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As an Electronic System Level (ESL) design language, the IEEE SystemC standard is widely used

for testing, validation and verification of embedded system models. Discrete Event Simulation

(DES) has been used for decades as the default SystemC simulation semantic. However, due to

the sequential nature of DES, Parallel DES has recently gained an increasing amount of attention

for performing high speed simulations on parallel computing platforms. To further exploit the

parallel computation power of modern multi- and many-core platforms, Out-of-order Parallel Dis-

crete Event Simulation (OoO PDES) has been proposed. In OoO PDES, threads comply with a

partial order such that different simulation threads may run in different time cycles to increase the

parallelism of execution. The Recoding Infrastructure for SystemC (RISC) has been introduced as

a tool flow to fully support OoO PDES.

To preserve the SystemC semantics under OoO PDES, a compiler based approach statically an-

alyzes the race conditions in the input model. However, there are severe restrictions: the source

code for the input design must be available in one file, which does not scale. This disables the

use of Intellectual Property (IP) and hierarchical file structures. In this dissertation, we propose

a partial-graph based approach to scale the static analysis to support separate files and IP reuse.

Specifically, the Partial Segment Graph (PSG) data structure is proposed and is used to abstract the

behaviours and communication of modules within a single translation unit. These partial graphs
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are combined at top level to reconstruct the complete behaviors and communication of the entire

model.

We also propose new algorithms to support the static analysis for modern SystemC TLM-2.0

standard. SystemC TLM-2.0 is widely used in industrial ESL designs for better interoperability

and higher simulation speed. However, it is identified as an obstacle for parallel SystemC sim-

ulation due to the disappearance of channels. To solve the problem, we propose a compile time

approach to statically analyze potential conflicts among threads in SystemC TLM-2.0 loosely-

and approximately-timed models. A new Socket Call Path (SCP) technique is introduced which

provides the compiler with socket binding information for precise static analysis. Based on SCP,

an algorithm is proposed to analyze entangled variable pairs for automatic and accurate conflict

analysis.

Besides the works on the compiler side, we focus as well on increasing the simulation speed of OoO

PDES. We observe that the granularity of the Segment Graph (SG) data structure used in static

analysis has a high impact on OoO PDES. This motivates us to propose a set of coding guidelines

for the RISC users to properly refine their SystemC model for a higher simulation speed.

Furthermore, in this dissertation, an algorithm is proposed to optimize directly the event delivery

strategy in OoO PDES. Event delivery in OoO PDESwas very conservative, which often postponed

the execution of waiting threads due to unknown future behaviors of the SystemC model, and in

turn became a bottleneck of simulation speed. The algorithm we propose takes advantage of the

prediction of future thread behaviors, and therefore allows waiting threads to resume execution

earlier, resulting in significantly increased simulation speed.

To summarize, the contributions of this dissertation include: 1) a scalable RISC tool flow for

statically analyzing and protecting 3rd party IPs in models with multiple files, 2) an advanced static

analysis approach for modern SystemC TLM-2.0 models, 3) a set of coding guidelines for RISC

users to achieve higher simulation speed, and 4) a more efficient event delivery algorithm in OoO

PDES scheduler using prediction information.

Together, these compiler and simulator advances enable OoO PDES for larger and modern model
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simulation and thus improve the design of embedded systems significantly, leading to better devices

at lower cost in the end.
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Chapter 1

Introduction

In recent years, embedded systems become ubiquitous and essential. They are included in almost

every kind of devices, e.g. cell-phones [1, 2, 3, 4], automobiles [5, 6, 7, 8], medical instruments

[9, 10, 11, 12], missiles [13, 14, 15, 16] and so on. However, as people are demanding faster and

more functional electronic devices, this leads to a rapid growing of the complexity and heterogeneity

of embedded systems [17, 18, 19]. It becomes much more difficult and complicated for developers

to consider all aspects of the entire design. To solve this problem, Electronic System Level

(ESL) design methodology was proposed and widely studied [20, 21, 22, 23]. Developers first

model and evaluate a design at a high abstraction level with a main focus on functionalities and

algorithms. Before converting the system level design into Register-Transfer Level (RTL) designs,

the developers have to carefully verify the correctness of the model. One common verification

approach is Simulation-basedValidation [24, 25, 26], which simulates the givenmodel and produces

an accurate result.

IEEE SystemC [27] is a standard ESL design language and is widely used for testing, validation and

verification of system level models. To utilize the parallel computation power of modern multi-core

processors in SystemC simulation, parallel simulation approaches attract a lot of attention in the

community. In this dissertation, we aim at designing and improving more advanced algorithms for
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parallel simulation of modern SystemC models.

1.1 Parallel Simulation of Embedded System Models

ESL design is a level above RTL design including both software and hardware of the whole

system. Figure 1.1 illustrates the complexities of different levels of abstraction in a complete design

flow [28]. It clearly illustrates the trade-off between complexity and model accuracy for different

abstraction levels. ESL design is a promising approach at an early stage of the design flow.

Figure 1.1: Level of abstraction in system design [28]

SystemC [27] is a de-facto language for ESL design in industry. With more than 20 years’ de-

velopment, SystemC has been widely applied to system-level modeling, architectural exploration,

performance modeling, software development, functional verification, and high-level synthesis.

SystemC is often associated with ESL design and with transaction-level modeling (TLM). Tech-

nically, SystemC is a set of C++ classes and macros. Developers can easily write SystemC

models following the C++ syntax. Although SystemC is capable for RTL modeling and simula-
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tion, this dissertation mainly focus on modeling and simulation for un-timed, loosely-timed and

approximately-timed TLM and TLM-2.0 [29] SystemC models.

SystemC provides an event driven simulation interface which enables the simulation of concurrent

SystemC processes. In the next sections, we are going to describe different approaches of Discrete

Event Simulation (DES) algorithms.

1.1.1 Discrete Event Simulation

DES [30] is the inherent simulation approach for the SystemC language [31]. It utilizes a central

scheduler to manage multiple concurrent threads, which results in temporal barriers (namely time

and delta cycle) in the SystemC simulation. According to the cooperative multitasking semantics

of the SystemC standard IEEE 1666-2011 [27], most SystemC simulator implementations have

only one thread active at the same time and thus cannot utilize the parallel computing resources

available on multi-core (or many-core) processor hosts. This significantly limits the execution

speed of SystemC simulation. Figure 1.2 shows the algorithm for the traditional discrete event

simulator [32].

Here, we formally define the data structures, states and operations used in DES:

1) In DES, we have the following thread queues:

1. QUEUES = {READY, RUN,WAIT, WAITTIME, COMPLETE}.

2. READY = ∪th where thread th is ready to run.

3. RUN = ∪th where thread th is running.

4. WAIT = ∪th where thread th is waiting for an event.

5. WAITTIME = ∪th where thread th is waiting for time advance.

6. COMPLETE = ∪th where thread th has completed its execution.
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Figure 1.2: Traditional Discrete Event Simulation (DES) scheduler for SystemC[32]

2) In DES, we have the following simulation invariants:

1. THREADS = READY ∪ RUN ∪WAIT ∪WAITTIME ∪ COMPLETE.

2. ∀A,B ∈ QUEUES and A , B, A ∩ B = ∅.

3) In DES, we have the following operations:

1. Run(th): Dispatch thread th.
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2. th = Pick(READY): Pick a thread from the READY queue.

3. Remove(th, WAIT): Remove thread th from theWAIT queue.

4. Insert(th, READY): Insert thread th to the READY queue.

4) In DES, we have the following initial states:

1. THREADS = {throot}.

2. RUN = {throot}.

3. READY = WAIT = WAITTIME = COMPLETE = ∅.

In DES, the simulated time contains two parts: the time cycle and the delta cycle. The time cycle

represents the actual time advance during the simulation. The delta cycle is interpreted as the

zero-delay semantics in digital systems.

The simulation is driven by events and time advances. At any time, the simulator runs a single

thread from theREADY queue. Once theREADY queue is empty, the simulator checks theWAIT

queue and move the threads that wake up to theREADY queue. If theREADY queue is still empty

after event delivery, time will be advanced and corresponding threads in the WAITTIME queue

are moved to the READY queue. If the READY queue is still empty, then the simulation reaches

the end.

1.1.2 Synchronous Parallel Discrete Event Simulation

In order to provide faster simulation and due to the inexpensive availability of parallel processing

on today’s multi-core (and many-core) processors, Parallel Discrete Event Simulation (PDES) has

recently gained significant attention [33]. The synchronous PDES simulator issues multiple threads

(i.e. SC_METHOD, SC_THREAD and SC_CTHREAD) at the same time and dispatches them
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onto the available cores in parallel. Specifically, once theREADY queue is not empty and there are

still cores idle, threads will be dispatched from the READY queue to run on the idle cores, until no

more threads remaining in the READY queue or all cores are used. In turn, the simulation speed

increases significantly.

Figure 1.3: Synchronous Parallel Discrete Event Simulation (PDES) scheduler for SystemC [33]

The scheduler in the parallel simulator works in a similar way as the sequential simulator. There is

still a main loop for handling event notifications. The main difference is that the parallel simulator

picks multiple threads from the READY queue in each cycle, and runs them in parallel. The algo-

rithm is shown in Figure 1.3. Note that in synchronous PDES, time advances happen globally. That

is, earlier completed threads have to wait until all other running threads reach the same simulation
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cycle, even if the threads do not have any conflict with each other in the future. The strict total or-

der of time imposed by the synchronous PDES is still a limit to high performance parallel simulation.

1.1.3 Out-of-Order Parallel Discrete Event Simulation

To further utilize the parallel computation power of multi-core processors, Out-of-Order Parallel

Discrete Event Simulation (OoO PDES) was proposed [34]. In OoO PDES, the simulation time is

local to individual threads and events. It is formally defined as follows:

1. A thread th is assigned a local timestamp (tth,δth).

2. An event e is assigned a local timestamp (te,δe).

Timestamps have the following orders:

1. (t1,δ1) = (t2,δ2) iff t1 = t2 and δ1 = δ2.

2. (t1,δ1) < (t2,δ2) iff t1 < t2, or t1 = t2 and δ1 < δ2.

In OoO PDES, thread queues are separated into ones that correspond to different timestamps:

1. QUEUES = {READY, RUN,WAIT, WAITTIME, COMPLETE}.

2. READY = ∪READYt,δ, READYt,δ = ∪th where thread th is ready to run at (t, δ).

3. RUN = ∪RUNt,δ, RUNt,δ = ∪th where thread th is running at (t, δ).

4. WAIT = ∪WAITt,δ,WAITt,δ = ∪th where thread th is waiting for an event since (t, δ).

5. WAITTIME = ∪WAITTIMEt,δ, WAITTIMEt,δ = ∪th where thread th is waiting for a

time advance at (t, δ).
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6. COMPLETE = ∪COMPLETEt,δ, COMPLETEt,δ = ∪th where thread th has completed

its execution at (t, δ).

In OoO PDES, initial states are refined as follows:

1. THREADS = {throot} where (troot, δroot) = (0,0).

2. RUN = RUN0,0 = {throot}.

3. READY=READY0,0 =WAIT=WAIT0,0 =WAITTIME=WAITTIME0,0 =COMPLETE

= COMPLETE0,0 = ∅.

Figure 1.4 depicts the algorithm of OoO PEDS. In OoO PDES, no global time order is imposed to

the simulation threads. The scheduler aggressively moves any thread in WAIT that is notified by

an event or any thread inWAITTIME to theREADY queue. Note the NoConflicts(th) condition

shown in Figure 1.4. Detailed dependency analysis is needed to avoid data or event conflicts for

any shared variables among the parallel threads. Only if NoConflicts(th) is true, a new thread

is issued for parallel execution (moved from the READY to the RUN queue). With the partial

order of timing and advanced conflict analysis, the system model can be simulated without loss of

accuracy with higher simulation speed.

We will be using advanced static compile-time analysis (and optionally dynamic run-time analysis)

to identify all potential conflicts. Based on this information (a simple table look-up is sufficient),

the OoO PDES scheduler can then at run-time quickly decide whether or not a set of threads has

any conflicts with each other.

1.2 Recoding Infrastructure for SystemC

The Recoding Infrastructure for SystemC (RISC) [35] is essential to realize the OoO PDES ap-

proach. In this section, we briefly describe the basic concepts and notions in RISC.
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Figure 1.4: Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for SystemC
[34]

As described in Section 1.1.3, a dedicated SystemC compiler is implemented to provide essential

information for the OoO PDES simulation library. Figure 1.5 shows the design flow using the RISC

compiler and simulator [36]. As shown in this figure, the input SystemC model file is first sent

to the RISC compiler, and the front-end RISC compiler generates an instrumented intermediate

model. Then this model is linked against the parallel RISC SystemC library by the target compiler

(a regular C++ compiler) to produce the final executable file. This is different from the conventional

SystemC simulation where a regular C++ compiler includes the SystemC headers and links the

input model directly against the SystemC library.

9



Figure 1.5: RISC Compiler and Simulator for Out-of-Order PDES of SystemC [35]

In RISC compiler four major tasks are performed. The compiler first constructs the Abstract

Syntax Tree (AST) and builds the Segment Graph (SG) which describes the behaviors of SystemC

processes. Next, it builds the Internal Representation (IR) of the SystemC model. Then, based on

IR and SG, the compiler generates the conflict tables representing the data race conditions, segment

dependencies and other information about the model. Finally, an intermediate model is created,

containing all the conflict tables and other essential information for the OoO PDES library.

1.2.1 Segment Graph

RISC compiler relies on a complex software stack as its foundation, as shown in Figure 1.6. On

top of the AST constructed using C/C++ standard libraries and ROSE infrastructure [37], RISC

compiler generates the SG data structure.

Figure 1.6: RISC software stack [35]
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The SG is a directed graph where each node is a set of code statements executed between two

scheduling steps [34]. A scheduling step is the entry to the scheduler domain from the application

domain during execution of the model, which includes wait statement, start of a SystemC process

and end of a SystemC process. An example of SystemC source code is shown in Figure 1.7a. The

corresponding SG is shown in Figure 1.7b.

void foo(){

    x = 10;

    wait(1,SC_NS);

    ++x;

    y = x+1;

    bar();

    z = x*y;

}

void bar(){

    index = 20;

    wait(2,SC_NS);

    sqr = index*index;

}
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(a) Source code

x = 10;

++x;

y = x+1;

index = 20;

sqr = index*index;

z = x*y;

1

2

3

(b) Segment Graph

Figure 1.7: Example SystemC Code and corresponding SG

A SG is automatically built by the RISC compiler as discussed in Algorithm 5 in [38]. The

algorithm analyzes every source code statement and groups them into segments. For instance, ++x

in line 4 and y=x+1 in line 5 are assigned both to segment 2 as they are executed after the same

scheduling step: wait(1,SC_NS) in line 3. Function call is a special case because it may contain

multiple statements and/or scheduling steps. When a function call is encountered, the algorithm

first finds the definition of the function and constructs a temporary SG sg_func for the function.

Then, sg_func is merged into the calling segment. In this example, bar() is first encountered while

building segment 2. The RISC compiler identifies the definition of bar() in the AST and builds a

SG sg_func for bar(). Then, sg_func is merged into segment 2.
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1.2.2 SystemC Internal Representation

SystemC IR is built based on AST generated by ROSE infrastructure. It reflects the SystemC

module and channel hierarchy, connectivity, and other SystemC-specific relations, as depicted in

Figure 1.8. This is similar to the SystemC-clang representation [39]. More details are described in

[36].

Figure 1.8: SystemC IR in RISC compiler

1.2.3 Conflict Analysis

Based on SG and SystemC IR, RISC compiler analyzes the conflicts at segment level. Potential

conflicts in SystemC include data hazards, event hazards, and timing hazards, all of which may

exist among the segments executed by the threads considered for parallel execution. The conflict

information is used at runtime by the simulator to make sure that there is no thread dispatched if

the thread has any potential conflicts against threads in the RUN or READY queue. The RISC

compiler detects conflicts in two ways: static analysis at compile time and dynamic analysis in
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the elaboration phase at run time. It should be emphasized that the accuracy of this analysis has

significantly improved with the recent RISC release V0.6.0, which includes the advances presented

in this work. As outlined in detail in [40], the RISC compiler now supports Port Call Path (PCP)

sensitive conflict analysis which makes it aware of the actual channel instances used by threads

from different modules. This much more precise analysis can avoid false positive conflicts in many

cases and thus increases the efficiency of the simulation which, in turn, runs faster.

Static Conflict Analysis

Static analysis depends purely on the available information in the SystemC source code of the

design model at input. In this case, the RISC compiler performs very conservative identification of

the potential hazards in the model, as outlined in [36]. Identifying all possible hazards is a complex

analysis task that requires the full understanding of the module hierarchy. Here we statically extract

the module hierarchy and analyze the individual threads.

Dynamic Analysis

However, in most cases not all of the needed information can be gathered statically. For instance,

design parameters may be passed via the command line to define the number of modules, certain

channel characteristics, or other configuration information. In such SystemC models, the instanti-

ated modules, channels, and ports are typically created through loops in a dynamic fashion. Thus,

these exact parameters are only available at run time, so they cannot be statically analyzed. In these

cases, dynamic analysis is needed.

In dynamic analysis, the compilation flow is extended by a preprocessing step. The input SystemC

model is fed into the RISC elaborater which produces an executable model that only performs the

SystemC elaboration phase. At the end of the elaboration phase, the executablemodel automatically

traverses the created module hierarchy via the SystemC introspection API and dumps this detailed
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structural design information into an instance connectivity file. This file is in turn provided as an

input to the RISC compiler, so that the dynamically created design hierarchy and specific instance

connectivity can be used for precise conflict analysis. The instance connectivity data file includes

the actual module hierarchy, the specific port mapping, and the actual target variable mapping of

references.

1.2.4 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [36]), the RISC compiler generates

several conflict tables that describe all possible conflicts between threads in any two segments.

Using this conservative conflict information, the simulator can then at run-time quickly determine

by a simple table look-up whether or not it is safe to issue any given thread in parallel or ahead of

time.

As shown above in Figure 1.5, the RISC compiler and simulator work closely together. The

compiler performs conservative conflict analysis and passes the analysis results to the simulator

which then can make safe scheduling decisions quickly.

To pass information from the compiler to the simulator, we use automatic model instrumentation.

That is, the intermediate model generated by the compiler contains instrumented (automatically

generated) source code which the simulator can then rely on. At the same time, the RISC compiler

also instruments user-defined SystemC channels with automatic protection against race conditions

among communicating threads.

In total, the RISC source code instrumentation includes four major components:

• Segment and instance IDs: Individual threads are uniquely identified by a creator instance ID

and their current code location (segment ID). Both IDs are passed into the simulator kernel

as additional arguments to scheduler entry functions, including wait and thread creation.

• Data and event conflict tables: Segment concurrency hazards due to potential data conflicts,
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event conflicts, or timing conflicts are provided to the simulator as two-dimensional tables

indexed by a segment ID and instance ID pair. For efficiency, these table entries are filtered

for scope, instance path, and reference and port mappings.

• Current and next time advance tables, and thread state prediction tables: The simulator can

make better scheduling decisions by looking ahead in time if it can predict the possible future

thread states. This optimization is discussed in detail in [41] and is available in the RISC

Compiler and Simulator in versions 0.4.0 and later. Since thread state prediction for most

models requires only little additional compile time but results often in higher simulation

speed, it is enabled by default.

Note that the source code instrumentation is performed automatically by the RISC Compiler and

no user interaction is necessary. However, the interested user may inspect the instrumented source

code. It is stored in a file named risc_model_name.cpp which serves as the input file to the compiler

back-end which in turn then generates the final executable.

With RISC version 0.6.0, source code instrumentation is optimized for large design models with

many segments. Here, the conflict, time, and prediction tables can become fairly large, which

unnecessarily slows down the code generation step during compilation. To avoid such inefficiency,

a separate file (model_name.risc) is automatically generated with binary images of the tables. This

file is then read at run time (automatically, just like a shared library) to fill the conflict, time, and

prediction tables needed by the simulator.

1.2.5 Simulation Library

Same as the classic Accellera proof-of-concept implementation, the RISC simulator is not an

explicit tool, but a run-time library that the generated executable SystemC model is linked against.

Thus, simulation is performed by execution of the compiled model, the same way as in the classic

tool flow (just faster).
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By default, the simulation library performs OoO PDES scheduling. However, when primary

channels are detected in the model, or specified by the user, the RISC simulation library can fall

back to Synchronous PDES or even DES.

1.3 Related Work

DES is the inherent approach for SystemC simulation. However, due to its sequential nature,

PDES is studied to take advantage of the parallel computing capabilities on multi-core and many-

core hosts. The main idea of PDES is to execute a simulation program on a parallel computer by

decomposing the simulation application into a set of concurrently executing processes [33]. In the

past few decades, PDES has attracted tremendous attention and interest and grown fast.

In [39] SystemC-clang is proposed. It analyzes SystemCmodels with a mixture of transaction-level

and register-transfer level components. The authors in [42] studied the distributed parallel simula-

tion, where SystemCmodels are organized into small executable units and distributed onto different

host machines to run in parallel. A parallel SystemC simulation kernel is proposed in [43] which

requires the user to manually translate the sequential design into a safe parallel design. [44] takes

a survey about existing SystemC simulation approaches and concludes that most of these works

do not fully support the parallel simulation of TLM-2.0 LT models due to shared variables. [45]

proposes a tool that addresses this problem. A set of primitives is provided to the user to manually

express tasks with duration such that parallelism in the model can be exploited and LT models

are executing in parallel. In [46], a parallel SystemC simulation kernel is developed by reducing

synchronization overheads of parallel threads. [47] proposes an efficient multi-threaded memory

allocator named HMalloc which eliminates false sharing and lock contention and supports lock-free

shared memory allocation and deallocation. [48] identifies the available parallelism between event

scheduling and execution, highlights points of contention between the two, provides an algorithm

to take advantage of the parallelism. [49] exploits hardware profiling facilities to build a hardware-
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supported incremental check-pointing solution that enables the reduction of the event-execution

cost in speculative PDES compared to the software-based counterpart. [50] proposes a system for

predicting future situations through parallel simulations based on observation data. An optimistic

simulation engine is introduced to support parallel simulation of many possible situations and

dynamic simulation modification based on observation data acquired by sensors. [51] presents an

approach that exploits reinforcement learning techniques for speculative Time Warp-based PDES.

Rather than assuming an optimal control strategy, the authors seek to find the optimal strategy

through parameter exploration. A value function that captures the history of system feedback is

used, and no a-priori knowledge of the system is required. [52] presents a runtime support for

speculative parallel processing of discrete event simulation models on multi-core architectures. It

exploits Hardware-Transactional-Memory (HTM) facilities for the purpose of state recoverability,

which can hence host conventionally developed discrete event models relying on the concept of

event-handlers to be dispatched by an underlying simulation engine. [53] optimizes PDES by

implementing a thread-based version of the ROSS simulator. The multi-threaded implementation

eliminates multiple message copying and significantly minimizes synchronization delays. [54]

presents a PDES scheme that enables cost- and time-efficient execution of large scale parameter

studies on GPUs. Two orthogonal levels of parallelism are exploited: external parallelism among

the inherently independent simulations of a parameter study and internal parallelism among inde-

pendent events within each individual simulation of a parameter study.

In comparison with the above approaches for PDES, the work we propose in this dissertation is

based on a specific PDES approach: OoO PDES. To achieve accurate results, Out-of-Order PDES

relies on a static analysis approach to collect the context information of each simulation thread.

Note that SystemC models are written in C++ code, and C++ based static analysis has been widely

studied. [55] proposes three algorithms for statically analyzing virtual functions in C++ to reduce

compiled code size and program complexity. [56] introduces a tool called ITS4 for scanning

vulnerability in C and C++ programs based on static analysis. [57] presents the Parallel Pattern

Analyzer Tool which aids the discovery and annotation of parallel patterns in source codes. It
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supports for identifying Map, Farm, and Pipeline parallel patterns and evaluate the quality of the

detection for a set of different C++ applications. SystemC-specific static analysis has also been

studied.

OoO PDES has been studied for years. In [34], OoO PDES is first introduced to increase the simula-

tion speed over the synchronous PDES. [58] proposes a dynamic load-profiling and segment-aware

scheduling algorithm with optimized thread dispatching to maximize parallel SystemC simulation

speed, which generally can be applied to all work-sharing PDES approaches for better multi-core

scheduling. [59] defines the concept of core distance for many-core architectures and proposes

an approach to optimize thread-to-core mapping in order to minimize on-chip communication

overhead. In [60], the authors achieve a high simulation speed of SystemC models by exploiting

data-level parallelization together with thread-level parallelization. An algorithm was proposed to

automatically apply data-level parallelization to the source code. This is orthogonal to the focus of

this dissertation and thus could be applied here as well. Port Call Path [40] is an advanced technique

that helps the compiler to gain more specific context information about non-pointer variables in

channels. This can reduce false positive conflicts in channels and result in significantly increased

simulation speed. [61] integrates OoO PDES library into the Simics virtual platform.

1.4 Goals

As outlined in Section 1.2, RISC provides a tool chain for highly parallel simulation of SystemC

models. However, there are several noticeable restrictions that limit the use of RISC in large

designs. In this section, we briefly introduce these limitations, and then set corresponding goals to

overcome them. In other words, we scale the OoO PDES approach beyond academic examples to

real-world industrial design models.

In industrial designs, a SystemC model often comes as separate files and involves heavy use
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of third-party libraries and Intellectual Properties (IP). The reuse-based design methodology is

actively applied to achieve high design productivity to meet the demand for shorter design cycles

and relax the time-to-market pressure. However, RISC compiler needs the complete source code

of a SystemC model to build AST for further static analysis. Complete source codes from the IP

providers can hardly be obtained because IPs are carefully protected. This limits the use of RISC

in SystemC models using third-party libraries and Intellectual Properties (IP).

Another limitation is that current static analysis does not support the modern SystemC TLM-2.0

standard. SystemC TLM-2.0 standard is widely used in industrial SystemC models. It exploits the

benefits of both temporal decoupling and traditional TLM standard for higher simulation speed. In

SystemC TLM-2.0, communication between SystemC processes is done by passing transactions,

where each transaction consists of a generic payload object, a timing object and a transaction phase

(for non-blocking transportation). The SystemCTLMports and channels no longer exist in SystemC

TLM-2.0, instead, an initiator passes the reference of a transaction to a target by calling a registered

callback method on the target side. RISC compiler was not able to handle communications outside

channels and cannot analyze references and pointers, therefore, SystemC TLM-2.0 models were

not able to be statically analyzed by RISC compiler, which was a large limitation.

In this dissertation, we are going to scale the RISC compiler and simulator so that industrial

SystemC designs can be simulated correctly and fast. Specifically, our goals include:

1. Static analysis for 3rd party libraries and IPs: For those SystemC models that use third-

party libraries and IPs, we aim to enable OoO PDES to effectively perform static analysis to

build Segment Graphs and analyze conflicts.

2. Static analysis for SystemC TLM-2.0 standard: For those SystemC models that use

SystemCTLM-2.0 standard, wewould like to allowourRISC compiler to efficiently recognize

the communication between modules and statically analyze the conflicts.

3. Improving simulation speed of OoO PDES: We aim to further increase simulation speed

of OoO PDES by direct and indirect optimizations in the simulator.
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In the following chapters, we present our approaches to achieve our goals. Chapter 2 realizes the

first goal. Chapter 3 realizes the second goal. The third goal is addressed in Chapter 4 and 5

respectively. Figure 1.9 summarizes our contributions with respect to the tool flow of RISC .

Figure 1.9: Contributions in RISC tool flow

The rest of the dissertation is organized as follows:

In Chapter 2, we extend the static analysis design flow to support separate files and IP reuse by

introducing Partial Segment Graph (PSG) abstraction [62]. We also propose approaches to prevent

IP security leakage by using PSG. Experiments demonstrate the effective design flow and sustained

speedup with parallel simulation.

In Chapter 3, we propose a compile time approach to statically analyze potential conflicts among

threads in SystemC TLM-2.0 loosely- and approximately-timed models [63]. We introduce a new

Socket Call Path (SCP) technique which provides the compiler with socket binding information

for precise static analysis. We also propose an algorithm to analyze entangled variable pairs.

Experimental results show that our approach is able to support automatically safe parallel simulation

of SystemCmodels with TLM-2.0 Blocking Transport Interface, DirectMemory Interface andNon-

blocking Transport Interface, resulting in impressive simulation speeds.

In Chapter 4, we propose for RISC users coding guidelines that increase the granularity of segments

[64], so that the level of parallelism in the design increases and higher simulation speed becomes

possible. The experimental results show the simulation speed of OoO PDES increases significantly

by applying the coding guidelines.
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In Chapter 5, we introduce a novel event delivery strategy that allows waiting threads to resume

execution earlier based on predicted behaviors of all threads, resulting in significantly increased

simulation speed [65]. Experimental results show that the proposed approach increases the OoO

PDES simulation speed by a large amount.

Finally, Chapter 6 summarizes this dissertation with an outline of contributions. Future works are

also discussed.

21



Chapter 2

Extending Static Analysis for Large Models

In this chapter, we first propose an algorithm that builds Partial Segment Graph for each individual

SystemC translation unit, we then propose an algorithm that combines all PSGs to reconstruct the

complete Segment Graph [62]. Based on the two algorithms, the RISC compiler is able to support

SystemC models with multiple source file inputs, especially for the models that use Intellectual

Properties.

2.1 Introduction

As described in Chapter 1, the complexity of system design has been growing with the increasing

functionalities of modern embedded systems. Out-of-Order Parallel Discrete Event Simulation

(OoO PDES) [34] was proposed to exploit the parallel computation of modern multi- and many-

core platforms, and the Recoding Infrastructure for SystemC (RISC) [35] has been developed to

implement OoO PDES for SystemC. The RISC compiler first builds the Abstract Syntax Tree (AST)

of the input file and then derives from the AST the behavior model (BM) of the input SystemC

design. BM is an abstraction of the execution of the SystemC processes in the design. The RISC
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compiler represents BM with a statically built Segment Graph (SG) data structure. Based on SG,

the RISC compiler is able to analyze the data conflicts, timing conflicts and event hazards in the

design.

2.2 Problem Definition

To completely build the BM of the input SystemC design, the RISC compiler needs the entire AST

for the input model. Thus the user has to provide all the source code in one single translation unit.

In other words, the RISC compiler cannot build BM for SystemC designs whose source code are

separately structured in multiple source files or third party Intellectual Properties (IP). With the

wide use of IP, this requirement severely restricts the RISC compiler to meet industrial system level

design needs.

Figure 2.1: Scaled RISC tool flow with IP components
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In this chapter [62], we propose a solution that scales the RISC compiler to support multiple file

inputs, especially for the integration of IPs, as shown in Figure 2.1. In the new design flow, the

construction of BM no longer relies on the complete AST. Besides the usual object and header

files, component providers supply a partial design (PD) file that abstracts the BM of integrated

design components. Specifically, in the PD file, the BM is abstracted by a Partial Segment Graph

(PSG). IP providers can inspect and redact the PD file, in order to further minimize the PSG, which

protects the security of their IP. On the user’s side, by combining all the received PSGs, the RISC

compiler is able to reconstruct the BM of the whole design.

2.3 Related Work

IP reuse and protection have received a lot of attentions. In [66], the authors describe an effective

methodology for IP reuse in SOC design. They studied the IP enhancement and also proposed a

framework for the reuse of customer IP. [67] proposes a new preprocessing approach that embeds

watermarks as constraints into the input of a black-box design tool and a new postprocessing

approach that embeds watermarks as constraints into the output of a black-box design tool. [68]

introduces a new technique for protecting the IP of both processor cores and application software

in hardware/software systems. The approach is based on public-key cryptography and it has been

implemented as a package in the JavaCAD distributed design and simulation environment.

In [69], the authors proposed a way to use pre-defined graphs to represent the BM of IP components.

However, this simple approach requires the users to manually analyze the design and insert pragmas

where needed. Furthermore, there are only three kinds of predefined graphs, which is insufficient.

In contrast, we propose PSG as the data structure to represent the BM of IP components, which is

accurate and is automatically built by a compiler.
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2.4 Partial Segment Graph

We now describe the PSG technique that represents the BM in each separate translation unit.

2.4.1 Behavior Model and Segment Graph

The behavior model of a SystemC design can be described by the Segment Graph, which provides a

way to analyze threads and their position during execution. The SG is a directed graph where each

node is a sequence of code statements executed between two scheduling steps, i.e., wait statements

[34]. Details about SG are described in Section 1.2.1

2.4.2 Concept of PSG

In our proposed design flow, we store the BM specified in each translation unit as a PSG in a PD

file and when the PSGs are loaded and integrated together, they reconstruct the complete SG.

The main difference between PSG and SG is that PSG is built based on an incomplete AST, where

SC_MODULE(M){

  ...

  sc_port<C> p;

  void th(){

    M::a++;

    p->func();

    M::b=1;

  }

  ...

}

1

2

3

4

5

6

7

8

9

10

(a) Example Source Code

M::a++

(b) PSG of Fig. 2.2a

Figure 2.2: SystemC Code and PSG

definitions of function calls may be unknown. An example is shown in Figure 2.2a. It contains

only the definition and implementation of module M. Function p->func() is called in M::th(),
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but it is not defined in this translation unit. We refer to a function call that lacks the definition

as a non-defining function call. Because the compiler cannot determine from the current AST

if a non-defining function call contains scheduling steps or not, the simulation cycle of the code

statements following the non-defining function call cannot be statically determined. In the example,

we cannot know if line 5 and line 7 execute in the same cycle.

To deal with this uncertainty incurred by the non-defining function calls, we introduce three types

of PSG nodes:

• Segment node contains a sequence of code statements executed in the same determined

simulation cycle. In Figure 2.2a, M::a++ belongs to a segment node because its simulation

cycle is determined, which is the first cycle of the sc_thread M::th(). A segment node

becomes a segment after the integration of PSGs.

• Partial segment node contains a sequence of code statements executed in the same non-

determined simulation cycle. In Figure 2.2a, M::b=1 belongs to a partial segment node

because it is executed after the non-defining function call p->func(). Later during the PSG

integration phase, the partial segment node will be merged with other segment nodes.

• Partial function call node is created as a place holder for the non-defining function call in

the PSG such that during the PSG integration phase, the partial function call node can be

replaced by the sub-PSG corresponding to the function’s definition. In Figure 2.2a, node 3

is a partial function call node for the non-defining function call p->func().

2.4.3 Create PSG

A PSG is recursively built by traversing the AST of the current translation unit, as shown in

Algorithm 1. If the current statement CurrStmt is a scheduling entry point (wait statement),

then an empty segment node is created and connected to the nodes in the CurrNodes. On the
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other hand, if CurrStmt is not a scheduling point, then it is added to all the nodes in CurrNodes.

This is similar as in the BuildSG in [69]. The main difference is that to build PSG, the compiler

also needs to deal with non-defining function calls. If CurrStmt contains a non-defining function

call, for example f(), the compiler first builds a partial function call node NewNode and stores

the qualified name M::f(). Next, the compiler connects NewNode to all the nodes in CurrNodes.

Then, a partial segment node NextNode is created and connected to NewNode, and the compiler

sets NextNode as the only node in the CurrNodes.

Algorithm 1 Partial Segment Graph Generation
1: function BuildPSG(CurrStmt, CurrNodes)
2: if isBoundary(CurrStmt) then
3: NewNode← new segmentNode
4: for Node ∈ CurrNodes do
5: AddEdge(Node, NewNode)
6: end for
7: return CurrNodes ∪ { NewNode }
8: else if isNonDefiningFunctionCallStmt(CurrStmt) then
9: NewNode← new partialFuntionCallNode
10: Mark(NewNode, getFuncName(CurrStmt))
11: for Node ∈ CurrNodes do
12: AddEdge(Node, NewNode)
13: end for
14: NextNode← new partialSegmentNode
15: AddEdge(NewNode, NextNode)
16: else if isControlFlow(CurrStmt) then
17: BuildSG(CurrStmt, CurrNodes)
18: ...
19: end if
20: end function

2.4.4 Store and Load PSG

The PD file stores an abstraction of the PSG. For each node, we omit the detailed code statements

and store only the access types (R,W,RW) to non-local variables. This is sufficient for the RISC

compiler to analyze the data and event conflicts. In addition, some meta-data is stored for each

node, which is needed for the integration of PSGs, as listed in Table 2.1. Note that the PD file is

compatible with dot format and the PSG therefore can easily be visualized. An example of PSG is
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later shown in Figure 2.7.

A PSG is loaded from the PD file with a dot file parser. The parser reads the attributes of each PSG

node, and reconstructs the data in memory. For example, a node has a variable access attribute

(W)M::a, which indicates that M::a is been written in the node. To load the node into memory, the

PSG parser locates the symbol of M::a in the AST and puts it into the variable_write_list of the

node. PSG edges are constructed according to the connections specified in the PD file. After the

loading of individual PSGs, the compiler integrates them together to construct the complete SG.

Table 2.1: PSG meta-data node attributes

Attribute Description

Node type
Segment node, Non-segment node,

Function call node

Written variables Qualified name of variables written

Read variables Qualified name of variables read

Notified events Qualified name of events notified

Dependent events Qualified name of events waiting for

Hosting function name Qualified name of function belonging to

Hosting module name Qualified name of module belonging to

Is entry node Marker for function entry point

Is exit node Marker for function exit point

Is simulation process Marker for simulation process

Non-defining function name Qualified name of non-defining function

2.4.5 Integration Phase

A complete segment graph is the basis for accurate static analysis. After loading all the PSGs, first

the partial function call nodes are recursively replaced with the corresponding sub-PSG. Second, all

the partial segment nodes are merged with segment nodes they follow. All remaining nodes in the

graph are segment nodes (with underlying wait boundaries) and belong to determined simulation
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cycles, such that the integrated graph by definition becomes a proper segment graph. With the

reconstructed SG, the RISC compiler has the complete the BM and can perform the needed static

analysis of the design.

We illustrate themerging process of two PSGs in Figure 2.3a, 2.3b and 2.3c. In this example, node_2

is a partial function call node that holds the non-defining function call func(), and node_5, node_6

and node_7 are loaded from the psg in func.pd and forms the sub-PSG of func(). node_5 and

node_7 are respectively the entry and exit node of func(). First, node_3 is merged into node_7

because they belong to the same simulation cycle. After merging, node_4 is connected to node_7

since it was connected to node_3. Then, node_5 is merged into node_1 because it is the starting

node of func(). node_6 is connected to node_1 since it was connected to node_5.

(a) Two PSGs (b) Phase 1 (c) Phase 2

Figure 2.3: Integration of PSGs

2.5 IP Protection and Security

IP reuse is an important feature in semiconductor industry. Basically, an IP consists of two parts:

a header file that describes the interfaces and protocols, and a binary file that implements the IP

component. Since no implementation source code is provided, the IP is protected. The internal

BM of the IP is hidden from the users.
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However, static analysis cannot be performed without the BM. We need the IP provider to supply

an abstract PSG of the IP to the user via PD files. For the IP provider not to reveal too much

implementation detail and to solve this IP security leakage problem, we allow the IP provider

to redact the PSG in the PD file, so that the implementation details remain hidden. If desired,

misleading information can even be added. This way the users will not be able to obtain the inner

implementation, while still maintaining the correctness of BM.

Figure 2.4: SystemC model of Bitcoin miner
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Figure 2.5: Original and redacted scanner.pd

Figure 2.4 shows the SystemC model of a Bitcoim miner [70]. It has several user defined modules
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(receiver and sender) for data input and output, and uses an IP module (scanner) for number

crunching. Three PD files (receiver.pd, sender.pd, scanner.pd) contain the corresponding BM of

each module.

By default, in each PD file the RISC compiler stores (1) the qualified name of variables accessed

and access types, (2) qualified name of events and dependencies, (3) PSG structure and timing

advance. For receiver.pd and sender.pd, it is fine to have such information transparent because the

two modules are user-defined. However, for scanner.pd, exposing the internals is risky from the

perspective of IP protection.

The original and redacted versions of scanner.pd are shown in Figure 2.5. Here the numbers in the

PSG nodes indicate the number of variable accesses stored. Compared to the original, the revised

file has fewer nodes, and each node has fewer variable accesses stored. These modifications are

carefully performed such that during the simulation, the model still executes correctly.

There are several possible changes that can be performed to redact the PSG:

1. Reduce the amount of variable accesses: If two nodes share more than one internal variable

accesses, only one of them needs to be kept and others can be removed from the two nodes.

This does not change the data conflict of the two segments. Only externally visible variables

need to be retained. Furthermore, if a variable is read only in any node, it can be removed

because it cannot lead to data conflicts.

2. Add fake variable access: By adding extra variables to a node, the IP provider can further

obscure the IP and inject misleading details.

3. Hide nodes: An entire node that contains no variable accesses or event notifications can

be hidden from PSG because it does not affect the static analysis. To maintain the timing

correctness, the incoming and outgoing edges need to merge.

4. Merge segment nodes: Segment nodes can bemerged to form an aggregation. This effectively

hides the detailed PSG structure. The downside is that merging may pollute conflict-free
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segment pairs. Two code statements that actually can run in parallel after merging run only

sequentially because they now belong to two conflicting aggregated nodes.

In general, there is a trade-off between the amount of IP protection versus the analysis accuracy,

which may affect simulation performance.

2.6 Experiments and Results

We first show the correctness of the proposed design flow using a simple producer-consumer ex-

ample and a more complex Canny edge detector model. Then we demonstrate our IP protection

using a SystemC model of Bitcoin miner, where we designed an IP for the parallel data crunching

module and redacted the PD file to hide details in the PSG. Our experiments were executed on an

Intel Xeon E3-1240 multicore processor with 8 CPU cores. The CPU frequency scaling was turned

off so as to provide accurate and stable results.

2.6.1 Producer-Consumer Example

In the producer-consumer model, we have defined and implemented each module/channel in in-

dividual files. According to the tool flow in Figure 2.1, we first generate the PD file for each

translation unit. At top level, RISC integrated the PSGs. The regular RISC tool flow without

PD support cannot handle this multi-file design and generates an error message. Now with the

proposed approach, RISC is able to correctly perform static analysis and generates a functioning

parallel executable.
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2.6.2 Canny Edge Filter

The Canny edge detector algorithm [71] is a multi-stage operator that detects edges in an image.

Our SystemCmodel has a pipeline structure with five stages, and each stage communicates with the

next via user-defined channels. We have defined and implemented all stage modules and channels

in different translation units. In this experiment, we have a total of 15 implementation files and

corresponding PD files. The sequential simulation runs for 280.90 seconds, and the parallel one

runs for 116.48 seconds, achieving a speedup of 2.41x.

Without the proposed technique, the RISC compiler generates an error and cannot compile. With

the proposed design flow, the RISC compiler is able to construct the BM of the complex design

and correctly perform static analysis, and gains speedup for the simulation.

2.6.3 Bitcoin Miner

Wehave implemented a Bitcoinminermodel in SystemC to demonstrate the IP protection capability

[72]. Our model consists of 3 stages: data preparation, scanning and result output, as shown in

Figure 2.6. The scanning stage involves the use of multiple parallel scanners, which runs SHA256

algorithm are provided as IP. In order to protect the IP, we have inspected scanner.pd and carefully

redacted the PSG. The graphical view of the default and the redacted PD files of scanner are shown

in Figure 2.7. We have removed several variable accesses because they do not actually result in

conflicts. Furthermore, We have redacted the structure of PSG by removing an empty node. The

new PSG is smaller and hides information about the detailed implementation of the scanner.

Table 2.2 shows the simulation speed of Bitcoin miner model with different number of scanners

under both sequential and parallel simulations, using the default and redacted PD files of the IP. We

have performed this experiment on a Xeon E1240 8-core processor. The speedup of the parallel

simulation grows about linearly with the number of scanners. When there are 8 scanners, we get
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Figure 2.6: SystemC model of Bitcoin miner

Figure 2.7: Original and modified PSG for scanner

the maximum speedup of 6.76x. A full speedup of 8 cannot be achieved because of the sequential

part in the model and the scheduling overhead of OoO PDES. Another important observation is

that the simulation result and speed does not change with the IP scanner. This demonstrates that

our information hiding approach works well for IP protection.
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Table 2.2: Simulation of Bitcoin Miner SystemC Model: runtime (secs) /speedup (%)

#scanner SEQ Original Modified

1 117.68 / 1 117.69 /1.00 117.51/1.00

2 114.96 / 1 86.90 / 1.32 87.2/1.32

4 158.00 / 1 49.08 / 3.22 50.11/3.15

8 164.50 / 1 24.91 / 6.60 24.32/ 6.76

2.7 Conclusion

The work introduced in this chapter removes two scaling limitations of static-analysis based parallel

SystemC simulation. The new PSG techniques enable the use of hierarchical input models with

multiple translation units and the reuse of SystemC IP components. Third party IP is protected

from security leakage by high abstraction from the source code, using automatically generated

behavior model that the IP provider can further redact to meet trust expectations. The IP-enabled

design flow is effective and sustains the speedup of advanced parallel simulation.
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Chapter 3

Extending Static Analysis for Modern

Transaction Level Models

In addition to scaling the RISC compiler in Chapter 2 for industrial SystemC designs, we investigate

the support of SystemC TLM-2.0 standard in static analysis in this chapter [63]. We first introduce

the new Socket Call Path technique and then propose an algorithm to statically analyze entangled

variables.

3.1 Introduction

TheOpen SystemC Initiative (OSCI) TLM-2.0 [27] is a transaction levelmodeling standard released

in 2008. The typical use of it is building virtual platforms to simulate today’s large system on chip

(SOC) models with processors, buss and other components [73, 74, 75]. SystemC TLM-2.0

consists of a set of core interfaces, sockets, generic payload and so on. These facilities are used to

increase (a) interoperability between models, that is, the plug-and-play ability to take transaction

level models from different sources and connect them together and (b) simulation speed.
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As described in Section 1.1.3, Out-of-Order Parallel Discrete Event Simulation (OoO PDES) [34]

has been designed for highly parallel SystemC simulation. Compared to traditional PDES, OoO

PDES utilizes a finer grained task scheduler to allow suitable threads running in parallel even when

they are in different cycles. This significantly increases the execution speed. In order to preserve

the simulation semantics and timing accuracy, the input model is statically analyzed by a dedicated

compiler to prevent potential race conditions between threads [34].

Conceptually, SystemC TLM-2.0 and OoO PDES are both library-based approaches and can be

applied together. However, no analysis technique has been designed until today that is capable of

determining safe parallelism between threads in SystemC TLM-2.0 models.

In this chapter, we propose and implement a static analysis for TLM-2.0 loosely-timed (LT) and

approximately-timed (AT) SystemCmodels withmultiple threads. Our approach is able to precisely

and automatically analyze potential conflicts between threads that are communicating using the

standard TLM-2.0 interfaces, and helps the model to achieve reasonable execution speedup given

its parallelism potential. In this chapter, we describe in detail the analysis of the two mostly used

APIs, namely the Blocking Transport Interface (BTI) and Direct Memory Interface (DMI). These

two interfaces use the main TLM-2.0 features, such as generic payload, DMI objects and sockets.

We also outline the support of the Non-Blocking Transport Interface (NBTI) and Debug Transport

Interface (DTI) using the same techniques proposed in this chapter. Note that Register-Transfer

Level (RTL) and TLM-1.0 models that do not use sockets are not targeted in this work. Given the

results of the novel static analysis, a SystemC TLM-2.0 model can then be simulated safely and fast

with OoO PDES, as demonstrated with extensive experiments and results in Section 3.8.

3.2 Background

In this section, we first introduce the motivation that lead to this work and then briefly review the

TLM-2.0 interfaces [77, 29].
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Figure 3.1: SystemC TLM-2.0 model of a DVD player

3.2.1 Motivation

OoO PDES has shown excellent results for faster simulation of SystemC TLM-1.0 based models.

However, as pointed out in [76], TLM-2.0 is an obstacle for parallel simulation. In contrast to

TLM-1.0, TLM-2.0 lacks the concept of channels. Instead, a module uses pointers to access

memory locations in other modules. Since pointer analysis is difficult and communications are

not encapsulated in containment constructs, no multi-thread access synchronization can be offered

and race conditions are likely to occur, violating the execution semantics. [76] also proposed a

conceptual solution for this problem, namely the idea of reintroducing channels into TLM-2.0 and

protect the communication with locks. However, this would reduce simulator speed and violate
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interoperability of the TLM-2.0 IEEE standard [27].

In order to simulate TLM-2.0 models safely and correctly with OoO PDES, we propose a new

static analysis-based approach that protects communication without the need to modify the TLM-

2.0 standard nor the application model. Our technique builds on top of an analysis algorithm for

SystemC TLM-1.0 that is implemented in the Recoding Infrastructure for SystemC (RISC) [35].

It is a compiler based approach that automatically analyzes data, timing and event hazards among

threads. However, the TLM-1.0 oriented static analysis is not able to analyze variable entanglement

and is thus insufficient for the TLM-2.0 standard.

Definition 3.2.1. Variable Entanglement: Variable Entanglement occurs when one variable points

to the memory location of another variable in other modules through the SystemC TLM-2.0

communication interfaces. Because two entangled variables refer to the same memory location,

access (read/write) to one is also applied to the other.

As an example, Figure 3.1 shows a SystemC TLM-2.0 model of a DVD player which decodes

a stream of H.264 video and MP3 audio data using separate decoders. All communications are

modeled using TLM-2.0 sockets and APIs. Three parallel threads T_Video, T_Audio_Left and

T_Audio_Right in the initiator stimulus store data into corresponding target memories mem1,

mem2 andmem3. DecodersvDecoder, alDecoder andarDecoder fetch the data from thememories

and decode it. In this example, there are three parallel lanes. Take the stimulus-mem1-vDecoder

lane as an example. Through the TLM-2.0 interfaces, variable vFrame of stimulus and pointer

ptr of mem1 are entangled (indicated by the dashed arrow in Figure 3.1), meaning that the two

variables are pointing to the same memory location. Similarly, inFrame of vDecoder and mem of

mem1 are entangled as well. Figure 3.2 lists partial code of this simple SystemC model and shows

in detail how the variables are entangled.
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SC_MODULE(Stimulus){

  void T_Video(){

    tlm::tlm_generic_payload rgp;

    rgp.set_data_ptr(vFrame);

    ...//initilize rgp

    sc_time delay;

    while(true){ 

    //keep sending vFrame

      ...//generate vFrame

      out1->b_transport(rgp, delay);

      ...

    }

  }

  tlm_utils::simple_initiator_socket 

    out1; //socket

  unsigned char vFrame[FRAMESIZE];

  ...//other functions and variables

}; 

SC_MODULE(Memory){

  void custom_b_transport(tlm::tlm_generic_payload &pgp, sc_time &delay)

  {

    unsigned char *ptr = pgp.get_data_ptr();

    unsigned int len = pgp.get_data_length();

    ... //get other pgp fields

    memcpy(&mem[OFFSET], ptr, len);

    ... //error handling, response 

  }

  bool custom_get_dmi(tlm::tlm_generic_payload& pgp, tlm::tlm_dmi& pd)

  {

    pd.allow_read_write();

    pd.set_dmi_ptr(&mem[OFFSET]);

    ... //set other pd fields and pgp fields

    return true;

  }

  Memory(){

    in.register_b_transport(this, &Memory::custom_b_transport);

    out.register_get_direct_mem_ptr(this, &Memory::custom_get_dmi);

  }    

  //sockets and data

  tlm_utils::simple_target_socket in;

  tlm_utils::simple_target_socket out;

  unsigned char mem[SIZE];

  ...

}; 

SC_MODULE(VideoDecoder){

  void Main_Thread(){

    unsigned char inFrame[FRAMESIZE];

    tlm::tlm_generic_payload rgp;

    tlm::tlm_dmi rd;

    ... // initialize rgp, rd

    bool DMI_allowed = 

      in->get_direct_mem_ptr(rgp, rd);

    inFrame = rd.get_dmi_ptr();

    while(DMI_allowed){ 

    //keep decoding inFrame

      decode(inFrame);

    }

  }

  tlm_utils::simple_initiator_socket

    in; //socket

  ...//other functions and variables

}; 
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Figure 3.2: Partial SystemC Code for Figure 3.1

Blocking Transport Interface

Analyzing the variable entanglement information is critical for an accurate static analysis. It helps

the SystemC compiler to handle the behavior of a pointer in a well-defined TLM-2.0 model. In

general, statically analyzing the entanglement of general pointers is very difficult. However, we

observe that the pointers for TLM-2.0 communication do not point to arbitrary memory locations.

Through the well-defined TLM-2.0 interface methods, a pointer points to a determined memory
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location and thus can be analyzed statically. In the above example, for instance, inFrame of

vDecoder points only to mem of mem1 through the TLM-2.0 DMI interface. The prior TLM-1.0

oriented static analysis does not take this variable entanglement information into account and treats

inFrame as a pointer potentially pointing to any memory location in the entire model. Conse-

quently, thread vDecoder::Main_Thread that accesses inFrame is not allowed to run in parallel

with any other threads to prevent race conditions. Such too-strict pointer-involved data conflict

analysis causes false conflicts and may reduce the simulator speed to sequential levels. Now by

analyzing variable entanglement, the compiler is able to identify that inFrame of vDecoder and

mem of mem1 are pointing to the samememory location, accessing inFrame only causes data hazard

with the concurrent access to mem. With the precise and correct data conflict analysis, the three

lanes in the example in Figure 3.1 are able to run in parallel with no race conditions, rather than

sequentially due to pointer conflicts imposed by the TLM-1.0 oriented static analysis.

The proposed approach in this chapter allows the SystemC compiler to analyze TLM-2.0 interfaces

and socket connections. Based on this information, our approach then precisely analyzes the en-

tangled variables. Note that our work does not support the analysis of general pointer operations,

which is known to be hard for static analysis.

The work described in this chapter is inspired by [40] but different from it in several aspects. First,

our Socket Call Path (SCP) technique is novel as it enables the compiler to analyze entangled

pointers through TLM-2.0 interface APIs, which is not done in [40] (nor has been done in any other

work to the best of our knowledge). Second, [40] focuses on the analysis of SystemC TLM-1.0

channels, whereas our work targets SystemC TLM-2.0. Note that TLM-1.0 and TLM-2.0 are

entirely different in their communication modeling, because the channel concept has disappeared

[76]. Note that TLM-2.0 was first identified as an obstacle for parallel SystemC simulation in

[76]. Inter-thread communication is considered unsafe in a multi-thread environment when not

encapsulated in a channel. To overcome the obstacle, the author proposed a conceptual solution

that wraps the TLM-2.0 communication methods into actual channels (similar to TLM-1.0), so

that locks could be implemented for protection. In contrast, our approach does not require extra
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communication containment nor locks. We protect simulation semantics by precise static analysis

only.

3.2.2 TLM-2.0 Background

This section briefly reviews the usage of TLM-2.0 BTI and DMI with a partial code that describes

the stimulus-mem1-vDecoder lane in Figure 3.1. The code snippet is shown in Figure 3.2. In

the code, Stimulus is the module type of stimulus, Memory is the module type of mem1 and

VideoDecoder is the module type of vDecoder. TLM-2.0 focuses mainly on the communication

between processes rather than computation, so the details of encoding and decoding algorithms are

not shown in the code. We first examine the Blocking Transport Interface (BTI). It is used for the

communication between stimulus and mem1 in Figure 3.1. Basically, it takes four steps to use

BTI. On the initiator’s side:

1. prepare a generic payload object and a timing annotation. In this example, rgp is defined in line

3 and delay is defined in line 6. rgp stands for Referred Generic Payload and will be described in

Section 3.3.3. In line 4, the video frame vFrame is wrapped inside rgp by set_data_ptr. Note

that initializations of other rgp’s fields (such as data length, streaming width and so on) are omitted

in this demo code.

2. callb_transport via the initiator socket, passing the prepared generic payload object and timing

annotation as the arguments. In this example, b_transport is called on socket Stimulus::out1

with rgp and delay as arguments, in line 10.

On the target’s side:

1. implement a callback for b_transport. In this example, we implement Memory::

custom_b_transport in line 19 as the callback method. The callback method takes a reference
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of generic payload pgp and the timing annotation delay as parameters. pgp stands for Parametric

Generic Payload and will be described in Section 3.3.3. In line 21, the pointer wrapped inside

pgp is extracted by get_data_ptr and assigned to ptr. The data length is extracted in line 22.

Other extractions of pgp’s fields are omitted in this demo code. Line 24 copies ptr’s value to

Memory::mem at offset OFFSET.

2. register the callback on the target socket. In the Memory’s constructor, Memory::

custom_b_transport is registered as the b_transport callback method on socket Memory::in,

in line 35.

A corresponding callback is executed on everyb_transport call 1. Consequently, the actual behav-

ior of a b_transport is fully defined by its callback function. In the stimulus-mem1-vDecoder

lane, stimulus is connected to mem1 via socket binding stimulus.out1→mem1.in. When

stimulus.

T_Video executes out1->b_transport, it invokes mem1.custom_b_transport. In this case,

the behavior of this b_transport is represented by Memory::custom_b_transport.

Direct Memory Interface

The Direct Memory Interface (DMI) is used for the communication between vDecoder and mem1

in Figure 3.1. Similar to BTI, it takes five steps to use DMI. On the initiator’s side,

1. prepare a generic payload object and a dmi object. In this example, thread VideoDecoder::

Main_Thread declares rgp at line 47 and rd at line 48. rd stands for Referred DMI object and

will be described in Section 3.4.

2. call get_direct_mem_ptr via the initiator socket, passing the prepared generic payload object

and DMI object as the arguments. In this example, get_direct_mem_ptr is called on socket

1Section 3.3.1 explains how we match a b_transport call to the registered callback method(s)
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VideoDecoder::in with rgp and rd as arguments, in line 50. The Boolean flag DMI_allowed

indicates if the DMI access is permitted by the target.

3. extract the pointer of the directly accessedmemory location from the dmi object viaget_dmi_ptr.

In line 51, inFrame is the extracted pointer fromrd, throughwhichvideoDecoder::Main_Thread

is able to access the memory location in the connected target module instance directly.

On the target’s side:

1. implement a callback for get_direct_mem_ptr. In this example, we implement Memory::

custom_get_dmi in line 27. The callback method takes a reference of generic payload pgp and

a reference of dmi object pd as parameters. pd stands for Parametric DMI object and will be

described in Section 3.4. In line 30, the pointer to Memory::mem at offset OFFSET is wrapped

inside pd by set_dmi_ptr. Other initializations of pd’s fields are omitted in this demo code.

2. register the DMI callback on the target socket. In the Memory constructor, Memory::

custom_get_dmi is registered as the DMI callback method on socket Memory::out, in line 36.

In the stimulus-mem1-vDecoder lane, mem1 and vdecoder are connected via socket binding

vDecoder.in→mem1.out. Through get_direct_mem_ptr, vDecoder gets the direct memory

access to mem1.mem.

3.3 Static Analysis for Blocking Transport Interface

The BTI is appropriate when an initiator wants to complete a transaction with a target during the

course of a single function call, to be specific, b_transport. In this section, we first discuss

the approach to build the needed SG for b_transport call. Then, we introduce our new SCP

technique that provides context information about socket bindings. Finally, we propose an approach

for analyzing variable entanglement.
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3.3.1 Segment Graph for b_transport

The TLM-2.0 BTI is intended to support the loosely-timed coding style. The source code in Figure

3.2 demonstrates the use of BTI. As discussed in Section 3.2.2, the behavior of a b_transport

is represented by its registered callback method on the target’s side. Thus, to build the SG

for a b_transport call, the RISC compiler must be able to find the function definition of the

corresponding callback method. In our proposed approach, this is done in three steps:

1. for each target socket, identify the registered b_transport callback method.

2. use a recursive approach to obtain the socket binding information. The approach is recursive

because an initiator socket may bind to another intermediate initiator/target socket, and we need to

get an end-to-end binding information.

3. when a b_transport call is encountered in a calling segment, the compiler first identifies

the bound target socket according to the socket binding information, then builds the SG of the

callback method registered on this target socket. Finally, the compiler merges the SG into the

calling segment.

Note that a single b_transport can potentially have multiple callback methods. An example

is shown in Figure 3.3a. In this example, init1 and init2 are module instances of the same

module type Init, whereas tar1 and tar2 are of type Target1 and Target2 respectively. When

out->b_transport is executed in Init::thread, either Target1::callback or Target2::

callbackmay be called depending on which Initmodule instance the b_transport belongs to.

Note that an SG represents threads at module level but not instance level. This means that when

building the SG for Init::thread, the compiler cannot determine if the current Init::thread

is called from module instance init1 or init2. Thus, our proposed static analysis takes this

flexible binding behavior into account. We illustrate processing of callback methods in Figure

3.3b and 3.3c. Initially, Init::thread has two segments: segment 1 and 2. Segment 2 is
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being constructed (depicted as dashed border) and here out->b_transport is called. Then,

the compiler builds temporary SGs for Target1::callback and Target2::callback, where

segments 3, 4 and 5 belong to Target1::callback and segments 6, 7, 8, and 9 belong to

Target2::callback. Since Target1::callback and Target2::callback are both poten-

tial callbacks of out->b_transport, their temporary SGs are joined into the complete SG of

Init::thread in Figure 3.3c. Specifically, segment 3 and segment 6 are both merged with

segment 2, represented by 2+3+6 in Figure 3.3c.

void callback() {

    ...

}

Target1 tar1

Target2 tar2

void callback() {

    ...

}

void thread() { ...

    out->b_transport(..);

    ...}

Init init1

Init init2

void thread() {....

    out->b_transport(..);

    ...}

out

out

(a) SystemC model with two initiators and two targets

Target1::callback

Target2::callback

1

Init::thread

3

42

5

6

7

8 9

(b) Initial SG of Init::thread and tem-
porary SGs of callback methods

1

4

2+3+6

5

7

8 9

(c) Complete SG of Init::thread
after merging

Figure 3.3: Example of merged SGs of multiple callbacks
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3.3.2 Socket Call Path

SCP is a new advanced technique in our approach. It provides the SystemC compiler with the

information regarding how a target is reached by the initiator through the TLM-2.0 interface. The

idea is similar to the Port Call Path (PCP) analysis proposed in [40]. One main difference is

that PCP is based on port-to-channel connections whereas SCP is for analyzing socket-to-module

connections. Also different from PCP, a SCP is represented by a list of sockets.

When used together with SG, SCP helps the SystemC compiler to perform instance-aware conflict

analysis, which provides similar benefits as to the use of PCP in [40]. Figure 3.4 shows a SCP-

included SG of Stimulus::T_Video in Figure 3.2. Segment 1 contains code statements in lines

3-10 from Stimulus::T_Video and lines 21-25 from the callback method Memory::

custom_b_transport. On one hand, lines 3-10 are local to Stimulus::T_Video and thus have

an empty SCP. On the other hand, lines 21-25 are accessed through socket Stimulus::out1 and

their corresponding SCP is [Stimulus::out1]. Given the SCP information, the SystemC compiler

looks up the socket binding information and identifies that when lines 21-25 are executed by thread

T_Video of stimulus, they belong to mem1. The SCP-included SG captures an instance-aware

behavior of threads and thus increases the precision of conflict analysis.

lines 3-10

lines 21-25
1

[ ]

[Stimulus::out1]

line 112 [ ]

Figure 3.4: SCP-included SG of Stimulus::T_Video in Figure 3.2
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3.3.3 Variable Entanglement Analysis

Variable entanglement is defined inDefinition 3.2.1. Figure 3.1 in Section 3.2.1 shows an example of

variable entanglement through TLM-2.0 interfaces. Without precise analysis, entangled variables

result in overwhelming false conflicts and thus compromise the simulation. In this section, we

propose a three-step approach to analyze variable entanglement and variable access for entangled

variables.

Identify Original and Alias Variable

In this step, the compiler identifies (a) the original variable encapsulated in a generic payload by

set_data_ptr, and (b) the alias variable extracted from a generic payload by get_data_ptr. In

Figure 3.1, vFrame in line 4 is an original variable and ptr in line 21 is an alias variable. The

original and alias variables are stored in a table data structure for later use.

Reference Analysis for Generic Payload with SCP

In the second step, the compiler analyzes the mapping between parametric generic payload (PGP)

and referred generic payload (RGP). PGP is a reference parameter of a b_transport callback

method, for instance, pgp in line 19 of Figure 3.2. RGP is the generic payload passed to a

b_transport call, for instance, rgp in line 3 of Figure 3.2. A PGP refers to RGP(s) through BTI.

Because a b_transport callbackmethodmay serve as the callback of multiple b_transport calls

from various initiators, its PGP can potentially refer to multiple RGPs. In the example in Figure 3.5,

Target::callback() is the callback method for both b_transport calls in Init1::thread

and Init2::thread. At runtime, pgp of Target::callback() refers at different times to the

two RGPs: Init1::rgp and Init2::rgp. However, the static compiler is not able to further
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void callback(pgp, 

              ...);

Target tar1

void thread() { ...

  out->b_transport(rgp,...);

  ...}

Init1 init1

void callback(pgp, 

              ...);

Target tar2

void thread() { ...

  out->b_transport(rgp,...);

  ...}

Init2 init2

out

out

Figure 3.5: SystemC model with two initiators and two targets

identify the exact RGP that a PGP refers to in a given context. For instance, the compiler cannot

figure out that pgp actually refers to Init1::rgp but not Init2::rgp when Target::callback

is invoked by the b_transport in Init1::thread. Such ambiguity causes many false conflicts

if a PGP refers to a large number of RGPs.

To solve this problem, we attach SCP as a context information to each RGP. As described in

Section 3.3.2, a SCP represents the path from a b_transport call to its callback method. Since

RGP is the argument of a b_transport call and PGP is the parameter of the callback method,

the SCP also represents the connection between RGP and PGP. For the example in Figure 3.5,

when Target::callback is invoked by the b_transport in Init1::thread, pgp refers to

Init1::rgp via SCP [Init1::out]. On the other hand, when Target::callback is invoked

by the b_transport in Init2::thread, pgp refers to Init2::rgp via SCP [Init2::out]. The

SCP-included PGP-RGP reference mappings are stored in a table data structure for later use.

Variable Access Analysis for Entangled Variables

Through the PGP-RGP reference mappings, the corresponding alias and original variables are

entangled. Algorithm 2 shows the algorithm to analyze variable accesses for entangled variables

within a segment. It is divided into two parts. First, two sets R and W are created in lines 3-5 to

store read and written variables in the segment. In particular, we traverse each expression of the
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segment and identify the accessed variables with AnalyzeExpression. Second, in lines 8-33, the

algorithm checks for each accessed variable if it has an entangled variable. If so, the entangled

variable is also added to the corresponding set.

Take segment 1 in Figure 3.4 and Figure 3.2 as an example. When expression memcpy(

&mem[OFFSET],ptr,len) in line 24 is encountered, Algorithm 2 first analyzes the variables

accessed in this expression and assigns them to corresponding variable access sets. In this example,

mem with SCP [Stimulus::out1] is assigned to W, ptr with SCP [Stimulus::out1] and len with

SCP [Stimulus::out1] are assigned to R. Next, Algorithm 2 identifies alias variables in the two

sets according to the information collected in the step in Section 3.3.3. The only alias variable is

ptr in R. It is extracted from pgp in line 21 of Figure 3.2. A PGP can refer to multiple RGPs

as described in the step in Section 3.3.3. We collect them all in a set RGP. Since ptr is reached

through SCP [Stimulus::out1], given this context information, pgp should refer to an RGP that has

the same SCP, [Stimulus::out1]. In line 27 of Algorithm 2, such RGP is identified, which is rgp in

Stimulus::T_Video. It encapsulates an original variable vFrame. Finally, vFrame is assigned

to R.

While a detailed theoretical complexity analysis is beyond the scope of this chapter, we note that the

size of the analysis tasks performed by the compiler is proportional to themodel size. Specifically for

Algorithm 2, all function calls (e.g., IsAliasVar, IdentifyPGPs) performed inside have constant

time complexity2. Thus, the overall time complexity of Algorithm 2 is O(N2) due to the nested for

loops, where N is the total number of read and written variables in the segment.

3.4 Static Analysis for Direct Memory Interface

In this section, we discuss the static analysis for TLM-2.0 DMI. It is consistent with the approach

for BTI with a few key differences.

2Technically, these functions are implemented to look up hash tables that are constructed in previous steps
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Algorithm 2 Variable access analysis for entangled variables
1: function AnalyzeVariableAccess(seg)
2: //build the variable read and write sets
3: for all exprWithScp ∈ seg do
4: AnalyzeExpression(exprWithScp,R,W)
5: end for
6:
7: //add entangled variables to variable write set
8: for all varWithScp ∈ W do
9: if IsAliasVar(varWithScp) then
10: pgp← IdentifyPGP(varWithScp)
11: RGP← IdentifyRGPs(pgp)
12: for all rgp ∈ RGP do
13: if GetSCP(rgp) == GetSCP(varWithScp) then
14: originalVar ← GetOriginalVar(rgp)
15: AddVariableAccess(originalVar,W)
16: end if
17: end for
18: end if
19: end for
20:
21: //add entangled variables to variable read set
22: for all varWithScp ∈ R do
23: if IsAliasVar(varWithScp) then
24: pgp← IdentifyPGP(varWithScp)
25: RGP← IdentifyRGPs(pgp)
26: for all rgp ∈ RGP do
27: if GetSCP(rgp) == GetSCP(varWithScp) then
28: originalVar ← GetOriginalVar(rgp)
29: AddVariableAccess(originalVar,R)
30: end if
31: end for
32: end if
33: end for
34: end function

The TLM-2.0 DMI is designed to speed up simulation by giving an initiator a direct pointer to an

area of memory in a target. It involves two directions of communication paths:

1. Forward path lets the initiator request a direct memory pointer from a target with the

get_direct_mem_ptr method call. In the example in Figure 3.1, inFrame of vDecoder is

entangled with mem of mem1 through the forward DMI path.
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2. Backward path lets the target invalidate a DMI pointer previously given to an initiator with the

invalidate_direct_mem_ptr method call.

To support the DMI in the proposed approach, we only need to consider the forward path. The back-

ward path is not analyzed because a static analysis must be conservative and consider variable entan-

glement at all times, not only betweenget_direct_mem_ptr andinvalidate_direct_mem_ptr

function calls. Besides, the backward path does not entangle variables.

We utilize a similar approach as for BTI to statically analyze DMI. The approach involves two main

steps:

1. Construct SCP included SG for get_direct_mem_ptr call. The same approach as in Section

3.3.1 and 3.3.2 is used. The compiler first identifies the callbackmethod of aget_direct_mem_ptr

call using the socket binding information. Then, the SG of the callback is built and merged to the

calling segment with a correct SCP.

2. Analyze variable entanglement through DMI. A similar approach as the three steps in Section

3.3.3 is used. The SystemC compiler first analyzes the original variablewrapped inside a parametric

DMI object (PD) and the alias variable extracted from a referred DMI object (RD). In Figure 3.2,

Memory::mem is the original variable wrapped inside pd in line 30. inFrame of VideoDecoder::

Main_Thread is an alias variable extracted from rd in line 51. Next, the compiler analyzes

the reference mapping between PD and RD. In Figure 3.1, vDecoder is connected to mem1.

With this module interconnect information, the SystemC compiler identifies that in Figure 3.2,

Memory::custom_get_dmi is the DMI callback method of get_direct_mem_ptr in line 50,

and thus pd refers to rd via SCP [VideoDecoder::in]. Finally, the variable accesses for entangled

variables are analyzed. From the previous two steps, the compiler obtains the information that pd

wraps Memory::mem and rd releases inFrame, and pd refers to rd via SCP [VideoDecoder::in].

Consequently, inFrame is entangled with Memory::mem via SCP [VideoDecoder::in]. Since

inFrame is read in line 54 in Figure 3.2, Memory::mem with SCP [VideoDecoder::in] is thus
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assigned to R of the corresponding segment.

3.5 Static Analysis for Non-blocking Transport Interface

Non-blocking Transport Interface (NBTI) is intended to support the approximately-timed cod-

ing style. It breaks down a transaction into multiple timing points, and typically requires

multiple function calls with phase information for a single transaction. Two interface methods

nb_transport_fw and nb_transport_bw are used for forward and backward communications

between initiators and targets. Similar to b_transport, the behaviors of nb_transport_fw and

nb_transport_bw are represented by their corresponding registered callback methods.

nb_transport_fw and nb_transport_bw take three parameters: a generic payload, a timing

annotation and a phase object. The generic payload and timing annotation are of the same use as

for b_transport. The phase object is used to indicate the current phase of a transaction. Since a

static analysis is conservative and considers variable entanglement at all times, not only between

certain phases, transaction phase updates need not to be treated specially in a static analysis. With

all the above observations, NBTI can be analyzed the same way as for BTI. The SystemC compiler

first builds the SCP-included SG for nb_transport_fw and nb_transport_bw according to the

registered callback methods and socket binding information. Then, it analyzes the variable entan-

glement through NBTI. BTI and NBTI both entangle variables through the PGP-RGP reference

mappings, and thus variable entanglement by NBTI can be analyzed using the approach proposed

in Section 3.3.3. One main difference between NBTI and BTI is that NBTI contains backward paths

(form target sockets to initiator sockets) used by nb_transport_bw, whereas in BTI there are only

forward paths (from initiator sockets to target sockets). To support the nb_transport_bwAPI, we

augment our SystemC Internal Representation with backward socket mapping information.

53



3.6 Static Analysis for Debugging Transport Interface

Debugging Transport Interface (DTI) is used for debug access which gives an initiator the ability

to read or write memory in the target without delays or side-effects. transport_dbg is the

corresponding interface method and takes only a generic payload as parameter. Conceptually, DTI

can be statically analyzed the same way as for BTI. SCP-included SG for transport_dbg is firstly

built and variable entanglement through DTI is analyzed using the approach proposed in Section

3.3.3.

3.7 Static Analysis for Indirect Communication

In the previous sections, all examples involve only direct communication between initiators and

targets. Nevertheless, our proposed solution also works for indirect TLM-2.0 communication,

for instance, communication through hierarchical modules and interconnect components such as

routers and bridges. Two corresponding examples are shown in Figure 3.6a and 3.6b.

init target

init_wrapper target_wrapper
out1 out2

(a) Hierarchical communication

init target
inter-

connect

out1 out2

(b) Interconnected communication

Figure 3.6: Example of indirect communications
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3.7.1 Hierarchical Communication

In Figure 3.6a, an initiator init is connected to a target target across wrappers init_wrapper

and target_wrapper. With wrappers around, a target is reached by an initiator through multiple

socket bindings. As described in Section 3.3.2, a SCP is a list of sockets from an initiator to a target.

In this example, init reaches target through two initiator socktets: out1 and out2. Thus the

SCP from init to target is [out1→out2]. With the correct SCP information, variable accesses

for entangled variables are analyzed the same way as for direct communication.

3.7.2 Interconnected Communication

Interconnections such as routers and buses are common in SystemC models. In the example

in Figure 3.6b, interconnect forwards the communication from init to target. With an

interconnecting module, a target is reached by an initiator through multiple initiator sockets,

and thus the SCP contains multiple sockets. In Figure 3.6b, the SCP from init to target is

[out1→out2]. With the correct SCP information, variable accesses for entangled variables are

analyzed the same way as for direct communication.

init1 target1

inter-

connect

out1 out2

init2 target2

out3 out4

Figure 3.7: Interconnected communication with multiple initiators and targets

It is common that an interconnect module connects to multiple initiators and targets. An example

is shown in Figure 3.7. Initiators init1 and init2 connect to targets target1 and target2

via interconnect. Because the compiler cannot statically identify which target a TLM-2.0

API call in the initiator init1 is routed to during run time, our approach has to analyze both

possibilities. Specifically, init1 reaches target1 via SCP [out1→out2] and reaches target2 via
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SCP [out1→out4], init2 reaches target1 via SCP [out3→out2] and reaches target4 via SCP

[out3→out4]. Variable accesses for entangled variables are analyzed the same way as for direct

communication based on such SCP information.

3.8 Experiments and Results

Wehave implemented the proposed static analysis approach as an extension of the SystemCcompiler

download from [35]. The project is written in C++ and uses the ROSE infrastructure [37] to build an

AST of the input SystemC model. Based on the AST and the RISC internal representations, we are

able to analyze sockets mappings, TLM-2.0 APIs and variable entanglements. We have evaluated

our approach with demonstration and real-world examples. All the examples are SystemC TLM-

2.0 approximately- or loosly-timed models with multiple threads and some parallelism potential.

For evaluation, we measure the number of conflicts and the execution times under the sequential

Accellera simulator (Seq) and the parallel RISC simulator (Par). Note that with the previous

RISC compiler and simulator, none of these examples would actually compile. The compiler

would output an error message about the use of TLM-2.0 constructs, such as unknown sockets and

interface methods. Even if the model would pass the compiler, all pointers would result in conflicts

with all other segments, leaving no threads available for parallel execution in the simulator. Thus,

the examples would run only sequentially, similar as in the Accellera simulator. Our experiments

execute on an Intel Xeon E3-1240 multi-core processor with 4 cores, 2-way hyperthreaded. The

CPU frequency-scaling was turned off so as to provide accurate and repeatable results.

3.8.1 Demonstration Examples

The examples in this experiment are derived from the loosely-timed LT models in the Accellera

SystemC library [78]. 36 examples are used with the following configurable variations:
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1. TLM-2.0 interface type: BTI, DMI or NBTI.

2. communication type: Direct, Hierarchical (Hier) or Interconnected (Inter).

3. varying number of lanes.

A generic block diagram is shown in Figure 3.8. The dotted lines indicate varied modules or socket

connections. Despite the configurable variations, the number of threads in each initiator and target

remain fixed. An initiator has two SC_THREADs where th1 performs pure computation and th2

performs communication, and a registered callback method for the backward NBTI path. A target

has one SC_THREAD th and three registered callback methods for BTI, DMI and the forward

NBTI path. The interconnect module has registered callbacks that route the communication.

During communication, Initiator::th2 accesses memory locations in both the initiator and the

target and thus has data conflicts with Initiator::th1 and Target::th. The initiators, targets,

wrappers and interconnects are respectively different instances of the same module types.

Initiator Target

Init_Wrapper Tar_Wrapper

Initiator Target

Init_Wrapper

Interconnect

Tar_Wrapper

.

.

.

lane 1 th1 th2

th1

th

Interconnect

lane n
th

th2

Figure 3.8: Block diagram for the demonstration example

The sequential (Seq) and Out-of-Order parallel (Par) simulator run-times and speedups under

different model configurations are shown in Table 3.1, 3.2 and 3.3. Table 3.4 shows the percentage
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Table 3.1: Results of BTI examples from Accellera : run-time (secs) and speedup (%)

Direct Hierarchical Interconnect
Lanes Seq Par Seq Par Seq Par
1 41.0 21.5 191% 41.2 21.5 192% 41.3 21.7 190%
2 80.8 22.5 359% 81.1 21.4 379% 81.7 22.5 363%
4 160.6 29.6 543% 162.0 29.9 542% 161.3 30.4 531%
8 320.8 59.2 542% 320.7 57.3 560% 320.7 58.0 553%

Table 3.2: Results of DMI examples from Accellera: run-time (secs) and speedup (%)

Direct Hierarchical Interconnect
Lanes Seq Par Seq Par Seq Par
1 41.7 21.6 193% 41.3 21.8 190% 41.4 21.7 191%
2 81.3 23.0 353% 81.1 22.4 362% 81.3 22.7 358%
4 161.2 30.8 523% 161.1 29.8 541% 161.2 29.5 546%
8 320.0 57.6 556% 322.0 58.4 551% 319.5 57.3 558%

Table 3.3: Results of NBTI examples from Accellera: run-time (secs) and speedup (%)

Direct Hierarchical Interconnect
Lanes Seq Par Seq Par Seq Par
1 40.2 20.1 200% 40.6 20.3 200% 40.5 20.3 200%
2 81.1 21.2 383% 80.7 20.8 388% 80.6 21.5 375%
4 159.2 28.7 554% 159.1 28.3 561% 161.2 28.9 558%
8 320.0 56.2 569% 320.1 57.2 559% 317.7 56.0 567%

Table 3.4: Percentage of reduced false variable entanglements in the demonstration examples

BTI DMI NBTI
Lanes Direct Hier Inter Direct Hier Inter Direct Hier Inter
1 33% 33% 33% 33% 33% 33% 33% 33% 33%
2 73% 73% 73% 73% 73% 73% 71% 71% 71%
4 88% 88% 88% 88% 88% 88% 87% 87% 87%
8 94% 94% 94% 94% 94% 94% 94% 94% 94%

of reduced false variable entanglements over all entanglements. Take the model with configuration

BTI+Inter+2-Lanes as an example. An Initiator uses one pointer (in local module scope),

Interconnect uses no pointer, and Target uses two pointers (one in local scope and the other in

module scope). Since there are two lanes, the total number of pointers is six, and therefore there are
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15 pairs of pointers in combination. Without the analysis for variable entanglement, all 15 pairs are

considered as total conflicts. Nowwith our approach, the compiler is able to use context information

and identify that only variables that belong to the same lane are entangled. Specifically, only four

pairs of pointers are truly entangled. Thus 73% of entangled variable pairs are false entanglements

and reduced by our approach. This results in much fewer conflicts in the data conflict table. Note

that the numbers of pointers and truly entangled pointer pairs do not change with communication

types. Therefore, the percentages of reduced false variable entanglements are the same for different

communication types. On the other hand, the numbers of pointers and truly entangled pointer pairs

are affected by interface types. Due to the backward path, the NBTI models have one more pointer

in the callback method in Initiator than the BTI or DMI models. Therefore, the percentages

of reduced false variable entanglements are the same for BTI and DMI, but slightly different for

NBTI.

The data conflict table is shown in Figure 3.9. The indexes of the table have the form (Segment

ID, module Instance ID). For instance, (2,0) represents a segment with ID 2 and belongs to

a thread of a module instance in the first lane, whereas (2,1) is the same segment with ID 2 but

belongs to a thread of a module instance in the second lane. A red entry represents data conflicts, a

green entry represents conflict free and a yellow entry represents the eliminated false conflicts by

applying our SCP technique and variable entanglement analysis. The data conflict table shows that

with our proposed static analysis, the number of data conflicts is reduced from 144 to 56. More

than 60% of data conflicts are pointer-related false conflicts and are eliminated. The experimental

results allow the following observations:

1. Variable entanglement analysis largely reduces false conflicts due to pointers. Without the

variable entanglement analysis, the pointers impose data conflicts with other segments and thus

cause overwhelming false conflicts, as indicated by the yellow entries in Figure 3.9. Our approach

is able to identify the exact memory location a pointer points to through the TLM-2.0 interfaces

and thus enables precise data conflict analysis.
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2. The SCP technique allows instance-aware conflict analysis. Our SCP technique provides context

information to the compiler to distinguish threads that belong to differentmodule instances. Without

the SCP technique, thread th1 in the first Initiator module instance cannot run in parallel with

th2 in the second Initiatormodule instance due to false conflicts. In the data conflict table, this

for instance results in a false conflict between (1,0) and (3,1).

0,0 1,0 2,0 3,0 4,0 5,0 6,0 0,1 1,1 2,1 3,1 4,1 5,1 6,1

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0,1

1,1

2,1

3,1

4,1

5,1

6,1

Figure 3.9: Data conflict table for BTI+Inter+2-Lanes

Given the novel analysis results, the OoO PDES simulator is able to execute all computation threads

in the Initiator and Target in parallel and achieve a speedup of about 360% compared with the

sequential execution. The ideal speedup of 400% is not achievable because of twomain reasons: (a)

the communication thread Initiator::th2 cannot run in parallel with other threads due to data

conflicts and causes a sequential bottleneck. According to Amdahl’s law, this reduces the overall

parallelism of themodel (b) the OoOPDES simulator has a run-time overhead of dynamic checking.

Other examples with different model configurations also demonstrate impressive speedups. A
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maximum speedup of over 550% is achieved for the 8-lane models. Overall, the demonstration

examples show the correctness and effectiveness of the proposed static analysis for SystemC TLM-

2.0 models.

3.8.2 DVD Player

Now we evaluate our approach using a real world DVD Player example which is similar to the

one in Figure 3.1. The block diagram of the model is shown in Figure 3.10. Stimulus has three

parallel threads that feed data into a memory Memory for the decoders to fetch. After decoding,

the decoded results are passed to monitors to verify the correctness. One main difference from the

model in Figure 3.1 is that there is only one memory module. This does not affect the parallelism

of the model because different data flow lanes have their own memory locations inside Memory.

Similar to the demonstration examples in Section 3.8.1, the DVD Player model is also configurable

with the combination of following options: BTI/DMI/NBTI and Direct/Hierarchical/Interconnect.

Note that the varied modules are represented by dashed lines. The two wrapper modules Decoder

and Monitor are enabled under the "Hierarchical" configuration. Router is enabled under the "In-

terconnect" configuration. The results of run-time and speedup comparing to sequential simulation

are shown in Table 3.5.

The results demonstrate that the model gets a speedup of around 280% under OoO PDES and

is consistent over all model configurations. The consistency is reasonable because the TLM-2.0

communication and connection do not have impact on the threads’ behavior and thus will not affect

speed much. It is also notable that the theoretical maximum speedup of 300% is not achieved for

this three-lane model. This is explainable because the OoO PDES scheduler needs to perform the

scheduling and to decide thread dispatching order and thus incurs overhead. Nevertheless, 280%

is an impressive value for a three-lane model.

The results confirm the correctness and effectiveness of the proposed static analysis for SystemC

TLM-2.0 models.
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Stimulus
Decoder

Video
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AudioR

Monitor

Display

ListenerL
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MemoryRouter

Figure 3.10: Block diagram for the DVD Player example

Table 3.5: Results of DVD Player: run-time (secs) and speedup (%)

Interface Direct Hierarchical Interconnect
Seq Par Seq Par Seq Par

BTI 208.1 73.8 282% 208.1 75.7 274% 208.4 74.8 278%
DMI 208.2 73.7 282% 208.5 75.5 276% 208.4 7.47 279%
NBTI 209.3 74.9 279% 209.4 75.6 277% 209.5 7.57 277%

3.8.3 Mandelbrot Renderer

The Mandelbrot renderer is a parallel image rendering application to compute the Mandelbrot set.

The platform architecture is shown in Figure 3.11. The DUT module hosts eight parallel renderer

threads. Each renderer thread computes a Mandelbrot image in a given area and sends the result

to the controller thread of DUT. The controller merges all the results and sends it out, then starts

to wait for new frames. Again, three experiments are performed on the the Mandelbrot Renderer

example with different communication types: BTI, DMI and NBTI. The results of run-time and

speedup comparing to sequential simulation are shown in Table 3.6.

As shown in the results, the speedup between OoO PDES and sequential simulation under both

communication types are around 420%. The naive maximum speedup of 800% is not achieved

because there are only 4 floating point units (FPU) in the processor and thus the eight computation-

ally intensive renderer threads are not able to run totally in parallel 3. Considering the restriction of

hyperthreading, the 420% speedup is impressive on a 4 coremachine. The results of this experiment

3In the BTI example, the user time of sequential simulation is 77.59 seconds which is smaller than 92.04 seconds
for parallel simulation. This shows that each hyperthread during parallel simulation is running longer due to the
contention in the FPU
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Buffer1

DUT

Buffer2

MonitorStimulus

Figure 3.11: Block diagram for the MandelBrot Renderer example

demonstrate again that the proposed static analysis is effective and correct to support OoO PDES

of SystemC TLM-2.0 models using BTI, DMI and NBTI.

Table 3.6: Results of Mandelbrot Renderer: run-time (secs) and speedup (%)

Interface Seq Par Speedup
BTI 77.59 18.66 416%
DMI 77.64 18.45 421%
NBTI 77.60 18.50 419%

Table 3.7: Results of Bitcoin miner: run-time (secs) and speedup (%)

BTI DMI NBTI
Scanners Seq Par Seq Par Seq Par

1 1903.02 1902.17 100% 1902.64 1908.29 100% 1889.93 1899.13 99%
2 1680.54 858.06 196% 1675.68 855.61 196% 1677.73 850.95 197%
4 1885.32 508.24 371% 1890.30 507.47 372% 1895.60 506.56 373%
8 1944.04 424.02 458% 1948.76 420.77 464% 1934.75 423.59 457%
16 2282.64 506.33 450% 2274.40 507.76 448% 2283.62 498.07 458%
64 3169.93 696.75 455% 3161.10 698.49 452% 3169.84 688.85 460%
256 6827.77 2315.08 295% 6824.44 2056.17 332% 6818.38 2236.09 305%
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3.8.4 Bitcoin Miner

Our third real-world example is a SystemC TLM-2.0 model of a Bitcoin miner. Bitcoin miners

create Bitcoins by solving math problems using a computation-intensive cryptographic hashing

algorithm. Figure 3.12 shows the structure of the Bitcoin miner model. Stimulus prepares the

math problems and sends them to Dispatcher. Dispatcher divides the received problems into

multiple sub-problems and stores them into Memory. From there, a Scanner picks a corresponding

sub-problem and tries to solve it using a hashing algorithm. Once done, the Scanner stores the

result into Memory and waits for a new sub-problem. Dispatcher fetches the result from Memory

and sends it to Monitor. Note that in the Bitcoin miner model all Scanners are independent and

their threads are able to run in parallel with our approach.

We perform experiments with different number of Scanners: 1, 2, 4, 8, 16, 64, 256 and different

Stimulus Dispatcher Monitor

Memory

Scanner1 Scanner2 ScannerN

...

Figure 3.12: Block diagram for the Bitcoin miner example

communication types: BTI, DMI, NBTI. The results are shown in Table 3.7. Similar to previous

experiments, the communication type does not significantly affect the simulation speeds. Because

of the high parallelism level of Bitcoin miner, the speedup between OoO PDES and sequential

simulation keeps increasing and reaches a maximum of around 460% when there are 8 Scanners.
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Although the host processor has eight hyperthreads, a naive speedup of 800% cannot be achieved

due to the contention in the FPU. The speedup remains at the same level with more Scanners and

even drops when there are 256 Scanners. This is because of the dramatically increased context

switching between threads. The context switching is also a major factor that significantly affects

the sequential and parallel simulation time when there are more than 8 scanners. Considering all

the hardware restrictions, this experiment still demonstrates the effectiveness and correctness of

our proposed static analysis for supporting OoOPDES of SystemC TLM-2.0 models using BTI,

DMI and NBTI.

3.9 Conclusion

In this chapter, we propose a compiler-based approach to statically analyze SystemC TLM-2.0

loosely-timed (LT) and approximately-timed (AT) models. The analysis is essential to simulate

the model under OoO PDES. In the proposed approach, an accurate SG is first built with SCP

information for TLM-2.0 interface function calls. Then, the compiler analyzes the variable accesses

for entangled variables, precisely identifying potential conflicts. Our experiments demonstrate the

correctness and effectiveness of the approach with demonstration examples from Accellera and

three real world examples: DVD Player, Mandelbrot Renderer and Bitcoin Miner.
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Chapter 4

Improving Coding Guidelines For Faster

OoO PDES

In this chapter, we propose for the RISC users coding guidelines that decrease the granularity of

segments [64], so that the level of parallelism in the design increases and higher simulation speed

becomes possible.

4.1 Introduction

As described in Section 1.2.1, a Segment Graph (SG) is fundamental for both static analysis in

the RISC compiler and dynamic checking in the OoO PDES library. On one hand, in the RISC

compiler, the data, event and time conflicts are analyzed at segment level. On the other hand, in the

OoO PDES simulator, a segment is the basic unit that is been executed by each simulation thread.

A segment in a SG contains a sequence of code statements that is supposed to run in the same

simulation cycle. Since the conflicts are analyzed at segment level, once two segments have conflict,

the code statements that they contain must no run in parallel. Correspondingly, the granularity of
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a SG has a high impact on the conflict analysis and the parallelism level of simulation.

In this chapter, we will study the impact of the SG granularity on the simulation speed. We propose

coding guidelines for SystemC users to build models with higher parallel potential that can be

executed faster by the OoO PDES simulator. This is different from coding guidelines that focus

more on code readability and maintainability [79, 80, 81]. Specifically, the guidelines suggest

for users to insert extra wait statements into the model, so as to increase the granularity of the

SG. With the finer granularity SG, variable and event conflicts can be constrained into shorter

segments, thereby reducing the time of sequential execution, which is necessary, for example,

during communication between modules in the system.

Our contributions in this chapter [64] are summarized as follows:

1: We propose a formal metric ψ to estimate the level of parallelism of the model under OoO

PDES.

2: We propose coding guidelines for the SystemC model designers to optimize the model for faster

simulation.

3: We demonstrate that the proposed coding guidelines enable significant speedup of OoO PDES.

4.2 Proposed Coding Guideline

In this section, we propose a new coding guideline for the SystemC model designers to write

SystemCmodels with higher parallel simulation potential. Before describing the guideline, we first

define a metric to estimate the level of parallelism of a SystemC model under OoO PDES.

4.2.1 SG Granularity and Simulation Speed

In OoO PDES, models are simulated at segment level. As shown in Figure 4.1, module M has two

sc_threads th1 and th2, and a member variable a. f() and g() are data crunching functions which
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work on local variables. The corresponding SG is shown in Figure 4.2. Due to the data hazard

over a, the two segments are not allowed to run in parallel. More details about data conflicts are

described in Section 1.2.3. Figure 4.3 shows the scheduling of execution of the two sc_threads.

SC_MODEULE(M){

    ...

    int a;

    void th1(){

        a=1;

        f();

    }

    void th2(){

        g();

        a=2;

    }

    ...

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 4.1: Coarse
Grained Source Code

a=1;

f();

g();

a=2;

Figure 4.2: SG of Fig. 4.1

a=1; f();
g(); a=2;

th1

th2

time

Figure 4.3: Scheduling of Fig. 4.1

By inserting two new wait statements into the sc_threads, as shown in Figure 4.4, the SG becomes

Figure 4.5. In this model, functions f() and g() are no longer in the same segment of the statements

that access the shared variable a. Because f() and g() are conflict free, they can now be executed

in parallel as shown in Figure 4.6, which significantly speeds up the simulation.

This leads to the conclusion that by increasing the granularity of SG, more code statements can run

in parallel, and consequently increase the level of parallelism of a model and further speedup the

simulation. In the following sections, we will show more details to confirm this idea and propose

a coding guideline for the model designer to increase the parallel potential of the SystemC models

under OoO PDES.

68



SC_MODEULE(M){

    ...

    int a;

    void th1(){

        a=1;

        wait(

   SC_ZERO_TIME);

        f();

    }

    void th2(){

        g();

        wait(

   SC_ZERO_TIME);

        a=2;

    }

    ...

}

1
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Figure 4.4: Fine Grained
Source Code

a=1;

f();

g();

a=2;

Figure 4.5: SG of Fig. 4.4

a=1; th1

th2

time

f();

g(); a=2; 

Figure 4.6: Scheduling of Fig. 4.4

4.2.2 Estimation for Level of Parallelism

The level of parallelism ψ is estimated as the amount of code statement pairs that can potentially

execute in parallel. In OoO PDES, only code statements that belong to conflict-free segments can

run in parallel, and hence our estimation is expressed as:

ψ =
∑

i

∑
j>i

thi,thj

HasNoConflict(segi, seg j) (4.1)

Where i and j are the index of code statements in the model. segn is the segment that includes the

nth code statement. And similarly, thi is the thread that executes the nth code statement. Each single

thread executes sequentially, and code statement i and j cannot execute in parallel if they belong to

the same thread. HasNoConflict(segi,seg j) returns 1 if segi and seg j are conflict free, otherwise

it returns 0.

If two segments are in conflict, then any pair of code statements that belong to the two segments

are not allowed to execute in parallel, which would reduce ψ. Thus, the larger ψ is, the higher is

the parallelism level of the input model.
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4.2.3 Motivation

Our idea is motivated by the following observation:

Consider we have two segments: seg1 and seg2, which are executed by two different threads.

There are respectively p and q statements in seg1 and seg2. ψ for this model is simply ψ1 =

p × q × HasNoConflict(seg1, seg2).

Now, if a wait statement is inserted into seg1, such that seg1 is partitioned into two non-overlapping

segments: seg11 and seg12. After the partitioning, seg11 includes the first p1 statements of seg1,

and seg12 includes the other p2 = p − p1 statements of seg1. ψ for the new model becomes

ψ2 = p1 × q × HasNoConflict(seg11, seg2) + p2 × q × HasNoConflict(seg12, seg2). seg11 and

seg12 are executed by the same thread, and hence they must run sequentially and ψ2 does not

increase.

When comparing ψ1 and ψ2, we get four different scenarios:

1. The conflict between seg1 and seg2 is only incurred by certain statements in the first

p1 statements of seg1, and the last p2 statements are conflict free. This indicates that

HasNoConflict(seg11, seg2) = 0, HasNoConflict(seg12, seg2) = 1 and

HasNoConflict(seg1, seg2) = 0. Under this scenario, ψ1 = 0 and ψ2 = p2 × q. ψ2 is larger

than ψ1.

2. The conflict between seg1 and seg2 is only incurred by certain statements in the last p2

statements of seg1, and the other p1 statements are conflict free. This indicates that

HasNoConflict(seg11, seg2) = 1, HasNoConflict(seg12, seg2) = 0 and

HasNoConflict(seg1, seg2) = 0. Under this scenario, ψ1 = 0 and ψ2 = p1 × q. ψ2 is larger

than ψ1.

3. The conflict between seg1 and seg2 is incurred both by certain statements in the first p1 state-

ments and the other p2 statements of seg1. This indicates thatHasNoConflict(seg11, seg2) =

0, HasNoConflict(seg12, seg2) = 0 and HasNoConflict(seg1, seg2) = 0. Under this sce-
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nario, ψ1 = 0 and ψ2 = 0. ψ2 is equal to ψ1.

4. seg1 and seg2 are conflict free. This indicates that HasNoConflict(seg11, seg2) = 1,

HasNoConflict(seg12, seg2) = 1 and HasNoConflict(seg1, seg2) = 1. Under this sce-

nario, ψ1 = p × q and ψ2 = p1 × q + p2 × q = p × q. ψ2 is equal to ψ1.

The four scenarios suggest that

1. Partitioning a segment does not decrease the parallel potential of a model.

2. If the user carefully selects the place to insert the extra segment boundary, i.e., wait statement,

ψ can be increased significantly and results in a model with higher parallelism level.

4.2.4 Overhead Consideration

One may deduce that it is always beneficial to insert as many extra wait statements as possible,

because by doing this the ψ of the model keeps increasing. Although the deduction is correct, it is

not a good practice.

Each extra wait statement will increase the number of segments in the SG by one. And the size

of conflict tables is to the square of the segment count. Thus, if too many extra wait statements

are inserted, the time cost for static analysis and dynamic checking will grow dramatically, which

would rather decrease the simulation performance. Besides, too many extra wait statements may

also make the model incomprehensible.

Last but not least, each new wait statement creates an extra scheduler entry point into the simulator

kernel which incurs high overhead.
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4.2.5 Suggestions

Motivated by the above observations and considerations, we propose the following suggestions for

the SystemC model designers to properly place extra wait statements in the source code, so as to

increase the parallel potential of the model under OoO PDES.

Use the Wait-for-delta-cycle Primitive as the Extra Segment Boundary

There are six different kinds of wait primitives in the SystemC standard [27]:

1. wait() : Wait for the sensitivity list event to occur.

2. wait(int) : Wait for n clock cycles in SC_CTHREAD.

3. wait(event) : Wait for the event mentioned as parameter to occur.

4. wait(double,sc_time_unit) : Wait for specified time.

5. wait(double,sc_time_unit, event) : Wait for specified time or event to occur.

6. wait(SC_ZERO_TIME): Wait for one delta cycle.

The event related wait primitives shall not be used because they require proper events to be notified.

For thewait-for-time primitive, it is likely to change the simulation time cycle, which is not desirable.

Thus, in order to maintain the semantics and timing accuracy of the original SystemC model, we

suggest to the designers to use wait-for-delta-cycle primitive, i.e., wait(SC_ZERO_TIME) as extra

segment boundaries. 1

1Note that the timing accuracy of a robust model will not be affected by extra delta cycles.
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SC_MODEULE(M)

{

    int c;

    void th1()

    {

        int x=1;

        wait(10,SC_NS);

        c=42;

        for(int i=0;

           i<100;

           i++) x++;

    }

    void th2()

    {

        int y=100;

        wait(1,SC_NS);

        c=0;

        for(int j=0;

           j<100;

           j++) y--;

    }

    ...

}
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Figure 4.7: Source Code for Mod-
ule M

Figure 4.8: SG for Figure 4.7

Figure 4.9: DCT for Figure 4.7

Partition the Heavy Segments

As mentioned in Section 4.2.4, the cost for one extra wait statement is independent of where it is

inserted. Thus, in order to maximize the gain of ψ of the model, we suggest the users to partition

computational intensive segments, which we refer to as heavy segments.

Unfortunately, it is not obvious to identify heavy segments directly from the model code. However,

the RISC compiler is able to dump the statically generated SG and the DCT into files by turning

on the -risc:dump command line option. The SG is then dumped into a .dot file which can be

viewed graphically using the xdot.py tool. Also, the DCT is dumped into an HTML file which

the designer can easily view in any browser. An example SystemC source code is shown in Figure

4.7. The dumped SG and DCT are shown in Figure 4.8 and Figure 4.9. The level of parallelism ψ

for this model is ψ1 = 6 + 5 = 11
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SC_MODEULE(M)

{

    int c;

    void th1()

    {

        int x=1;

        wait(10,SC_NS);

        c=42;

        wait(SC_ZERO_TIME);

        for(int i=0;

            i<100;

            i++) x++;

    }

    void th2()

    {

        int y=100;

        wait(1,SC_NS);

        c=0;

        wait(SC_ZERO_TIME);

        for(int j=0;

            j<100;

            j++) y--;

    }

    ...

}
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Figure 4.10: Source Code for Module M
after partitioning

Figure 4.11: SG for Figure 4.10

Figure 4.12: DCT for Figure 4.10

From the SG, it is apparent that segment 1 and segment 3 are heavy segments which both contain

loops. In order to increase the parallelism level of the model, we wish to partition the conflict-free

statements from the conflicting ones in the segment, as described in the first and second scenarios

in the previous section. To locate the conflicting statement, the user can refer to the dumped

Data Conflict Table. In the ((1,0),(3,0)) entry of the table, it shows that the data conflict is over

the variable M::c, and so the conflict is between statement line 8 and 17 in Figure 4.72. In this

example, the conflicting statements are not inside the computationally intensive code pieces, that

are, the for loops. So we can partition the segments by inserting wait statements after line 9 and

18. The optimized model is shown in Figure 4.10. The dumped SG and DCT are shown in Figure

4.11 and Figure 4.12. Now, the level of parallelism ψ becomes ψ2 = 6 + 5 + 4 × 6 = 35. The

2The instance id is shown here, which is not of interest in this chapter
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parallel potential is further intensified during the simulation due to the two conflict free for loops.

4.3 Experiments and Results

We have applied the proposed coding guideline to several SystemCmodel examples. We first tested

it on the synthetic benchmarks generated by the TGFF tool to validate the effectiveness of our cod-

ing guideline. Then, we evaluate the guideline with two real world designs, Canny Edge Detector

and Audio/Video Decoder, to demonstrate the performance. The experiments are performed on an

Intel E3-1240 host machine, which has a total of 8 cores (4 cores with 2-way hyperthreading each).

The CPU frequency scaling is turned off so as to obtain repeatable results.

4.3.1 TGFF benchmarks

We first examine the performance of the proposed coding guideline on a synthetic benchmark,

which is automatically generated by the TGFF tool with SystemC extension [58]. Figure 4.13

shows the data flow block diagram of the generated model. It has a source and a sink, and multiple

parallel lanes of nodes in between. Figure 4.14 shows the source code for each node. Each node

module first gets an input from a channel, and then does data crunching which is computationally

intensive. The data crunching accesses only local variables and thus is conflict-free. After the

computation the module outputs the result to another channel. In such model, data conflicts are

incurred only by channel communications, which are caused by the parallel accesses to the shared

variables in the channels. To optimize the model, we apply the proposed coding guideline and

put wait(SC_ZERO_TIME) statements around the data crunching parts. The source code for the

optimized module is shown in Figure 4.15.
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Figure 4.13: Block Diagram of TGFF Models

SC_MODEULE(Node)

{

    sc_port<input> in;

    sc_port<output> out;

    void th1()

    {

        int a = in.read();

        for(int i=0;

            i<WORKLOAD;

            i++) a++;

        out.write(a);

    }

    ...

}
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Figure 4.14: Original Source Code of
Generated Testbench Model

SC_MODEULE(Node)

{

    sc_port<input> in;

    sc_port<output> out;

    void th1()

    {

        int a = in.read();

        wait(

        SC_ZERO_TIME);

        for(int i=0;

            i<WORKLOAD;

            i++) a++;

        wait(

        SC_ZERO_TIME);

        out.write(a);

    }

    ...

}
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Figure 4.15: Optimized Source Code of
Generated Testbench Model

Table 4.1: Performance of TGFF Benchmarks, Simulator run times (sec) and CPU utilization

Benchmark SEQ PAR GDL
1 63.55 (99%) 17.85 (377%) 10.48 (690%)
2 63.54 (99%) 17.63 (379%) 10.91 (663%)
3 134.41 (99%) 88.41 (155%) 81.55 (172%)
4 349.86 (99%) 165.41 (214%) 93.44 (400%)
5 493.02 (99%) 169.12 (301%) 99.17 (552%)
6 134.40 (99%) 92.00 (155%) 81.10 (173%)
average 206.46 (99%) 91.74 (263.5%) 62.77 (441%)

Through a parameter to the TGFF generator, we are able to control the total number of lanes as

well as nodes per lane, and each lane may consist of various number of nodes. The data crunching

workload of each node is controlled by the number of iterations of the for loop.

We studied 6 test cases with different data flow configurations in this experiment. Table 4.1 shows
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the performance of the simulations before and after applying the coding guideline. The first column

SEQ refers to the sequential simulation with the reference Accellera SystemC simulator. Under

the sequential simulation, the CPU utilization is always below 100% because only one thread is

running at any time during the simulation. The second column PAR refers to the OoO PDES before

applying the coding guideline. It shows that on average, the simulation of the original models is

2.3x faster than SEQ. The third column GDL refers to the OoO PDES after applying the coding

guideline. It is 3.2x faster than SEQ, and 1.4x faster than PAR. For the first benchmark, GDL

achieved a maximum speedup of 1.7x over PAR, and the latter one is 3.5x faster than SEQ. Note

that the CPU utilization is larger than the speedup over SEQ. This is because in OoO PDES there

is some overhead for checking conflict tables. The results confirm that our coding guideline can be

very effective in achieving higher speedup under OoO PDES.

4.3.2 Real world examples

We then evaluate the proposed coding guideline with two real world examples, namely Canny Edge

Detector and Audio/Video Decoder modeled similarly to the benchmarks used in [58] and [40].

Canny Edge Detector

Our first real world example is the Canny edge detector, which filters edges in an image. The edge

detector is a structurally five-stage pipeline, and each stage has a communication-computation-

communication code structure. Communication between two pipeline stages is via a user-defined

channel in which the read and write functions access the shared channel variable. In this experi-

ment, a sequence of 20 images is fed into the pipeline and correspondingly generates 20 outputs.

The outputs are verified to ensure a correct simulation.

Table 4.2 shows the simulation time and CPU utilization before and after applying the coding

guideline. By using the original model, a CPU utilization of 127% is achieved, which is due to
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Table 4.2: Performance of Canny Edge Detector

SEQ PAR GDL
simulation time (sec) 248.51 199.62 172.33
CPU utilization 100% 127% 149%
speedup 1.00 1.24 1.44

the conflicts among communications. With the optimized model, the CPU utilization is increased

to 149%, and the OoO PDES speed is increased by 1.2x. The speedup is not as impressive as in

the TGFF test cases. This is because the workload of each pipeline stage varies greatly, and the

bottleneck of the simulation speed is determined by the longest stage. However, this experiment

still confirms the effectiveness of the proposed coding guideline.

Stimulus

fifo

fifo

fifo

Decoder

Video

Audio1

Audio1

Monitor

Display

Listener1

Listener2

fifo

fifo

fifo

Figure 4.16: Block Diagram of Audio/Video Decoder

A/V Decoder

The second real world test case is an Audio/Video decoder. The model structure is shown in Figure

4.16. The stimulus sends the encoded stream to one video decoder and the left and right audio

decoders. Then, the video decoder outputs the result to a monitor, and the audio decoders output

the results to two speakers. The results for this test case are shown in Table 4.3. The execution

times cost for OoO PDES before and after applying the coding guideline are 48.24 secs and 26.67

secs, which suggest the optimized model executes 1.8x faster. The speedup is reasonable because

the encoding and decoding stages have similar computation loads. The result again confirms the

effectiveness of the proposed coding guideline.
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Table 4.3: Performance of Audio/Video Decoder

SEQ PAR GDL
simulation time (sec) 73.41 48.24 26.67
CPU utilization 100% 152% 247%
speedup 1.00 1.52 2.75

4.4 Conclusion

In this chapter, we proposed a coding guideline for the SystemC model designers who use OoO

PDES parallel execution enabled by the Recoding Infrastructure for SystemC. By applying the

coding guideline, the granularity of the Segment Graph becomes larger, and thus results in a

faster execution speed. Our experiments show that by applying the proposed coding guideline, the

optimized SystemC model is able to achieve a speedup of up to 1.7x on a 8 core machine, on top

of the 3.5x speedup due to PDES.
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Chapter 5

Optimizing Event Processing in

Out-of-Order Parallel Simulation

Besides the researches on static analysis on the RISC compiler side, we also investigate approaches

to improve the OoO PDES library [65], specifically, the central scheduler. In this chapter, we

introduce a novel event delivery strategy that allows waiting threads to resume execution earlier,

resulting in significantly increased simulation speed.

5.1 Introduction

As described in Section 1.1.3, Out-of-Order Parallel Discrete Event Simulation (OoO PDES) [34]

is studied to increase the multi-core CPU utilization. Compared to traditional Parallel Discrete

Event Simulation (PDES), OoO PDES has a higher parallelism level as it allows threads to run in

parallel even if they are in different cycles. Two techniques, namely static analysis and dynamic

checking, are performed to preserve the simulation semantics and timing accuracy of OoO PDES.

One bottleneck of current OoO PDES that limits the simulation speed is its event delivery strategy.
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The OoO PDES scheduler is conservative and only delivers the earliest event notifications on every

scheduling step. This limits the number of threads to be waked up and and reduces the parallelism

level of simulation.

To resolve this limitation, in this chapter we propose a prediction-based event delivery algorithm.

The new approach looks ahead in time to predict the earliest possible wake-up time of each waiting

thread. This allows the OoO PDES scheduler to make aggressive but safe thread dispatching

decisions. The approach relies on the statically generated event notification table with prediction

(ETP) by the RISC compiler, as introduced in [41].

Stimulus

Ch1

Th1

Worker1

event

wait

Ch2

Worker2

event

Video Left

Ch3

Worker3

event

Right

notify

Th2 Th3

(a) SystemC model of a DVD player

Th1

Worker1

Th1

Worker2

Worker3

Th3

Clock

Th1 Th1 Th3 Th1 Th2 Th3Th3

Worker1 Worker2 Worker3

Scheduling of Org Scheduling of Prd

(b) Scheduling of Org and Prd

Figure 5.1: SystemC model and OoO PDES scheduling

As a motivating example, Figure 5.1a shows a simplified high-level SystemC model of a DVD

player. The Stimulus has three parallel threads and each sends data to a corresponding channel.

When the data is sent, an event is notified inside the channel for synchronization purpose. Video,

Left and Right are three decoder modules and each has a single worker thread that waits for the

corresponding channel event. When the event is delivered, the worker thread wakes up and starts

processing the received data.

Figure 5.1b shows the scheduling of threads under the original event delivery strategy (Org) and the
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optimized event delivery strategy using prediction (Prd) proposed in this chapter. Under Org, only

one worker thread can wake up each scheduling step due to the in-order event delivery strategy.

While under Prd, the scheduler is able to get more context information provided by the predictions

of future thread behaviors. More events are delivered every scheduling step and more threads are

allowed to wake up in parallel. As a result, the simulation speed is increased significantly.

5.2 Related Work

[58] proposes a scheduling algorithm that predicted thread run time at segment level for better

multi-core scheduling. [60] exploits data-level parallelization on top of OoO PDES for faster

SystemC simulation. [41] introduces a static approach to predict future behaviors of threads, and

used the information for advanced data conflict analysis of threads. Although our work reuses ETP

proposed in [41], it is totally different from [41] because in our work the prediction information is

used for optimized event delivery strategy. Note also that the approaches in [58], [60] and [41] are

orthogonal with ours and can be applied together for parallel SystemC simulation. Other works on

PDES are discussed in Section 1.3.

5.3 Background

SG is the data structure that is fundamental to this research, which is briefly described in Section

1.2.1. In this section, we review the ETP data structure that provides the prediction information

about event notifications and the original event delivery strategy.
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5.3.1 Event Notification Table with Prediction

ETP was first introduced in [41] for optimized data conflict analysis in OoO PDES, which is a table

that stores the prediction information about the time advance for a segment to wake up another

segment. ETP is formally defined in Equation 5.1. It is automatically built by the compiler with

the algorithm proposed in [41].

ETP[i, j] =



(t∆, δ∆)

if a thread in segi may

wake up a thread in

segj with least time

advance of (t∆, δ∆)

(∞,0)

if a thread in segi will

never wake up a thread

in segj

(5.1)

Take the SystemC code in Figure 5.2a as an example. Its SG is shown in Figure 5.2b. Segment 4

is directly waked up by segment 2 via event e1, ETP[2, 4] is thus one delta cycle, denoted as (0,1)

in this chapter1. Indirect event notifications are also considered in ETP. Segment 1 does not notify

any event, however, it is followed by segment 2 with time advance of 1 SC_NS and segment 2

directly wakes up segment 4. Therefore, segment 1 indirectly wakes up segment 4 with a minimum

time advance of (1,1). Segment 1 can also indirectly wake up segment 6 by first indirectly wakes

up segment 4, then segment 4 directly wakes up segment 6. In this case, EPT[1,6] = (1,2). The

corresponding ETP is shown in Figure 5.3. Note that there are several (∞,0) entries in the table.

For instance, ETP(2,3) is (∞,0). This is because segment 3 does not wait for any event and thus no

other segment may wake it up.

In our approach, ETP is used to calculate the predicted wake-up time of a waiting thread by another

thread. Take Figure 5.2b as an example. Suppose th3 is waiting and th1 is running at timestamp

(0,0) in segment 1. According to ETP, the scheduler predicts that thread 3 will probably wake up

1the first element in the tuple is the time count and the second one is the delta count
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void thread1(){

  x = 1;

  wait(1,SC_NS);

  e1.notify(

  SC_ZERO_TIME);

}

1

2

3

4

5

void thread2(){

  y = 1;

  wait(e1);

  e2.notify(

  SC_ZERO_TIME);

}

6

7

8

9

10

void thread3(){

  z = 1;

  wait(e2);

  z = 2;

}

11

12

13

14

15

(a) SystemC Source code

e1.notify(..)

1 SC_NS e1

1

2

3

4

thread1() thread2()

e2.notify(..)

e2

5

thread3()

6

x=1 y=1 z=1

z=2

(b) SG of 5.2a

Figure 5.2: Example of SG

at timestamp (0,0) + (1,2) = (1,2).

Figure 5.3: ETP for 5.2b

5.3.2 Original Event Delivery Strategy

We now briefly introduce the original event delivery strategy and discuss its limitations.

In OoO PDES, an event notification is not delivered immediately when notified. Instead, it is first
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stored into an event notification set Σ that keeps all event notifications during the simulation. Then,

on every scheduling step, the scheduler checks every event notification in Σ to determine if the

event notification satisfies the following two requirments:

1. Earlier than all RUN or READY threads

2. Earliest among all the event notifications stored in Σ that can wake up threads

If the two requirements are fulfilled, the scheduler delivers the event notification and wakes up all

the threads that are waiting on this event.

The two requirements are demanded to avoid potential late wake-up of threads due to unknown

future behaviors of other threads. Two possible scenarios are shown in Figure 5.4. The rectangles

represent the segments executed by threads. Note that the clock axis represents the wall clock time.

The scenario in Figure 5.4a explains requirement 1. Segments 1 and 2 of threads th1 and th2

notify event e. Segment 4 of thread th3waits for e. We assume that under Out-of-Order execution,

th1 and th3 are scheduled to run first. Segment 1 notifies e at timestamp (3,0). Next, th3 starts

waiting for e at (1,0). Although e has already been notified at (3,0), the scheduler decides not to

deliver it to wake up th3. This is because th2 is still in READY at (2,0) and the scheduler cannot

predict if th2 notifies e before (3,0). In this example, th2 does notify e at (2,0) and therefore th3

should wake up at (2,1). Requirement 1 successfully prevents a late wake-up of th3 at (3,1).

The scenario in Figure 5.4b explains requirement 2. Two events e1 and e2 are notified by threads

th1 and th2 at timestamps (3,0) and (6,0). By requirement 1, the two event notifications are not

delivered because threads th3 and th4 are still in READY at earlier timestamps. Next, th3 and

th4 are scheduled to run and then wait for e1 at (1,0) and e2 at (2,0) respectively. Now, both

event notifications: e1 at (3,0) and e2 at (6,0) meet requirement 1 as there are no threads in RUN

or READY. However, as specified by requirement 2, only the earliest notification: e1 at (3,0) can

be delivered. Notification e2 at (6,0) is not delivered. This is because the simulator is not able to
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Figure 5.4: Scenarios explaining requirement 1 and 2

predict whether the thread waked up by e1 will notify e2 at an earlier timestamp before (6,0). In

this example, th3 notifies e2 at (4,0) in segment 5 after being waked up by e1, and therefore th4

should wake up at (4,1). Requirement 2 successfully prevents a late wake-up of th4 at (6, 1).

The original event delivery strategy is very conservative and sometimes makes false decisions to

not deliver an event notification. In scenario 1, if segment 2 is modified to not notify event e, then

notification of e at (3,0) is actually safe to deliver immediately after th3 starts waiting because no

earlier notification of e will happen in the future. However, forced by requirement 1, the scheduler

needs to wait until segment 2 finished execution to make this delivery. Similar for requirement

2. If the scheduler knows what will happen in the future, an event notification may be delivered

earlier instead of being held until fulfilling requirements 1 and 2. Consequently, the corresponding

waiting threads resume execution earlier and result in faster simulation. This motivates our idea of

optimizing the event delivery strategy in OoO PDES with prediction information.
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5.4 Optimized Event Delivery Strategy With Prediction

In this section, we first propose the optimized event delivery algorithm and then discuss about the

optimization of Σ to reduce the space and time complexity.

5.4.1 Optimized Event Delivery Algorithm

Due to the Out-of-Order execution, a waiting thread th may be waked up by 1) event notifications

that are already notified and stored in Σ or 2) event notifications that will be notified in the future

by current running, ready or waiting threads. Based on this observation, we first use ETP to predict

the earliest timestamp a waiting thread can wake up, and then use this information to determine

if an event notification can be delivered to wake up a waiting thread. The details are shown in

Algorithm 3. Note that the earliest timestamp a waiting thread th can wake up is denoted as th.τ

in Algorithm 3.

The algorithm contains four steps. In the first three steps, it calculates th.τ of each waiting thread

th:

1. In lines 4-8, we initialize th.τ with the earliest timestamp at which th is waked up by event

notifications in Σ.

2. In lines 11-21, we update th.τ by predicting the earliest timestamp at which a running or ready

thread thr directly/indirectly wakes up th. Specifically, EPT is looked up according to the segment

IDs of thr and th. As discussed in Section 5.3.1, the look-up result is the minimum timestamp

advance for thr to wake up th. By adding this result to the timestamp of thr , we get the earliest

predicted wake up timestamp of th by thr .

3. In lines 24-38, we update th.τ by predicting the earliest timestamp at which another waiting
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Algorithm 3 Optimized Event Delivery Strategy using Prediction
1: function AnalyzeAndDeliverEvents
2: do
3: . Step 1: event notifications affect τ of waiting threads
4: for all noti f ication ∈ Σ do
5: for all th ∈ getWaitingThreads(noti f ication) do
6: th.τ ← min(th.τ,getTimestamp(noti f ication))
7: end for
8: end for
9:
10: . Step 2: running and ready threads affect τ of waiting threads
11: for all th ∈WAIT do
12: segID← getSegmentID(th)
13: for all thr ∈ RUN ∪ READY do
14: segIDr ← getSegmentID(thr )
15: tr ← getTimestamp(thr )
16: tpred ← ETP[segIDr , segID]
17: if isValid(tpred) then
18: th.τ ← min(th.τ, tr + tpred)
19: end if
20: end for
21: end for
22:
23: . Step 3: waiting threads affect τ of other waiting threads
24: L ← number of waiting threads
25: D← ∅ .Waiting threads with determined τ
26: for k ← 1 to L do
27: thk ←Waiting thread that has the k th smallest τ
28: insert thk to D
29: segIDk ← getSegmentID(thk)
30: tk ← thk .τ
31: for all th ∈WAIT do
32: segID← getSegmentID(th)
33: tpred ← ETP[segIDk, segID]
34: if isValid(tpred) then
35: th.τ ← min(th.τ, tk + tpred)
36: end if
37: end for
38: end for
39:
40: . Step 4: Deliver event notifications by checking τs
41: for all noti f ication ∈ Σ do
42: for all th ∈ getWaitingThreads(noti f ication) do
43: if getTimestamp(noti f ication) = th.τ then
44: deliverNotificationToThread(noti f ication, th)
45: end if
46: end for
47: end for
48: while no waked up thread and event notification delivered
49: end function
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thread thk directly/indirectly wakes up th. The prediction is done the similar way as in step 2: we

first look up ETP and then add the result to the timestamp of thk . However, thk is still waiting and

does not have a valid timestamp assigned until it has been waked up. Therefore, we instead use

thk .τ as the timestamp of thk because thk .τ is the earliest timestamp at which thk can wake up. At

first this seems like an endless loop: τs are used to update τs. In fact, there exists a topological

order among all the τs: τ of a waiting thread may only be updated by τs of other waiting threads

with smaller values. According to this topological order, we design a loop to update τs, as shown

in lines 26-38. On the k th iteration, we use thk .τ of the waiting thread thk that has the k th smallest

τ among all waiting threads to update other τs and stores thk into the set D.

Theorem 1. At the end of the k th iteration, ∀thD ∈ D, thD.τ ≤ thk .τ.

Proof. Theorem 1 is proved by induction.

a) Base case: At the end of the first iteration, D contains only th1. It is correct that ∀thD ∈ D,

thD.τ ≤ th1.τ.

b) Inductive hypothesis: Let thlast be the last waiting thread added to D. Let D′ = D ∪ thlast . Our

I.H. is: ∀thD′ ∈ D
′, thD′ .τ ≤ thlast .τ

c) Using the I.H.: Assume I.H. is correct on the (k − 1)th iteration. Let thk−1 be the waiting thread

added to D on the (k − 1)th iteration, thk be the waiting thread added to D on the k th iteration, Dk−1

be the D at the end of the (k − 1)th iteration, Dk be the D at the end of the k th iteration. By using

the I.H., ∀thDk−1 ∈ Dk−1, thDk−1 .τ ≤ thk−1.τ. Also, since D only grows in size, Dk = Dk−1 ∪ thk .

Because on the (k−1)th iteration, we select thk−1 rather than thk , this indicates that at the beginning

of the (k − 1)th iteration, thk−1.τ ≤ thk .τ. Also, on the (k − 1)th iteration we can only update other

τs to be values larger than thk−1.τ because ETP contains only positive timestamps. Therefore,

thk−1.τ ≤ thk .τ still holds on the k th iteration. Since 1) thk−1.τ ≤ thk .τ, 2) using the I.H.,

∀thDk−1 ∈ Dk−1, thDk−1 .τ ≤ thk−1.τ, 3) Dk = Dk−1 ∪ thk , by combining these inequalities we prove

that ∀thDk
∈ Dk , thDk

.τ ≤ thk .τ. Therefore, the I.H. is still correct on the k th iteration. �
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According to Theorem 1, once a waiting thread thk is inserted to D, thk .τ will not change in

following iterations. Therefore, it is safe to use thk .τ to update other τs.

In lines 41-47, Algorithm 3 checks for each waiting thread th if it can be waked up by an event

notification noti f ication in Σ at th.τ. If true, noti f ication is then safe to be delivered to wake up

th because th is impossible to wake up any earlier.

The do-while loop in line 48 handles the situation where the only thread that can wake up is

waiting for a sc_event_and_list. If this is not correctly handled, the simulation may stop early

and violate the SystemC semantics. Details are not described in this chapter for brevity.

Now we demonstrate Algorithm 3 using the scenario in Figure 5.4a. When thread th3 starts

waiting, it cannot wake up immediately though event e is already notified at (3,0) in segment 1 by

th1. This is because the scheduler predicts that segment 2 will in the future notify e and therefore

th3.τ is (2,1). However, if the scenario is changed such that segment 2 does not notify e or notifies

e after (3,0), notification of e at (3,0) would be delivered immediately when th3 enters segment

3 because th3.τ is now (3,1). Similar for the scenario in Figure 5.4b. In conclusion, Algorithm 3

helps the scheduler to deliver event notifications earlier. As a result, waiting threads can resume

execution earlier.

5.4.2 Complexity Analysis and Optimization

In this section we first analyze the complexity of Algorithm 3. Let:

1. N be the number of event notifications in Σ

2. W be the number of threads inWAIT

3. R be the number of threads in RUN ∪ READY

The time complexity of step 1 is N×W because the two functionsmin() and getWaitingThreads()
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are both of constant time complexity. The time complexity of step 2 is W × R because isValid()

and table look-up of ETP are both of constant time complexity. The time complexity of step 3 is

W ×W based on the implementation. getSegmentID() is implemented as a table look-up function

and has constant time complexity. The time complexity of step 4 is N ×W . Therefore, the overall

time complexity of Algorithm 3 is W × (W + R + 2 × N).

Note that W and R are fixed and specified by the SystemC model, so we can only optimize

N . Because Σ stores all the event notifications since the start of simulation, its size N keeps

growing dramatically and decreases the simulation speed over time. To solve the problem,

we remove event notifications from Σ which are earlier than all running or ready threads after

AnalyzeAndDeliverEvents() is called 2. The optimization is safe and valid because the re-

moved event notifications will not in the future wake up any threads. The proof is omitted here for

brevity. With this optimization, N is no longer the number of event notifications since the start of

simulation but the number of active event notifications. This practically speeds up Algorithm 3 and

reduces space cost.

5.5 Experiments and Results

We have implemented Algorithm 3 as an extension of the RISC OoO PDES simulator from [35].

The RISC infrastructure also provides a SystemC compiler that statically analyzes an input Sys-

temC model. ETP is automatically generated by the compiler and provided to the simulator in

the instrumented SystemC model. We have evaluated our approach with synthetic examples gen-

erated by the TGFF tool and also real-world DVD decoder and GoogLeNet [85] examples. For

evaluation, we have measured the execution times under the sequential Accellera simulator (Seq),

the original RISC OoO PDES simulator (Org) and the RISC OoO PDES simulator with optimized

2sc_event_and_list causes an exception here. If a thread th is waiting for a sc_event_and_list, the
timestamp that th started waiting is also considered in the comparison
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event delivery strategy using prediction proposed in this work (Prd). Experiments were performed

on an Intel Xeon E3-1240 multi-core processor with 4 cores, 2-way hyperthreaded. The CPU

frequency-scaling was turned off so as to provide accurate and repeatable results.

5.5.1 TGFF Examples

In this experiment, we evaluate the performance of the proposed approach with synthetic examples

which are automatically generated by the TGFF tool with SystemC extension [58]. Figure 5.5

shows the generic structure of the generated SystemC models. The model contains multiple lanes

of nodes between Stimulus and Monitor. All nodes are connected by user-defined fifo channels.

Each channel contains two events. Each node is a SystemC module with a single thread that first

reads the data from the input port, performs some intensive computation and finally sends the result

to the output port. The model is parameterized and we are able to control:

1. the number of lanes m.

2. the number of nodes per lane n.

3. the computation workload of each node w.

In this experiment, each node has random workload and each lane has the same amount of nodes.

The workload of each node is determined by the iterations of a for loop, which varies from then

thousand to one million. We generated 20 benchmarks with m varying from 1 to 16 and n varying

from 2 to 16. Table 5.1 shows the run-times of the examples with Seq, Org and Prd. It also shows

the speedups of Org vs. Seq and Prd vs. Seq. The speedups are shown in bold font. Table 5.1

allows the following observations:

1. PRD is faster than SEQ. A maximum speed-up of 6.3x is achieved by PRD over SEQ with
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Table 5.1: Results of Synthetic Examples: run-time (secs) and speedup (%)

m
n 2 4 8 16

Seq Org Prd Seq Org Prd Seq Org Prd Seq Org Prd
1 76.71 76.77 100 52.34 147 119.77 119.86 100 53.08 225 176.71 176.81 100 54.94 322 355.52 355.81 100 72.36 491
2 119.80 100.16 120 53.11 225 176.69 128.62 137 54.77 323 355.50 241.22 147 71.51 497 672.03 436.20 154 112.16 599
4 176.83 101.22 175 55.61 318 355.55 161.40 220 72.56 490 672.33 276.70 243 113.86 590 1365.01 530.30 257 215.25 634
8 355.88 115.23 309 84.73 420 672.14 190.62 353 117.95 570 1364.99 353.10 387 216.28 631 2712.08 664.17 408 430.36 630
16 672.12 161.94 415 129.86 518 1364.71 290.58 470 219.88 621 2712.02 549.42 494 431.16 629 5491.15 1140.51 481 895.85 613

Stimulus Ch_0_1

Ch_0_n

node_1_1

node_1_n

Ch_m_1

Ch_m_n

node_m_1

...

...

.

.

.

.

.

.

Monitor

node_m_n

Figure 5.5: SystemC model of synthetic examples

m=4 and n=16, which is impressive on a 4-core machine with 8 hyperthreads. Note that a

naive theoretical speed-up of 8x cannot be achieved. This is because there are only four FPUs

on the host processor. Due to the intensive computations in each node, the eight hyperthreads

are not allowed to run fully in parallel. We also notice that the speedup slightly drops when

m = 16 and n = 16. This is due to the largely increased context switching and contentions of

FPUs between threads.

2. PRD is faster than ORG. The speedup is most obvious when there is only one lane in the

model. ORG has no speedup against SEQ while PRD has an increasing speedup with the

number of nodes. Under ORG, requirement 1 and 2 in Section 5.3-5.3.2 become a global

barrier and forbid threads that have different timestamps to execute Out-of-Order. On the

other hand, PRD makes correct predictions and identifies that only neighboring nodes have

dependency while others are able to run Out-of-Order. Therefore, more events are delivered

and more threads wake up in the same scheduling step, which as a result increases the

execution speed of the model. Due to the hardware limitations (number of hyperthreads and

FPUs), the speedup decreases with the increasing of m. However, PRD is still significantly

faster than ORG.
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The observations confirm the effectiveness of the proposed event delivery strategy using predic-

tions. We achieve a maximum speedup of 6.3x over Accellera sequential simulation and 4.9x over

the original OoO PDES, which are impressive on a 4-core machine.

5.5.2 DVD Player

In this experiment we evaluate our approach using the DVD player example that is similar to the one

in Figure 5.1a. After decoding, the results are sent to a Monitor module. The communication in

this model is via user-defined double-handshake channels. The results of run-times and speedups

compared to the Accellera sequential simulation are shown in Table 5.2.

In this example, the three decoding lanes are independent and are able to execute in parallel.

Table 5.2: Results of DVD Player: run-time (secs) and speedup (%)

Seq Org Prd
209.51 88.49 236 73.35 284

However the original OoO PDES (Org) imposes a false global barrier such that one lane can only

continue execution until the other two lanes have finished execution. The barrier reduces the

parallelism level of the model and decreases the execution speed, resulting in a speedup of 2.3x

over Seq. On the other hand, our proposed approach successfully predicts that the three lanes are

independent and therefore decoder threads wake up Out-of-Order. As a result, the execution speed

increases and achieves a speedup of 2.8x over Seq and 1.2x over Org. Note that a naive maximum

speedup of 3x is not achieved because the workload of VideoDecoder and AudioDecoders are

different. Specifically, VideoDecoder takes longer to process its frames and becomes a sequential

bottleneck. According to Amdahl’s law, a speedup of 2.8x is reasonable. This experiment confirms

the correctness and effectiveness of our proposed event delivery strategy.
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5.5.3 GoogLeNet

Image classification is a hot topic nowadays [82, 83, 84]. One convincing approach for image

classification and detection is GoogLeNet [85], which is a deep convolutional neural network

model. In this experiment, we implement a SystemC model of GoogLeNet [86]. Each layer is

implemented in a separate module. The communications are via channels. The architecture is

shown in Figure 5.6. Including Stimulus and Monitor, there are a total of 146 module instances

in this SystemC model and each module instance has a single thread. In this experiment, 500

images are fed into the GoogLeNet SystemC model for classification. The results are verified and

are correct. The experimental results of run-times and speedups compared to the Seq are shown in

Table 5.3

Stimulus GoogLeNet Monitor

Figure 5.6: SystemC model of GoogLeNet [85]

Table 5.3: Results of GoogLeNet: run-time (secs) and speedup (%)

Seq Org Prd
947.30 361.31 262 210.97 450

In this experiment, Prd achieves a speedup of 4.5x against Seq. A naive maximum speedup of 8x

cannot be achieved. This is because the workloads of module instances (layers in GoogLeNet) are

not perfectly balanced and heavy ones become sequential bottlenecks in the data flow of the model.

Therefore, eight hyperthreads cannot execute totally in parallel. Also, there are only four FPUs

which may introduce contentions between threads. Nevertheless, the result is still impressive on
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a 4-core machine. Compared to Org, Prd is 1.7x faster. This experiment confirms again that the

proposed event delivery strategy using prediction is effective and correct.

5.6 Conclusion

In this chapter, we propose an optimized event delivery strategy using prediction information for

OoO PDES. Our work allows the scheduler to deliver more events each scheduling step, resulting

in more threads running in parallel and increased simulation speed. We have demonstrated the

effectiveness of the proposed approach with synthetic and demonstration examples. Significant

and impressive speedups are achieved against Accellera sequential simulation and the original OoO

PDES.
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Chapter 6

Conclusion

In this chapter, we summarize the contributions of this dissertation and then explore potential

researches to be done in the future.

6.1 Contributions

The goals of this dissertation are listed in Section 1.4. We fulfill the goals with the following four

contributions:

• A scalable RISC tool flow for statically analyzing and protecting third party IPs during OoO

PDES [62] fulfills the first goal.

• An advanced static analysis approach for modern SystemC TLM-2.0 models [63] fulfills the

second goal.

• A set of coding guidelines for RISC users to achieve higher simulation speed [64] fulfills the

third goal.
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• A more efficient event delivery algorithm in OoO PDES scheduler using prediction informa-

tion [65] fulfills the third goal.

6.1.1 A Scalable Solution for Statically Analyzing 3rd Party IPs

In Chapter 2, we proposed the PSG technique which enables the RISC compiler to statically

analyze SystemC models composed of multiple translation units and IPs. The technique also aims

to protect IPs from security leakage. PSGs are first constructed on the IP provider’s side. Then,

they are shipped together with the library files to the user. During static analysis of the user’s

SystemC model, PSGs are integrated at top level to reconstruct the complete SG. Experimental

results confirm the effectiveness of this approach.

6.1.2 A Static Analysis Approach for SystemC TLM-2.0 Models

In Chapter 3, we proposed the static analysis approach for SystemC TLM-2.0 models in the RISC

compiler. A new SCP technique is introduced to facilitate the static analysis. In SystemC TLM-2.0

models, pointers are frequently used, which makes it difficult to statically analyze data conflicts

because pointers may dynamically point to any memory address. However, we notice that in

a well-written SystemC TLM-2.0 model, pointers are entangled via TLM-2.0 callback methods.

Based on this observation, we propose the approach to analyze entangled variables using SCP. Four

types of TLM-2.0 communications are supported with this approach: BTI, NBTI, DMI and DTI.

Hierarchical and interconnected communication schemes are also correctly analyzed.
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6.1.3 Coding Guidelines for RISC Users

In Chapter 4, we proposed coding guidelines for RISC users. Since OoO PDES schedules SystemC

processes at segment level, a proper granularity of SG allows the simulator to run more threads

in parallel, which in turn speeds up the simulation. The granularity of SG can be controlled by

placing scheduling step primitives, i.e., wait statements. Two major suggestions are described in

Section 4.2.5, namely: use the wait-for-delta-cycle primitive as the extra segment boundary, and

partition the heavy segments.

6.1.4 A More Efficient Event Delivery Algorithm in OoO PDES Scheduler

Using Prediction Information

In Chapter 5, we proposed a new event delivery algorithm in OoO PDES. Prediction information

about the behaviors of threads in the future is provided to the OoO PDES simulator. The algorithm

first calculates the earliest possible wake-up timestamp of each waiting thread. If at that timestamp

the thread can be waked up by an event, the scheduler then moves it to the RE ADY queue. The

algorithm allows more threads to wake up at each scheduling step, which in turn increases the

simulation speed.

6.2 Future Work

In addition to the work presented in this dissertation, we propose some potential topics to research

in the future.
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6.2.1 More Accurate Static Analysis for SystemC Models

Current RISC compiler cannot statically analyze arbitrary pointers and arrays, which increases the

false data conflicts in the data conflict table and reduces the simulation speed. Also, it is not able

to analyze PCP and SCP given port and socket arrays. In the future, we would like to improve the

static analysis algorithm to support the above scenarios for higher accuracy.

6.2.2 More Efficient OoO PDES

In this dissertation, we optimize the event delivery algorithm in OoO PDES. However, there is a

time overhead in the event delivery algorithm itself. In the future work, we plan to optimize the

algorithm to reduce the overhead. Furthermore, the experiments are mostly performed on an 8-core

machine. In the future, we plan to perform more experiments on a many-core processor to further

analyze the scalability of the OoO PDES algorithm.
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