilution until the

efficacy approaches the limited given by the asymptote. Inspection of eq. 18 also shows us that because Z always is

positive, the efficacy is below unity for positive values of @ and above unity for negative values of ®. In figure 3 we saw

14



how the efficacy depended on Z and not @ which was maintained at a fixed value of 0.25. Figure 4 shows the efficacy at

three different values of ® each spanning their individual range of Z.
FIGURE 4 (black and white)

Again we see that for a test dilution of less than about 2, the intermittent dilution equation (eq. 15) provides sufficiently
accurate results as Z in this range has little effect on the efficacy. Furthermore we also see how the efficacy can take on
values above unity when @ is negative. At low dilution the efficacy for ©=-0.1 starts near unity but it can slowly grow
without bound for increasing dilution. Efficacies above unity means that a test case can perform better (i.e. use less
solvent) than our reference case of perfect dilution. For ® to be negative, r must be between the values of r« and W1.
This could occur, for example, in a case where the source was high during a period when the weighting was low. The

most negative O occurs when the sum of the two difference (r-r+) and (r-W1) is a big as possible. This happens when r

take on a value exactly between r. and W1, hence: r = (r, + W,) /2 which means that: ¢, = —(f* /4)(n. - W,)*.

Figure 5 shows the dependence on @ a bit more clearly for representative values of test dilution (N=2, 5 and 10} and
spanning the full range of Z. The lower bounding curve is for Z=0 when @ is positive whereas Z for the upper bounding
curve changes depending on ®. When @ is negative the lower bounding curve is for Z=¥ and Z changes for the upper

bounding curve depending on O.
FIGURE 5 {black and white)

In figure 5 we again see that for low values of test dilution there is not much dependence on © for the efficacy but at
higher values there is (as is there on Z). Again our results show that for a test dilution of two or below the efficacy is
independent of Z and the equation for intermittent ventilation (eq. 15) will provide sufficiently accurate results. From
figure 5 we also see that to design systems with high efficacies the strategy would be to minimize ® as much as possible.
If more degrees of freedom are available, Z can be optimized after that; an optimal Z should be as close to % as possible

for efficacies below unity and as low (or high) as possible for efficacies above unity.

5.4 Approximate solution

15



For some applications it may be desirable to have an approximate solution. We note two results from above that
'suggest‘an approximate solution. The first result is that high test dilutions solutions are generally low efficacy and
relatively independent of efficacy (see figure 3). The second result is that low test dilution solutions have efficacies near
unity and are relatively independent of Z (see figure 3, figure 4 and figure 5), and thus equal to the intermittent dilution
solution. Accordingly, an approximate solution for the efficacy that works over a broad spectrum combines the limiting

solutions is as follows:
ergyt+e,(1-g,) (19)

This approximate solution does not work well when any of the efficacies are much greater than unity—which can only
happen when ¢ is negative. Other reasonable approximations are possible, but were not investigated as this appears

sufficiently accurate for most purposes.

Figure 6 shows the approximate solution of efficacy for ®=0.5 and Z=0.2. The largest difference between the

approximate and exact solution occurs in the region where the intermittent and asymptotical solution intersect.

FIGURE 6 {black and white)

6 Practical examples

The discussion above was quite general. We will now work two practical examples from the field of ventilation. In the
terminology of ventilation the solute source strength, S(t), corresponds to the emission of pollutants in a room. The
dilution rate, A(t), is the air change rates in the room. The weighting function can be used to represent the presence of
occupants in the room, so that it is possible only to evaluate the dose when the room is occupied. We assume that the
dose is linearly proportional to the pollutant concentration because the vast majority of ventilation standards, are
limited to chronic, long term exposure and do not address short term exposures to highly toxic substances with non-
linear dose response for human health. Therefore dose is used as the metric for equivalent air quality in the following

examples.

6.1 Example 1 - Intermittent ventilation with variable source generation

16



Consider a home ventilated at constant rate of 0.5h™ and assume the emission of pollutants is constant during the day.
The home is occupied at all times, hence W1=1. The owner of the house now wants to start up a business and
establishes an office in the home. It is estimated that the emission of pollutants is increased by a factor of 4 during the 8
hours each day that the office is used. To maintain the dose at the same pre-office level, the ventilation rate can be
changed proportional to the pollutant emission rate during the office hours. Hence the rate during office hours would be
2.0h™ and outside office hours it would be 0.5h™. The amount of dilution air is therefore 24 calculated by eq. 7. The

efficacy is 1 because this is perfect dilution.

Alternatively, the ventilation could be constant during the day and adjusted to give the same dose. Because the total
quantity of air over the day would be the same as the above variable ventilation rate, this new, higher, constant
ventilation rate can be determined by simple averaging. The average ventilation rate that would give same dose is
therefore (16h-0.5h™+8h-2.0 h™)/24h = 1.0h™%. The dilution is still 24, and the efficacy is 1. The difference between them
is that in the perfect dilution case the concentration is the same for the whole period, while in the constant dilution case,
the concentration varies over the period. Since we have assumed acute exposures are not an issue, these two cases are

equivalent.

As an alternative to these perfect dilution cases, we could increase the ventilation rate outside office hours by 50%
(from 0.5 h™ t0 0.75 hY). Using Equation 13 to solve for equivalent dose, we find that the rate during office hours would
have be 1.25 h™ to obtain same dose in the two systems on a daily basis. The amount of dilution air is then 22 (eq. 7) and
the efficacy of this system compared to that of perfect dilution is 1.09. By increasing the ventilation rate outside office

hours by 50% we use approximately 8% less air in total each day.

6.2 Example 2 - Demand controlled ventilation

As a first step towards evaluating a systems’ energy performance, a designer wants to know the total volume of air
exchanged on a daily basis in a demand controlled ventilation system (DCV) compared to a continuously operated
system. The systems are to be operated in a home that is occupied for 16 hours a day. Because the occupants are not
present all times the systems only need to provide equivalent air quality during occupied hours. The occupied period is

given the index 1 and the weighting parameters will therefore be W1=1.5 and W2=0. Pollutants are emitted by the
i7



building itself together with pollutants from the occupants and their activities. The emission of pollutants is assumed to

be 4 times higher at occupied hours compared to unoccupied hours.

The continuous ventilation system is operated at an air change rate of 0.5h™ corresponding to the ventilation required in
residential buildings in Denmark (see [7]). The test dilution in this system is therefore 12. Because all parameters needed
to calculate that reference dilution, N+, that gives us equivalent dose in our test and reference case of perfect dilution
are given, we do not need to know the actual dilution rates in the reference system. Using Equation 13 shows that the

reference dilution is 9.9 for the continuous system.

The DCV system is operated at half rate of the continuous rate during unoccupied hours (A, is 0.25h™). We solve
equation 13 to find the ventilation rate that during occupied hours gives us a reference dilution of 9.9. We find that this
ventilation rate must be 5% higher than the rate in our continuously operated system and the test dilution, N, in the DCV
case is 10.4 (eq. 7). Because we evaluated our two test systems relative to the same reference system, we can evaluate
the two systems to each other and we find that the efficacy of the continuously operated system compared to the DCV
system is 1.16. Hence, the DCV use approximately 14% less air in total every day compared to the continuously operated
system to provide same indoor air quality. Further evaluations of efficacy of demand controlled ventilation with variable

emission ratios are given in [15].

7 Summary and Conclusions

In this paper we have derived an expression for dilution of an unsteadily-generated solute in an unsteady solvent
stream, under cyclic boundary conditions. We determined an analytical relationship showing equivalence of such a
process across a step-wise constant function with one step to a steady-state one. This expression was used to evaluate
the efficacy i.e. how much air we needed to use in one case compared to another. Investigating the phase space of
efficacy we found that a simple equation for intermittent dilution provides sufficiently accurate results at low dilution.
Furthermore we found that at high dilution the efficacy approaches an asymptote. We have demonstrated how the
expression can be applied to the problem of determining equivalency for different approaches to ventilation in a

building where contaminants, air flows, weightings are variable.
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Tables

Table 1: Example Air Change Rates and Turn-Over Times

Turn-over
ACH(1/h) | time(h) | DESCRIPTION
0.15 6.67 Assumed infiltration rate of homes [2]
0.25 4.00 Infiltration rate of commercial buildings [5]
Ventilation requirement of almost empty commercial buildings [1];
0.3 3.33
estimated infiltration rate of new homes [6]
Ventilation requirement for small a homes of 90m? including default 62.2
0.45 2.22
infiltration credit [2]
Office space requirement[1]; also large home [2]; requirements in
0.5 2.00 '
residential buildings in Denmark [7]
1 1 Infiltration rate of older home [8]
2 0.50 Conference room requirement [1]
4 0.25 High density space (e.g. theater lobby) [1]
6 0.17 School - Low polluted building, Indoor environment category B [3]
10 0.10 School — Non-low polluted building, Indoor environment category A [3]

22



Figure captions

Figure 1: Step wise constant weighting, solute source strength and dilution rate during the cyclic period, T.
Figure 2: Allowable phase space of @ vs. Z.

Figure 3: Efficacy vs. reference dilution for ®=1/2.

Figure 4: Efficacy vs. test Dilution for ®=-0.1, 0.1, 0.9.

Figure 5: Efficacy vs. O for three different test dilutions (N=2, 5, 10 from flattest to steepest). Mesh is for full range of

allowable values of Z

Figure 6: Approximate, exact, intermittent and asymptotical solution of € for ®=0.5 and Z=0.2.
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10 Derivation of the time-varying concentration C(t)
To derive an expression for the time-varying concentration, C(t), we must solve the continuity equation for this. The

standard integral form of an inhomogeneous, first-order, linear differential with arbitrary coefficients can be used to do

this:
C(t)=C(t,)é@L,) + ]S(t’)g(t,r')dz’ (1)

Where ({(t,) is the known constant of integration representing the concentration at some reference time, t,. For
simplicity we have defined the following function:

- I.[A(u)du

St,t)=e (2)

Because our system is in cyclic equilibrium over the period T, some useful identities of the function are:

St (u,t")=&(t,t"Yand E(+T,¢ +T) = E(t,1).

To calculate the time-varying concentration, C(t), we need find the constant of integration C(t,). To do this we make us
of the fact that the concentration at time zero, C(0), must be the same as that at the end of the period, C(T), due to our

cyclic process.
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CO)=CT) (3)

Ct)50,1)+ [SEEQO,1)dE = Ct)ET, 1)+ [SAET,1)dr (@)

Rearranging eq. 4 we find that the constant of integration is given by:

j SVE(T, )dt' + }S(:')g(o,r')df

C(ty) =2
g(osto)_g(T’to)

In a first step towards simplifying the expression further we substitute, t/, by u +T and change our limits accordingly. In

the denominator we make use of the fact that: &(7,¢,) = &(T,0)£(0,2,).

j Su+T)ET,u+T)du + ]S(t’)f(o, 1")dr'

C(t,) =2T (6)

(0,1,))(1-4(T,0))

We then make use of the fact that: S(u+7) = S(u) and (T, u+T) = £(0,u) and in the end we substitute u by t:

j SENE(0, 1) dt' + ojS(ﬂ)g(o,t')dz'

C(t,) =22 (7)
£(0,2,)(1-&(T,0))
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We then expand the function 5(0,2") to £(0,2,)&(2,,1") and make us of the fact that £(0,£,) is a constant we can take

outside the integral.

§(O,to)[ [ sahe,,thar + jS(t')g(zo,z')dt']

to-T

Clty) = (8)

(0,2,)(1-&(T,0))

The constant of integration is then expressed by:

[ sae,.ryar + OjS(t')r:(to,ﬂ)dz'

(e, _ bt 0 (9)
) (1-6(7,0))

The constant of integration (eq. 9) can now be put back into the solution for the concentration (eq. 1). However,
because t, is arbitrary and we have a cyclic process the constant of integration itself is a solution to the differential
equation and we can remove the "0" subscript. Applying this to equation 9 and merging the integrals find that the time-

varying concentration for a cyclic process can be expressed by:

[.[ SEHE@,Hdl!
(1-2(1,0))

C(t) =" (10)

11 Derivation of an analytical expression for equivalent dose in a step wise

constant process with one step
The derived expression of the dose (eq. 12 in the paper) for an unsteady but cyclic test system is compare to the dose in

our reference case of perfect dilution (eq. 5 in the paper) to set up an expression for equivalent dilution:
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‘ [ﬁ ]W(’)f(f,f')S(t')dt’dt
C, T =—tt "
(1-&(T,0))

Because we defined our time varying reference dilution rate A.(t) as that which holds the concentration constant at
some steady state value, C., see equation 4, we do not need to individually know the solute source strength, S(t), and
the steady state concentration, C+ seper, but only the presumed dilution for perfect dilution, A«(t). Rearranging equation

11 gives us the following expression for equivalent dilution:

T(1-&(T,0) = [ﬁ IJ' W(E@, 1A )dr'dt (12)

!

This equation can be expanded into a sum of integrals because of the step-wise constant profiles for the solute source
strength, dilution rates and weightings changing at time t;. An analytical solution to equation 12 is found by expanding
the double integral on the right side into 6 integrals each with constant weighting, solute source strength and dilution

rate:

IrA-¢(T,4)6(1,,0)) =

]]W(t)f(t,t')A*(t')dt’dt+ j j W(E@, ) A )dt'dt + lj'lj W(OE YA )dt'dr + (13)

Tt

j j W(E(t, 1) A (¢)dr'dr + Tj’]W(r)g(r,r')A(t')dt'dt + Tj Oj W ()E@, 1) At dt

4 H1-T

The analytical solution to the left side of is given by equation 14 and the 6 integrals on the right side are given in

equation 15 to 20:
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T(1=&(T,4)E, 0) =T (1-e 44 (14)

Hot hot

j W()E(t, 1) A (')t de = W, A,, ” Al dr'dt = ", (A1t1—1+e*""') (15)
00 1

5 0 H 0 WA*

' ' ’ —At At g0 g, —An ~ A, (T -1
OJ"I:[TW(t)s‘(t,t)A(t )dtdt:WIA*sz,lfTe Al g dtdt—ﬁ(l—e 4 )(l—e ( )) (16)
nho-T o1
j' 'f W (OEW ) A )dl de =W, A, j f e eI~ A=) gyt iy
0¢-T 0 1-T (17)

WA/ZLI -4 (T-1) (1 o Ate A,:,)
T Tt W A*
W(DEW VA Ydl'dt =W, A, | e e di'dt =222 4, (T —t)+e ™2™ -1 (18)
» (T-1)
H 4y

T4y T4 W
| j W (0)E(t, 1) A (¢)dl'dt = WA*I;[ [t h gy gy = y j*l (1-e )(1—5’*2“‘"1)) (19)
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T 0

70
J‘ J.W(t)f(t,t’)A*(t’)dtldt - W2A*2 J. J.e—Az(I#])e—A|11e+Azl'dtldt

4 t=T fHt-T
_Wdy i () N (1)
__AZZA;e “(1-e 4,(T-1)e )

The analytical equation for equivalent dose is the given by:

T (1 _ e—Az(T—t,)e~Alll ) _

WAA* (4, ~14+ e )+%2—2(1 e )1 _e-Az<T-«>)+WT?ﬂe-Az<T-«> (1—e = dge)
+%e”""l (1 - e~A2(T—11) —4, (T 1, )e—Az(T—tl))
2472

This equation can be rewritten by substitution of the following variables:
Weighting: Wit, + W,(T —t))=T
Reference dilution: N, = 4,, + 4,,(T - ¢,)
Actual dilution: N = 41, + 4,(T —t,))
Fraction of time in the step: /' =¢,/T
Fractional dilution rate in the step: » = AT /N

Fractional source strength in the step: r, = 4,,T / N,

Substitution of the variables and grouping of term gives the following:

(20)

(21)
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%[—e% +e%]Nr(—l+fr)(r(N—Nfr + N, (=14 fr))+ N, f (r—n)W1)

1 _N Nfr N(1- /1) _N({-fr)
—2[—6 2+e2j(e 2 _e 2 JN*(r—r,)(r—Wl)

N (<14 fr)

T

(22)

Equation 22 can equivalently be expressed by the hyperbolic sine function: sinh (x) = —;—(e" _ e‘x) as:

N Nr(—l+fr)(r(N~Nfr+N*(—1+fr,,))+N*f(r—r*)Wl)Sinh[];/}

2e ?
2N, (r-n)(r —Wl)Sinh{lzﬁi}Sinh[w}
0 - (23)
N (-1+ fr)
Solving for N« gives us the following:
2.2( 2 o E

. N (-1+ fr) Smh[z} 24

Nr(—l+fr)(r(—1+ fr)—f(r—n)(r—Wl))Sinh{%}

—2(r—n)(r—Wl)Sinh[NTﬁ}Sinh[N(lz_ﬁ)}
Because 51:}2?114()121;:()3) =coth(4)+coth(B) equation 24 can be expressed as:
N. = N?*r? (—l+fr)2 (25)

2(r —r*)(r —Wl)
cm[ivﬁ}r cm{wﬂ
2 2

zvr(—l+fr)((’(—1+fr)—f(r-"*)("Wl)))‘{
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Introducing the two variables: 6 = f~ (r —n)(r —Wl) and Z = fr and rearranging equation 25 we can simplify the

equation to:

N

(26)
T | 9 22 PO 2] |
1-2z N((O-2)Z 2 2

N, =
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