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Effect of mesenchymal stromal cell infusions 
on lung function in COPD patients with high 
CRP levels
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Abstract 

Background:  We previously reported a Phase 1/2 randomized placebo-controlled trial of systemic administration of 
bone marrow-derived allogeneic MSCs (remestemcel-L) in COPD. While safety profile was good, no functional efficacy 
was observed. However, in view of growing recognition of effects of inflammatory environments on MSC actions we 
conducted a post-hoc analysis with stratification by baseline levels of a circulating inflammatory marker, C-reactive 
protein (CRP) to determine the effects of MSC administration in COPD patients with varying circulating CRP levels.

Methods:  Time course of lung function, exercise performance, patient reported responses, and exacerbation 
frequency following four monthly infusions of remestemcel-L vs. placebo were re-assessed in subgroups based on 
baseline circulating CRP levels.

Results:  In COPD patients with baseline CRP ≥ 4 mg/L, compared to COPD patients receiving placebo (N = 17), those 
treated with remestemcel-L (N = 12), demonstrated significant improvements from baseline in forced expiratory vol-
ume in one second, forced vital capacity, and six minute walk distance at 120 days with treatment differences evident 
as early as 10 days after the first infusion. Significant although smaller benefits were also detected in those with CRP 
levels ≥ 2 or ≥ 3 mg/L. These improvements persisted variably over the 2-year observational period. No significant 
benefits were observed in patient reported responses or number of COPD exacerbations between treatment groups.

Conclusion:  In an inflammatory environment, defined by elevated circulating CRP, remestemcel-L administration 
yielded at least transient meaningful pulmonary and functional improvements. These findings warrant further investi-
gation of potential MSC-based therapies in COPD and other inflammatory pulmonary diseases.

Trial registration: Clinicaltrials.gov NCT00683722.

Keywords:  Mesenchymal stromal cells, Chronic obstructive pulmonary disease, Inflammation, Pulmonary function, 
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Background
Chronic obstructive pulmonary disease (COPD) is cur-
rently the fourth-ranked overall cause of death globally, 
with more than 120,000 attributable deaths annually 
in the United States [1]. COPD is characterized by a 

spectrum of clinical and pathophysiologic manifestations, 
but common features include chronic airway inflamma-
tion and progressive destruction of lung parenchyma. 
Currently, apart from lung transplantation, there are no 
curative treatments and available therapies are geared 
towards symptomatic relief. Owing to the high preva-
lence and chronic nature of the disease, COPD manage-
ment has high resource utilization with frequent clinician 
visits, hospitalizations due to acute exacerbations, and 
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requirement of chronic oxygen and pharmacologic thera-
pies [1].

Recent advances in cell-based therapies for lung dis-
eases provide a platform for development of new thera-
peutic approaches to acute lung diseases and critical 
illnesses and possibly also for chronic inflammatory pul-
monary conditions including COPD [2, 3]. Mesenchymal 
stromal cell (MSC)-based therapies have shown prom-
ise in a range of pre-clinical lung injury models, includ-
ing those for COPD [4], due to their immunomodulatory 
properties (reviewed in 4). However, while systemic 
MSC administration has proven safe and well-tolerated 
in clinical investigations, there has been no clear evi-
dence of efficacy to date in a spectrum of lung disease 
patients studied including those with COPD [5–7]. We 
previously reported results of a placebo-controlled trial 
[NCT00683722] of systemic infusions of bone marrow-
derived allogeneic MSCs in patients with moderate to 
severe COPD that included 62 patients with moderate 
or severe COPD (GOLD spirometry stage 2 or stage 3) 
randomized at six participating sites to double-blinded 
intravenous infusions of remestemcel-L, formerly 
Prochymal™, (108 cells/ infusion) or vehicle control [8]. 
All subjects received four monthly infusions and were 
followed for two years after the first infusion. Endpoints 
included safety assessments, pulmonary function test-
ing, six-minute walk distance (6MWD), frequency of 
subsequent COPD exacerbations, and patient reported 
outcome surveys (Borg dyspnea score, St. George Respir-
atory Questionnaire). Circulating inflammatory biomark-
ers, including C-reactive protein (CRP), were assessed at 
baseline and over time. Remestemcel-L was well tolerated 
with no infusional toxicities and no attributable serious 
adverse events causally related to treatment as assessed 
by study investigators. However, there were no statisti-
cally significant differences between remestemcel-L and 
placebo-treated subjects in the pulmonary function, 
functional capacity, or patient-reported outcome meas-
ures. One novel observation was that, in patients with 
elevated baseline CRP levels at study entry, a statistically 
significant CRP decrease was observed over the initial 
months of the study in patients receiving remestemcel-L 
compared to placebo, and a non-significant trend per-
sisted over the two year observation period.

Since that study was reported, there has been growing 
appreciation that the function of systemically adminis-
tered MSCs can be significantly affected by the inflam-
matory environment they encounter [9–13]. This can 
manifest as a change in the portfolio of secreted media-
tors and subsequent downstream actions on relevant 
inflammatory cells, including macrophages and neutro-
phils, important in COPD pathogenesis. Circulating CRP 
is frequently elevated in COPD patients and is associated 

with higher mortality, worse outcomes after a COPD 
exacerbation, and for a higher rate of hospital readmis-
sion [14–17]. Although patients with any recent exacer-
bations were excluded from participating in the study, 
there was a subgroup with elevated circulating CRP lev-
els at baseline, suggestive of a more inflammatory and 
exacerbation-prone phenotype. We therefore performed 
a graded post-hoc analysis of functional outcomes from 
the original investigation based on stratification of circu-
lating CRP levels.

Methods
Complete study methods including inclusion/exclusion 
criteria and study assessments are described in detail in 
the original report [8]. In brief, 62 patients with mod-
erate to severe COPD were randomized to receive 4 
monthly infusions of either remestemcel-L or of vehicle 
control (placebo). The patients were subsequently fol-
lowed for a 2 year period for safety and potential efficacy. 
Additional evaluations included measure of circulating 
mediators including C-reactive protein (CRP). The pro-
tocol was approved by the institutional review board at 
each participating center and written informed consent 
was obtained from each participant. For the current 
post-hoc analyses, the full sample of patients who par-
ticipated in the original study (receiving all four monthly 
infusions) was stratified into those with serum CRP levels 
of either ≥ 4  mg/L or < 4  mg/L at study entry (baseline). 
This cut-point was determined empirically based on an 
observation in the primary paper that patients with CRP 
levels ≥ 4 mg/L (n = 29) at baseline showed a statistically 
significant decrease in CRP at 30 days after the first infu-
sion in MSC-treated patients [8]. Additional sensitivity 
analyses were applied to evaluate lower cut-points; base-
line CRP ≥ 2 (n = 35) or ≥ 3 (n = 42) mg/L). Differences 
between patients receiving remestemcel-L or placebo 
in each stratified cohort were assessed with respect to 
changes from baseline in the pulmonary, functional, and 
patient-reported outcome variables: forced expiratory 
volume in 1  s (FEV1), forced vital capacity (FVC), total 
lung capacity (TLC), diffusing capacity for carbon mon-
oxide (DLCO), 6 min walk distance (6MWD), number of 
COPD exacerbations over the 2-year observation period, 
Borg dyspnea score, and the St. George Respiratory 
Questionnaire (SGRQ) total score. The study treatment 
infusions were administered on study days 0 (baseline), 
30, 60 and 90. Efficacy assessments were performed at 
study days 0, 10, 30, 60, 90, 120, 150, 180, 360 and 720 
(TLC only at days 0 and 180). The frequency of assess-
ments for each efficacy variable are described in detail 
in the original publication. Changes over time in levels 
of circulating CRP were also re-assessed in the stratified 
cohorts at each study visit. For clarification: all circulating 
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CRP levels were measured in the same centralized labo-
ratory using a high sensitivity assay [8].

Changes from baseline over time in spirometric vari-
ables (FEV1, FVC) and in 6MWD were assessed using 
the mixed model for repeated measures analysis of vari-
ance (MMRM) to assess overall treatment effects across 
all visits as well as at each visit separately. The imputa-
tion used by the procedure is based on assumption of 
the missing at random (MAR). An unstructured covari-
ance matrix was used for the MMRM analysis, unless the 
model does not converge, in which case the compound 
symmetry covariance matrix was used [18]. A sensitivity 
test of the difference between remestemcel-L and placebo 
at day 120 was conducted using Student t-tests for inde-
pendent groups. Day 120 was chosen as 30 days after last 
infusion was anticipated to be sufficient time to see effect 
of treatment. Differences between groups in the propor-
tion of subjects with none/one or two or more COPD 
exacerbations were tested using a Chi-square test for dif-
ferences between two proportions. All statistical analyses 
were performed using two-sided hypothesis tests at the 
0.05 level of significance. Data were analyzed using SAS 
release 9.4 and GraphPad Prism version 8.3.

Results
Baseline demographic and disease characteristics for 
subjects with baseline CRP ≥ 4  mg/L and < 4  mg/L are 
shown in Table  1. There were no significant differences 
between treatment groups in any of the baseline vari-
ables based on this stratification. Mean baseline CRP lev-
els (± SD) in subjects with baseline CRP ≥ 4  mg/L were 
16.3 ± 17.2 and 10.3 ± 9.17, and median CRP levels were 
10.5 and 7.8 respectively in the remestemcel-L (N = 12) 
and placebo (N = 17) groups,; in subjects with baseline 
CRP < 4  mg/L mean baseline CRP values were 1.9 ± 1.2 
and 1.7 ± 0.95  mg/L and median values were 1.4 and 
1.7 in the remestemcel-L (N = 18) and placebo (N = 15) 
groups, respectively. The mean CRP values differ ~ seven-
fold between CRP strata. Within each CRP stratum, 
baseline CRP levels were similar in the remestemcel-L 
and placebo groups.

Changes over the 2-year study period in FEV1, FVC, 
and 6MWD, and in circulating CRP levels in subjects 
with baseline CRP ≥ 4  mg/L in those receiving remes-
temcel-L vs. placebo are shown in Figs. 1 and 3, respec-
tively. Remestemcel-L-treated patients had significant 
improvements or stabilization of both FEV1 and 6MWD 
as early as 10 days after the first of four monthly study 
drug infusions. The improvement in FEV1 (Fig. 1a) rela-
tive to placebo was significant over the 2-year study 
period as assessed by the mixed model with repeated 
measures (P = 0.003) with specific significant differ-
ences observed at day 120 as assessed by the least 

squares mean at this timepoint (P = 0.015). Improve-
ment in 6MWD (Fig.  1c) persisted through 120  days 
and a significant trajectory compared to placebo was 
evident over the entire 2-year study period (P = 0.006 
overall; P = 0.004 at day 120). In contrast, placebo-
treated patients showed a progressive overall decrease 
in both FEV1 and 6MWD over the 2-year study period 
(Fig. 1). FVC stabilized over the first 120 days in remes-
temcel-L-treated as compared to progressive decline in 
placebo treated patients (Fig. 1b). Although the overall 
change from baseline by MMRM was not significant 
for FVC (P = 0.19), isolated significance compared to 
placebo was observed at day 120 (P = 0.005.) How-
ever, after 180  days, both groups showed similar pro-
gressive declines. There were no significant changes in 
total lung capacity at day 180 or in DLCO in patients 
with baseline CRP ≥ 4 mg/Lin either the remestemcel-
L or placebo groups. In contrast to the effects noted in 
patients with baseline CRP ≥ 4, in patients with base-
line CRP < 4  mg/L overall there were no significant 
differences overall or at any visit between treatment 
groups in FEV1 and FVC, and no significant differences 
in 6MWD except at day 10 and day 90, which favored 
placebo (Fig. 2).

For patients with baseline CRP ≥ 4  mg/L there was 
a trend towards reductions in CRP levels over the first 
180  days in the remestemcel-L-treated compared with 
placebo-treated subjects (Fig.  3a). However, these did 
not correlate with the observed changes in FEV1, FVC, 
or 6MWD. For patients with CRP < 4  mg/L there was 
no difference between treatment groups in CRP levels 
except at Day 180 in favor of the placebo group (Fig. 3b). 
There were no significant changes or differences in the 
number of COPD exacerbations, Borg dyspnea score, 
or SGRQ results between patients treated with remes-
temcel-L vs. placebo in either CRP stratum. To explore 
further the influence of circulating CRP levels on FEV1, 
FVC, and 6MWD, patients were further stratified into 
those with levels of either ≥ or < than 3 or 2 mg/L at base-
line. Values were assessed on Day 120, the time point 
at which the greatest differences between MSC vs. pla-
cebo treated patients were observed when stratified for 
CRP levels ≥ or < 4  mg/L. Notably, improvements in 
FEV1, FVC, and 6MWD in remestemcel-L- vs placebo-
treated patients were also observed in those with baseline 
CRP ≥ 3 mg/dl (Table 2). Comparative improvements in 
FVC in remestemcel-L- vs placebo-treated patients were 
further observed in those with baseline CRP ≥ 2  mg/dl 
while those for FEV1 and 6MWD were no longer signifi-
cant (p < 0.055 and p < 0.159, respectively). There was no 
change in number of COPD exacerbations over the 2 year 
study period between remestemcel-L- vs placebo-treated 
patients when stratified for CRP ≥ or < 4 mg/dl (Table 3).
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Table 1  Demographic and disease characteristics: A. subjects with baseline CRP ≥ 4 mg/L and B. subjects with baseline CRP < 4 mg/L

CRP C-reactive protein, FEV1 forced expiratory volume–one second, FVC forced vital capacity, 6MWD 6 min walk distance
a Values are mean (SD) unless otherwise noted

A. Subjects with baseline CRP ≥ 4 mg/L

Placebo (n = 17) Remestemcel-L (n = 12)

Demographic characteristics

Age, yearsa 65.0 (7.7) 69.3 (5.9)

Gender, n (%)

 Male 8 (47%) 7 (58%)

 Female 9 (53%) 5 (42%)

Race, n (%)

 Caucasian 15 (88%) 11 (92%)

 Black 2 (12%) 1 (8%)

Current smokers, n (%) 5 (29%) 2 (17%)

Pack-years 64.8 (19.0) 54.2 (17.2)

Disease characteristics

Years since COPD diagnosis 8.9 (6.4) 6.6 (3.3)

Severe disease, n (%) 12 (70.6%) 8 (66.7%)

FEV1 (% predicted) 45.6 (12.7) 45.6 (14.8)

FVC (% predicted) 78.9 (18.9) 74.6 (11.6)

FEV1/FVC 0.442 (0.1) 0.451 (0.12)

6MWD (m) 317.7 (95.0) 280.6 (117.8)

B. Subjects baseline CRP < 4 mg/L

Placebo (n = 15) Remestemcel-L (n = 18)

Demographic characteristics

Age, years a 62.9 (10.0) 67.3 (8.5)

Gender, n (%)

 Male 10 (66.7) 11 (61.1)

 Female 5 (33.3) 7 (38.9)

Race, n (%)

 Caucasian 1313 (86.7) 18 (100)

 Black 1 (6.7)

 Asian 1 (6.7)

Current smokers, n (%) 7 (46.67) 3 (16.7)

Pack-years 50.9 (23.4) 57.1 (23.7)

Disease characteristics

Years since COPD diagnosis 6.2 (6.2) 9.2 (4.8)

Severe disease, n (%) 9 (60.0) 12 (66.7)

FEV1 (% predicted) 47.3 (12.9) 44.8 (12.6)

FVC (% predicted) 78.9 (18.9) 74.6 (11.6)

FEV1/FVC 0.49 (0.15) 0.43 (0.08)

6MWD (m) 372.5 (91.1) 336.2 (103.5)

Fig. 1  Changes from baseline in pulmonary function and functional performance from baseline in subjects with baseline CRP > 4 mg/L. Overall 
treatment effect across all visits were assessed by mixed model with repeated measures (MMRM). Simple differences of treatment by visit are 
assessed by least squares means using MMRM. Values at each timepoint are means + SEM. *Signifies P values < 0.05. a FEV1 (forced expiratory 
volume:) P = 0.003 overall by MMRM across all visits and P = 0.015 at day 120. b FVC (forced vital capacity): P = 0.19 overall by MMRM across all visits 
and P = 0.005 at day 120. c 6MWD (six-minute walk distance): P = 0. 0006 overall by MMRM across all visits and P = 0.004 at day 120

(See figure on next page.)
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Discussion
Post-hoc, hypothesis-generating analyses of a previously 
conducted investigation of systemic MSC administra-
tion in patients with moderate-severe COPD have dem-
onstrated previously unrecognized efficacy in those with 
more systemic inflammation at study entry. Importantly, 
beneficial effects over time were observed in the clinically 
relevant functional outcomes FEV1, FVC, and 6MWD. 
Notably, at 120 days, the magnitude of these differences 
exceeded the meaningful clinically important differences 
for both FEV1 and 6MWD and thus have significant clini-
cal implications. [18, 19] There was a corresponding, 
albeit non-significant, trend towards decrease in systemic 
inflammation as assessed by serial measurements of cir-
culating CRP levels in remestemcel-L treated patients but 
this, however, did not correlate with changes in the func-
tional outcomes. Improvements in these outcomes also 
appeared to hold when patients were stratified for lower 
levels of systemic inflammation.

The biological rationale for investigation of potential 
salutary effects of MSCs in COPD is based on the prem-
ise that secretion of multiple paracrine factors includ-
ing anti-inflammatory cytokines and growth factors that 
thereby facilitate tissue repair may counter or potentially 
even reverse chronic inflammation and lung destruc-
tion. However, studies to date of MSC administration in 
COPD patients have consistently demonstrated safety 
but not efficacy [5–8]. Other studies have further dem-
onstrated safety but were not designed to assess effi-
cacy when MSCs were administered to study effects on 
systemic immune responses in COPD patients [20]. A 
recent phase 1 study assessing safety efficacy of MSC 
administration for potential treatment of inflammation 
resulting from endobronchial valve placement in COPD 
patients was not designed to assess specific effects on 
COPD clinical course [21]. However, this study also dem-
onstrated a decrease in circulating CRP in patients who 
received MSCs. These results are in contradistinction to 
a body of literature in pre-clinical models of emphysema, 
including those resulting from elastase, papain, and ciga-
rette-smoke induced inflammation and damage, in which 
MSC administration may have beneficial effects [5, 22–
44]. Acknowledging the strengths and imitations of each 
of these models for fidelity to human disease, a variety 
of mechanisms have been postulated for MSC actions. 
Many of these focus on disruption of inflammatory 

pathways activated or provoked in the different models 
and highlight increasing recognition that MSCs may have 
better potential therapeutic effects in more inflamma-
tory lung environments [2]. Notably, MSCs are increas-
ingly recognized to sense the inflammatory environment 
through damage- and pathogen-associated molecular 
pathogen receptors, e.g. Toll-Like receptors, and respond 
by releasing specific sets of anti-inflammatory cytokines, 
anti-bacterial peptides, extracellular vesicles containing 
anti-inflammatory miRNAs, mitochondria, and other 
potential mediators. [4, 9–13, 44–49].

As such, we postulate that a subset of patients in 
the COPD spectrum may be more likely to respond 
to MSC-based administration, i.e., those with more 
pronounced chronic inflammation. This has not as 
yet been directly or prospectively addressed in clini-
cal investigations to date. However, the findings from 
the post-hoc analyses presented in the current analy-
ses are both mechanistically hypothesis generating 
and also powerful stimuli to prospectively re-assess 
potential efficacies of MSC-based cell therapies in 
carefully stratified patient groups. Accordingly, future 
studies may focus on patients with high levels of cir-
culating inflammatory cytokines including IL-6, IL-1 
and TNF-α as well as CRP to investigate further the 
clinical efficacy and impact of inflammatory cytokines 
on cell-based therapies. In the primary analysis of this 
study, levels of inflammatory cytokines other than for 
CRP were below the level of detection in most sub-
jects, perhaps due to assay methods that lacked suffi-
cient sensitivity, and high sensitivity CRP will need to 
be further assessed in future studies [8]. Limitations 
of this report include the post-hoc nature of the anal-
ysis, the lack of data regarding other inflammatory 
cytokines to confirm the CRP observations and the 
relatively small sample size. Further, as documented 
in the original report, review of patients’ diaries kept 
during the investigation revealed that reliever/rescue 
medication use was not systematically recorded and it 
was not possible to do the planned analyses on home 
medication use including home oxygen. These deserve 
re-investigation in future prospective studies as will a 
wider range of inflammatory markers including, for 
example, circulating receptor for advanced glycation 
endproducts (RAGE). A review of corticosteroid use 
revealed that only a small number of patients were on 

(See figure on next page.)
Fig. 2  Changes from baseline in pulmonary function and functional performance from baseline in subjects with baseline CRP < 4 mg/L. Overall 
treatment effect across all visits were assessed by mixed model with repeated measures (MMRM). Simple differences of treatment by visit are 
assessed by least squares means using MMRM. Values at each timepoint are means + SEM. *Signifies P values < 0.05. a FEV1 (forced expiratory 
volume:) P = ns overall by MMRM across all visits. b FVC (forced vital capacity): P = ns overall by MMRM across all visits. c 6MWD (six-minute walk 
distance): P = ns overall by MMRM across all visits and P < 0.05 at day 10 and day 90
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these at study entry, some for conditions other than 
COPD. This is a parameter that will be investigated 
further in prospective studies. Further, other condi-
tions may also contribute to fluctuations in CRP and 
may thus explain the observed variability. Knowledge 
of how MSCs are acting in different disease environ-
ments is also evolving including further appreciation 
of host responses to systemic administration of allo-
geneic MSCs [9, 50–52]. Nonetheless, these findings 
are suggestive and hypothesis-generating for confir-
mation in future studies.

Conclusion
In summary, stratification of COPD patients by elevated 
baseline CRP level identified patients that responded to 
remestemcel-L treatment with improvements in pul-
monary and overall physical function. A trend for an 
association between highest CRP levels and degree of 
clinical response suggests that the inflammatory com-
ponent of COPD may amplify potential beneficial 
immunomodulatory effects of remestemcel-L admin-
istration in COPD. Future studies will be needed to 
investigate this in greater detail.
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Fig. 3  Percent change from baseline in C-reactive protein (CRP) in subjects with baseline CRP ≥ 4 mg/L (panel a) and < 4 mg/L (panel b). Overall 
treatment effect across all visits using mixed model with repeated measures (MMRM). There were no significant differences between treatment 
groups overall or at any individual timepoint except as noted. Values are means + SEM. *Signifies P value < 0.05
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