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Abstract— We first demonstrate that the demand-side flexi-
bility of the Heating Ventilation and Air Conditioning (HVAC)
system of a typical commercial building can be exploited for
providing frequency regulation service to the power grid using
at-scale experiments. We then show how this flexibility in
power consumption of building HVAC system can be leveraged
for providing regulation service. To this end, we consider a
simplified model of the power grid with uncertain demand
and generation. We present a Model Predictive Control (MPC)
scheme to direct the ancillary service power flow from buildings
to improve upon the classical Automatic Generation Control
(AGC) practice. We show how constraints such as slow and
fast ramping rates for various ancillary service providers, and
short-term load forecast information can be integrated into
the proposed MPC framework. Finally, we provide extensive
simulation results to illustrate the effectiveness of the proposed
methodology for enhancing grid frequency regulation.

I. INTRODUCTION

A sustainable energy future requires widespread and sig-
nificant penetration of Renewable Energy Sources (RESs).
Several states in the U.S. and countries around the world
have set ambitious targets for penetration of RESs by the
next few years. The state of California, as an example,
has targeted a 33% RES portfolio by 2020 [1]. However,
volatility, uncertainty, and intermittency of RESs present a
challenge for integrating such resources into the power grid
in a large scale as proper functioning of the grid requires
continuous power balance between supply and demand.

In addition to the need for maintaining balance between
generation and load, the power flows through individual
transmission lines and facilities should also be continuously
controlled by adjusting generation or load. Instantaneous
matching between generation and load is even more chal-
lenging when considering uncertainties and randomness in
demand. Short-term load variability results from a random
switching of millions of individual loads. Longer-term vari-
ability results from predictable factors such as the daily and
seasonal load patterns as well as less predictable events such
as shifting weather patterns. Traditional generators may also
cause unexpected fluctuations due to a range of equipment
failures and aging [2].

Electricity storage is widely believed to be a solution to
this problem by absorbing the variability associated with
RESs. However, storage has two important drawbacks. It is
expensive and it is not environmentally friendly. There is
an emerging consensus that flexible loads with thermal stor-
age capabilities such as Thermostatically Controlled Loads

†
Department of Mechanical Engineering, University of California,

Berkeley, CA 94720, USA. Corresponding author. Email:
mehdi@me.berkeley.edu
∗

Department of Electrical Engineering and Computer Sciences, Univer-
sity of California, Berkeley, CA 94720, USA.

(TCLs) will play an important role in regulating the grid
frequency and consequently in enabling deep penetration
of RESs. It has been reported that about 20% of the total
electricity consumption in the United States is used by
residential TCLs such as air conditioners, heat pumps, water
heaters, and refrigerators [3], [4]. Recently, [5], [6] showed
that flexible loads such as TCLs are good candidates for
providing ancillary services since their aggregate flexibility
has the characteristic of a stochastic battery.

These recent papers also demonstrate that TCLs have a
great potential for providing fast regulating reserve services;
speed is indeed beneficial, especially in the context of recent
regulations such as Federal Energy Regulatory Commission
(FERC) Order 755 [7]. In fact, these new federal regulations
require scheduling coordinators to procure and compensate
more for regulation resources with faster ramping rates.
There is an emerging consensus that future regulation ser-
vices will be distinguished and compensated by capabilities
of which ramping rate is one component.

Modeling, estimation, and control of aggregated hetero-
geneous TCLs for ancillary services have been discussed
in [8], [9]. TCLs are particularly well-suited for Direct
Load Control (DLC) and Demand Response (DR) programs
that require loads to both decrease and increase power
consumption because they are capable of storing thermal
energy, much like a battery stores chemical energy. Fully
responsive load control is highlighted in [10] in the context
of TCLs and plug-in Electric Vehicles (EVs). Despite several
challenges of using loads for system services, several key
advantages include: 1) Reducing overall grid emissions by
using loads to provide system services [11]. 2) Instantaneous
response of loads to operator requests, versus slow response
of generators to make significant output changes [12], and 3)
Less variability associated to a very large number of small
loads with respect to that of a small number of large gener-
ators [12]. It may soon be the case that the only technical
impediment to reliable utilization of loads for system services
is the development of the necessary load models and control
strategies and the development of inexpensive and scalable
communication and sensing infrastructure. [13].

In this paper, we first quantify (by means of empirical data
analysis) the demand-side flexibility of a typical commercial
building. Then we show that such flexibility can be tapped
for providing fast frequency regulation service to the power
grid. We then show the effectiveness of such “fast” ramp-
ing rates on the overall frequency regulation performance
in the event of transient fluctuations in the load. To this
end, we consider a simplified model of the power grid
with uncertain demand and generation. We present a Model
Predictive Control (MPC) scheme to control the ancillary
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Fig. 1. Schematics of the experiment testbed (Sutardja-Dai Hall on UC
Berkeley campus).

8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
1

1.2

1.4

1.6

1.8

2

2.2

In
p

u
t:

 S
D

S
P

 (
In

ch
 o

f 
W

at
er

 C
o

lu
m

n
)

Time (hr)

~20−25% variation in
fan power consumption

Experiment 2

~15−20% variation
 in fan power
 consumption

Experiment 1

 

 

8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
20

30

40

50

60

70

80

90

100

O
u

tp
u

t:
 F

an
 P

o
w

er
 C

o
n

su
m

p
ti

o
n

 (
%

)SDSP Fan Power Consumption

Fig. 2. Fan power consumption can vary as quickly as in a few seconds
by up to 25% by changing the SDSP set-point.

service power flow from buildings to improve on the classical
Automatic Generation Control (AGC) practice, by integrating
information such as ramping rates of various sources of
regulation services, and short term load forecast into the
control algorithm. We provide extensive simulation results
to illustrate the effectiveness of the proposed methodology
for enhancing grid frequency regulation.

The paper is organized as follows. A high-level description
of the test bed, a summary and the results of the experi-
ments performed on the test bed is provided in Section II
which quantifies the amount of flexibility of the building
power consumption. The mathematical model describing the
dynamics of the power system is followed in Section III.
AGC is explained in Section IV. Our proposed MPC scheme
is explained in details in Section V. We provide extensive
simulation results in Section VI. Future work and conclusion
remarks are provided in Section VII.

II. FAST ANCILLARY POWER FROM BUILDINGS

Commercial buildings consume more than 35% percent
of electricity in the US [14]. About 15% of electricity
consumption in commercial buildings is related to the fans
of the heating, ventilation and air conditioning (HVAC)
systems. HVAC fans are essential parts of HVAC systems in
buildings that move the conditioned air from the air handling
units (AHU) to the room level for ventilation, heating and
cooling of building indoor climate [15]–[17]. For instance,
the main supply fans that feed Sutardja-Dai Hall (SDH) on
the UC Berkeley campus can spin at variable speeds. Power
consumption is proportional to the cube of fan speed, with
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Fig. 3. SDSP set-point, outside air temperature, and temperature of 15
randomly selected rooms are shown for one day before (May 16, 2013) and
the day of the experiment (May 17, 2013).

the maximum rated power of 134 KW or about 14% of the
maximum power consumed in that building. Moreover, more
than 30% of commercial buildings have adopted Building
Energy Management System (BEMS) technology, which
facilitates a fine control of the building HVAC components
as well as the communication with the grid system operators.
The majority of commercial buildings are also equipped with
variable frequency drives, which in coordination with BEMS,
can manipulate the HVAC system power consumption very
frequently (in the order of seconds).

The supply fans to the building consume a large amount
of power and have inherent flexibility in how they consume
electricity. Hence, as shown in [18] we can directly modulate
HVAC power consumption, within a safe envelope, without
imposing extra cost to the building operation, and violat-
ing occupant comfort constraints. This flexibility in power
consumption can be either upward (consuming more) or
downward (consuming less), making it an ideal candidate
for regulation services.

A. Experiment Results

To demonstrate this potential of commercial building
HVAC system, we performed at-scale experiments on the
HVAC system of Sutardja-Dai Hall on the UC Berkeley
campus. The goal of the experiment was to quantify this
flexibility, and to examine the effects of supply-fan speed
modulation on the internal temperature of the rooms in
the building. More details on the experiments is reported
in [19]. Here we present a summary and the results of the
experiments to set a foundation for the rest of the paper.

Fig. 1 shows a high-level schematics of our experiment
set-up including the main fans that feed Sutardja-Dai Hall.
The speed of the fans is indirectly controlled by setting
the Supply-Duct Static Pressure (SDSP) set-point value. The
main challenges in performing this experiment include 1)
keeping the pressure in the air ducts within a specific safety
boundary and 2) minimizing the changes on the internal
temperature that may make occupants uncomfortable. Be-
cause of the first concern, we used the SDSP set-point
to control fan speed, instead of directly changing the fan



speed by over-writing its control logic. The safety margin
for the pressure set-point ranges between [1.2 − 1.9] (Inch
of Water Column). By changing the SDSP set-point, the fan
speed either increased or decreased to adhere to the specified
pressure value. We also tested the response speed of the fans
to respond to changes to the pressure set-point and model
the response. We run a number of experiments where we
vary the speed of the fan at different rates and for different
lengths of time. We show that supply-fan speed modulation,
over short time periods, has little effect on the comfort of the
building occupants. In fact, the effects are not observable on
the internal temperature of the spaces. We also show that the
supply fan responds very quickly to a change in the pressure
set-point, indicating that this is a viable option for providing
grid-level ancillary response services.

The experiment results are shown in Fig. 2 and Fig. 3.
Fig. 2 shows the SDSP set-point signal, as the input of
the experiment and the power consumption of the fan, as
the output of the experiment. It is observed that the fan
power consumption can vary by up to 25% within a few
seconds around its nominal power consumption at each time
(which itself is prescribed by the control logic running the
HVAC system). Fig. 3 on the other hand shows the SDSP
set-point, the outside air temperature and temperature of
15 randomly selected rooms in the building. This figure is
provided to show that the performed experiment created no
significant and human-sensible change in the temperature of
the building, and the building temperature was kept within
the comfort zone at all times. Data of one day before the
experiment (May 16) and the day of experiment (May 17) is
provided for comparison. Based on the experiment results it
was estimated in [19] that in average, each fan can provide
about 18% of its nominal power as flexibility. This equals
12 kW out of 67 kW power draw for each fan, and in total
24 kW for the whole SDH building.

B. Total Ancillary Power From All US Commercial Buildings

According to the latest survey on energy consumption
of commercial buildings, performed in 2003 [14], there are
4.9 million commercial buildings in the US which cover a
total area of about 72 billion square feet. Almost 30% of
these buildings are equipped with variable frequency drive
fans. Assuming the same fan power consumption flexibility
per square foot for these buildings to that of SDH, we
estimate that at least 4 GW of fast ancillary service is readily
available in the US at almost no cost, based on the 2003
data. Commercial building floor space is expected to reach
103 billion sq. ft. in 2035 [20]. With the same assumption of
the above calculations, about 5.6 GW of regulation reserve
will be available in 2035.

We also identify a Single-Input Single-Output (SISO)
Auto Regressive with eXogenous input (ARX) model of the
fan with SDSP as input and fan power consumption as output
based on the empirical data from SDH building. In order to
track the SDSP signal, the two fans change their speeds and
consequently their power consumption changes. A detailed

Fig. 4. Block diagram of power system and its relation to governor, turbine,
generator, and the AGC signal for each control area.

description of the experiments and analysis on the results has
been reported in [19].

III. MATHEMATICAL MODELS OF POWER SYSTEM
COMPONENTS

In this section, we develop mathematical models of power
system components. These models, along with the esti-
mations on the amount of available ancillary power from
buildings, obtained from the experiment results of Section II,
and the proposed control algorithm of Section V, will be used
to demonstrate how commercial buildings flexibility can be
utilized for frequency regulation provision in the smart grid.

Detailed models of power system elements have been
developed in the literature. In this paper, we use the model
developed by [21]–[23]. We present a detailed governor,
turbine, and generator model in this section. The intercon-
nection of these components of the power system is shown in
the block diagram of Fig. 4. δPC is a control input which acts
against increase or decrease in the power demand to regulate
the system frequency. δPD denotes the fluctuations in the
power demand which is considered here as an exogenous
input (disturbance). We present a model of the power system,
with the following underlying assumptions:
• The resistance of the transmission lines are ignored.
• Transmission line between area i, and j is characterized

by a reactance Xtieij .
• Reactive power flows are ignored.
• Voltage of bus i, denoted by Vi is considered constant.
Under steady state, we have: ω = ωo, Vt = V o

t , and
PM = PG = P o

M , where ωo, V o
t , and P o

M are the nominal
values for rated frequency, terminal voltage and mechanical
power input. Basic variables of a power system which are
used in the following formulations with a short description
of each variable are reported in Table I.

A. Governor Model

A general model of a governor contains three time con-
stants. The overall input-output transfer function is given by

TGov(s) =
(1 + sT2)

(1 + sT1)(1 + sT3)
. (1)

Mechanical-hydraulic governors have T2 = 0 with typical
values of T1 ∈ [0.2, 0.3] and T3 = 0.1. Electro-hydraulic
governors without steam feedback have typical time con-
stants as follows: T1 = T2 = 0 and T3 ∈ [0.025, 0.1].
Electro-hydraulic governors with steam feedback utilize a



TABLE I
BASIC POWER SYSTEMS NOMENCLATURE

Variables Description
PM Mechanical power input
P o
M Desired real power generation
PG Generated real electric power
δPG Increase in demand (at rated generator MVA)
Vt Terminal voltage
PD Load (Power Demand)
δPD Input disturbance due to load changes
δPC Speed changer position feedback control signal
ω Angular speed and frequency
ωo Rated (desired) frequency
Parameters Description
D Damping coefficient. Range: 0.01 - 0.1 [-]
M Machine inertia constant. Range: 100 - 1000 [MW s]
R Speed regulation constant. Range: 0.05 [p.u.]
Ti Time constant for power system components. Range:

{0,0.01-10} [s]
Ki Fraction of total mechanical power outputs associated

with different operating points of the turbine. Range:
{0,0.1-1} [-]

feed-forward mechanism. Typical time constant values under
these assumptions are as follows: T1 = 2.8, T2 = 1.0, and
T3 = 0.15 [21].

B. Turbine Model

Turbines are grouped into steam and hydro turbines. The
input-output transfer function model for turbines is given by

δPM

PGV
= K1F1+K3F1F2+K5F1F2F3+K7F1F2F3F4, (2)

where F1, F2, F3, and F4 are transfer functions correspond-
ing to steam chest, piping system, re-heaters, and cross-over
mechanisms, respectively, and are given by

F1(s) =
1

1 + sT4
, F2(s) =

1

1 + sT5
, (3)

F3(s) =
1

1 + sT6
, F4(s) =

1

1 + sT7
. (4)

The basic time constant associated with steam turbines is
T4 which corresponds to that of the steam chest. For non-
reheat steam turbines, this is the only time constant needed.
The time constants T5, T6, and T7, are associated with
time delays of piping systems for re-heaters and cross-over
mechanisms. The coefficients K1, K3, K5, and K7 represent
fractions of total mechanical power outputs associated with
very high, high, intermediate, and low pressure components,
respectively. Typical values of steam turbine time constants
and fractions are reported in [21].

C. Generator Model

The dynamics of the generator is given by the following
transfer function

FGen =
1

D + sM
, (5)

where constants D and M represent the damping coefficient
and the inertia of the governor, respectively.

Fig. 5. Two control area system. Each control area includes a generation
unit. δPDi

and δPanci are load (demand) and ancillary power in area i.

D. Two Area System Model

Consider the interconnected system shown in Fig. 5. It
consists of two areas connected by a tie line with reactance
Xtie. The power flow on the tie line from area 1 to area
2 is shown by Ptie. A positive δPtie represents an increase
in power transfer from area 1 to area 2. This in effect is
equivalent to increasing the load of area 1 and decreasing
the load of area 2. Each area consists of the subsystems
shown in Fig. 4.

Next, we present the mathematical model of the entire
system. Note that the superscript refers to the control area (i
or j = 1, 2 in the case of two interconnected areas), and the
subscript indexes the state in each area.

dxi1
dt

=
(−Dixi1 + δP i

M − δP i
D − δP

ij
tie + δP i

anc)

M i
x

(6a)

dxi2
dt

=
(xi3 − xi2)

T i
7

(6b)

dxi3
dt

=
(xi4 − xi3)

T i
6

(6c)

dxi4
dt

=
(xi5 − xi4)

T i
5

(6d)

dxi5
dt

=
(P i

GV − xi5)

T i
4

(6e)

dxi6
dt

=
(xi7 − xi6)

T i
3

(6f)

dxi7
dt

=
(−xi7 + δP i

C − xi1/Ri)

T i
1

(6g)

where

δP i
M = Ki

1x
i
5 +Ki

3x
i
4 +Ki

5x
i
3 +Ki

7x
i
2 (7)

P i
GV = (1− T2/T3)xi6 + (T2/T3)xi7 (8)

In formulation (6), the first state represents the frequency
increment, xi1 = δωi. All the seven states are derived using
the mathematical model of each subsystem as presented
in (1)–(5). Note that when the time constant representing the
system pole is zero, the corresponding differential equation
becomes an algebraic equation. For instance, when T5 = 0,
the equation dxi

4

dt = 1/T5(xi5 − xi4) becomes xi5 = xi4 = 0.



The real transferred power from bus i to bus j is governed
by P ij

tie ≈ ViVjbijcos(θi− θj). Since here we are concerned
with incremental changes in all variables, the incremental
change in P ij

tie is given by δP ij
tie = νij(θi− θj) where at the

nominal operating points, θoi , i = 1, 2, the transmission line
stiffness coefficient νij is given by

νij = −ViVjbijcos(θoi − θoj ). (9)

In terms of the incremental state variables used, we have:

δP i
tie =

n∑
j=1

νij(x
i
8 − x

j
8), (10)

where the state variable xi8 is the integral of the frequency
increment of area i, i.e.,

dxi8
dt

= xi1. (11)

The state space model (6)-(11) can be written in compact
form as follows:
dx(t)

dt
= A′x(t) +B′1usc(t) +B′2uanc(t) + E′d(t). (12)

In the case of two areas, states are stored in x, input signals
to the speed changers are usc = [δPC1

δPC2
]T , the ancillary

inputs buildings are uanc = [δPanc1 δPanc2 ]T , and the
exogenous input (disturbance) (i.e. variations in demands)
are denoted by d = [δPD1 δPD2 ]T .

E. Load Modeling
Many loads are frequency-sensitive. In this case, the

incremental change in load will have a frequency-dependent
part, i.e.

δPD = δP o
D + D̄δω (13)

where D̄ = ∂PD

∂ω represents the sensitivity of the load to
frequency changes at the nominal value of the load. In this
case, Di in (6a) is replaced by Di+D̄i, and δPD is replaced
by δP o

D.

F. Discretization of the Continuous Model
We discretize the state space dynamics of the system using

the forward Euler discretization scheme. We show the result
of the equation for ẋi1. The discretized dynamics for the rest
of the states can be obtained in similar way. At time tn we
approximate the derivative of xi1 by

dxi1(tn)

dt
≈ xi1(tn + δt)− xi1(tn)

δt
(14)

Hence the discretized version of (6a) is

xi1(tn+1) = (1− Di
xδt

M i
x

)xi1+

δt

M i
x

[
δP i

M − δP i
D − δP

ij
tie + δP i

anc

]
,

where tn+1 = tn + δt and δt is the discretization time step.
The discrete-time state-space model is obtained as

x[k + 1] = Ax[k] +B1usc[k] +B2uanc[k] + Ed[k]. (15)

We use this state update equation in Section V where we
present the MPC formulation.

IV. AUTOMATIC GENERATION CONTROL

AGC is the main control function of a utility’s energy
control section. The purpose of an AGC is to track the
load variations while maintaining the system frequency, net
tie-line interchanges, and optimal generation level close to
scheduled values [21]. This function is referred to as
Load-Frequency Control (LFC). A secondary objective is
to distribute the required change in generation among units
to minimize operating cost [23]. In the case where several
utilities are interconnected, each will perform its own AGC
independent of the others.

With primary speed control action, a change in the system
load will result in a steady-state frequency deviation, de-
pending on the governor droop characteristics and frequency
sensitivity to the load. All generating units on speed control
will contribute to the overall change in generation, irrespec-
tive of the location of the load change. Restoration of system
frequency to nominal value requires supplementary control
action which adjusts the load reference set-point (through
the speed-changer motor). Therefore, the basic means of
controlling prime-mover power to match variations of system
load in a desired manner is through control of the load
reference set-points of selected generating units. As system
load is continually changing, it is necessary to change the
output of generators automatically.

A. AGC in Interconnected Power Systems

In the classical AGC, a simple PI control is utilized to
regulate the frequency of the grid. The Area Control Error
(ACE) is defined to be

ACEi = δP i
tie + βixi1, (16)

where δP i
tie = P i

tie − P i
tie,scheduled, and βi is the bias

coefficient of area i. The standard industry practice is to
set the bias βi at the so-called Area Frequency Response
Characteristic (AFRC) which is defined as βi = Di + 1/Ri.
The integral of the ACE is then used to construct the speed
changer position (δP i

C) feedback control signal. A new state
xi9, is defined as

dxi9
dt

= ACEi. (17)

Consequently the control input δP i
C is given by

δP i
C = −Kixi9, (18)

where Ki is the feedback gain. We propose a methodology
for the ancillary services from buildings to help with the
primary control of AGC as describe in V.

V. MODEL PREDICTIVE CONTROL OF ANCILLARY
SERVICES

We present an MPC scheme to control the available
ancillary service from commercial buildings to improve on
the classical AGC practice. This optimization-based control
framework is utilized as a higher-level control in a “hierar-
chical” fashion on top of the low-level classical AGC control.
Consider the n-control area network shown in Fig. 6.



Fig. 6. Schematic of n control areas with their corresponding tie power
transfers and reactances.

A. Control Architecture

The schematic of the power system is depicted in Fig. 7.
Electric power is generated by the turbo-generators, and is
fed to the power system. The power system transmits and
distributes the power to the end use.

As mentioned earlier, the recent FERC Order 755 re-
quires scheduling coordinators to procure and compensate
more for regulation resources with faster ramping rates.
To this end, we particularly address such constraints in
our proposed MPC framework. In total, we consider the
ramping rate constraint, |Panc[k+1]−Panc[k]|, the maximum
capacity, max(Panc[k]) > 0, and the minimum capacity,
min(Panc[k]) < 0, on the characteristics of the ancillary
service signal from commercial buildings. We should men-
tion that buildings can provide both positive and negative
power flow to the grid, for frequency regulation purposes.
When there is a power deficit, buildings will temporarily
use less power, and when there is as surplus of power, they
will temporarily use the extra power. We assume that the rate
of power supply by the buildings is limited by

|∆Panc| ≤ λ, (19)

where
∆Panc := Panc[k + 1]− Panc[k].

B. MPC Algorithm

At each time step k, we solve the following optimization
problem:

min
Uanc[k]

n∑
i=1

H−1∑
j=0

(ACEi[k + j|k])2 (20)

s.t. x[k + j + 1|k] =

Ax[k + j|k] +B2uanc[k + j|k] + Ed[k + j|k]

π[k + j|k] ≤ uanc[k + j|k] ≤ π[k + j|k]

|uanc[k + j + 1|k]− uanc[k + j|k]| ≤ λ[k + j|k]

where

Uanc[k] = (uanc[k|k], uanc[k+1|k], . . . , uanc[k+H−1|k])

is the vector of inputs from k to k + H , n is the number
of areas that participate in this regulation program, and

Fig. 7. Schematic of power system and its relation to turbo-generator
and and other sectors including the building sector, along with the control
architecture. The thick arrows represent the flow of power and the thin
arrows represent frequency and control signals. The dashed arrows indicate
the additional signals and power flows proposed in this paper.

TABLE II
PARAMETERS FOR THE TWO AREAS USED IN THE SIMULATIONS

Control Area Parameters
Area 1 T1 = 0.1, T3 = 0.1, T4 = 1.0

K1 = 1.0
M = 132.6 (MW.sec)
D = 0.0265 (p.u.)

Area 2 T1 = 0.2, T3 = 0.3, T4 = 0.1, T5 = 0.5
K1 = 0.2, K3 = 3
M = 663.13 (MW.sec)
D = 0.1325 (p.u.)

H is the prediction horizon of MPC. Notation x[k + j|k]
means that at each time step k, predictions of x for future
times k + j are obtained at time k. All the constraints of
problem (20) should hold for j = 0, 1, . . . ,H − 1. The cost
function of this optimization problem minimizes the `2 norm
of the ACE signal in areas i = 1, 2, ..., n, by exploiting
the ancillary service available form buildings, taking into
account the system dynamics and constraints. The constraints
of the optimization problem are π[k + j|k] > 0 maximum
positive power and π[k + j|k] < 0 maximum negative power
provided by the participating set of buildings in each area
in the contract. Here, “positive” and “negative” refer to the
flow of power from generation to consumption. These values
are estimated on the building side and sent to the utility
periodically. λ[k + j|k] is the maximum limit on the rate
of change of ancillary service provided by the building side.
Note that in the state-space model used in the MPC problem,
we do not incorporate B1usc[k] as usc is assumed to be
constant and is regulated by the local PI controller. Fig. 7
illustrates the structure of our MPC implementation with
regards to other components of the power system.

VI. SIMULATION RESULTS

We consider two interconnected control areas with param-
eters of their models presented in Table II, and with inter-area
stiffness coefficient of ν = 1.0 (p.u.). The main generation
unit for area 1 is a non-reheat turbo generator (TG) system
and the main generation unit for area 2 is a hydro TG
system. Some metrics such as root mean square (rms) values
of frequency and ACE signal are considered to compare
the performances of the proposed controller. We use time-
invariant bounds on the maximum and minimum ancillary
power π[k] = π[k] = π, and maximum rate of change of
ancillary power λ[k] = λ, in the following simulations.
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Fig. 8. Disturbance to load in area 1.
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Fig. 9. Frequency of areas 1 and 2 in response to the disturbance are
shown. Prediction horizon is H = 10 and maximum ancillary power is
max(Panc) = 0.5 (p.u.). Results are for various values of rate of change
of ancillary power such that max|∆Panc| = λ.

The resulting quadratic program (QP) obtained in Sec-
tion V-B was formulated using YALMIP [24] and solved with
ILOG CPLEX Barrier Optimizer [25] for a time horizon of
100 s and a sampling time Ts = 1 s. On a 4-core 2.67-GHz
Intel processor with 3.86 GB of memory, the average and
maximum solver times were 0.02 s and 0.03 s, respectively,
for a prediction horizon of H = 10.

We consider a disturbance in the load of area 1, and no
disturbance in the load of area 2, as shown in Fig. 8. We as-
sess the performance of the proposed controller considering
the following scenarios:

Scenario 1: The maximum ancillary service available in
each area is 0.5 per unit (p.u.) of power. We consider a
prediction horizon of H=10 time steps. As shown in Fig. 9
by increasing the maximum rate of change of ancillary
power (also known as ramping rate for generation units)
the resulting frequency deviation decreases. Ramping rate
of λ = 0.05 (p.u./s) is associated with large power generator
size, ramping rate of λ = 0.1 (p.u./s) is associated with
smaller size generators and high ramping rates such as
λ = 0.3 (p.u./s) is associated with fast ancillary service such
as the one provided by building HVAC system fan.

Scenario 2: We consider a fixed ancillary ramping rate of
λ = 0.9 (p.u./s), and show the frequency deviations in cases
with different maximum available ancillary power in each
area. The ramping rate is considered very high to eliminate
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Fig. 10. Prediction horizon is H = 10 and the maximum ancillary power
is max(∆Pancs) = 0.9 (p.u.). Figure shows frequency of control areas 1
and 2. In each case, we change max|Panc| = π.

the effects of slow ramping rates on the results, so that
we can perform a fair comparison which only concerns the
effect of maximum ancillary power. As shown in Fig. 10
by increasing the maximum available ancillary power, the
frequency deviation decreases. Although the disturbance in
load of area 1 affects both interconnected areas, the change
of frequency in area 1 is larger than that of area 2.

Scenario 3: We consider a stronger disturbance and
compare the overall frequency and area control error in
rms sense. We consider a zero mean disturbance to both
areas with a maximum absolute value of ancillary power
of π = 0.4 (p.u.) as shown in Fig. 11. We then perform
a mass simulation using various maximum ancillary power
available in each area within the range [0.1 0.9] (p.u.), and
various rate of change of ancillary service within the range
[0.05 0.9] (p.u./s), and prediction horizons ranging from 1 to
20 time steps.

As shown in Fig. 12, the highest and lowest ACErms are
obtained for the set {π = 0.1, λ = 0.02}, and the set {π =
0.9, λ = 0.9}, respectively.

Finally we present the results on the effect of integrating
load forecast in the MPC framework. We consider a constant
maximum available ancillary power of π = 0.9 (p.u.)
and present the results of rms of frequency deviation for
various values of rate of change of ancillary power λ versus
prediction horizon as shown in Fig. 13. Short term load
forecast can be very valuable and can dramatically improve
the performance of the controller. for prediction values up to
about H = 10, the performance keeps improving, while for
longer load forecasts, the improvement is not as significant.

VII. CONCLUSION AND FUTURE WORK

We proposed an MPC framework acting in collabora-
tion with a conventional AGC. The proposed MPC inte-
grates information such as different ramping rates of various
providers of regulation services, and load forecast to im-
prove the overall system performance. Based on simulation
results, we showed how the proposed MPC-based control
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Fig. 11. Disturbance in load of area 1 and 2 used for the mass simulations.
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and maximum rate of change of ancillary power for Prediction horizon of
20 time steps.
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Fig. 13. Root mean square of frequency deviation for various λ values for
a constant π = 0.9 versus prediction horizon.

scheme manages regulation services offered by commercial
buildings.

Since it is very difficult to accurately forecast power
consumption, as future work, we plan to develop a robust
MPC framework to address the uncertainties associated with
imperfect predictions of load.
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