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Stability of control networks in autonomous homeostatic 
regulation of stem cell lineages

Natalia L. Komarova and
Department of Mathematics, University of California Irvine, Irvine, CA 92697, USA

P. van den Driessche
Department of Mathematics and Statistics, University of Victoria, Victoria, B.C., Canada V8W 2Y2

Abstract

Design principles of biological networks have been studied extensively in the context of protein-

protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here 

we consider regulation networks that occur on larger scales, namely, the cell-to-cell signaling 

networks that connect groups of cells in multicellular organisms. These are the feedback loops that 

orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of 

homeostasis in stem cell lineages. We focus on “minimal” networks, that is those that have the 

smallest possible numbers of controls. For such minimal networks, the number of controls must be 

equal to the number of compartments, and the reducibility/irreducibility of the network (whether 

or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of 

the cell number increments induced by each of the controlled processes in each of the 

compartments. Using the formalism of digraphs, we show that in two-compartment lineages, 

reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; 

stability follows from the signs of the controls and does not require magnitude restrictions. In 

three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at 

least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper 

biological validation, our results may serve as a first step toward an understanding of ways in 

which these networks become dysregulated in cancer.

Keywords

Stem cells; Mathematical modeling; Homeostasis regulation

1 Introduction

Theoretical biologists often ask questions about “design principles” that are common 

characteristics of many, possibly unrelated, systems. Distinct evolutionary pathways are 

thought to converge to a subset of possible solutions, based on their accessibility, utility, and 

other characteristics. One particularly attractive area is the study of the engineering “design 

principles” of networks. In biology, networks occur on different scales and perform different 

functions in organisms, see e.g. Barabasi and Oltvai (2004); examples include protein-

protein interaction networks, metabolic networks, regulatory (transcriptional) networks, co-

regulation networks, social interaction networks, and food webs in ecology. The principle of 
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modularity has been widely discussed and is believed to be an important feature of many 

networks, see e.g. Hartwell et al (1999); Vespignani (2003); Wuchty et al (2003). 

Groundbreaking work of Alon and colleagues has stimulated the search for motifs, “patterns 

of interconnections that recur in many different parts of a network at frequencies much 

higher than those found in randomized networks” (Shen-Orr et al, 2002), see also Milo et al 

(2002); Alon (2003, 2007).

Here we focus on networks at a different scale, which lie between sub-cellular (gene 

regulation, transcription) and population level (social interactions, food webs). Namely, we 

study control networks that exist between groups of cells in multicellular organisms, 

concentrating on the homeostatic regulation of stem cell (SC) lineages. Homeostasis is a 

relatively stable equilibrium between interdependent cellular compartments, maintained by 

regulatory processes. Feedback loops are thought to play a central role for achieving 

homeostatic control. This notion is supported by a variety of experimental findings. For 

example, negative feedback regulation affecting various processes such as cell division and 

differentiation has been reported in the mouse olfactory epithelium, skeletal muscle, bone, 

keratinocytes, and the hematopoietic system, identifying specific regulatory proteins that 

mediate the feedback in each case (McPherron et al, 1997; Daluiski et al, 2001; Wu et al, 

2003; Yamasaki et al, 2003; Elgjo and Reichelt, 2004; Lander et al, 2009; Tzeng et al, 

2011).

While it is commonly accepted that feedback regulatory processes play a major role in tissue 

homeostasis, it is less clear exactly how regulatory signals are mediated. Cell fate decisions 

such as proliferation, differentiation, and apoptosis, can be controlled either intrinsically or 

extrinsically (Morrison and Kimble, 2006). Intrinsic control implies that the fate of daughter 

cells is determined by the signals present within the mother SC. More relevant to the present 

study, extrinsic control implies that cellular decisions are influenced by signals from the 

cell’s surroundings. Two types of such signals have been discussed. The non-autonomous 

mode involves signaling emanating from the stem cell niche, an anatomic location that 

regulates how stem cells participate in tissue generation and maintenance (Scadden, 2006). 

Non-autonomous signaling involves various components of the stem cell niche, including 

the endothelium, pericites, and surrounding extracellular matrix. On the other hand, 

autonomous signaling implies signals received by cells from groups of surrounding cells in 

the same lineage. For example, in adult neurogenesis, SC divisions are orchestrated by the 

mature neural cells, and new neurons and glia appear to be produced on demand, rather than 

on a fixed schedule (Hsieh, 2012). It is this type of cell fate regulation, autonomous 
homeostatic regulation, that is the focus of the present study.

All cells within the body can be viewed in the context of their phylogenetic lineages. At the 

top of the lineage is the SC, and at the end are the non-dividing, terminally differentiated 

cells (DCs). These cells are usually highly specialized and help to perform the tissues’s 

specific functions. There can also be intermediate cell groups that differ by their degree of 

differentiation. We will refer to cells of the same degree of differentiation as a 

“compartment”. There is evidence that various cell fate decisions may be subject to positive 

or negative control from different compartments.
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For example, SC numbers can negatively control differentiation, mediated by crowding and 

factors like contact inhibition, which play an important role in determining the fate of stem 

cells (Dehay and Kennedy, 2007; Guilak et al, 2009). Interestingly, SC numbers can also 

positively control differentiation. In some systems, mechanical strain has been shown to 

increase cell differentiation (Simmons et al, 2003; Sen et al, 2008; Guilak et al, 2009). It has 

also been suggested that stem cells have to be spatially localized to their niches, which keeps 

them protected from the differentiating influences of the surrounding microenvironment 

(Adams and Scadden, 2008). Therefore, as the number of stem cells increases, the 

probability of exposure to the differentiation signals from the outside increases, resulting in 

a positive control loop.

Differentiation decisions can also be controlled from downstream compartments. It has been 

proposed that neural SC descendants can trigger some sort of feedback mechanism to stop 

SC differentiation (Liu et al, 2000), e.g. by Notch signaling (Alvarez-Buylla and Lim, 2004) 

or by Prox1 expression (Lavado et al, 2010). Hematopoietic SCs are thought to be regulated 

by their mature progeny (de Graaf et al, 2010). In Li and Clevers (2010) it is suggested that a 

negative control loop exists between the active SCs and quiescent stem cells, which controls 

divisions of SCs in hair, intestine and bone marrow.

These are just a few examples of known autonomous regulation mechanisms. The exact 

control networks orchestrating homeostatic turnover of SC lineages in many tissues are only 

starting to be described. Therefore, it is important to improve the theoretical understanding 

of such control networks, which would allow us to reconstruct the actual networks from 

limited biological information. This paper aims to provide a general description of stable 

control systems in multi-compartment lineages and to provide an intuitive understanding of 

network topologies that can be stable. In particular, we study the reducibility or irreducibility 

of a network. A reducible network contains a compartment (or, more generally, a proper 

subset of compartments) which controls cell number change only inside itself, and not in any 

other compartment. This is an important consideration in spatially extended lineages such as 

those of colonic crypts. The mathematical implication of reducibility is related to the 

biological property of modularity of a control network.

The importance of control networks in SC lineages is apparent once we consider the 

intimate connection between tissue homeostasis (dys)regulation and cancer. While tumor 

formation follows a multistage process of random mutation accumulation and/or epigenetic 

changes, all tumors eventually break out of homeostasis, which means that some or all of the 

control loops that function in the healthy tissue are altered. There is large evidence in the 

literature that escape from feedback regulation is key for the formation of the majority of 

SC-driven tumors (see e.g. Vogelstein and Kinzler (2004); Ram Singh (2012); Vermeulen 

and Snippert (2014)). Therefore, the current study aims to contribute to the theory of 

carcinogenesis by studying the common targets of oncogenic mutations, that is, control 

networks that regulate cell fate decisions and maintain tissue turnover.

The present study contributes to the growing theoretical literature on SC dynamics, see e.g. 

review in Piotrowska et al (2008). Conceptual aspects of SC lineage turnover have been 

developed by Marshman et al (2002); Loeffler and Roeder (2002); Roeder et al (2006); 
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feedback mechanisms have been studied by Lander et al (2009); Youssefpour et al (2012); 

Konstorum et al (2016); Kunche et al (2016). Mathematical modeling of SCs range from 

discrete to continuous models in the context of carcinogenesis (Yatabe et al, 2001; Hardy 

and Stark, 2002; Ganguly and Puri, 2006; Johnston et al, 2007a; Ganguly and Puri, 2007; 

Boman et al, 2008; Ashkenazi et al, 2007, 2008; Enderling and Hahnfeldt, 2011) and cancer 

stem cells (Dingli and Michor, 2006; Johnston et al, 2010; Enderling and Hahnfeldt, 2011; 

Hillen et al, 2013; Scott et al, 2014; Enderling, 2015); modeling hematopoietic SC dynamics 

(Glauche et al, 2007; Marciniak-Czochra et al, 2009; Foo et al, 2009; Stiehl and Marciniak-

Czochra, 2012); deterministic modeling of two-, three-, and multi-compartmental SC 

systems under various assumptions on control functions (Nakata et al, 2012; Stiehl and 

Marciniak-Czochra, 2011); and stochastic modeling of SC dynamics, including the analysis 

of fluctuations (Enderling et al, 2007, 2009a,c,b; Dingli et al, 2007). The present paper 

focuses on the regulatory networks in SC lineages.

2 Formulation of autonomous homeostatic network models

2.1 General

Assume the existence of n compartments in a cellular lineage. Cells in different 

compartments differ by their properties (such as their degree of differentiation, function, 

etc). The number of cells in each compartment is denoted by xi for i = 1, …, n. We further 

assume the existence of K ≥ n different cellular processes that change the number and/or 

type of cells in different compartments. Examples of such processes are symmetric 

proliferations of SCs, death of DCs, or de-differentiaion of intermediate cells. We denote by 

Qk(x1, …, xn) for k = 1, …, K the rates at which these processes take place. Here we assume 

that in principle, these rates can be functions of all the cell populations in the lineage. In 

reality, not all populations can control each process. Therefore, it is useful to consider partial 

derivatives of the rates with respect to different population sizes. For example, the value of 

the derivative

∂Qp

∂xq , (1)

evaluated at the equilibrium (the homeostatic state), informs us whether or not process Qp is 

regulated by cells in compartment q. A zero derivative means the absence of control. If the 

derivative above is positive (negative), then the control is positive (negative). We sometimes 

refer to quantities (1) as simply “controls”.

Associated with each process, k, we further define a vector of associated increments of all 

the cell populations, (Δk
1, …, Δk

n). For example, in a three-compartment system consisting of 

SCs, intermediate cells, and DCs, symmetric proliferation of SCs results in increment (1, 0, 

0), death of DCs in increment (0, 0, −1), and de-differentiation of intermediate cells in 

increment (1, −1, 0). These vectors can be thought of as signatures of all the processes that 

happen in the lineage.
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The ordinary differential equations (ODEs) governing the dynamics are given by

dx1

dt = ∑
k = 1

K
Qk (x1, …, xn)Δk

1, (2)

⋯

dxn

dt = ∑
k = 1

K
Qk (x1, …, xn)Δk

n . (3)

Our framework relies on the following general assumptions:

– The rate functions Qk(x1, …, xn) do not depend on time directly (only through 

the population variables). We note that time variability is an important issue in 

development; in the present context, however, since we focus on adult stem 

cells, we assume that such temporal changes of the rates are slow compared with 

the time-scale of cellular turnover, and can be ignored.

– Functions Qk(x1, …, xn) are differentiable functions of their variables. We do 

not make any assumptions on the actual functional forms, e.g. whether or not 

they are linear or nonlinear. As will be shown below, in the present, near-

equilibrium analysis, only the derivatives at the equilibrium enter the 

calculations.

– Stochastic effects are not included in the present, deterministic framework. In 

the context of near-equilibrium analysis, fluctuations can be studied by using the 

tools developed in Komarova (2013); Yang et al (2015b).

We further assume that equations (2–3) have a biologically meaningful equilibrium, which 

we denote by (x∗
1, …, x∗

n), where xi
∗ is the equilibrium population sizes of compartment i, 1 ≤ i 

≤ n. This equilibrium is defined by n generally nonlinear equations for the n variables:

∑
k = 1

K
Qk(x∗

1, …, x∗
n)Δk

1 = 0, …, ∑
k = 1

K
Qk(x∗

1, …, x∗
n)Δk

n = 0 .

Consider linear stability of the equilibrium. The Jacobian (matrix) is given by,

J = (amj), amj = ∑
k = 1

K ∂Qk

∂x j Δk
m, 1 ≤ m, j ≤ n, (4)

where the derivatives are evaluated at the equilibrium. Denoting
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Fm = ∑
k = 1

K
QkΔk

m,

gives

amj =
∂Fm

∂x j .

It is easy to see that for stability, all the populations have to be involved in the control, that 

is, the smallest number of controls is n; and n different processes have to be controlled. If 

fewer than n processes are involved, at least one process (say Qi) must have nonzero 

derivatives in two variables, say a and b, and no other process has controls in a and b, 

meaning that the columns in matrix J given by ∂Qi/ ∂aΔi
m and ∂Qi/ ∂bΔi

m are dependent, 

giving a zero eigenvalue.

The following representation of the Jacobian in (4) is useful. The increment matrix of 

dimensions (n × K) is given by

D =

Δ1
1 … ΔK

1

…

Δ1
n … ΔK

n
.

The types of cellular processes that are studied here impose certain constraints on the matrix 

D, such that this matrix has the following properties:

– Its entries are integers from the set {−1, 0, 1, 2}.

– Each column contains at least one and at most two nonzero entries.

– If a column contains two nonzero entries, they are in adjacent rows.

The control matrix of dimensions (K × n) is given by

B =

∂Q1
∂x1

…
∂Q1
∂xn

…
∂QK
∂x1

…
∂QK
∂xn

.

Then, the Jacobian of dimensions n × n is given by the matrix multiplication,

J = DB . (5)
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A stable network is defined as a network, for which all eigenvalues of the Jacobian (4) have 

negative real parts. We further define a “minimal” control network to be a stable network 

that has the smallest possible number of controls, that is, the smallest possible number of 

nonzero entries in the matrix B. It is easy to see that the smallest number of nonzero entries 

(compatible with stability) is equal to n. Let us suppose that the n processes that are 

controlled (that is, their rates have nonzero derivatives) are processes j1, …, jn. Then the 

Jacobian of a minimal control network can be written in the form

J∼ = D∼B∼, (6)

where

D∼ =

Δ j1
1 … Δ jn

1

…
Δ j1

n … Δ jn
n

, B∼ = diag
∂Q j1
∂x1

, ⋯,
∂Q jn
∂xn

. (7)

2.2 Simple systems with symmetric divisions

In the following simple example we consider only two types of cells, SCs and DCs. For 

simplicity of notation, we denote partial derivatives with respect to x1 and x2 (and later, x3) 

by means of subscripts x and y (and later, z). We further assume that SCs divide 

symmetrically. In general, there are two types of symmetric divisions (asymmetric SC 

divisions, where one of the daughter cells retains stemness while the other is differentiated, 

are included in section 3.1). Proliferation divisions result in two daughter cells both of which 

retain the SC status. For differentiation divisions, both daughter cells are DCs. We finally 

assume that the only other process in this system is death in the DC compartment. Suppose 

Q1 stands for differentiation of stem cells, Q2 for proliferation of SCs, and Q3 for death of 

DCs. Then

(Δ1
1, Δ1

2) = ( − 1, 2),

(Δ2
1, Δ2

2) = (1, 0),

(Δ3
1, Δ3

2) = (0, − 1),

that is, as a result of a differentiation, x → x − 1, y → y + 2, as a result of a proliferation, x 
→ x + 1, and as a result of a DC death, y → y − 1. The evolution ODEs are given by
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dx
dt = − Q1(x, y) + Q2(x, y), (8)

dy
dt = 2Q1(x, y) − Q3(x, y) . (9)

We assume the existence of a biologically relevant equilibrium of (8–9), (x∗, y∗), defined by 

equations

−Q1(x∗, y∗) + Q2(x∗, y∗) = 0, (10)

2Q1(x∗, y∗) − Q3(x∗, y∗) = 0, (11)

and by (5) the Jacobian evaluated at this equilibrium is

J = −1 1 0
2 0 −1

Q1x Q1y
Q2x Q2y
Q3x Q3y

=
−Q1x + Q2x Q2y + Q1y
2Q1x − Q3x 2Q1y + Q3y

(note that here and below, the partial derivatives are evaluated at the equilibrium, equations 

(10–11)). In this case, minimal control networks must contain two derivatives (one with 

respect to each population), and give a stable matrix J∼. In the irreducible cases, J∼ is 

equivalent to the sign stable matrix

− −
+ 0 ;

whereas in the reducible cases the eigenvalues of J are given by the negative diagonal 

entries, see Hall and Li (2007); Brualdi and Shader (2009). Thus there are 5 minimal 

controls, two of which have irreducible J∼:

Q1x > 0, Q2y < 0 (irreducible),

Q1y < 0, Q3x > 0 (irreducible),

Q2x < 0, Q1y < 0 (reducible),
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Q1x > 0, Q3y > 0 (reducible),

Q2x < 0, Q3y > 0 (reducible) .

In all cases, the controls do not have magnitude restrictions. In other words, as long as the 

controls have the correct sign, the system is stable.

3 Identifying properties of stable control networks

The goal is to identify rules to build up all the possible stable networks under a given set of 

processes. To do this, we begin with a case study and then generalize to a wider class of 

systems.

3.1 A case-study: two compartments, six processes

In the following example we consider a 2-compartment system (n = 2), consisting of stem 

cells (SCs) and differentiated cells (DCs), with K = 6 processes described in table 1. This is 

a reduction of the model used in Sun et al (2016) to describe the airway epithelium SC 

lineage, where the ciliated cells are removed from consideration (because the corresponding 

compartment does not control any processes in other compartments). In addition to the 

processes included in Sun et al (2016), death in the SC compartment is included in the 

present model for generality. The system of ODEs governing the dynamics is given by

dx
dt = − Q1 + Q2 + Q5 − Q6, (12)

dy
dt = 2Q1 − Q3 + Q4 − Q5, (13)

where we omitted the dependence of functions Qk on populations x and y.

Minimal controls are comprised of networks where all the partial derivatives are zero except 

a pair (Qix, Qjy) of nonzero derivatives. Listing all pairs (Qix, Qjy) gives all the possible 

minimal networks. Using straightforward linear stability analysis of each possible network, 

we obtain that there are 22 such stable minimal networks. Of these, 10 are irreducible, and 9 

out of the 10 are stable if the signs of the controls are assigned correctly (with no magnitude 

restrictions), whereas the remaining irreducible network has two alternative “wirings” (that 

is, two different sets of conditions on the controls that guarantee stability). The remaining 12 

networks are reducible and therefore stable if the signs of the controls are assigned correctly 

(see section 2.2).
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The results on stability, sign stability, and reducibility are given in figure 1, where the rows 

are the processes controlled by SCs (nonzero x derivative) and the columns are processes 

controlled by the DCs (nonzero y derivative). An empty cell means that the network is 

always unstable. A “1” means that the network is irreducible (1 simply connected 

component) and stable if the signs of the controls are assigned correctly. A “1*” means that 

the network is irreducible and there are two different wirings with the same network 

topology that lead to stability. A “2” means that the network is reducible (2 simply 

connected components) and stable if the signs of the controls are assigned correctly.

These results are easy to interpret. The fact that there are only two nonzero controls, (Qix, 

Qjy) with i ≠ j, allows us to reduce the stability problem for minimal controls to studying 

stability of the 2 × 2 matrix J∼, where J∼ = D∼B∼ with

D∼ =
Δi

1 Δ j
1

Δi
2 Δ j

2 and B∼ =
Qix 0

0 Q jy
,

see (6–7), and the partial derivatives are evaluated at an equilibrium of (12–13). Since B∼ is a 

nonsingular diagonal matrix, D∼ determines reducibility or irreducibility of J∼. Below we 

describe biologically intuitive reasoning that helps in the construction of stable networks 

with given properties.

All the processes in the system can be split into three groups: Wx are the processes that only 

change the number of cells in the SC compartment, Wx = {Q2, Q6}; Wy are the processes 

that only change the number of cells in the DC compartment, Wy = {Q3, Q4}; Wxy are the 

processes that change the number of cells in both compartments, Wxy = {Q1, Q5}. A stable 

system with a pair (Qix, Qjy) of nonzero controls can be obtained by combining two 

processes, as described below, and also illustrated in figure 1.

Case 1 Combining any two (distinct) processes from group Wxy, one of which is 

controlled by x and the other by y, leads to an irreducible matrix, which is 

either stable (if the signs of the controls are assigned correctly) or has two 

separate sets of conditions that guarantee stability (two alternative wirings of 

the network); this case is discussed in more detail in Appendix A.

Case 2 Combining a process from group Wx controlled by x with a process in group 

Wy or Wxy controlled by y leads to a reducible system, stable if the signs of 

the controls are assigned correctly. This means that there is a process in the 

system that is controlled by SCs and only changes the number of cells in the 

SC compartment, giving rise to reducibility of the system.

Case 3 Combining a process from group Wy controlled by y with a process in group 

Wx or Wxy controlled by x leads to a reducible system, stable if the signs of 

the controls are assigned correctly. Similar to Case 2, the reducibility is due to 

a process that is controlled by DCs and only changes the number of cells in 

the DC compartment.
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Case 4 Combining a process from group Wx controlled by y with a process in group 

Wxy controlled by x leads to an irreducible system, which is stable if the signs 

of the controls are assigned correctly.

Case 5 Combining a process from group Wy controlled by x with a process in group 

Wxy controlled by y leads to an irreducible system, which is stable if the signs 

of the controls are assigned correctly.

Case 6 No other combinations are stable. In particular, there is no stable system 

where both processes only change the number of cells in the same 

compartment. Further, there is no stable system where a process that only 

changes the number of SCs controlled by DCs is combined with a process that 

only changes the number of DCs controlled by SCs.

3.2 Generalizations for two-compartment systems

Below we provide generalizations to all possible two-compartments systems, independent of 

the number of processes (as long as the stability conditions defined below can be satisfied).

Cases 2 and 3 above can be summarized as follows: a two-compartment system is reducible 

if both compartments control their own change (that is, control processes that induce change 

in the same compartment), and one of them does not control any processes that induce 

change in the other compartment.

Cases 1, 4, and 5 can be combined as follows: a two-compartment system is irreducible if 

both compartments control the change of the other, and at least one of them controls its own 

change.

Case 6 can be reformulated as follows: a two-compartment system is unstable unless the 

changes in both compartments are controlled (that is, some compartment controls a process 

that results in a change in compartment i, for i = 1 and i = 2), and at least one compartment 

controls its own change.

An intuitive way to graphically present control networks in this setting uses directed graphs 

(digraphs); for correspondence between matrices and digraphs see, for example, Hall and Li 

(2007). For the n = 2 system, all possible stable systems are presented in figure 2, which 

shows reducible cases (a) and (b), and irreducible cases (c) and (d). Each of the two 

compartments is denoted by a node, and arcs represent control. Solid arcs are necessary for 

stability, and dashed arcs are optional. For example, the diagram in (a) can be read as 

follows: Compartment x must control some process that changes the number of cells in x 
(solid arc x → x). Compartment y must control some process that changes the number of 

cells in y (solid arc y → y). Compartment y may also control some process that changes the 

number of cells in x (dashed arc y → x). Clearly, cases (a) and (b) (as well as (c) and (d)) 

are the same under renaming x ↔ y. In the notation of digraphs, negative (blunt) arrows are 

not used, and therefore an arc must be interpreted as the existence of control, without any 

information on the sign of the control. The signs of stable digraphs in figure 2, 

corresponding to stable minimal controls, are indicated explicitly; dashed arcs can be 0, + or 

−.
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The arcs in digraphs of figure 2 do not directly correspond to the processes Q1, …, Qn (as 

they would in a more conventional, biological network graphics). As an example, consider 

the control system (Q1x, Q6y), see table 1 and figure 1. This control network involves control 

of SC differentiations by SCs and control of SC death by DCs. The first process, Q1, has 

increments (−1, 2). Therefore, compartment x controls change both in x and in y. The 

second process, Q6, has increments (−1, 0), therefore y only controls change in x. The 

resulting digraph belongs to the class depicted in figure 2(d) with no arc y → y. For 

stability, both Q1x and Q6y must be positive.

3.3 A case-study: three compartments, ten processes

Consider a 3-compartment system (n = 3), consisting of SCs, intermediate cells (ICs), and 

DCs, with K = 10 processes described in table 2. This is again similar to the system used in 

Sun et al (2016) to describe the control in the airway epithelium (with the addition of deaths 

in the SC compartment). The processes of asymmetric division of SCs or proliferation of ICs 

are counted as one because they have the same cellular increments; the same statement holds 

for the processes of asymmetric divisions of ICs or proliferation of DCs.

A minimal system has only three nonzero entries in matrix B. It turns out that there are 

exactly 232 triplets of nonzero controls, (Qix, Qjy, Qkz), that give rise to systems that can be 

stable. This result, together with the list of all potentially stable triplets, has been obtained 

by means of a Mathematica program, see Appendix B. Of these, 72 have one simply 

connected component (i.e., are irreducible), 96 have two simply-connected components, and 

64 have three simply connected components.

The case of irreducible systems is the most complicated and its full breakdown is shown in 

figure 3, where all the types of digraphs are listed together with their stability properties. 

The first column in the figure explains the digraph structure. A 3-cycle in a digraph on 

distinct nodes y1, y2, y3 consists of arcs y1 → y2 → y3 → y1; whereas a tree has only 1-

cycles (yi → yi) and 2-cycles (e.g., y1 → y2 → y1). In general, each coefficient (other than 

degree 3) in the characteristic polynomial (“char pol”) of the 3 × 3 Jacobian matrix at the 

homeostatic state is a product of controls, with some coefficients having sums of such 

products, as stated in column 1 of figure 3.

To give some examples, consider the triplet (Q5x, Q3y, Q7z). This is a fully reducible system: 

compartment y only controls its own change, and once it is removed, compartments x and z 
also only control their own change. The characteristic polynomial can be decomposed as

(λ − Q5x) (λ + Q3y) (λ − 2Q7z),

and the system is stable as long as the signs of the controls are assigned correctly, i.e.,

Q5x < 0, Q3y > 0 Q7z < 0 .
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Next, consider the triplet (Q2x, Q7y, Q1z). This is a reducible system that contains two 

simply connected components, with compartment x only controlling its own change. The 

characteristic polynomial is given by the product

(λ − Q2x) (λ2 + λQ7y − 4Q1zQ7y),

and stability requires only the correct sign assignment:

Q2x < 0, Q7y > 0, Q1z < 0.

A third example is the triplet (Q7x, Q5y, Q1z). This is an irreducible system with a digraph of 

the type presented in the 4th row of figure 3. The characteristic polynomial is given by

λ3 + λ2Q5y + λ(2Q1zQ7x + Q5yQ7x) − 2Q1zQ5yQ7x,

where all the coefficients except for that of the first power of λ are products of (powers of) 

controls. By the Routh-Hurwitz criteria, the stability conditions in this case are given by

Q7x > 0, Q1z < 0, Q5y > 4Q1z,

i.e., a magnitude restriction is required, not just the correct signing of the controls.

3.4 Generalizations for three-compartment systems

Because of the special forms (6–7) of the Jacobian of minimal processes, reducibility/

irreducibility of the minimal systems is defined by matrix D∼ only. The following patterns are 

observed that are generalizable to all three-compartment systems (irrespective of the number 

and type of processes involved).

– The triplets that have one simply connected component (are irreducible) are 

given in figure 3. Their digraph has a tree structure or has one 3-cycle and at 

least two more shorter cycles, at least one of which is a one-cycle. These 

digraphs can be signed to allow stability, although some require magnitude 

constraints given by the Routh-Hurwitz conditions, see, for example, 

Hershkowitz (2007).

– The triplets that have two simply connected components (and therefore are 

stable if the signs of the controls are assigned correctly) contain one 

compartment that only controls its own change (that is, it does not control any 

processes that induce change in the other compartments). Let us call this 

compartment a separable compartment, because if it is removed, the dynamics of 

the other compartments do not change. The remaining two compartments must 

behave as an irreducible system, as in section 3.2, i.e. both of those 

compartments must control the change of the other, and at least one of them 

controls its own change. These compartments may or may not control change in 
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the separable compartment. Stability patterns for these systems can be deduced 

from the rules described for the n = 2 system.

– The triplets that have three simply connected components (and therefore are 

stable if the signs of the controls are assigned correctly) contain a separable 

compartment, after the removal of which, the remaining system also contains a 

separable compartment.

4 Discussion

We considered general, multiple compartment, multiple process systems of homeostatic SC 

lineage maintenance. We restricted ourselves to the question of local stability of homeostatic 

solutions, and asked what types of possible minimal control networks are compatible with 

stable homeostasis. While linear stability analysis can always be performed, and Routh-

Hurwitz conditions allow us to determine the signs of eigenvalues, it is desirable to obtain 

general, interpretable rules of building up stable control networks. Further, it is useful to find 

ways to distinguish between reducible and irreducible systems.

To achieve this goal, we have developed a formalism of mapping any control system into a 

unique digraph, where the nodes correspond to the cell compartments, and an arc originating 

in compartment i and pointing to compartment j indicates that compartment i controls a 

process resulting in a change in compartment j. By using the resulting digraphs, it is possible 

to argue about the network’s stability and reducibility. For example, if there is a node in the 

digraph that only controls its own change, the corresponding system is reducible.

A control network is likely reducible if the SC lineage has a spatially extended structure, 

where neighboring compartments are more likely to influence each other than distant 

compartments. For example, in colonic and intestinal crypts, the SCs are localized near the 

bottom of the crypt, followed by transit amplifying cells and then, toward the top of the 

crypt, by terminally DCs. Therefore, it is often assumed that signaling is local, which, 

according to our theory, leads to reducibility. Reducibility, in turn, means that the signaling 

network can be split into modules, each of which acts as a more or less independent unit 

whose stability only depends on the signaling within the module. Therefore, we expect the 

principle of modularity to hold in many spatially distributed SC lineages.

In this paper we focused on SC lineages with two and three compartments. Depending on a 

biological system, the number of compartments can vary. In the epidermal tissue, a two-

compartmental model has been used (Yang et al, 2015a). The three compartment model was 

introduced by Tomlinson and Bodmer (1995), and has been used to study epithelial tissues, 

such as colon (Johnston et al, 2007b), airway epithelium (Sun et al, 2016), corneal 

epithelium (Cotsarelis et al, 1989), tracheal epithelium (Borthwick et al, 2001), and 

bronchioalveolar epithelium (Nolen-Walston et al, 2008). Longer hierarchies exist, for 

example, in neural and hematopoietic stem cell lineages. The methods presented in this 

paper can be extended to longer hierarchies, but this is not a trivial extension, since the 

Routh-Hurwitz and sign stability conditions become more complicated.
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The evidence for the existence of autonomous control has been mounting in the last decade 

from experimental work. The actual functional forms of controls, however, are largely 

unknown. In the existing theoretical literature, (hypothetical) specific functional forms of the 

controls are often assumed, and conclusions are drawn based on the analysis of the resulting 

models. We consider it an important advantage of the present model that it does not actually 

require the knowledge of these functional forms. The only input needed is the derivatives of 

the control functions at the equilibrium. In many cases (as follows from our analysis) it is 

only the signs of the controls that matter. This kind of information is a lot easier to obtain 

experimentally than the true functional form. The signs of the derivatives and estimates of 

their magnitudes can be obtained by perturbing the system (e.g. by varying the population 

size of a given compartment) and measuring the changes in kinetic rates (divisions, deaths, 

differentiations) of the cells in all the compartments.

A very interesting open question is the existence of motifs in autonomous SC signaling 

networks. The current paper only goes as far as developing an efficient and intuitive method 

of “listing” all possible stable control networks for n = 2, 3. The next step that relies largely 

on experiment developments is to observe which networks from the list appear more often 

than others. For example, the so-called “memory module” identified by Alon (2007) is the 

class of networks that includes the networks in the second and third rows of figure 3. As 

shown, in the framework of the processes listed in table 2, there are 16 different 

arrangements that correspond to one and 8 arrangements to the other (see figure 3). For 

example, triplets (Q7x, Q1y, Q4z) (SCs control differentiation of ICs, ICs control 

differentiations of SCs, and DCs control asymmetric divisions of SCs) and (Q7x, Q5y, Q3z) 

(SCs control differentiation of ICs, ICs control their own de-differentiation, and DCs control 

death of ICs), both give rise to the network in the 2nd row of figure 3.

Interestingly, the feed forward loop (see e.g. Mangan and Alon (2003)) does not belong to 

the class of minimal controls as defined here. Its core part consists of x → y, y → z, and x 
→ z. This is a reducible network, where z is the separable component, and the remaining 

module must be of the form (a) or (b) of figure 2. Therefore, for stability, we must have x 
controlling its own change, which means that the SC compartment controls more than one 

process. This can be for example achieved by a three-compartment system (Q7x, Q8y, Q9z, 

Q2x), which has four controls and is therefore not minimal according to our definition. 

While the methodology developed here has mostly been illustrated by studying minimal 

control networks, it is not difficult to expand the theory (and the software) to more general, 

more “redundant” control networks.

The theoretical work presented here aims not only to provide a comprehensive description of 

control networks in autonomous homeostatic regulation of healthy tissues, but also to serve 

as a stepping stone in our understanding of the scenarios where such regulations fails. As 

pointed out in Medema and Vermeulen (2011) in the context of intestinal SC systems, “As 

our understanding of normal intestinal crypt homeostasis grows, these developments may 

point towards new insights into the origin of cancer and the maintenance and regulation of 

cancer stem cells.” Methodology connecting healthy homeostatic regulation with elucidating 

possible pathways to cancer was developed in Rodriguez-Brenes et al (2011). There, a 

particular wiring of a control network was considered, to identify all possible ways in which 
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it can go “wrong” leading to different types of tissue growth. Several types of cell expansion 

laws mapped into the known tumor growth patterns (Rodriguez-Brenes et al, 2013). This 

suggests that in the context of stem cell driven cancers, the theoretically possible 

mechanisms of cancer origins are consistent with experimental findings. Using the novel 

framework developed here, the next logical step is to test the possible stable control 

networks with respect to possible failure mechanisms. In particular, the question of 

robustness against mutations is of interest. Considering the minimal networks studied here, 

we can proceed according to the framework developed in Rodriguez-Brenes et al (2011), and 

study the evolutionary dynamics of cell populations that consist of (i) wild type cells that 

respond to and express controls appropriately, (ii) mutants that do not respond (or have a 

reduced response) to one or more controls, and (iii) mutants that do not exhibit one or more 

controls (or exhibit it to a lesser degree). Depending on the control network and the type of 

mutation, different growth patterns are expected to be observed. Which network properties 

allow for the most robust, failure-proof control? Is reducibility a desirable design property 

from the point of view of minimizing damage? What types of redundancy (that is, non-

minimal control networks) are the best protection against mutations of each kind? Such 

questions comprise the next step toward our understanding of cancer origins in SC tissues.

A Case 1 in section 3.1

Case 1 in section 3.2 allows for two different possibilities, depending on the matrix D∼, which 

contains 4 nonzero entries. The characteristic polynomial of J∼ = D∼B∼ is given by

λ2 − λ(Δi
1Qix + Δ j

2Q jy) + Det(D∼)QixQ jy .

For both eigenvalues to have negative real parts, necessary and sufficient conditions are (as 

dictated by Routh-Hurwitz conditions, see, e.g., Hershkowitz (2007)):

Δi
1Qix + Δ j

2Q jy < 0, (14)

Det(D∼)QixQ jy > 0 . (15)

Stability conditions resulting from the quadratic characteristic equation lead to the following 

two cases:

Case 1(a) If Δi
1Δ j

2 > 0 and Det(D∼) > 0, the system is stable if the signs of the controls 

are assigned correctly. Similarly, with Δi
1Δ j

2 < 0 and Det(D∼) > 0.

Case 1(b) If Δi
1Δ j

2 > 0 and Det(D∼) < 0, the system allows two distinct sets of conditions 

that guarantee stability. The two sets of conditions imply different signs of 

the controls (and also contain restrictions on their magnitude), such that 
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there are two alternative signings (or wirings) of the network compatible 

with stability. Similarly, if Δi
1Δ j

2 < 0 and Det(D∼) > 0, two alternative stable 

wirings are possible.

An example of case 1(a) above is given by the pair (Q5x, Q1y). Case 1(b) is represented by 

the pair (Q1x, Q5y). In both cases, Δi
1Δ j

2 > 0 but the sign of Det(D∼) is respectively positive and 

negative in the two cases.

B Techniques

We wrote a program in Mathematica that for a given system, lists all stable minimal controls 

and classifies them in terms of reducibility. This Mathematica code is given in 

Supplementary Material available online.

The input includes the number of compartments (n = 3 in the case considered) and the list of 

possible processes with the corresponding increments. The program includes a loop that 

goes over all possible n-tuples of controls. These are analyzed for stability and only those 

that can be stable are listed in the output.

To perform the analysis for the n = 3 case, the following rules were used. These come from 

the Routh-Hurwitz conditions and results on potential stability Grundy et al (2012). Suppose 

the characteristic polynomial of J is denoted as

P(λ) = λ3 + a2λ2 + a1λ + a0 .

A combination of three nonzero controls was discarded if:

1. Any of ai is zero.

2. The matrix J∼ consists of one simply connected component, and contains fewer 

than 5 nonzero entries.

3. The matrix J∼ consists of one simply connected component, and a0 − a1a2 = 0.

For systems that are not rejected by these criteria, the characteristic polynomial is factored to 

determine the number of simply connected components, and also the stability conditions are 

determined by solving a set of inequalities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
An illustration of the different cases of stable systems for n = 2. All possible pairs (Qix, Qjy) 

are listed. The rows are the processes controlled by SCs (nonzero x derivative) and the 

columns are processes controlled by the DCs (nonzero y derivative).
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Fig. 2. 
All stable minimal control configurations in two-compartment systems. The two 

compartments are represented by the nodes x and y. Each arc corresponds to a change in one 

compartment controlled by a particular compartment. A given arc points to a compartment 

whose size changes, and it originates at the compartment that exhibits control of this change. 

For example, an arc from x to y means that there is a process whose rate depend on x, such 

that the population in compartment y changes as a result of this process. (a,b) reducible 

cases, (c,d) irreducible cases. Signs on arcs give stability.
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Fig. 3. 
Stable irreducible configurations in the three-compartment system studied in section 3.3.
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Table 1

Cellular processes in the 2-compartment model with 6 processes studied in section 3.1.

Qk Process
Δk

1 Δk
2

Q1 Differentiation division of SCs −1 2

Q2 Proliferation division of SCs 1 0

Q3 Death of DCs 0 −1

Q4 Asymmetric division of SCs or proliferation of DCs 0 1

Q5 De-differentiation of DCs 1 −1

Q6 Death of SCs −1 0
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Table 2

Cellular processes in the 3-compartment model with 10 processes studied in section 3.3.

Qk Process
Δk

1 Δk
2 Δk

3

Q1 Differentiation division of SCs −1 2 0

Q2 Proliferation division of SCs 1 0 0

Q3 Death of ICs 0 −1 0

Q4 Asymmetric division of SCs or proliferation of ICs 0 1 0

Q5 De-differentiation of ICs 1 −1 0

Q6 Death of SCs −1 0 0

Q7 Differentiation division of ICs 0 −1 2

Q8 De-differentiation of DCs 0 1 −1

Q9 Death of DCs 0 0 −1

Q10 Asymmetric divisions of ICs or proliferation of DCs 0 0 1
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