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ABSTRACT OF THE DISSERTATION 

 

Developing Robust Methods and Tools for Advancing Perceptual Learning Research 
 

by 

 

Samyukta Jayakumar 

 

Doctor of Philosophy, Graduate Program in Psychology 

University of California, Riverside, June 2024 

Dr. Aaron Seitz, Chairperson 

 

Perceptual Learning (PL) refers to experience-based changes enhancing the ability to 

extract sensory information from the environment leading to alterations in perceptual 

processing. A pivotal inquiry in this field investigates the potential for adult perceptual 

systems to undergo modifications through experience. While historically, research in the 

field has primarily delved into isolating and understanding individual visual processes, 

recent years have witnessed a growing interest in harnessing PL for therapeutic 

interventions in visual impairments. However, the translational potential of such 

interventions is impeded by methodological constraints, including small sample sizes, 

homogeneity within participant populations, and challenges in replications. The core 

objective of my dissertation is to advance our understanding of visual PL by designing 
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innovative methodologies and tools to explore its potential for translational applications. 

Each chapter of my dissertation contributes distinctively to this overarching aim: Chapter 

1 provides a comprehensive review of extant PL literature, pinpointing prevailing 

limitations and gaps in the field; Chapter 2 introduces and validates PLFest, a cross 

platform open-source tool for PL research, fostering collaboration and data sharing within 

the scientific community; Chapter 3 introduces a gaze contingent display framework for 

PL research, utilizing simulated central vision loss as a model to assess specificity and 

generalizability of learning; and Chapter 4 examines the implications of a gamified visual 

rehabilitation strategy for promoting learning and designing targeted interventions for 

patients with schizophrenia. Through these multifaceted investigations, my thesis aims to 

deepen our understanding of visual PL dynamics and lay foundations for its broader 

application in clinical contexts.     
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Chapter 1: Introduction 

A fundamental aspect of our day-to-day activities largely involves learning to process and 

interact with a rich set of incoming sensory input from the world. This leads to changes in 

perceptual systems across the lifespan of an individual (Seitz, 2021) and has broad 

implications for education, medicine, technology, and society (Seitz et al., 2023). These 

experience-based changes enhancing the ability to optimize the incoming sensory 

information is called Perceptual Learning (PL). PL occurs in all sensory modalities, 

including vision (Karni & Sagi, 1991), audition (Wright et al., 1997), touch (Dinse et al., 

2003), smell (Chu et al., 2016), taste (Arvisenet et al., 2016), and multimodal 

combinations (B. Dosher & Lu, 2020), and can significantly improve performance (Karni 

& Sagi, 1991) and persist for years (Zhou et al., 2006). In laboratory settings, PL is 

typically studied by tracking performance improvements in perceptual tasks through 

practice or training.  

Historical Significance and Background: 

Visual perceptual learning (VPL) is one of the most extensively researched perceptual 

phenomena dating back to the end of the 19th century (Volkman,1858), however, it 

wasn’t till the 1960s that PL was identified as an important subject for scientific inquiry 

until Eleanor Gibson put PL on the map. In the laboratory, this is typically studied using 

tasks such as orientation discrimination (Fiorentini & Berardi, 1980), line bisection 

(Poggio et al., 1992), texture discrimination (Karni & Sagi, 1991), motion direction 

discrimination (Ball & Sekuler, 1982) etc., (Figure 1.1), and have shown improved 

https://paperpile.com/c/ukaeyV/AsJB
https://paperpile.com/c/ukaeyV/Huj5
https://paperpile.com/c/ukaeyV/ueOuP
https://paperpile.com/c/ukaeyV/RcdE
https://paperpile.com/c/ukaeyV/5XF9I
https://paperpile.com/c/ukaeyV/5XF9I
https://paperpile.com/c/ukaeyV/EpHev
https://paperpile.com/c/ukaeyV/0JNDi
https://paperpile.com/c/ukaeyV/rsZqx
https://paperpile.com/c/ukaeyV/ueOuP
https://paperpile.com/c/ukaeyV/ueOuP
https://paperpile.com/c/ukaeyV/hE2EO
https://paperpile.com/c/ukaeyV/YVl6
https://paperpile.com/c/ukaeyV/J3OC
https://paperpile.com/c/ukaeyV/ueOuP
https://paperpile.com/c/ukaeyV/nhiU


2 

 

performance as a result of training. A defining characteristic of VPL is its remarkable 

specificity, which extends to various aspects such as retinal location, eye, stimulus, and 

task. This has been well documented across a range of studies, including those focusing 

on contrast detection (Sowden et al., 2002), orientation discrimination (A. A. Schoups et 

al., 1995), texture discrimination (Karni & Sagi, 1991), motion-direction discrimination 

(Ball & Sekuler, 1987), depth from random-dot stereograms (O’Toole & Kersten, 1992), 

and localization tasks (Crist et al., 1997). Interestingly, while some tasks have shown 

specificity to the trained eye compared to the untrained eye (see (Karni & Sagi, 1991; 

Schwartz et al., 2002)), others have exhibited significant specificity to particular features 

of the trained stimulus, such as orientation (Ball & Sekuler, 1982; Fiorentini & Berardi, 

1980; Poggio et al., 1992; Ramachandran & Braddick, 1973), spatial frequency (Huang et 

al., 2008; Sowden et al., 2002), and tasks themselves (Fiorentini & Berardi, 1980; 

Furmanski & Engel, 2000). While specificity of PL is critical for understanding the locus 

of plasticity in brain regions, it limits the benefits of training to the trained stimuli and 

tasks, making it difficult to generalize learning to other stimuli or tasks. Transfer of 

learning is also critical for real-world application of PL as well as for developing a well-

rounded rehabilitation for vision related disorders. 

https://paperpile.com/c/ukaeyV/xc3b
https://paperpile.com/c/ukaeyV/fonQ
https://paperpile.com/c/ukaeyV/fonQ
https://paperpile.com/c/ukaeyV/ueOuP
https://paperpile.com/c/ukaeyV/bXzP
https://paperpile.com/c/ukaeyV/IPFq
https://paperpile.com/c/ukaeyV/P4YI
https://paperpile.com/c/ukaeyV/GTQC+ueOuP
https://paperpile.com/c/ukaeyV/GTQC+ueOuP
https://paperpile.com/c/ukaeyV/J3OC+YVl6+nhiU+80nW
https://paperpile.com/c/ukaeyV/J3OC+YVl6+nhiU+80nW
https://paperpile.com/c/ukaeyV/XUtC+xc3b
https://paperpile.com/c/ukaeyV/XUtC+xc3b
https://paperpile.com/c/ukaeyV/YVl6+ZLJo
https://paperpile.com/c/ukaeyV/YVl6+ZLJo
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Figure 1.1. Examples of characteristic stimuli used in Perceptual Learning research: This 

figure is adapted from (Seitz, 2017) and showcases the different tasks used in PL research. 

Specifically, participants make judgments about the subtle details of the stimulus i.e., contrast, 

textures, direction of motion of dots, tilt of patterns or learning to discriminate collections of 

complex figures defined by multiple features.  

A shift in perspective: 

In recent years, a growing body of research has demonstrated that learning can indeed 

transfer to other retinal locations, tasks and stimuli. The extent of this transfer is 

contingent upon a multitude of factors such as task difficulty (Ahissar & Hochstein, 

1997; Jeter et al., 2009; Liu, 1999; Meyer & Petrov, 2011; Petrov, 2009), duration of 

training (Jeter et al., 2010), engagement of attentional mechanisms (Donovan et al., 2015; 

Donovan & Carrasco, 2018; Hung & Carrasco, 2021; Roberts & Carrasco, 2022), 

uncertainty regarding stimulus features (Yashar & Denison, 2017), and cross training 

(Hung & Seitz, 2014; Xiao et al., 2008). Moreover, the acquisition of perceptual expertise 

https://paperpile.com/c/ukaeyV/K8aA
https://paperpile.com/c/ukaeyV/MSW0+vCAO+Rn9O+rWL9+NSLr
https://paperpile.com/c/ukaeyV/MSW0+vCAO+Rn9O+rWL9+NSLr
https://paperpile.com/c/ukaeyV/fBrE
https://paperpile.com/c/ukaeyV/0lqr+sxNF+l2gn+64Fw
https://paperpile.com/c/ukaeyV/0lqr+sxNF+l2gn+64Fw
https://paperpile.com/c/ukaeyV/y9sW
https://paperpile.com/c/ukaeyV/RIWb+Exg8
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over extended periods of real-world task engagement has been documented (de Groot et 

al., 1996; Ericsson et al., 1993; Hoffman et al., 2013; Seitz, 2017; Tanaka et al., 2005). 

For instance, experienced radiologists are adept at identifying cancerous tissues/ growth 

amidst surrounding healthy tissues (Seitz, 2017), likely due to the nature of their 

profession, exposing them to diverse stimuli across various contexts. Similarly, expert 

weather forecasters excel in extracting and categorizing systematic patterns of visual and 

other features in satellite images (Hoffman et al., 2013).  Interestingly, action video 

games provide another source of complex and variable training, and prior studies have 

shown that playing video games can improve a range of visual skills and transcend even 

to tasks such as laparoscopic surgery (Hogle et al., 2008). These improvements occur 

without altering the ocular characteristics of the eye (Polat et al., 2012) and are thought to 

be related to brain plasticity. Notably, while training with simple, uniform/ unvaried 

stimuli, and very precise judgements leads to specificity, training with more complex, 

naturalistic, and/or varied stimuli promotes broader generalization (Ahissar et al., 2009; 

Maniglia & Seitz, 2018).  

In recent decades, research in VPL has increasingly focused on leveraging these training-

induced changes to develop interventions catering to diverse populations, including 

athletes (Appelbaum & Erickson, 2018; Deveau et al., 2014), medical experts (Kellman, 

2013), and individuals with visual impairments; such as amblyopia (Campana et al., 

2014; Liao et al., 2016), myopia (Camilleri et al., 2016; Yan et al., 2015), presbyopia 

(Polat, 2009), macular degeneration (Chung, 2011; Maniglia, Cottereau, et al., 2016; 

Maniglia, Pavan, et al., 2016), age-related visual decline (Astle et al., 2015; DeLoss et al., 

https://paperpile.com/c/ukaeyV/1dJw+IneQ+n9rM+1VNS+K8aA
https://paperpile.com/c/ukaeyV/1dJw+IneQ+n9rM+1VNS+K8aA
https://paperpile.com/c/ukaeyV/K8aA
https://paperpile.com/c/ukaeyV/IneQ
https://paperpile.com/c/ukaeyV/Xe4S
https://paperpile.com/c/ukaeyV/x7QA
https://paperpile.com/c/ukaeyV/SFHK+K0zN
https://paperpile.com/c/ukaeyV/SFHK+K0zN
https://paperpile.com/c/ukaeyV/8qpS+oieB
https://paperpile.com/c/ukaeyV/GcPg
https://paperpile.com/c/ukaeyV/GcPg
https://paperpile.com/c/ukaeyV/MGTm+tXkH
https://paperpile.com/c/ukaeyV/MGTm+tXkH
https://paperpile.com/c/ukaeyV/9UDc+2WvN
https://paperpile.com/c/ukaeyV/hHud
https://paperpile.com/c/ukaeyV/FNVf+E1a6+HRpl
https://paperpile.com/c/ukaeyV/FNVf+E1a6+HRpl
https://paperpile.com/c/ukaeyV/RTpe+tCWv+rCz6
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2015; Mishra et al., 2015), autism (Mercado et al., 2016), dyslexia (Gori et al., 2016), and 

schizophrenia (Butler et al., 2017) among others. 

Neural basis of Perceptual Learning: 

These discoveries have spurred extensive inquiry into the neural substrates of PL, aiming 

to delineate the brain regions pivotal for this process. Initial evidence obtained from 

electrophysiological studies in animal models indicate that the plastic changes associated 

with PL are predominant within the primary visual cortex (V1), characterized by neurons 

have small receptive fields and are specialized in detecting fundamental stimulus features 

such as orientation (Hua et al., 2010; A. Schoups et al., 2001; Yang & Maunsell, 2004; 

Yotsumoto et al., 2008, 2009). Indeed, (Shibata et al., 2011) observed concomitant 

modifications in V1 activity alongside performance related improvements in orientation 

discrimination tasks with Gabors. Despite the prominence of V1 in PL research, other 

high-level visual processing areas also exhibit unique patterns of feature sensitivity 

involved in PL. Notably, there is robust evidence of learning induced alterations in V4 

(Adab & Vogels, 2011; Yang & Maunsell, 2004), contrasting the mixed findings 

observed in V1 (Ghose et al., 2002), in animal studies.  

Furthermore, several PL studies have incorporated a diverse array of stimulus features 

such as shapes, objects and faces (Bi et al., 2010; Furmanski & Engel, 2000; Gold et al., 

1999; Sigman & Gilbert, 2000), indicating that plasticity in V1 alone may not 

comprehensively account for the observed learning outcomes on these tasks. Indeed, PL 

has been associated with alterations in response properties across multiple visual 

https://paperpile.com/c/ukaeyV/RTpe+tCWv+rCz6
https://paperpile.com/c/ukaeyV/MoKv
https://paperpile.com/c/ukaeyV/H3c0
https://paperpile.com/c/ukaeyV/T0N2
https://paperpile.com/c/ukaeyV/zlnV+9xUA+SHvy+tmCX+kxNO
https://paperpile.com/c/ukaeyV/zlnV+9xUA+SHvy+tmCX+kxNO
https://paperpile.com/c/ukaeyV/7ZiV
https://paperpile.com/c/ukaeyV/0hHS+tmCX
https://paperpile.com/c/ukaeyV/qBkt
https://paperpile.com/c/ukaeyV/ZLJo+wR1l+Mi5E+y3e8
https://paperpile.com/c/ukaeyV/ZLJo+wR1l+Mi5E+y3e8
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processing areas, including motion in V3a (Chen et al., 2016), Medial Temporal (MT) 

cortex (Zohary et al., 1994) and Lateral Intraparietal (LIP) cortex (Law & Gold, 2008), 

orientation in V1 (A. Schoups et al., 2001), V4 (Adab & Vogels, 2011; Yang & 

Maunsell, 2004), and Posterior inferior temporal (PIT) cortex (Adab et al., 2014), contour 

in Lateral occipital (LO) cortex (Kuai et al., 2013), faces in Fusiform face area - FFA (Bi 

et al., 2014), among others.  

An alternative avenue of investigation proposes that alterations in top-down attentional 

modulation might underlie the behavioral findings of PL. For instance, studies have 

demonstrated that visual learning augments V1 selectivity for task-relevant stimuli, 

thereby enhancing discriminability at the population level in mice (Poort et al., 2015). 

Moreover, changes in low-level response properties may result from top-down attentional 

modulation, facilitating the enhancement of target signals while suppressing responses to 

irrelevant features (C. Gilbert et al., 2000; C. D. Gilbert & Li, 2012; Mukai et al., 2011). 

Some other studies also suggest that PL relies on selective attention mechanisms with 

distinct temporal dynamics, encompassing attentional gain amplification and noise 

reduction (Bays et al., 2015; Itthipuripat et al., 2016). However, despite the potential 

explanatory power of attentional mechanisms for certain aspects of PL, studies 

controlling for attention (Adab & Vogels, 2011) or ones conducted without explicit 

attentional focus (Seitz & Watanabe, 2009) have still uncovered evidence of learning, 

indicating that attentional processes may not fully account for all PL phenomena. 

 

https://paperpile.com/c/ukaeyV/cP6J
https://paperpile.com/c/ukaeyV/l1cZ
https://paperpile.com/c/ukaeyV/Fs01
https://paperpile.com/c/ukaeyV/SHvy
https://paperpile.com/c/ukaeyV/0hHS+tmCX
https://paperpile.com/c/ukaeyV/0hHS+tmCX
https://paperpile.com/c/ukaeyV/8jno
https://paperpile.com/c/ukaeyV/Od0P
https://paperpile.com/c/ukaeyV/szNB
https://paperpile.com/c/ukaeyV/szNB
https://paperpile.com/c/ukaeyV/CS5a
https://paperpile.com/c/ukaeyV/zXQu+g5jU+G6hU
https://paperpile.com/c/ukaeyV/D8TV+qXiD
https://paperpile.com/c/ukaeyV/0hHS
https://paperpile.com/c/ukaeyV/NjYD
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Models of Perceptual Learning: 

The investigation into the neural mechanisms underpinning PL has unveiled evidence 

indicating plasticity of brain regions engaged in representation of visual information. 

While empirical studies have shown plastic changes within V1 and other high-level areas, 

computational models propose that plasticity in visual representations may not be 

necessary to explain the specificity of PL (B. Dosher & Lu, 2017). This proposition 

hinges on the notion that even if the representations remain fixed during learning, most 

behavioral manifestations of PL can be attributed to changes in the read-out weights 

between the representation and decision areas. For example, Dosher and colleagues 

proposed an integrated reweighting theory (IRT), suggesting that changes in read-out 

weights between perceptual representation and decision areas can account for most 

behavioral findings of PL (B. A. Dosher et al., 2013), including transfer of learning to 

new retinal locations (Talluri et al., 2015).  

Moreover, the reverse hierarchy theory (Ahissar & Hochstein, 2004) suggests that 

learning is a top-down guided process that begins at high-level areas and cascades 

backwards to the low-level input stages when necessary. This implies that learning is 

heavily dependent on the task demands i.e., learning of tasks that are easy or diverse 

occurs at high-level areas whereas more difficult tasks and stimuli are learned in low-

level areas, thereby accommodating for both specificity and generalization of PL. Further  

modeling by (Wang et al., 2016) propose that PL operates at a ‘conceptual level’ where 

abstract rules pertaining to shared novel features across tasks are learnt, thus facilitating 

the transfer of learning to novel/ new tasks relying on similar features.  

https://paperpile.com/c/ukaeyV/VPl6
https://paperpile.com/c/ukaeyV/C5G0
https://paperpile.com/c/ukaeyV/4h8q
https://paperpile.com/c/ukaeyV/l2iS
https://paperpile.com/c/ukaeyV/fqlJ
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Thus, it is possible to conclude that a comprehensive model aimed at elucidating these 

diverse findings in the field necessitates components accounting for sensory 

representation, decision-making and learning processes, attentional modulation, reward 

mechanisms and even feedback (B. Dosher & Lu, 2017). Collectively, these findings 

suggest that since a myriad of systems undergo modifications as a result of learning, even 

in the simplest tasks, it is highly unlikely that PL is a singular process. Instead, PL likely 

relies on a distribution of plasticity across various brain regions, underscoring its 

multifaceted nature encompassing conceptual frameworks, learning dynamics and 

oculomotor processes, all contributing synergistically to the observed behavioral changes 

in PL. 

Importance of Designing tools and methods for Perceptual Learning Research: 

While these exciting directions in the field of PL have significantly enhanced our 

comprehension of the mechanisms governing specificity and generalization, neural 

substrates of learning, and the methodologies that boosts learning with a translational 

angle, the field to-date has been driven by novel findings leading to several inconclusive 

and/or confounding results (see (Ghose et al., 2002)), and suffers from numerous 

replication challenges (Aberg & Herzog, 2010; Hung & Seitz, 2011, 2014; Liang et al., 

2015a, 2015b; Xiao et al., 2008; G.-L. Zhang et al., 2013; J.-Y. Zhang & Yu, 2016). 

These issues may be attributed to (1) methodological differences between different 

research labs aiming to isolate similar processes, (2) small sample sizes used in these 

studies, (3) variations in the hardware and software components between labs, (4) use of 

https://paperpile.com/c/ukaeyV/VPl6
https://paperpile.com/c/ukaeyV/qBkt
https://paperpile.com/c/ukaeyV/RIWb+Wfp0+Exg8+yZbT+DQ5B+TP56+dLFQ+n6pE
https://paperpile.com/c/ukaeyV/RIWb+Wfp0+Exg8+yZbT+DQ5B+TP56+dLFQ+n6pE
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homogenous participant samples, and (5) lack of publicly available and accessible 

datasets for cross-comparison of findings.  

Therefore, to achieve more rigorous, reliable, representative and valid results, it is 

imperative to conduct large scale research studies using diverse population groups, and 

establish open-source platforms for transparent sharing of research findings in the field of 

PL (Seitz et al., 2023). Consequently, there is a pressing need for the development of 

more precise, efficient and accurate tools and methodologies to facilitate comprehensive 

investigations into the time course of learning and transfer effects in PL. Chapter 2 of my 

thesis will introduce and validate PLFest, a cross platform tool developed in our 

laboratory, with the objective of promoting open-science PL research practice, aiming to 

bridge these gaps in the field of PL. 

While various PL models highlight the complex interplay and distribution of plasticity 

across various brain regions, to the best of our knowledge, there exists no single 

comprehensive framework within which one can study learning and transfer of said 

learning across different visual domains. This severely limits our understanding of the 

benefits of different PL strategies that have previously been shown to generalize. Without 

a unified framework, (1) it is challenging to measure and compare progress across 

different visual tasks, (2) training can be inefficient, requiring more time to achieve fewer 

comprehensive results, and (3) it could potentially lead to uneven skill development, 

where improvement in one area does not support or enhance skills in other areas. These 

issues are detrimental to the translational benefits of PL paradigms for structuring visual 

rehabilitation strategies for clinical populations. To address this need, Chapter 3 of my 

https://paperpile.com/c/ukaeyV/Huj5
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thesis focuses on designing a comprehensive gaze contingent display framework for 

training and testing PL paradigms, using simulated central vision loss as a model. The 

importance of using such a model is two-fold: (1) it allows researchers to control and 

manipulate visual input precisely, providing insights into how different levels of visual 

processing interact and adapt to central vision loss, and (2) it informs the design of 

effective rehabilitation programs that help patients with central vision loss utilize their 

residual vision more effectively. Moreover, in this chapter we carefully address and 

account for the technical and design related limitations associated with developing such a 

comprehensive framework. 

Previous studies in PL focusing on developing training strategies that can potentially 

increase the translational benefits in clinical populations have identified several key 

factors that promote transfer of learning such as the use of stimulus variety, enriched 

feedback, and adaptive difficulty in training tasks. Chapter 4 of my thesis extends this 

discourse by exploring a gamified contour integration training paradigm in patients with 

schizophrenia. While this body of work does not answer questions surrounding the 

generalizability of such a training strategy, it discusses novel findings regarding the 

nuances of mid-level visual processing deficits in these patients that can inform future 

studies aiming to leverage these findings to develop more comprehensive visual 

rehabilitation paradigms.    

While the collective body of work in this thesis addresses the gaps in the field of PL 

research in very distinctive ways, it nevertheless opens up several exciting possibilities of 

research that can and are yet to be conducted in the field of PL, thereby largely informing 
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future studies aiming to address these long-standing questions in the field. As a final 

remark, Chapter 5 will offer reflections on how this research will catalyze and chart the 

trajectory for future investigations in PL.  
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Chapter 2: PLfest: A cross-platform tool for open Perceptual Learning Research 

The study presented in this chapter introduces a cross platform tool called PLFest 

developed in our laboratory to facilitate open science in PL research. Here, we perform 

reliability and validity testing of this platform (run on an iPad) by comparing 

performance of participants on two widely utilized perceptual tasks: Contrast Sensitivity 

(CS) and Visual Acuity (VA), on both the Tablet and conventional setups used in 

laboratories. These tasks were specifically chosen as they are sensitive to the display 

characteristics (like luminance and resolution of the screen) of the devices. Findings from 

our study indicate that the PLFest application run on the Apple iPad Pro tablets is indeed 

both reliable and consistent in measuring performance when compared to conventional 

display devices like the Cambridge Research System, Display++ and Liquid Crystal 

Displays (LCD) monitors used in vision science. We also briefly discuss the several 

perceptual and cognitive tasks that the platform currently supports. This platform is 

currently being used to collect data for a larger clinical trial study in collaboration with 

Dr. C. Shawn Green at the University of Wisconsin Madison aiming to identify the 

mediators and moderators of perceptual learning. 

My contributions to this work encompassed several key aspects including (1) designing 

perceptual tasks and developing associated psychophysical paradigms supported by this 

platform, (2) experimental design for evaluating the reliability and validity of the 

platform, (3) overseeing data collection from human participants, and (4) conducting 

thorough data analysis and visualization.  
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Furthermore, I played a pivotal role in writing the manuscript and its subsequent 

submission process. While my advisor (Dr. Aaron Seitz) primarily contributed to the 

writing of the introduction section, I was also actively involved in drafting and revising 

other sections of the manuscript, coordinated the submission process, and diligently 

addressed the response to reviewers’ post submission. The manuscript has currently been 

accepted for publication in the Journal of Cognitive Enhancement.     
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ABSTRACT: 

In recent decades, perceptual learning (PL) has witnessed significant advancements, but 

the field has faced questions regarding reliability, replication issues, and challenges in 

understanding individual differences, hindering accessibility to diverse populations. To 

address these issues, we introduce PLFest, a novel, cross-platform UNITY-based app 

designed to promote accessible, reproducible, and open PL research. PLFest supports a 

variety of training and assessment procedures, focusing on psychophysics and PL of 

contrast sensitivity. It facilitates data collection on computers, tablets, and smartphones, 

enhancing accessibility and portability, making it ideal for large-scale, multi-site studies. 

PLFest aims to promote open science, data sharing, and reproducible research, fostering 

collaboration within the research community. As a first step, to validate PLFest, we 

conducted tests on healthy participants, assessing visual acuity and contrast sensitivity on 

both desktop and tablet setups. These measures were specifically chosen as they represent 

fundamental assessments of visual functions in healthy and clinical populations and are 

also known to be sensitive to display characteristics. The results demonstrated that 

PLFest produces reliable measurements, in particular on Apple iPad tablets, suggesting 

that the app is appropriate for visual psychophysics. This validation supports PLFest as a 

robust platform for PL research, emphasizing its potential to overcome limitations 

associated with high-end desktop/monitor setups and ensuring its applicability across 

diverse hardware configurations. 
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INTRODUCTION: 

Perceptual learning (PL) refers to experienced-based changes, typically improvements, 

in the ability to extract sensory information from the environment and encompasses the 

set of mechanisms through which experience with the environment gives rise to changes 

in perceptual processing (Lu & Dosher, 2022; Sagi, 2011; Seitz, 2017). PL is 

fundamental to perceptual development, formation of perceptual expertise, and 

rehabilitation after sensory damage (Lu et al., 2016; Maniglia & Seitz, 2018; Seitz, 

2017). From a scientific perspective, PL represents one of the most examined training 

phenomena, with numerous studies showing that a wide range of visual abilities can 

improve with practice. This includes processing stimulus orientation (Hung & Seitz, 

2011; Jehee et al., 2012; A. A. Schoups et al., 1995; A. Schoups et al., 2001) and 

contrast (Adini et al., 2002; Deveau, Lovcik, et al., 2014; Furmanski et al., 2004; Polat 

et al., 2012), resolving fine detail (i.e., acuity;(DeLoss et al., 2015; Deveau, Lovcik, et 

al., 2014; Deveau & Seitz, 2014; Polat et al., 2012), and higher-level visual abilities 

such as reading (Bernard et al., 2012; Chung et al., 2004; Deveau & Seitz, 2014; Lee et 

al., 2010; Polat et al., 2012; Yu et al., 2010). Beyond basic science, the field has 

generated numerous translational approaches (Deveau et al., 2013; Deveau & Seitz, 

2014; Polat, 2009) aiming to exploit PL in interventions to enhance normal perceptual 

abilities (e.g., athletes (Appelbaum & Erickson, 2018; Deveau, Ozer, et al., 2014), 

medical experts (Kellman, 2013)), and to treat both purely perceptual (e.g., amblyopia: 

(Hussain et al., 2014; Levi & Li, 2009; Li et al., 2008; Polat et al., 2009), myopia: 

(Camilleri, Pavan, Ghin, Battaglini, et al., 2014; Camilleri, Pavan, Ghin, & Campana, 

https://paperpile.com/c/CeMV1d/w7TJ+d8a2+dZ6l
https://paperpile.com/c/CeMV1d/w7TJ+d8a2+dZ6l
https://paperpile.com/c/CeMV1d/X7Z3+TT1K+zCCL+qmAi
https://paperpile.com/c/CeMV1d/X7Z3+TT1K+zCCL+qmAi
https://paperpile.com/c/CeMV1d/ww4t+DNKv+iJul+9CZc
https://paperpile.com/c/CeMV1d/ww4t+DNKv+iJul+9CZc
https://paperpile.com/c/CeMV1d/ww4t+iJul+rOcM+OzqP
https://paperpile.com/c/CeMV1d/ww4t+iJul+rOcM+OzqP
https://paperpile.com/c/CeMV1d/iJul+OzqP+L1n6+4zzk+NoPH+QhyR
https://paperpile.com/c/CeMV1d/iJul+OzqP+L1n6+4zzk+NoPH+QhyR
https://paperpile.com/c/CeMV1d/OzqP+o4Qs+IiXq
https://paperpile.com/c/CeMV1d/OzqP+o4Qs+IiXq
https://paperpile.com/c/CeMV1d/cZLt+0tTV
https://paperpile.com/c/CeMV1d/6Maq
https://paperpile.com/c/CeMV1d/6fvv+V2R2+xol7+fyCR
https://paperpile.com/c/CeMV1d/6fvv+V2R2+xol7+fyCR
https://paperpile.com/c/CeMV1d/Kywt+mtqH+ivE7
https://paperpile.com/c/CeMV1d/Kywt+mtqH+ivE7
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2014; Durrie & McMinn, 2007) presbyopia: (Deveau, Jaeggi, et al., 2014; Polat et al., 

2012);, macular degeneration: (Chung, 2011; Maniglia, Cottereau, et al., 2016; 

Maniglia, Pavan, et al., 2016; Maniglia et al., 2020; Plank et al., 2014) and broader 

(e.g., ASD: (Harris et al., 2015) dyslexia: (Gori et al., 2016)) disorders. The potential 

broader impacts of PL are immense and careful research in this domain can greatly 

enhance our basic understanding of the perceptual systems and the plasticity of these 

systems. 

However, despite its substantial potential impact, a major obstacle to a clearer 

understanding of the mechanisms underlying PL, and, consequently, more successful 

translation, is that the field, to date, has been strongly driven by “novel” and 

“provocative” findings, often demonstrated via small N studies, with few research 

projects utilizing the type of large and heterogeneous samples that are necessary to 

achieve robust and unbiased results. In turn, unsurprisingly, the field of PL, like many 

others in psychology, has suffered from numerous replication challenges (Aberg & 

Herzog, 2010; Hung & Seitz, 2011, 2014; Liang et al., 2015a, 2015b; Xiao et al., 2008; 

G.-L. Zhang et al., 2013; J.-Y. Zhang & Yu, 2016). This is undoubtedly exacerbated by 

the fact that PL researchers have largely examined the impact of their own paradigms 

via their own outcome measures, which frequently differ from those employed by other 

research groups in mostly unaccounted for ways. Such uncontrolled variability in 

approach severely hinders the field’s ability to isolate the critical ingredients in 

successful PL (Hung & Seitz, 2011, 2014; Talluri et al., 2015). 

https://paperpile.com/c/CeMV1d/Kywt+mtqH+ivE7
https://paperpile.com/c/CeMV1d/iJul+jw9F
https://paperpile.com/c/CeMV1d/iJul+jw9F
https://paperpile.com/c/CeMV1d/vBoK+XFgN+OkSD+An1o+qtkA
https://paperpile.com/c/CeMV1d/vBoK+XFgN+OkSD+An1o+qtkA
https://paperpile.com/c/CeMV1d/cvoA
https://paperpile.com/c/CeMV1d/zUkC
https://paperpile.com/c/CeMV1d/6g9D+2bSo+Sjkx+TT1K+xmSD+Ab0Z+CEWw+Zf5w
https://paperpile.com/c/CeMV1d/6g9D+2bSo+Sjkx+TT1K+xmSD+Ab0Z+CEWw+Zf5w
https://paperpile.com/c/CeMV1d/6g9D+2bSo+Sjkx+TT1K+xmSD+Ab0Z+CEWw+Zf5w
https://paperpile.com/c/CeMV1d/Sjkx+TT1K+0kM6
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As a glimpse into the inconsistencies within the existing PL literature, consider one of 

the more foundational results in the field - that PL of orientation discrimination is 

specific to the location of training and involves plasticity in primary visual cortex (V1) 

(A. A. Schoups et al., 1995; A. Schoups et al., 2001). Although this initial result is still 

considered seminal in the field, subsequent physiological data from Ghose et al (Ghose 

et al., 2002) failed to replicate the V1 finding, while other behavioral studies suggested 

that the observed degree of specificity is an artifact of pre-testing approaches . Together, 

these latter results appear to call the original findings into question. Yet, research by 

Seitz (Hung & Seitz, 2014) suggested that methodological differences, in particular in 

the adaptive procedures, could explain why later studies, such as (T. Zhang et al., 2010) 

did not show the same level of specificity observed in the original study.. In the case of 

(T. Zhang et al., 2010), the staircases included more easy trials, which in turn led to less 

specificity. Modeling by Seitz (Sotiropoulos et al., 2018; Talluri et al., 2015) showed 

that this methodological difference is sufficient to explain the discrepancies in 

behavioral findings across groups. Additional work by Seitz utilizing deep neural 

networks (Wenliang & Seitz, 2018) has shown that differences in training thresholds are 

sufficient to account for the differences in neural findings found between Schoups (A. 

A. Schoups et al., 1995; A. Schoups et al., 2001) and Ghose (Ghose et al., 2002). 

Critically, many of these various methodological differences across studies, which 

appear to substantially alter the learning outcomes, were not purposeful manipulations. 

They instead reflect unintended differences in lab-specific methodological practices. 

https://paperpile.com/c/CeMV1d/X7Z3+zCCL
https://paperpile.com/c/CeMV1d/X7Z3+zCCL
https://paperpile.com/c/CeMV1d/tAO0
https://paperpile.com/c/CeMV1d/tAO0
https://paperpile.com/c/CeMV1d/Sjkx
https://paperpile.com/c/CeMV1d/5bbk
https://paperpile.com/c/CeMV1d/5bbk
https://paperpile.com/c/CeMV1d/5bbk
https://paperpile.com/c/CeMV1d/0kM6+uPOa
https://paperpile.com/c/CeMV1d/PKqu
https://paperpile.com/c/CeMV1d/X7Z3+zCCL
https://paperpile.com/c/CeMV1d/X7Z3+zCCL
https://paperpile.com/c/CeMV1d/tAO0
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These types of untracked and unaccounted for inconsistencies across studies abound in 

the literature. 

It is a long-held field consensus that large-scale, multiple lab studies that include 

diverse individuals, regularize methods across labs, and use common account measures 

are necessary to advance rigor and reproducibility in the field. In 2008, the International 

Workshops on Perceptual Learning was formed (with the first meeting in Beijing) as a 

forum specifically for researchers in the field of perceptual learning. Here, the field 

established the goal of a PL “ModelFest” (with at least 10 additional PL ModelFest 

meetings held over the subsequent decade). This PL ModelFest (S. Klein et al., 2011) 

was originally meant to address the numerous surprising and minimally characterized 

findings in the field by replicating key PL results at multiple sites with conserved 

stimulus- and task-parameters and common outcome measures. These meetings 

identified a number of fundamental limitations of the field: 1) Small sample sizes (often 

N < 12 per condition); 2) The use of reasonably homogenous participant samples that 

might not allow extrapolation to other populations, in particular those of translational 

interest (e.g., the use of young adult participants, who are frequently well-trained 

psychophysical observers, that might not be good models of the impact of PL on older 

adults) 3) Lack of direct comparisons between training procedures; 4) Lack of 

consistent generalization outcome measures; 5) Lack of publicly available datasets upon 

which to advance models of PL; 6) Substantial hardware/software barriers to 

performing direct replications or extensions of existing work. 

https://paperpile.com/c/CeMV1d/UlZT
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It was hoped that such a large-scale approach would clarify which methods show 

consistent results. However, a limitation of moving the project forward was a lack of 

appropriate tools to make the project convenient to participating labs. Indeed, labs can 

differ widely in terms of available hardware, software, and facilities, which in turn can 

make sharing and replication infeasible. In terms of hardware, for decades vision 

science has relied on cathode ray tubes (CRTs), which allowed for highly accurate 

timing of stimulus presentation. However with decreased production of these devices, 

researchers are turning towards using alternative equipment like liquid crystal displays 

(LCDs) for stimulus presentation (Rohr & Wagner, 2020; G.-L. Zhang et al., 2018). 

While these are increasingly well-adopted, they exhibit different spatial-temporal 

display characteristics than CRTs. For example, while CRTs present briefly flashed 

points of light, LCDs present light continuously and then have brief periods of changes 

to luminance/color at frame transitions (Ghodrati et al., 2015). Because many display 

properties have the potential to fundamentally alter participant performance in myriad 

ways, ensuring that results are reliable across hardware is a must. Then, in terms of 

software, tools like PsychToolBox and PsychoPy are most typical of PL studies. 

Although these tools are proven for lab-based research, they are challenging to share, 

and even more so to translate outside of the lab (especially to tablets and phones) as 

they require use of specific versions of MATLAB and Python (Nuutinen et al., 2018; 

Peirce et al., 2019). These hardware and software limitations pose a challenge when 

running studies across multiple sites, and even more so for replication. 

  

https://paperpile.com/c/CeMV1d/yEsu+IPG7
https://paperpile.com/c/CeMV1d/U90C
https://paperpile.com/c/CeMV1d/DCBK+J7DO
https://paperpile.com/c/CeMV1d/DCBK+J7DO
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Here we introduce a tool to help tackle these challenges: an app called PLFest that is 

designed to promote accessible, reproducible, and open PL research. This app takes 

advantage of the tremendous development of consumer tablet technology where, for 

example, current iPad Pros support a 120Hz screen refresh rate, over 300 pixels per 

inch, and 16 bits per color channel, making it a powerful psychophysical machine 

capable of ambulatory research and facilitating running many participants 

simultaneously. PLFest is innovative in a number of ways as it: (1) makes available a 

number of training approaches that are representative of those that have been used in 

research in the field to-date, (2) includes numerous outcome measures (Figure 2.1) by 

which to understand both near (e.g., to feature and task sets that have been trained) and 

far transfer effects (e.g., to features and task sets that are untrained, including a range of 

hearing, attentional and cognitive measures), (3) is highly configurable in a way that 

supports both easy reproduction of existing experiments and customization to support 

new experiments (including numerous built-in procedures and a scripting language to 

support more arbitrary procedures), and (4) is structured to be expandable to new 

methods (including both new task structures, stimulus sets, and use of peripherals such 

as eye-trackers, EEG systems, etc.). Importantly, with PLFest being built within the 

UNITY Game Engine, it is intrinsically cross-platform (it currently has been tested on 

iOS, Android, MacOS, and Windows), self-contained as a single app, and it does not 

rely upon versioning of other libraries and packages (unlike MATLAB and Python). 

Further, it supports easy configuration on multiple devices, including participant-owned 
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hardware, and is integrated with a HIPAA compliant Amazon Web Services (AWS) 

back-end, supporting both lab-based and at-home based research. 

Data is saved in JSON file format, or can be exported to CSVs, that can be easily read 

using several different programming languages such as MATLAB, Python, R, etc. A 

sampling of the range of tasks that PLFest supports is shown in Figure 2.1. These 

include visual assessments (such as contrast sensitivity, contour detection, visual acuity 

and search), and cognitive assessments (such as matrix reasoning, N-back, Cancellation 

and Complex figure tasks). We note that there are many more tasks than the platform 

will allow, such as psychoacoustical tasks (pure tone thresholds, spectral, temporal and 

spectrotemporal sensitivity, binaural hearing, spatial release from masking, dichotic 

digits, etc.), neuropsychological testing (such as word lists, constructional praxis, 

Boston naming, trail-making, clock drawing etc.), as well as reading and vocabulary 

tasks. A novelty of the platform is that parameters such as task durations/ trial numbers, 

stimulus durations, target sizes and locations, and adaptive procedures can be 

customized through the graphic user interface within the application, or by directly 

editing configuration files. The platform additionally supports the creation and 

implementation of questionnaires in a standalone format or within each task. It is also 

possible to combine multiple different tasks as separate batteries within a single 

experiment, and include time-breaks, time-outs and password locked sessions for 

flexible administration. Features that are still in development include eye-tracking, 

ambient sound monitoring and communication with EEG systems. Furthermore, many 

other tasks, including those with moving stimuli are under development. PLFest is 
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currently in beta stage, and we encourage readers to contact the authors for instructions 

on how best to use the application. 

 

Figure 2.1. Examples of tasks supported by the platform: In addition to basic visual tasks, 

the application can support a wide range of cognitive tasks such as matrix reasoning, n-back 

working memory task, cancellation and complex figure tasks, among many others are not 

displayed in the figure.   

As a first step towards validation of the PLFest platform, here we examine reliability and 

consistency measurements of Visual Acuity (VA) and Contrast Sensitivity (CS), two of the 

most widely used tasks in PL. We tested these measures on a standard lab setup (monitor 

driven by a laptop) and a tablet setup. Additionally, we also measured the performance in 

the CS Task on a conventional display monitor (Cambridge Research Systems Display++) 

driven by a tablet and contrasted it with the performance on the tablet setup. VA measures 

the ability to distinguish fine structure of objects, usually at high contrasts, and is 

considered a fundamental measure of spatial vision. CS meanwhile measures the ability to 
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identify differences between the luminance of the object and its background and is 

considered a fundamental measure of light sensitivity.  VA and CS are foundational in 

evaluating visual performance in clinical and experimental settings and can be predictors of 

visual pathologies such as cataracts, glaucoma, diabetic retinopathy and macular 

degeneration (Brown et al., 2002; Howes et al., 1982; Klein et al., 1995; Lin et al., 2018; 

Ross et al., 1984; Sabour-Pickett et al., 2013). Critically, both tests are also particularly 

sensitive to display parameters, with visual acuity requiring high-pixel density and spatial 

precision, and contrast sensitivity requiring linearization display gammas and precision of 

luminance values. As we will see below, results showed equal-to-greater reliability of 

PLFest both on tests of acuity and contrast sensitivity on an iPad Pro compared to LCD 

display as well as good inter-device reliability of CS measures on all three displays. These 

data support the use of PLFest as a platform for perceptual learning research. 

METHODS: 

Participants: 50 undergraduate students (16 M, 1 Other; Mean age = 19.1 yrs [SD = 1.16]) 

at the University of California, Riverside (UCR) participated in the study comparing the 

tablet and a standard lab setup (LG monitor). For measuring the consistency across the 

tablet and Display++ devices we additionally recruited 48 undergraduate students (21 M; 

Mean age = 20.7 yrs [SD = 4.6]) at UCR. Written and informed consent was obtained from 

all participants in the study and all participants were given research credits for 

participation. All participants reported normal or correct to normal vision (= or > 20/40) 

and the study was approved by the IRB of UC Riverside. 
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Outlier Exclusion: Thresholds were calculated by taking the average of the last 6 reversal 

values of participant performance in the session phase for each task and on each device. 

We employed a 2-step outlier exclusion for the data collected in the study. The first step 

involved excluding participants whose thresholds were above 10% contrast (> -1 logCS) 

and 0.3 logMAR (translating to a Snellen acuity of 20/40) respectively. This was performed 

to exclude thresholds that were more likely due to attentional lapses or general issues with 

task comprehension and does not reflect task performance. The second step excluded 

participants based on the distance with respect to the dispersion of mean i.e., thresholds ± 3 

SD of the mean were excluded. The total N for the two tasks after exclusions were 41 (for 

CS task) participants and 48 (for VA task) in the study comparing performance between the 

tablet and LG monitor. Three participants were excluded from the analyses comparing 

performance of participants between the tablet and Display++ device for the CS task.  

Set up: Participants in the condition comparing the tablet and a standard lab setup 

performed the tasks on a Tablet (2021 Apple iPad pro-12.9’’ with a resolution of 2048 x 

2732 and refresh rate of 120Hz) and a Monitor (LG monitor with a resolution of 1920 x 

1080 and refresh rate of 120Hz) driven by a separate laptop (Alienware, Dell Inc.). For 

participants in the condition contrasting a more conventional display device with the tablet, 

we measured performance on a Cambridge Research Systems Display++ that was driven 

directly by the 2021 Apple iPad Pro. Participants performed under low-light conditions, 

while the background luminance of both devices was matched (92.5 cd/m2, background 

luminance of Display++ and iPad was matched at 74.7 cd/m2). Head and chin rests were 

used with the devices to minimize discrepancies in viewing distance across participants. 
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The tablet was mounted on a stand and placed at a viewing distance of 50 cm, the LG 

monitor was placed at a distance of 67 cm and the Display++ screen at 91 cm in order to 

maintain equal size of the stimulus in visual angle across all devices. Participants were 

provided with headphones for auditory feedback, and they recorded their responses using 

the arrow keys on a keypad. 

Procedure: Participants performed a 1-hour session where they were tested on two tasks: 

1) CS and 2) VA. They performed two runs of each task on two devices: monitor (LG 

monitor or Display++) and tablet. Prior to performing the full session, participants were 

briefly exposed to each task on both devices in order to ensure they understood the tasks 

and knew what the stimuli would look like on both devices. The overall study design is 

shown in Figure 2.2. 

  

Figure 2.2. Overview of study design. The red and black boxes denote specific devices (i.e., 

monitor and tablet), based on the order of each device presented to the participant). Prior to 

beginning the experiment, participants were required to practice both the tasks on each of the 

devices after which they completed Run 1 on each device before completing Run 2 on the devices. 

The order of the tasks performed was kept constant (i.e., CS followed by VA) throughout the study. 

The order of devices was counterbalanced across participants. Participants always 

performed the CS task followed by the VA task during the practice and in each of the two 

runs.  

Tasks: The details of the two tasks used in the study are as follows: 
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CS Task: This test uses centrally presented Gabor patches with a spatial frequency of 6 cpd 

tilted at either 45° or 135° to estimate contrast sensitivity (Figure 2.3A). Participants were 

required to indicate the direction of tilt of the Gabor using the left/ right arrow keys on the 

keypad. Participants first performed a 2-stage practice of this task on each device where the 

first stage consisted of a total of 10 trials during which the stimulus was presented with 

progressive difficulty starting at a value of -0.4 logCS with a step factor of 0.3 log units. 

This was followed by the second stage that consisted of a conventional 2 down 1 up 

staircase algorithm terminating after 20 trials, starting at a value of -0.1 logCS and a step 

size of 0.3 log units. Once practice was completed on both the devices, participants 

performed a longer version of this task. In order to mitigate the potential effects of cold-

start performance as well as device and task switching effects, participants first performed 

the two-stage practice as mentioned above prior to engaging in the main task. The main 

task employed a 2-stage conventional 3 down/ 1 up staircase with a step factor of 0.3 log 

units until 3 reversals (stage 1), after which the step factor remained 0.1 log units (stage 2) 

until task completion. 

When measuring the consistency between the iPad and Display++ devices, the general 

structure of the contrast task was the same as mentioned above. The only difference is that 

a blockwise staircase was used for the main task where 10 mini blocks of 6 trials were 

implemented with each of the 6 trials corresponding to 6 different orientations of the Gabor 

(22.5°, 45°, 67.5°, 112.5°, 135°, and 157.5°) in random order. Contrast of the Gabors 

stepped down (i.e., more difficult) when there were 1 or fewer errors within the block, 

stayed the same if there were 2 errors and stepped up (i.e., easier) when 3 or more errors 
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were made within each block. This allowed for maintaining the performance between 66% 

and 83% as an average across the orientations. In this case data was averaged across the 

blocks to ensure that there were adequate numbers of steps used to obtain a threshold. 

Manipulations to the CS task structure were made such that it is consistent with a larger 

clinical study that is currently ongoing in the lab. Of note, data depicting contrast 

thresholds in both the Tablet and Display++ devices shown in Figure 6 was collected using 

this structure of the CS task. 

VA Task: In this test, a block letter C (Sloan Font) is presented in one of four orientations 

(with the gap of the C facing up, down, right or left) as shown in Figure 2.3B. Participants 

were required to indicate the side of the gap using the up, down, right/ left arrow keys on 

the keypad. The structure of this task was slightly different from the CS task with two main 

stages. In alignment with the CS task, participants first performed a 2-stage practice on 

both the devices where the first stage comprised a total of 12 trials with progressive 

difficulty (1.3, 1.1, 0.9, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.2 logMAR units) followed 

by a conventional 2 down 1 up staircase in the second stage with a starting value of 0.5 

logMAR and a step factor of 0.2 log units that terminated after 20 trials. Post the 

completion of practice on both the devices, participants performed the first stage of the 

practice followed by the main task which employed a conventional 3 down 1 up staircase 

that terminated after 60 trials. Similar to the CS task, here, the main task also consisted of 2 

stages where we used a step factor of 0.2 log units until 3 reversals (stage 1) after which the 

step factor remained at 0.1 log units (stage 2) until completion. 
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Figure 2.3. CS (A) and VA (B) task paradigms. Participants respond to the target orientation 

using the arrow keys on a keypad and receive auditory feedback based on the accuracy of their 

response i.e., high pitch pleasant tone for correct and a low beep for incorrect responses. 

RESULTS: 

We first examine within-device reliability (i.e., repeatability on the same device), followed 

by inter-device reliability (i.e., consistency of the measurements across platforms) on each 

of the tasks respectively. 

Within–device Reliability: 

The first question we asked was whether PLFest leads to reliable, repeatable measures 

within each device on which it is run. 

Contrast Sensitivity: Within-device reliability of the CS task on the Monitor Figure 2.4A) 

and the Tablet (Figure 2.4B), respectively showed correlations of moderate magnitude for 

both devices rMonitor (39) = 0.72, pMonitor < 0.001; rTablet (39) = 0.6, pTablet < 0.001. To 



39 

 

understand these relationships in more detail, we examined Bland-Altman’s limits of 

agreement (LoA), which evaluates the difference in thresholds (Run 2 – Run 1) between 

the two runs as a function of the average thresholds (mean of test-retest) across the two 

runs (Altman & Bland, 2017; Bland & Altman, 1999). To illustrate the between-subject 

variability of threshold estimation, the mean across runs is shown on the x axis to provide a 

single point estimate for each participant in terms of their overall estimated threshold. To 

display the within-subject variability of the predicted threshold, the difference between the 

two runs is plotted on the y axis to provide a single point estimate of the extent of 

divergence of performance between the two runs. The main point estimate of the 

systematic bias in the measurement across sessions is represented by the distance between 

the mean of these discrepancies, which is depicted as a straight line perpendicular to the y 

axis and symbolizes zero (zero = perfect agreement). Plotted as dotted lines, the 95% LoA 

[±1.96 SD (difference between sessions)] represents an estimate of the region in which 

95% of the within-subject, between-run changes of threshold estimates are likely to be 

seen. As observed from figures 2.4C and 2.4D, the mean difference between the runs were 

close to 0 in all of the within-device comparisons indicative of less systematic bias within 

the two devices. Overall, the data shows that CS tests were reliable on both platforms. 
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Figure 2.4. Performance on CS Task within (A-D) and between (E & F) devices. Participant 

thresholds in run 1 (x axis) are plotted against their thresholds in run 2 (y axis) on the Monitor (A) 

and Tablet (B) devices respectively. Bland-Altman LoA for within-device thresholds on the 

Monitor (C) and Tablet (D) tasks. The mean threshold across both runs (x axis) is plotted against 

the difference between the two runs (y axis). Solid line denotes the mean difference between runs 

and the dotted lines indicate 95% LoA. A negative value on the y axis denotes better performance 

on the second run for both tasks. Between device correlations and LoA plots can be observed in the 

right most panel (E & F) respectively. Here participant thresholds were averaged across both runs 

for each device and performance were correlated between the two devices (E). Bland-Altman LoA 

for between-device comparisons (F) shows the mean threshold across both devices (x axis) plotted 

against the difference between the two devices (y axis). Solid line denotes the mean difference 

between the devices and the dotted lines indicate 95% LoA. Here, a positive value on the y axis 

denotes better performance on the Tablet device. 

Visual Acuity: Within-device reliability of the VA task on the Monitor (Figure 2.5A) and 

the Tablet (Figure 2.5B), respectively, showed a correlation of moderate magnitude in the 

Tablet (rTablet (46) = 0.7, pTablet < 0.001), but poor reliability on the Monitor for this task ( 

rMonitor(46) = 0.24, pMonitor = 0.1). A closer examination of the LoA plots for test-retest 
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reliability on the Monitor (figure 2.5C) reveal a more dispersed distribution of differences 

in performance between the two runs with a low mean difference (bias = 0.01) whereas a 

more clustered distribution for the Tablet (figure 2.5D) device with a mean difference of 

0.02. A possible explanation for this may be the lower resolution of the monitor compared 

to the tablet, however these data show that PLFest is producing reliable data on the tablet 

platform for visual acuity measures. 
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Figure 2.5. Performance on VA Task within (A-D) and between (E & F) devices. Participant 

thresholds in run 1 (x axis) are plotted against their thresholds in run 2 (y axis) on the Monitor (A) 

and Tablet (B) devices respectively. Bland-Altman LoA for within-device thresholds on the 

Monitor (C) and Tablet (D) tasks. The mean threshold across both runs (x axis) is plotted against 

the difference between the two runs (y axis). Solid line denotes the mean difference between runs 

and the dotted lines indicate 95% LoA. A negative value on the y axis denotes better performance 

on the second run for both tasks. Between device correlations and LoA plots can be observed in the 

right most panel (E & F) respectively. Here participant thresholds were averaged across both runs 

for each device and performance were correlated between the two devices (E). Bland-Altman LoA 

for between-device comparisons (F) shows the mean threshold across both devices (x axis) plotted 

against the difference between the two devices (y axis). Solid line denotes the mean difference 

between the devices and the dotted lines indicate 95% LoA. Here, a positive value on the y axis 

denotes better performance on the Tablet device. 

Inter-Device Reliability 

We next asked whether PLFest, when running on a tablet, assesses the same constructs as a 

traditional vision science setup using a desktop monitor. To examine this, we measured 

inter-device reliability (e.g. correlations between participants' performance across the two 
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devices) for CS (Figure 2.4E) and VA (Figure 2.5E).  In this analysis, we averaged the 

thresholds across both runs for each participant and task. We observed moderate 

correlations for both CS (rCS = 0.74, p < 0.001) and (rVA = 0.55, p < 0.001) between the two 

devices that are within range of the within-device reliabilities for each test. Figures 2.4F 

and 2.5F show the Bland-Altman plots, for the CS and VA tasks respectively, to test for the 

consistency in measuring the performance on both tasks between the two devices. To do 

this, we averaged the thresholds across both runs for each participant and task. The x axis 

shows the average thresholds of the participants across both the devices and the y axis 

represents the difference in thresholds between the monitor and tablet. A positive bias in 

both the CS and VA task is indicative of better performance on the tablet in comparison to 

the monitor. From these graphs it can be observed that participants perform better on the 

Tablet when compared to the Monitor on the VA task in contrast to the CS task (biasCS = -

0.13, biasVA = 0.14, although the bias is small in both cases), perhaps due to the greater 

spatial and luminance resolution on the tablet compared to the desktop display. 

To further test whether running PLFest on a Tablet leads to reliable inter-device 

performance, we compared PLFest on the tablet with a more conventional Display++ 

monitor used in vision science, and one that is specialized to produce high contrast depth. 

To do this, we tested a modified version of the CS task as indicated in the methods.  Figure 

2.6A shows the moderate and significant correlations (rCS = 0.6, p < 0.001) between the 

thresholds on the Tablet and the Display++ devices. It can also be observed from the 

Bland-Altman plots (figure 2.6B) as indicated by the small positive bias (biasCS = 0.02) that 

participants performed slightly better on the Tablet compared to the Display++. These 
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results suggest that the iPad can produce comparative data to the research grade Display++ 

system.    

 

Figure 2.6. Performance on CS Task between the Tablet and Display++ devices. Between 

device correlations and LoA plots can be observed in the right most panel (A & B) respectively. 

Here participant thresholds were averaged across both runs for each device and performance were 

correlated between the two devices (A). Bland-Altman LoA for between-device comparisons (B) 

shows the mean threshold across both devices (x axis) plotted against the difference between the 

two devices (y axis). Solid line denotes the mean difference between the devices and the dotted 

lines indicate 95% LoA. Here, a positive value on the y axis denotes better performance on the 

Tablet device. 

DISCUSSION: 

The goal of this study was to introduce and validate PLFest, a novel, cross-platform app to 

support perceptual learning research. Here we found that measures of Contrast Sensitivity 

and Visual Acuity show acceptable within-device reliability when tested on an iPad tablet. 

Further tests of inter-device reliability show that the iPad produces results that are 

consistent with those found on consumer grade LCD and the research grade Display++ 
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system (although both systems have lower spatial resolution than the iPad). These results 

show that PLFest is a reliable platform for visual psychophysics and can support PL 

research. 

Over the last several years, multiple tests measuring CS and VA have been developed on 

multiple platforms such as computer devices and made commercially available for testing. 

However, it was only until recently that these tests were created for use on remote devices 

such as iPads and Tablets (Habtamu et al., 2019; Kollbaum et al., 2014; Labiris et al., 

2023). For example, (Habtamu et al., 2019) developed and validated a smartphone-based 

CS test employing the tumbling E Pelli-Robson CS test and PeekCS test on Android 

phones and observed high test-retest correlations. Similarly, (Kollbaum et al., 2014) 

validated an iPad-based Letter CS test and compared it to the Pelli-Robson test and 

Freiburg Acuity and Contrast Test (FrACT) and observed good repeatability. On the other 

hand, (Labiris et al., 2023) recently validated a web based Democritus Digital Acuity and 

Reading test (DDART) against conventionally used distance vision charts across multiple 

sites with high n (543 participants) and noticed reliable measurements in both normal and 

low vision patients. While all of these studies show reliable measures akin to ours, our 

platform offers a one-stop solution to conduct multiple vision-based tests on a single 

platform. Further, it is structured to facilitate both testing and perceptual learning training 

within the same platform. 

The development of PLFest builds upon other developments cropping out from the 

COVID-19 pandemic emphasizing the need for reliable and remote testing platforms 

https://paperpile.com/c/CeMV1d/W4YR
https://paperpile.com/c/CeMV1d/TXRM
https://paperpile.com/c/CeMV1d/TWfZ
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worldwide (Collins et al., 2022; Yaghoubi et al., 2022) and telehealth approaches more 

generally. This has led our research group to develop several tools to measure several 

different auditory (Lelo de Larrea-Mancera et al., 2020) and cognitive functions (Pahor et 

al., 2022, 2019) on tablet-based devices that are reliable and portable to reach more diverse 

populations and adequately support comparisons across different approaches developed by 

different research groups. PLFest is built within the same test framework as these other 

tasks and while in the current paper we emphasized measurements of basic visual 

functions, the app is capable of doing more than just measuring VA and CS. Indeed, the 

current version of PLFest includes visual search tasks, orientation discrimination, contour 

integration, numerous psychoacoustic tasks, cognitive and neuropsychological tasks, for 

visual, auditory perceptual learning and cognitive training. 

While these results are encouraging, there are also some limitations to the current study. 

First, we notice that a few participants were outliers (i.e., had unreliable scores/contrast 

thresholds above 10%). This is most likely due to issues with task instructions or lapses of 

attention. This is not uncommon in psychophysical research with undergraduate students; 

however, it emphasizes the importance of uniform instructions across participants, 

sufficient breaks between tasks and potentially employing performance cutoffs during 

practice that could be informative of and further mitigate such occurrences. These issues 

are being addressed in versions of PLFest currently being developed, specifically via the 

implementation of animated tutorials and automatic checks for outlying performance. 

Closer examination of the data from the VA task data suggests that the tablet might be 

more reliable than the monitor, which is likely a consequence of the lower poor resolution 

https://paperpile.com/c/CeMV1d/EHtH+MUa6
https://paperpile.com/c/CeMV1d/1WJP
https://paperpile.com/c/CeMV1d/WDfa+ErQW
https://paperpile.com/c/CeMV1d/WDfa+ErQW
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on the monitor screen compared to the iPad. This could have led to the pixel density not 

being high enough to capture an acuity better than 20/25, thus contributing to poor VA 

thresholds when measured on this device. Future use of PLFest in combination with 

desktop monitors should use displays of higher resolution (or have participants at a further 

distance). 

The PLFest app is currently validated on iPad devices, due to their high resolution and 

refresh rate, allowing for high quality rendering of the stimuli. In terms of field of view, at 

the distance (50 cm) it was tested in the current study, the screen subtended approximately 

32 x 24 degrees of visual angle and it can be placed as close as 35 cm (subtending 

approximately 46 x 34 degrees of visual angle) without sacrificing conform and usability. 

Further, the app is cross-platform and can also run on Mac and PC Desktops and also other 

iOS and Android tablets and even phones, and we plan future studies to validate across a 

larger range of platforms. While the platform currently does not include visual assessments 

with moving stimuli, these are planned for future studies, and given the high spatial and 

temporal resolution of tablets and phones (catering users that expect high-fidelity movies) 

we are confident that psychophysics related to visual motion can be conducted with 

psychophysical precision on mobile platforms. Further, with remote use in mind, next steps 

will include moving beyond the present study’s in-lab setting and assess reliability and 

consistency of PLFest in remote testing conditions that are susceptible to several 

uncontrolled environmental factors such as lighting, viewing distance, screen brightness 

etc. We note that this has already been accomplished in the case of psychoacoustics (Lelo 
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de Larrea-Mancera et al., 2022), which is also quite sensitive to the perceptual environment 

in which testing is conducted. 

Overall, PLFest shows great promise as a reliable cross-platform tool to promote open 

research in perceptual learning. As it is publicly available and a free to use platform, 

PLFest opens up a multitude of opportunities to conduct a wide range of vision science 

experiments both in-in-lab as well as in remote settings, which can facilitate research in 

underserved communities. Further the platform supports straightforward localization to 

different languages. PLFest is structured both to facilitate easy reproducibility of perceptual 

learning research, as well as comparisons across studies through the use of common 

outcome measures. Further the platform can support modeling both through its 

standardization of data structures as well as through APIs to directly interact with models 

that are currently under development. Overall, PLFest can open up new possibilities for 

studying vision and perceptual learning and help address the long-standing issues of 

replicability and reproducibility in the field.  
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Chapter 3: Gaze contingent display framework for Perceptual Learning Research 

This chapter is a methodological paper discussing in detail the development of a gaze 

contingent display framework to conduct perceptual learning and oculomotor research in 

healthy individuals with simulated central vision loss (s-CVL) as a model. s-CVL is an 

excellent model to test PL paradigms as it serves as a blank canvas for testing specificity 

and generalizability of perceptual training paradigms. Here, we elaborate on the design 

and methodological considerations for the implementation and testing of a wide range of 

perceptual tasks within this framework. Specifically, we describe in detail (1) the 

hardware and software requirements for designing this framework, (2) experimental 

design for priming oculomotor behavior under modified viewing conditions of s-CVL, 

and (3) methodological considerations pertaining to the design of psychophysical 

adaptive procedures for measuring performance on a wide range of perceptual tasks 

within this framework. We show representative results delineating the perceptual and 

oculomotor behavioral performance of two participants using this model. Additionally, 

we describe how this framework can be adapted for vision rehabilitation in patients with 

age-related macular degeneration. The primary goal of this chapter is to inform future 

studies aiming to conduct and/or use gaze contingent displays for the study of 

spontaneous and training-induced compensatory oculomotor strategies in conditions of 

central vision loss with a translational angle. Currently, we are in the process of 

collecting data from participants as a part of a clinical study investigating the behavioral 

and neural underpinnings of training related specificity and transfer of PL, in 
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collaboration with Dr. Kristina. M. Visscher at the University of Alabama at 

Birmingham.  

My contribution to this work largely involves designing this framework and ensuring its 

adaptability and flexibility for supporting an array of perceptual paradigms. This work is 

currently in the process of being submitted to the Journal of Visualized Experiments, and 

while there are several co-authors listed as a part of the manuscript preparation, I am the 

sole contributor towards the preparation and writing of this chapter as a part of my 

dissertation. 
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ABSTRACT: 

Age-related Macular Degeneration (MD) is one of the leading causes of vision 

impairment in the western world. While there exist several interventions for visual 

rehabilitation in MD patients, a growing body of research focuses on simulating central 

vision loss in healthy individuals using gaze contingent paradigms. Research in normal 

sighted individuals with simulated central vision loss (s-CVL) offers a new perspective 

into designing rehabilitation for MD due to similarities in the oculomotor and 

compensatory behavior observed in the healthy individuals and patient population. The 

current paper focuses on the design and development of a comprehensive framework for 

conducting gaze contingent studies for perceptual learning in s-CVL. Specifically, we 

focus on highlighting the (1) hardware considerations (i.e., combined latency of the eye-

tracker, operating systems and display screens), and (2) methodological considerations 

(i.e., training participants to view with central vision occluders, providing precise task 

directives, and tailored adaptive psychophysical procedures) for designing a wide range 

of perceptual tasks in healthy young individuals with s-CVL. We also briefly discuss 

several oculomotor metrics that can be used to both qualitatively and quantitatively 

analyze eye-movement and fixation strategies under these modified viewing conditions as 

well as discuss how this framework can be adapted for testing MD patients. 
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INTRODUCTION: 

Age - related Macular Degeneration (MD) is the main cause of vision impairment in the 

western world, and it is projected to affect 248 million people worldwide by 2040 (Wong 

et al., 2014). Late-stage MD is characterized by damage to the photoreceptors in the 

center of the visual field (fovea) which often leads to a retinal scotoma (Figure 1A), with 

detrimental effects on day-to-day tasks that rely on intact vision, such as navigation 

(Bowers et al., 2005), reading (Bullimore & Bailey, 1995) and recognizing faces 

(Bernard & Chung, 2016), impacting the quality of life of these individuals (Šiaudvytytė 

et al., 2012). MD patients, deprived of their central vision, rely on their visual periphery 

to perform any visual task (Figure 3.1A and C). The large majority of patients with MD 

spontaneously develop compensatory strategies like the adoption of a peripheral retinal 

region in substitution of the fovea (Figure 3.1C). This region, referred to as the preferred 

retinal locus (PRL) (Fletcher & Schuchard, 1997; Mackensen, 1966), is often 

systematically used by patients in tasks involving fixation, reading, face recognition, and 

effectively takes over the functionality of the fovea as the fixation and oculomotor 

reference. However, loss of central vision deprives the visual system not only of its 

retinal region with the highest resolution, but also of its oculomotor and attentional 

reference. Indeed, there is evidence that the PRL, in patients with a long history of MD, 

takes over the oculomotor referencing duties of the fovea (White & Bedell, 1990; 

Whittaker & Cummings, 1990). Additionally, neuroimaging data suggests that 

consequences of central vision loss (CVL) can alter the functional connectivity between 

early visual cortex and the parietal, frontal and cognitive control networks relying on 
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vision (Sabbah et al., 2017). Taken together, these pieces of evidence suggest that loss of 

central vision has far-reaching consequences in the brain, well beyond visual resolution 

and the early visual cortex. 

 

Figure 3.1. Visual representation of the scotoma: A) representation of the visual field of a 

patient with CVL. B) an example of a simulated scotoma with visible boundaries. A spontaneous 

compensatory strategy is the development of a preferred retinal locus (PRL), an eccentric 

peripheral region close to the border of the scotoma, for fixating, viewing and solving visually 

demanding tasks. (C & D) a possible location where the patient’s (C) and artificial (D) scotoma 

might be placed in order to reveal the surfer’s face. Of note, the clear and visible boundaries of 

the artificial scotoma might contribute to the speeded development of PRLs (Walsh & Liu, 2014). 

Figure adapted from (Maniglia et al., 2021). 

Promising solutions for MD come from disciplines such as optometry and vision science, 

and generally fall under two broad categories: oculomotor and perceptual. Oculomotor 

approaches focus on teaching patients to improve eye movement control and 

coordination, including teaching them to use a more adequate PRL (Morales et al., 2020; 

Nilsson, n.d.; Nilsson et al., 2003; Verdina et al., 2013, 2020) while perceptual 

interventions focus on improving the general peripheral visual abilities or vision within 

https://paperpile.com/c/EW1JRA/bL1cB
https://paperpile.com/c/EW1JRA/dtsg
https://paperpile.com/c/EW1JRA/XCYk
https://paperpile.com/c/EW1JRA/HXfBl+SstT3+UNXmc+NHQiw+SqC33
https://paperpile.com/c/EW1JRA/HXfBl+SstT3+UNXmc+NHQiw+SqC33
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the PRL, helping with alleviating the limitation of peripheral vision (Chung, 2011; 

Maniglia et al., 2016; Maniglia, Soler, et al., 2020; Plank et al., 2014; Tarita-Nistor et al., 

2014). Prior studies focused on oculomotor interventions have found improvements in 

reading speed, fixation stability and visual acuity in MD patients, where patients were 

trained with the help of eye tracking technology or computerized programs (Morales et 

al., 2015, 2020; Nilsson et al., 2003; Verdina et al., 2013, 2020). However, in these 

approaches, the mechanisms of neural plasticity are not well studied, and these 

interventions vary greatly based on the expertise and subjective approach of therapists. 

On the other hand, literature in perceptual interventions stem from the Perceptual 

Learning (PL) field which focuses on improving perceptual skills through task practice 

(Sagi, 2011). Visual training in this domain has shown improvements in visual acuity, 

contrast sensitivity and crowding in the PRL of MD patients (Chung, 2011; Maniglia et 

al., 2016; Maniglia, Soler, et al., 2020; Plank et al., 2014). While this approach is 

promising, to date they have only shown moderate effectiveness in patients, particularly 

when considering generalization of learning, which is a fundamental outcome for clinical 

interventions. 

Recent years have seen the emergence of a paradigm for the study of eye movements in 

central vision loss that makes use of eye-tracking based gaze contingent displays (Aguilar 

& Castet, 2011; Barraza-Bernal et al., 2017; Bertera, 1988; Chen et al., 2019; Costela et 

al., 2020; Fine & Rubin, 1999; Kwon et al., 2013; Liu & Kwon, 2016; Maniglia et al., 

2019; Maniglia, Jogin, et al., 2020; Xie et al., 2020). This approach, which utilizes a 

simulated scotoma (i.e., an opaque (or blurry) occluder to obstruct the central region of 

https://paperpile.com/c/EW1JRA/YRIEk+XkhL5+mLbQq+KE6hU+1Fdlu
https://paperpile.com/c/EW1JRA/YRIEk+XkhL5+mLbQq+KE6hU+1Fdlu
https://paperpile.com/c/EW1JRA/YRIEk+XkhL5+mLbQq+KE6hU+1Fdlu
https://paperpile.com/c/EW1JRA/SstT3+Eu1Jx+UNXmc+NHQiw+SqC33
https://paperpile.com/c/EW1JRA/SstT3+Eu1Jx+UNXmc+NHQiw+SqC33
https://paperpile.com/c/EW1JRA/rwrqm
https://paperpile.com/c/EW1JRA/1Fdlu+XkhL5+KE6hU+mLbQq
https://paperpile.com/c/EW1JRA/1Fdlu+XkhL5+KE6hU+mLbQq
https://paperpile.com/c/EW1JRA/4Gc5+HQ5c+oEhB+azZz+dJfU+3Djc+ZDt6+gUEn+dYAo+lYqt+QWHv
https://paperpile.com/c/EW1JRA/4Gc5+HQ5c+oEhB+azZz+dJfU+3Djc+ZDt6+gUEn+dYAo+lYqt+QWHv
https://paperpile.com/c/EW1JRA/4Gc5+HQ5c+oEhB+azZz+dJfU+3Djc+ZDt6+gUEn+dYAo+lYqt+QWHv
https://paperpile.com/c/EW1JRA/4Gc5+HQ5c+oEhB+azZz+dJfU+3Djc+ZDt6+gUEn+dYAo+lYqt+QWHv
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the visual field) in healthy individuals (Figure 3.1B and D), has several advantages: it 

allows for combining some targeted insights from vision science and optometry; and, it 

addresses issues of recruitment and compliance of clinical research, thereby offering a 

promising alternative to the direct involvement of MD patients. While there exist several 

differences between CVL and simulated scotoma, some of the oculomotor behavior 

observed in the former can be seen in the latter (Kwon et al., 2013; Walsh & Liu, 2014), 

suggesting that some aspects of compensatory oculomotor strategies can be elicited by 

the gaze-contingent paradigm.  

This methodological paper presents in detail the design, development and use of a gaze 

contingent framework that encompasses a multidimensional approach of perceptual 

learning (Figure 3.2). By extracting multiple oculomotor metrics that we developed 

(Maniglia, Jogin, et al., 2020), we can better understand mechanisms of PRL 

development, allowing for the design of personalized training tailored to the profile of 

each patient, and potentially identify strategies observed in healthy individuals that can 

be taught to patients. This approach particularly focuses on developing training strategies 

and assessing visual functions that takes into account the multitude of systems and 

networks affected by CVL, as shown in Figure 3.2 (adapted from (Maniglia, Jogin, et al., 

2020)). The proposed intervention operates on all levels of visual processing affected by 

CVL, specifically low-level vision, oculomotor control, and cognitive control. 

Preliminary tests conducted using a modified version of this integrated approach in both 

healthy controls and patient population showed evidence of statistically reliable gains on 

visual acuity (for more details on experimental design and results, refer to (Maniglia et 

https://paperpile.com/c/EW1JRA/dJfU+dtsg
https://paperpile.com/c/EW1JRA/oEhB
https://paperpile.com/c/EW1JRA/oEhB
https://paperpile.com/c/EW1JRA/oEhB
https://paperpile.com/c/EW1JRA/XCYk
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al., 2021). With these observations in mind, we have made several modifications to the 

training and assessment tasks discussed in this paper (i.e., adding more comprehensive 

training and assessment tasks, designing mindful strategies for introduction of healthy 

individuals to the modified viewing conditions, implementing uniform instructions, and 

meticulously addressing psychophysical demands of different tasks). It is important to 

note however, that there are differences between pathological and simulated scotomas. 

Particularly, the simulated scotomas are usually uniform and have visible boundaries 

(Van der Stigchel et al., 2013; Walsh & Liu, 2014), whereas in patients, the shape and 

size of these scotomas often expand with time and are irregular in shape (Fletcher et al., 

2012; Safran & Landis, 1999). The current paper aims at describing this framework and 

showcasing how this model of gaze contingent central vision loss can be used to test a 

multitude of perceptual, oculomotor, and attentional performances in healthy individuals 

and, with some modifications, in MD patients. A novel aspect of our paradigm is its 

ability to support a wide range of training and assessment tasks within a single 

framework for perceptual learning research in both healthy and patient populations.  

https://paperpile.com/c/EW1JRA/XCYk
https://paperpile.com/c/EW1JRA/cGE4+dtsg
https://paperpile.com/c/EW1JRA/n6GC+glok
https://paperpile.com/c/EW1JRA/n6GC+glok
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Figure 3.2. Multidimensional approach to vision rehabilitation in MD. This figure illustrates 

how interconnected dimensions such as visual perception, oculomotor and cognitive control 

contribute to effective vision. (Adapted with permission from Maniglia et al, 2021). 

In designing such a framework, it is important to consider the technical and 

psychophysical limitations that accompany it. Particularly relevant are the technical 

challenges due to the large variety of display devices, eye trackers, and operating systems 

available to design such a framework (Bridges et al., 2020; Lin et al., 2022; Rohr & 

Wagner, 2020). Gaze contingent display relies on the perception of a smooth, short 

latency movement of the scotoma, to convey the perception of central vision obstruction. 

Thus, it is crucial that 1) the resolution of the monitor and its refresh rate are high, 2) the 

eye tracker is fast and accurate, and 3) the overall latency, from eye position information 

registered by the eye tracker to the updated rendering of the scotoma, is short. 

Each of the hardware systems that concur to generate the gaze contingent display 

independently adds latency to the rendering of the scotoma on the computer screens. 

While this is a known issue in the field (i.e., (Aguilar & Castet, 2011) propose strategies 

https://paperpile.com/c/EW1JRA/CbX8+vIEV+09Hg
https://paperpile.com/c/EW1JRA/CbX8+vIEV+09Hg
https://paperpile.com/c/EW1JRA/QWHv
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to reduce overall latency, accommodate blinks, and slow eye movements, and (Saunders 

& Woods, 2014) observed large latencies contributed by different displays), to date, there 

has not been an exhaustive investigation of the relationship between the participants' 

gaze, and the rendering of the actual gaze contingent scotoma across different 

combinations of systems used in these studies. In the current study, we first characterized 

the latencies of different displays (CRT, Cambridge Research System Display++ 

monitor), eye trackers (Eyelink 1000 and VPixx), and operating systems (Mac iOS and 

Windows OS), using a method proposed by (Saunders and Wood, 2014), to identify the 

combination of systems that introduce the least latency for displaying gaze contingent 

scotomas. 

Finally, a systematic evaluation of performance within this framework requires a 

meticulous approach to the design of various assessment and training tasks. PL literature 

in general shows a large discrepancy in terms of adaptive procedures used to obtain 

measures of performance, as well as verbal and/or written instructions provided to the 

participants, both of which affect the participants performance on a given set of tasks 

(Marcus et al., 1996). In order to obtain reliable estimates of performance, it is important 

that healthy individuals are provided with clear and uniform instructions about the tasks, 

and engage in practice with simulated scotomas, as they are not experienced in using 

their peripheral vision to make judgements. Additionally, when designing a framework 

that supports a wide range of perceptual assessments and training, it is important to keep 

in mind specific demands of the tasks themselves (such as implementation of practice 

blocks and adaptive staircase procedures), that inturn reflect the performance of 

https://paperpile.com/c/EW1JRA/d9Lo
https://paperpile.com/c/EW1JRA/d9Lo
https://paperpile.com/c/EW1JRA/j0qeH
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participants within this paradigm. The proposed framework and accompanying 

methodologies aim to target these limitations by carefully considering specific parameters 

and outcome measures across multiple tasks. 

Overall, the current paper describes a comprehensive framework for the use of gaze 

contingent displays to study and train perceptual, oculomotor, and attentional 

performance in peripheral vision in healthy individuals, with a translational angle. We 

highlight the design-related and practical challenges associated with gaze contingent 

studies and propose some approaches to overcome such limitations. We also discuss 

methods to extract several metrics of oculomotor behavior in a cohort of healthy 

individuals trained in their peripheral vision, with a specific lens on aiding future studies 

aiming to develop such a framework for conducting PL research in simulated central 

vision loss.  

EXPERIMENTAL DESIGN: 

Measuring system latency: 

Gaze contingent displays rely on efficient transmission of information from the eye 

tracker to the stimulus generation software, in a continuous loop. The short latency of this 

setup is paramount to generate the perception of gaze contingency and approximate the 

visual experience of patients with CVL. Hardware and software constraints concur in 

limiting the use of gaze contingent display to specific combinations of equipment that 

constitute the ideal working system with the least combined latency to conduct such 
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experiments. As a first step, we measured the latency of different combinations of 

systems to identify the one which adds least latency for rendering gaze contingent 

scotomas. To do so, we employed the method described in (Saunders & Woods, 2014). 

Equipment: 

We used an Apple iPhone 12 with a refresh rate of 240 Hz for recording the screen 

during testing along with an InfraRed (IR) illuminator that effectively disrupts the IR 

signals of the eye tracker. Particularly the goal was to measure the time to the 

disappearance of the gaze contingent scotoma controlled by a participant (in this case, the 

author M.M) from the start of the IR illuminator. Two eye trackers (Eyelink 1000 and 

VPixx), two display devices (Cathode Ray Tube (CRT) monitor (refresh rate = 100 Hz) 

and Cambridge Research system (CRS), Display++ (refresh rate = 120 Hz)) along with 

two operating systems (Windows 10 and Mac iOS) were used in the experiment. 

Methods:  

The participant was seated in front of the eye tracker which is initially calibrated and 

validated using a standard 9-point calibration system. A gaze contingent scotoma of 10 

degrees of visual angle (dva) in size appears on the screen and is controlled by the 

participants eye movements. The experimenter then holds the IR illuminator close to the 

eye tracking camera lens. The illuminator when turned on causes an instantaneous loss of 

tracking which is displayed as the disappearance of the gaze contingent scotoma on the 

screen. The time between the switching on of the IR illuminator and the disappearance of 

https://paperpile.com/c/EW1JRA/d9Lo
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the scotoma was recorded (in frames and converted to milliseconds) across 20 trials for 

different combinations of systems. We first measured the latency of the more commonly 

used setup i.e., Eyelink 1000 along with a CRT monitor using Mac iOS (System 1). 

However, given the lack of further manufacturing of CRT monitors and an increasing 

number of vision science experiments conducted using linearized Display++ screens, we 

measured the latency for the same setup, substituting the CRT with a CRS Display++ 

monitor (System 2). We additionally tested the latency of the Eyelink 1000 with the CRS 

Display ++ monitor using the Windows OS (System 3). Lastly, we tested if the latency 

can be further reduced using a more sophisticated eye tracker i.e., VPixx system with the 

CRS Display++ monitor driven by Windows OS (System 4).  

Figure 3.3 shows the average latency measurements in milliseconds across 20 trials for 

each of the 4 combinations of systems. A One-Way ANOVA revealed significant 

differences between the different systems (F(3,76) = 147.46, p < 0.001). Post hoc 

comparison using t-test with Bonferroni correction indicated that the average latency of 

the Eyelink 1000 using CRS Display++ screen driven by MaciOS (Mean = 72.71, SD = 

12.79, p < 0.001) was significantly larger than the other 3 systems. Further, the average 

latency of the Eyelink 1000 using CRT screen, driven by MaciOS (Mean = 44.37, SD = 

8.58, p < 0.001) was significantly larger than both the Eyelink 1000 (Mean = 28.75, SD = 

2.99, p < 0.001) and VPixx eye trackers (Mean = 25, SD = 3.02, p < 0.001) coupled with 

CRS Display++ screen and driven by Windows OS respectively. While this indicates that 

using the Windows OS significantly improves latency compared to Mac iOS (consistent 

with prior studies, refer to (Bridges et al., 2020)), we did not observe any significant 

https://paperpile.com/c/EW1JRA/vIEV
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improvements on latency as a function of the eye tracker used (i.e., no significant 

differences between the Eyelink 1000 and VPixx), despite a qualitative shorter latency of 

the latter (Vpixx). Therefore, for designing our gaze contingent framework we used the 

VPixx eye tracker with the CRS Display++ screen and Windows OS.  

 

Figure 3.3. Latency across different systems: Average Latency measures across 20 trials in 4 

combinations of systems in milliseconds (ms). EL → Eyelink, CRT → Cathode Ray Tube, CRS 

→ Cambridge Research System, Display ++, Mac → Mac iOS, Win → Windows 10 OS. 

Simulating Central Vision Loss: 

The VPixx eye tracker records participants' gaze using a 2kHz binocular IR sensitive 

camera (TrackPixx3). The eye tracker sends out a near IR light that is reflected in the 

participants eyes and captured continuously using the camera to extract pupil size and 

corneal reflections. This information is then transmitted to the DataPixx box connected to 
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the computer and processed using MATLAB. Before any data is collected, it is 

imperative for the participants to undergo a nine-point calibration/ validation until the 

error is smaller than 1° on average. The DataPixx box receives triggers and timing signals 

from MATLAB Psychophysics ToolBox and precisely controls the timing of stimulus 

presentation. This continuous gaze information from the eye tracker is then used to draw 

the artificial simulated scotoma on the experimental monitor (CRS Display++) at a 

refresh rate of 120 Hz, where the participants gaze position corresponded to the center of 

the scotoma. The scotoma (6°-10° in size for different tasks, consistent with the range 

used in previous studies) is then drawn for every frame of the display thus allowing for 

the perception of a smooth moving central vision occluder. There is, however, a possible 

concern that the eye-tracking technology may not have at all times presented the artificial 

scotoma properly, perhaps allowing participants to get foveal glimpses of the target. To 

address this concern, we have implemented calibration checks within and between each 

task. In the event that the eye tracker loses the participant’s eye information (due to 

unexpected head movements away from the chin rest, or other technical issues), the 

calibration/ validation procedure is triggered and needs to be completed before 

continuing the task. This allows for the continued perception of s-CVL throughout task 

completion during both assessment and training.  

Addressing experimenter bias: 

Healthy individuals with intact foveal vision are seldom experienced in performing tasks 

using the visual periphery. While the concept of a central scotoma is simple to 
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experimenters, the same might not be true for naive participants. Therefore, clear 

instructions need to be provided to participants regarding the scotoma and the task itself. 

In our study, we aim to assess and train participants across a wide range of perceptual 

tasks encompassing different stimuli warranting for different viewing behaviors from 

participants. While verbal instructions by the experimenter have been provided in the 

past, prior studies in the field of psychology in general have shown significant effects of 

experimenter bias in these cases (Bridgeman et al., 1991; Rosenthal & Fode, 1963). Thus, 

to minimize this bias and provide participants with a more holistic understanding of the 

task, we designed instructional videos for each assessment and training task that highlight 

the sequence of events that takes place within a given trial (i.e., what the scotoma looks 

like, whether fixation is required, the nature of the stimulus presented, task difficulty, and 

how to respond to the stimulus). We particularly note that these instructional videos do 

not prime the participant to a specific viewing strategy or influence their behavioral 

performance but were only designed to explain the instructions to the participant in a 

visual format, circumventing discrepancies in verbal instructions provided.    

In addition to providing clear and uniform instructions, participants are also subjected to 

practice blocks (5-10 trials) before performing each assessment or training task 

(including but not limited to instances when any aspect of the stimuli or task demands 

changes) for familiarization and to allow for any clarifications regarding the task 

demands. Moreover, we ensure a double-blind assignment of each participant to different 

training conditions and also counterbalance the order of the assessment tasks across 

participants. 

https://paperpile.com/c/EW1JRA/UzO7+wfSw
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Implementation of the gaze contingent scotoma to test behavior: 

In healthy individuals, the oculomotor system continuously brings targets of interest to 

the fovea using ballistic eye movement called saccades. The fovea typically serves both 

as the locus for fixations and oculomotor reference for saccades (Kwon et al., 2013). 

However, in the case of simulated central vision loss, this ability is severely impaired due 

to the presence of an artificial scotoma occluding the fovea. Hence, it is important to 

allow participants to adapt and familiarize themselves to the “new viewing conditions”. A 

critical component is the ability to form stable fixations to maintain a clear and stable 

image on the retina for processing visual information. To aid the participants in fixation 

we utilized “fixation wedges”, that fanned out from the center of the screen along with a 

fixation box (white central box) within which the scotoma must be placed. Together, 

these aids ensure the fixation of the scotoma in the center so that the stimulus is presented 

at fixed eccentricities throughout all the tasks that require fixation. While these fixation 

aids are a modified version of the aids used in previous studies (Falsini et al., 2007; 

Kasten et al., 2010; Maniglia et al., 2018; Nilsson & Nilsson, 1986; Rosengarth et al., 

2013), it provides an added benefit for MD patients to recenter and acquire fixation 

owing to their compromised vision extending into the periphery (i.e., patient’s scotoma of 

specific shape and size that may not be circular as in s-CVL). Therefore, as a first step we 

design a fixation task that is simple and trains the participants to fixate within a central 

white box on the screen. Participants are required to direct the artificial scotoma 

(controlled using the eyes) to land within a central white box (fixation window, as shown 

in Figure 3.4) and maintain fixation for a specific duration while ignoring distracting 

https://paperpile.com/c/EW1JRA/dJfU
https://paperpile.com/c/EW1JRA/vxCD+XgLB+lIvX+i979+hVxG
https://paperpile.com/c/EW1JRA/vxCD+XgLB+lIvX+i979+hVxG
https://paperpile.com/c/EW1JRA/vxCD+XgLB+lIvX+i979+hVxG
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stimuli that might appear during a given trial (Figure 3.4).  The size of the fixation 

window and durations are varied between trials to reduce anticipatory effects. 

 

Figure 3.4. Fixation training Task: Here participants are required to maintain fixation of the 

artificial scotoma within the central white box presented on the screen. The intertrial intervals and 

fixation durations are jittered across trials. Once fixation conditions are satisfied, the participant is 

provided with auditory feedback indicating the end of the current trial and the beginning of the 

next. 

Secondly, in order to investigate the adaptive eye movements and fixation strategies 

developed in healthy individuals, it is important to first identify the PRL. Prior studies 

using the simulated central vision loss paradigm have observed the rapid development of 

PRLs in healthy individuals within a 1-hr session (Kwon et al., 2013). The benefits of 

jumpstarting the oculomotor behavior by identifying PRLs is two-fold: (1) it allows for 

participants to rereference their saccades to the PRL location allowing for better 

perception of targets, (2) it is rapid and offers us the ability to track performance of 

participants within the PRL (used for training) and at other untrained peripheral locations. 

Prior to participants performing any behavioral assessment or training tasks, we subject 

them to an induction task to allow for and analyze the development of PRLs. Participants 

are initially presented with visual instructions in the form of task videos prior to 

https://paperpile.com/c/EW1JRA/dJfU
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commencing the task. Following this, they engage in a brief practice session consisting of 

10 trials, during which they are encouraged to seek clarification on the task and ask any 

pertinent questions before proceeding to the main task. Here we used a 10° scotoma that 

occluded the participants’ fovea. A target made up of four Landolt C’s with different 

orientations appeared within a circle (Figure 3.5) extending 3° radially from the border of 

the scotoma. Participants are required to fixate within a box at the beginning of the trial 

until they hear an auditory tone that indicates the disappearance of the fixation box and 

the appearance of a white circular target. They are then required to direct the scotoma 

towards the target to reveal the C’s. Participants respond using ResponsePixx box to 

indicate the overall orientations of all the C’s (i.e., using the green button to indicate left 

and a red button to indicate right orientations respectively). Auditory feedback (different 

from the auditory tone) is provided to indicate the accuracy of the responses, wherein a 

high pitch auditory tone indicates a correct response and low pitch tone indicates an 

incorrect response. Participants are required to complete a total of 150 trials spanning 30 

minutes, and prior research has shown the development of PRLs within this window. 
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Figure 3.5. PRL Induction Task: Participants are required to fixate within a central box for 1.5 s 

after which they are presented with an auditory cue indicating the appearance of the target. The 

target is occluded with a white circle until the participant directs the scotoma close to the target 

boundaries. The stimulus is made up of four Landolt - C’s and the participants are required to 

report the overall orientation of the C’s (in this case, right red button on the response box). 

Auditory feedback is provided to indicate the accuracy of the response. Stimulus remains on the 

screen until either the participant makes a response or is timed out of the trial after 15 s. 

Designing perceptual tasks within the framework: 

Training participants to fixate within a central box and identifying PRL sets the stage to 

design and measure performance across a wide range of assessments including but not 

limited to acuity, contrast sensitivity, visual search and reading (see Figure 3.6 for visual 

representation and short description of the different assessment tasks implemented). The 

following sections will highlight the design considerations for measuring behavior across 

a wide range of perceptual tasks, to measure peripheral looking strategies through 

perceptual learning. Specifically, we emphasize the considerations for size of the scotoma 

and the adaptive staircases used to measure performance across these tasks. 

The perceptual tasks (Figure 3.6) designed within this framework are broadly divided 

into two main categories: (1) Free eye movement tasks and (2) Fixed eye movement 

tasks. As the name indicates, in fixed eye movement tasks, participants are required to 

maintain fixation within a central white box throughout the task and use their periphery to 
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make judgements, whereas in the free eye movement tasks, participants are allowed to 

make eye movements across the screen to identify targets appearing at random locations 

on the screen (or read texts).   
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Figure 3.6. Perceptual Tasks: A visual representation of different assessment tasks designed 

using our framework. The tasks are broadly categorized into Free eye movement tasks where the 

scotoma follows the eye movements of the participants to view targets freely (top panel); and 

Fixed eye movement tasks where the scotoma needs to be placed within a central white box 

throughout the task (bottom panel). 
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While certain tasks such as MNRead and Trail Making can be completed in under six 

minutes, others like contour integration, crowding and attention tasks require more 

extensive time commitments, exceeding 15 minutes. Consequently, it is paramount to 

factor in the task complexities, visual strain, and participants fatigue during task 

execution. To address this, the tasks are distributed across two 90-minute sessions, with 

one session held per day. Tasks are strategically grouped and interleaved between days, 

alternating between easy and difficult tasks. To mitigate visual strain and fatigue, breaks 

lasting one minute are incorporated within each task (between blocks), with two 

additional three-minute breaks scheduled during each assessment day between tasks. 

These breaks allow participants to rest and stretch as needed, with calibration and 

validation procedures conducted after each break.  

A critical aspect to the implementation of different assessments is the ability to estimate 

performance thresholds quickly and successfully in a subset of these tasks (specifically 

visual acuity, contrast sensitivity, crowding and contour integration). While it is possible 

to design these tasks using conventional 3 down 1 up staircases, this procedure takes 

several hundred trials to obtain thresholds causing fatigue and thereby taking several 

sessions to complete. To circumvent this, we implemented a two-stage adaptive staircase 

method to estimate performance of participants in these tasks. The first stage utilized a 2 

down 1 up staircase that terminated after 3 downward reversals (i.e., direction of stimulus 

change, from down (hard) to up (easy), also refer to representative results section), 

followed by the second stage that consisted of a conventional 3 down 1 up staircase that 

ended after 60 trials. Pilot studies conducted in our lab indicated that this staircase was 
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sufficient to get reliable performance thresholds for the visual acuity, crowding and 

contrast sensitivity tasks, but not the contour integration task. Therefore, we used a 

slightly modified version of the adaptive staircase for this task (for details on the 

modification to the adaptive staircase procedure refer to contour integration task below). 

The section below discusses in detail the design of different perceptual assessment tasks 

using this framework. 

Fixation Assessment: 

This task measures the ability to make eye movements such that the to-be-attended object 

falls on the location of the retina corresponding to the PRL. This involves improving the 

capacity to maintain the eye at that location for extended duration required to process the 

stimulus (“fixation stability”). Attention to targets involves planning saccades to land at a 

given location. Post-training, eye-movements can be planned so that saccades land with a 

target directly on the PRL. The ability to remap eye-movements to consistently land so 

that the target appears within the PRL is called “saccadic precision”. Standard approaches 

have limitations in examining eye-movements after training in MD, in that they mix 

temporal epochs of fixation, making it difficult to separately examine saccadic precision 

and fixation stability (Crossland et al., 2005).  

Here, we design a new method (Maniglia et al., 2019) to overcome this limitation. We 

test the eye-movement components using a basic task where the participants make and 

hold an eye-movement such that their PRL lands on a 2° target (O). The target appears in 

1 of 10 equally eccentric locations 15° from the center of the white fixation box (also 

https://paperpile.com/c/EW1JRA/vU65
https://paperpile.com/c/EW1JRA/HQ5c


84 

 

center of scotoma) as illustrated in Figure 3.7. Once the participants make the eye-

movement towards the target and hold the scotoma near it, the target begins to flicker for 

3-5 seconds (randomized across trials). Participants are required to stably maintain 

fixation until the flickering stops accompanied by auditory feedback (high pitch tone for 

correct and low pitch tone for incorrect responses). A new trial begins by redirecting the 

scotoma to the white fixation box and satisfying the fixation condition (maintain fixation 

within the box for 500 ms) to trigger the appearance of a new target. Prior to performing 

the full task consisting of 80 trials, participants are presented with visual instructions and 

also perform a practice block comprising 10 trials with one trial per location.  

 

Figure 3.7. Fixation Assessment Task: Here, participants were required to maintain fixation 

within a white box at the beginning of each trial for 500 ms. Once they satisfied this condition, 

the fixation box disappeared, and white O (target) appeared on the screen in one of eight locations 

shown (bottom panel). They then had to make an eye-movement towards the target and hold the 

scotoma near the target to trigger the flickering of the target. If the participant moves their eyes 

away from the target, the flickering stops and will only begin after reacquiring the fixation close 

to the target. Auditory feedback is provided once the fixation stops to indicate the completion of a 

trial. 
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MNRead: 

The Minnesota Reading task (MNRead) is a standardized task employed in vision science 

as a test of reading skills (Legge et al., 1989). This test relies on acuity and provides a 

more ecological measure of visual sensitivity, where participants are free to move the 

eyes when reading sentences (unlike the visual acuity task that requires participants to 

fixate in the center). We adapt this task for testing reading skills under simulated central 

vision loss. Participants are first presented with visualized instructions on what to expect 

in the task and how to respond to the stimuli that appears, after which they perform 5 

practice trials with the scotoma where the font size decreases, prior to performing the 

whole task. Here we use a 10° scotoma where, in each trial, the participant reads out loud 

a sentence (made up of 7-10 words) while the font size decreases with consecutive trials 

until the font is too small to successfully read the text (Figure 3.8). In addition to 

measuring the acuity, we can also extract measures of reading speed, critical print size 

and accuracy.  

 

Figure 3.8. MNRead Task: Participants are presented with sentences of decreasing font size in 

consecutive trials and are required to read out the sentence loudly while the experimenter checks 

for accuracy of the response. The task ends when the font size is too small for the participant to 

read words in a sentence correctly or if they time out after 90 seconds.   

https://paperpile.com/c/EW1JRA/AEz6
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Trail Making Task: 

The trail-making task is a test typically employed to measure visual search abilities and 

has been adapted for use with the current framework (Tombaugh, 2004). Here, 

participants are required to connect a sequence of consecutive target numbers (1-2-3-), 

and numbers and letters (1-A-2-B-3-C-) displayed across the screen. This necessitates the 

visual search for subsequent numbers or letters in the sequence (see Figure 3.9). To 

ensure optimal task performance, the numbers and letters are arranged on the screen in a 

manner that prevents overlap or crossover of the connecting lines, facilitating accurate 

identification of sequential targets using peripheral vision. Participants are initially 

provided with visual instructions, followed by a practice session where they perform the 

task once without a scotoma, and then with the scotoma on a truncated version of the 

task. This ensures that participants comprehend the task demands before performing it 

under modified viewing conditions. Performance is evaluated based on the reaction time 

to identify targets and complete the sequence.  

https://paperpile.com/c/EW1JRA/E4XW
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Figure 3.9. Trail Making Task: Participants are presented with either numbers (top panel) or 

numbers and letters (bottom panel) in different blocks and are required to click on numbers (or 

number and letters) in sequence of ascending order (i.e., 1-2-3 or 1-A-2-B-3-C) using the mouse. 

Auditory feedback is provided if the participant clicks on the correct number in the sequence and 

the trial ends after 300 seconds. 

Visual Acuity and Contrast Sensitivity: 

These tasks are designed to measure the ability to resolve fine details and are typically an 

important measure of low-level visual processing. It is important to note that the 

detection of a small gap (like a Landolt-C) is limited by the retinal mosaic compared to 

other tasks like vernier acuity tasks are limited by cortical processes (Levi et al., 1985; 

Thomas & Olzak, 1997). Both visual acuity and contrast sensitivity decreases with 

eccentricity and therefore using a large central scotoma produces a greater reduction that 

is too large to measure accurately, thereby impeding the ability to determine the true 

impact of the scotoma. Therefore, to effectively measure the performance with s-CVL we 

use a scotoma of 6° in size.  

https://paperpile.com/c/EW1JRA/dfyg+pT1u
https://paperpile.com/c/EW1JRA/dfyg+pT1u
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Here, we use the Landolt-C stimuli to measure acuity, where participants make 

judgements about the orientation of the gap of the C (left, right, up or down) while the 

size (for visual acuity task) and contrast (for contrast sensitivity task) of the C is 

manipulated (Figure 3.10). Prior to beginning the tasks, participants are presented with 

visualized instructions and practice trials at each location. At the beginning of each trial, 

participants are presented with a central square (fixation box) slightly larger than the 

scotoma. Each trial begins with an inter - trial interval of 750 ms followed by a fixation 

duration of 500 ms during which participants are presented with a visual cue (i.e., white 

dot) indicating the appearance of the upcoming target. Participants are required to satisfy 

the 500 ms fixation in order for the target to appear. If the scotoma moves outside the 

fixation box, the duration resets until the participant acquires stable fixation. This is 

implemented to ensure that the participant is stably fixating at the center of the screen to 

aid in perceiving the upcoming target effectively. Once fixation is acquired, the target 

stimuli i.e., Landolt - C appears for 200 ms. The contrast was fixed at 1 and the initial 

size of the letter C was 1° in the visual acuity task whereas the size of the C was fixed at 

1° and the initial contrast was 0.35 units for the contrast sensitivity task. Both the size 

and contrast of the C was manipulated using a 2 staged staircase in the acuity and contrast 

sensitivity tasks respectively. Participants report the orientation of the C using one of four 

buttons on the response box (green → left, red → right, yellow → up, blue → down). 

Auditory feedback is provided to indicate the accuracy of the response, where correct 

responses are paired with a high pitch tone and incorrect responses are paired with a low 

pitch tone respectively. If the participant fails to acquire fixation or respond to the target 
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within 8 seconds, the trial is terminated. The task comprises a total of 120 trials with 

trials blocked per location (60 trials on the left and 60 trials on the right of the central 

fixation).  

 

Figure 3.10. Visual Acuity and Contrast sensitivity Task: Sequence of events in a given trial. 

Participants respond to the orientation of the C using the keys on the response box. In the figure, 

the correct response to the target is the red button, corresponding to the right orientation of the C. 

Auditory feedback is provided to indicate the accuracy of response.   

Contour Integration: 

Contour Integration is the ability to bind locally fragmented elements to form a 

perceptual shape and is considered to involve mid-level visual processing i.e., binding 

multiple low-level features (Field et al., 1993; Nothdurft, 1991). This task shares the 

structure of the visual acuity test, but the stimuli used are contours of different shapes i.e., 

alphanumeric characters (letters “d” and “p”) and egg-shaped contours (refer to 

supplementary material for all stimuli figures). The target stimulus is a 15x15 grid made 

up of Gabor elements of 3 cycles per degree and 1° in size as shown in Figure 3.11. The 

stimulus is blocked per location (left and right) and shape (eggs and p/d) with participants 

completing a total of 60 trials per block. Thus, the total number of trials in this task is 

https://paperpile.com/c/EW1JRA/WTpv+kQkS
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240. Difficulty in the task is manipulated by implementing an adaptive staircase on the 

orientation jitter of the individual Gabor elements that make up the shape.  

There are a few things to keep in mind when designing this task: Firstly, the task in itself 

is considerably harder to perform in the periphery because of the low acuity and contrast 

as we move away from the fovea compounded by more inhibitory interactions in the 

periphery, making it harder for the visual system to compensate for eye movements and 

maintain a stable image of the contours (Kuang et al., 2012; Kwon et al., 2012). 

Therefore, we enforce a practice session that must be completed before performing each 

block of the task. The practice block consists of 12 trials with increasing jitter levels (0°- 

5° jitter) to familiarize the participants with the task and expose them to different 

difficulty levels. Participants must achieve a minimum of 70% accuracy (minimum of 9 

correct responses) in order to move to the actual task (60 trials per location and shape). 

Secondly, pilot studies on this task in our lab revealed that the adaptive staircase 

procedure implemented for the acuity and contrast task was insufficient to obtain reliable 

estimates of performance on this task. Therefore, we implemented a slightly different 2 

stage staircase procedure to get multiple outcome measures. Difficulty was manipulated 

using a progressive staircase where the orientation jitter (0°, 1°, 2°, 4°, 6°, 8°, 10°, 12°) 

increased every three trials for a total of 24 trials. A conventional 3 down/ 1 up adaptive 

staircase was then implemented until completion i.e., 60 trials. This allows us to measure 

the accuracy and reaction time of the participants in the first 24 trials as well as calculate 

the thresholds from reversals in the adaptive staircase stage.  

https://paperpile.com/c/EW1JRA/IrqJ+2ttc
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Figure 3.11. Contour Integration Task: Participants are presented with contour shape pairs (p/d 

and eggs) and are required to respond to the correct shape that appeared. For example, 

participants press the green button (left) if a “d” is presented and the red button (right) if a “p” is 

presented indicating the direction of the larger portion of the letter. Trial-by-trial auditory 

feedback is provided to indicate accuracy. 

Crowding: 

The crowding task complements the contour integration task as it measures the ability to 

avoid integration of background features. We designed this task using a procedure 

recently validated in MD patients (Greenlee et al., 2018), where the stimulus consists of a 

Landolt C flanked by O’s on either side. A notable property of spatial crowding is the 

radial tangential asymmetry in which the effect of crowding is much more severe for 

items in the radial (horizontal) line compared to items arranged tangentially (vertical) 

with regard to a center fixation (Chambers & Wolford, 1983; Toet & Levi, 1992). 

Therefore, to test this asymmetry in the case of s-CVL we present the target C flanked by 

O’s in both radial and tangential orientations as shown in Figure 3.12. The spacing 

between the C and O’s are manipulated using the two stage adaptive staircase procedure 

(separate staircases for radial and tangential targets). The size of the C subtends 0.8° and 

the task comprises 4 blocks (radial vs tangential and left vs right locations) with each 

block consisting of 60 trials. Auditory feedback is provided to indicate accuracy of the 

https://paperpile.com/c/EW1JRA/P0iy
https://paperpile.com/c/EW1JRA/0s7W+IrRo
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participants. We used a scotoma of 6° to ensure that the radial flankers aren’t obstructed 

by the presence of a large scotoma (i.e., 10° as used in other tasks). Similar to the other 

tasks, participants are presented with visual instructions followed by practice trials at 

each location and orientation before performing the full task (i.e., 60 trials).  

 

Figure 3.12. Crowding Task: Participants are presented with a radial (top panel) and tangential 

(bottom panel) target made up of Landolt - C flanked by two O’s on either side, once they have 

satisfied the fixation condition, and are required to respond to the orientation of the C using the 

keys on the response box. For example, the participant responds using the red (right) button for 

the radial target and the yellow (up) button for the tangential target. Trial-by-trial auditory 

feedback is provided to indicate the accuracy of the response.  

Exogenous Attention:  

Exogenous (or covert) attention is an involuntary system that corresponds to an automatic 

orienting response to a location where sudden stimulation has occurred (James, 1918; 

Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989). It is measured by presenting a 

visual cue and measuring the observer’s reaction to a target that appears at the cued 

location (or an uncued location). Here, we design an exogenous attention task using the 

Landolt-C stimuli as indicated in Figure 3.13. Participants are required to fixate in a 

https://paperpile.com/c/EW1JRA/Buze+mOqr+EaNj
https://paperpile.com/c/EW1JRA/Buze+mOqr+EaNj


93 

 

central white box and must be prepared to pay attention to one of the two target locations 

(left and right eccentricities of the fixation box). The target locations are indicated with 

four black dots making up a square box. A cue is presented either at the target location 

(congruent) or at the location opposite to the appearance of the upcoming target 

(incongruent) indicated by the change in color of the four black dots at either location. 

Here, we used a low contrast Landolt-C stimulus (contrast = 0.35) as opposed to a high 

contrast C (contrast > or = 0.5) to ensure that the attentional effects observed are not 

simply due to differences in the physical properties of the stimuli (Boynton et al., 1999; 

Carrasco, 2011; Nachmias, 1967). For instance, if a target stimulus is presented with high 

contrast, participants may be able to detect the orientation of the C due to the contrast 

alone, without tapping into the attentional processes. By using a low contrast stimulus, 

we rule out this possibility and ensure that the attentional effects are not due to the 

physical properties of the stimulus itself. Participants need to report the orientation of the 

C using one of the four response buttons. Auditory feedback is provided to indicate the 

accuracy of the response during each trial. The task is divided into 4 blocks per cue type 

(congruent, incongruent) and location (left, right) with each block comprising 60 trials. 

Prior to performing the full task encompassing a total of 240 trials, participants are 

presented with instructional task video followed by 10 practice trials.  

https://paperpile.com/c/EW1JRA/vKDE+UiUx+7o0T
https://paperpile.com/c/EW1JRA/vKDE+UiUx+7o0T
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Figure 3.13. Exogenous Attention Task: Participants are presented with a target either on the 

left or right side of the central fixation box. A cue briefly flashes on the screen for 50 ms duration 

turning the 4 black dots on one of the locations to white. Landolt-C stimulus appears on either the 

cued (top panel) or uncued (bottom panel) location and the participants are required to make a 

response indicating the orientation of the gap of the C. For example, in the above task, 

participants correctly respond to the target using the red button (right) and auditory feedback is 

provided during each trial.   

Endogenous and Sustained Attention:  

In contrast to exogenous attention, endogenous (or overt) attention is a voluntary 

attentional process where the observer moves their eyes to attend to a specific spatial 

location often characterized by eye movement to the attended location (Carrasco, 2011). 

Endogenous attention is also known as “sustained” attention as the observers seem to be 

able to sustain the voluntary deployment of attention to a given location for as long as is 

needed to perform a task (Carrasco, 2011). Therefore, here we design a single task to 

measure both endogenous and sustained using the Rapid serial visual presentation 

(RSVP) paradigm. Participants are first presented with visual instructions of the task 

followed by 10 practice trials on the task before moving into the full task. Here, 

participants are required to keep their gaze steady within the central white fixation box 

and report the side of the gap of the Landolt-C stimuli (Figure 3.14). The target can 

appear in one of three peripheral locations. At the onset of each trial participants are 

https://paperpile.com/c/EW1JRA/7o0T
https://paperpile.com/c/EW1JRA/7o0T
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presented with three circles (one at the PRL and two control locations) as shown in the 

figure. The task comprises a total of 144 trials with 40 congruent and 8 incongruent trials 

per location. At the start of each block, trials are self-initiated by the participant’s 

response to the target presented in one of three circles. This triggers the onset of the 

sustained attention task where a RSVP stream of 6 - 16 targets (3-5 C’s) and distractors 

(3-11 O’s) are presented. Each presentation of a target is followed by the presentation of 

n distractors to ensure that the response to the target C’s is temporally spaced to measure 

accuracy during the sustained attention. Participants respond and report the orientation of 

the C for each target while ignoring the distractors. At the end of the trial, the participants 

are presented with an endogenous cue (white arrow) indicating the location of the 

appearance of the next target. The target then either appears at the cued location 

(congruent) or at any one of the uncued locations (incongruent). Performance is measured 

as a function of both accuracy and reaction times on this task across three locations. 

Sustained attention is estimated as the reaction times to the C’s presented in the RSVP 

stream during each trial and endogenous attention is estimated as the reaction time and 

accuracy of response when switching to new locations between congruent and 

incongruent trials.  
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Figure 3.14. Endogenous and Sustained Attention RSVP Task: Participants respond to a 

stream of targets (C’s) interleaved with distractors (O’s) in this task. Each block is self-initiated 

by the participant’s response to the orientation of a C present in one of three locations indicated 

by the three empty circles. Each trial ends with the presentation of an endogenous cue (arrow) 

pointing towards the location of the next target. The figure above illustrates a congruent trial 

where the target appears at the cued location. Throughout the task, participants are required to 

maintain fixation within the central white box and eye movements away from the center will 

immediately halt the stream of stimulus presentation until fixation is reacquired. 

OCULOMOTOR METRICS: 

While the perceptual tasks mentioned above encompass all levels of visual processing, it 

is also imperative to evaluate oculomotor behavior within these tasks. Previous research 

on understanding peripheral viewing strategies after CVL largely focused on analyzing 

fixation distributions to estimate fixation stability and the location of PRL. However, 

these approaches do not dissociate how gaze patterns differ between trials. While for 

some individuals, there is a single well-defined PRL, there exist inhomogeneities in 

peripheral looking strategies that may lead to more than one PRL and sometimes even 

partial PRLs. To effectively characterize the oculomotor behavior in a subset of training 

and assessment tasks mentioned above, we recently developed six different metrics to 

better understand more complex strategies to help quantify the use of PRL(s) (Maniglia, 

Visscher, et al., 2020). These metrics look at: (1) Saccadic re-referencing - whether the 

first saccade after target presentation places the target outside of the scotoma, (2) 

https://paperpile.com/c/EW1JRA/Ugwb
https://paperpile.com/c/EW1JRA/Ugwb
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Saccadic precision - whether the first eye movement placing the target outside the 

scotoma lands in a consistent location, (3) First Saccade landing dispersion - the 

dispersion of the landing location of the first saccade after target presentation, (4) 

Fixation stability - whether the eyes keep this position stable within each trail, (5) 

Latency of Target acquisition - how long does it take to bring the target to a location 

outside the scotoma and (6) Percentage of useful trials - percentage of trials where some 

fixations occurred with the target outside the scotoma. A visual representation of these 

metrics in the event of multiple PRLs is illustrated in Figure 3.15 below (adapted from 

(Maniglia, Visscher, et al., 2020)). Refer to the sections below for detailed description on 

the estimation of the six different metrics highlighted. 

 

https://paperpile.com/c/EW1JRA/Ugwb
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Figure 3.15. Overview of Oculomotor Metrics adapted from (Maniglia, Visscher, et al., 2020): 

Classification of eye movements first involves analyzing PRL agnostic metrics (first row) from 

the whole dataset to define PRLs. If multiple PRLs emerge, these metrics are calculated 

separately for trials where each PRL is used (bottom two rows, PRL specific). Metrics are shown 

from left to right: probability density map of fixation distributions, Saccadic re-referencing: 

proportion of trials where landing point of first saccade places the target outside the scotoma, 

Saccadic precision: dispersion of landing point of first saccade that places target outside of the 

scotoma, First saccade landing dispersion: dispersion of the end point of first saccade, Fixation 

stability: mean dispersion of eye positions after first saccade across trials, Latency of target 

acquisition: average time taken for a saccade to place target outside the scotoma, and % useful 

trials: how often participants place target outside of the scotoma (% of dots in saccadic precision 

relative to total trials) and in the case of multiple PRLs this informs us about the proportion of 

trials in which the participants used the specific PRL location first. 

Saccadic Re-referencing: 

This metric is calculated as the proportion of initial fixations per trial occurring outside 

the scotoma, representing the percentage of initial fixations that position the target in a 

visible location. Here, fixations are operationally defined as instances of eye stability 

https://paperpile.com/c/EW1JRA/Ugwb
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(characterized by eye velocity < 10 deg/s) lasting at least 150 ms and occurring at least 

100 ms subsequent to target presentation. A value of 100% suggests negligible reliance 

on the fovea for initial fixation on the target, while 0% indicates consistent placement of 

the fovea on the target, thus obstructing its visibility. Notably, this assessment remains 

unaffected by the presence or absence of designated PRL(s) outside the foveal region. 

Saccadic Precision: 

Saccadic precision quantifies the spatial distribution of initial fixations landing outside 

the scotoma within a trial. These fixations may include the first, second, third, etc., 

wherein the target remains perceptible. The assessment is delineated by the size of the 

Bivariate Contour Ellipse Area (BCEA) fitted around these fixation coordinates. BCEA is 

computed to encompass a specified proportion (p = 0.68) of the total fixations, aligning 

with established methodologies (Chung, 2013; Crossland et al., 2004; Kwon et al., 2013). 

Notably, we differentiate “absolute” initial fixations (depicted as green dots) that also 

happen to be the first fixation of the trial that places the target outside the scotoma from 

other fixations (red dots) following initial fixations to the scotoma. 

First Saccade landing dispersion: 

This measure assesses the uniformity of initial saccadic landing locations across trials by 

computing the area encompassing these locations (regardless of whether or not the 

scotoma covered the target). The dispersion of initial saccadic landing positions was 

evaluated using BCEA. Both measures of initial saccadic landing dispersion and saccadic 

https://paperpile.com/c/EW1JRA/gVxb+nUP7+dJfU
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re-referencing delineate the deviation from foveal fixation in distinct manners. While 

saccadic re-referencing quantifies the frequency of initial saccades toward the target is 

within or outside the scotoma, the first saccade landing dispersion elucidates the spatial 

spread of these saccades, including potential involvement of multiple PRLs. 

Fixation Stability: 

Fixation stability characterizes the dispersion of eye positions within individual trials 

while controlling for variations in fixation locations across trials. Initially, this metric 

involves identifying all eye positions subsequent to the initial fixations within each trial, 

as outlined in the saccadic re-referencing section. Subsequently, a Kernel Density 

Estimator (KDE) is applied to these positions, weighted by their duration (i.e., KDE / 

duration of the trial in frames). The position of each trial’s KDE is then normalized 

relative to the estimated across-trial PRL location. This PRL location is determined as the 

average center of single-trial BCEAs, normalized by the position of the first fixation, and 

centered on the average center of the single-trial BCEAs. 

Latency of Target acquisition: 

This metric is determined as the temporal duration from target presentation to the initial 

fixation outside the scotoma (the same fixation utilized in the saccadic precision 

analysis), expressed in seconds. 
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Percentage of useful trials: 

This indicates the percentage of trials wherein at least one saccade landed the target 

outside the scotoma (referred to as “useful” trials denoting instances where the target was 

visible outside the scotoma). It is presented as a proportion relative to the total number of 

trials. 

In addition to these metrics, please refer to (Maniglia et al., 2023) for more details on 

extracting oculomotor behavior in MNRead and Trail Making tasks. 

REPRESENTATIVE RESULTS: 

In this section we show representative results for each of the tasks discussed above. This 

section is largely divided into four categories to showcase (1) the adaptive staircases, (2) 

measures of attention, (3) performance on ecologically valid tasks, and finally (4) 

oculomotor metrics of fixation distributions, from two participants. Prior to data 

collection, participants were consented, and the study was approved by the IRB of 

University of Alabama, Birmingham.  

Performance on tasks with adaptive staircases:  

Figures 3.16 and 3.17 showcase the performance trajectory of the two participants on the 

visual acuity (panel A), contrast sensitivity (panel B), contour integration (panel C) and 

crowding tasks (panel D), respectively. The staircases are color coded based on the 

location of the appearance of the target (i.e., performance on the left location indicated in 

green and on the right location indicated in purple). Thresholds were estimated by 

https://paperpile.com/c/EW1JRA/KWvL
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calculating the average of the last 6 reversals per location (and per shape or orientation in 

the contour integration and crowding tasks, respectively) and are indicated by a dotted 

line perpendicular to the y axis for each task. Lower values on the y axis indicate better 

performance for the visual acuity, contrast sensitivity and the crowding tasks, whereas 

higher values on the y axis indicate better performance for the contour integration task.  

 

Figure 3.16. Performance of Participant 1 in tasks with adaptive staircases: Panel A, B, C, 

and D represent the performance of the participant on the visual acuity, contrast sensitivity, 

contour integration and crowding tasks respectively. Green dots indicate performance of the 

participant on the left location, whereas purple dots indicate performance of the participant on the 

right location. Red stars indicate incorrect responses on trials and thresholds are represented as 

dashed lines perpendicular to the y axis.  
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Figure 3.17. Performance of Participant 2 in tasks with adaptive staircases: Panel A, B, C, 

and D represent the performance of the participant on the visual acuity, contrast sensitivity, 

contour integration and crowding tasks respectively. Green dots indicate performance of the 

participant on the left location, whereas purple dots indicate performance of the participant on the 

right location. Red stars indicate incorrect responses on trials and thresholds are represented as 

dashed lines perpendicular to the y axis. 

Measures of Attention:  

Figures 3.18 and 3.19 show the performance of the participants on the Exogenous 

attention and the Endogenous/ Sustained Attention (RSVP) tasks respectively. In the 

exogenous attention task, performance is measured as the reaction times on the congruent 

(valid cue) and incongruent (invalid cue) trials grouped by the location (left/ right). We 

observed significant effects of cue type for Participant 1 on the left location (Welch’s t-

test: t(111.5) = -2.6, p < 0.05) but not for the right location, whereas we did not observe 

any significant effect of cueing across either locations for participant 2.  
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Figure 3.18. Exogenous Attention Task Analysis: The figure shows the reaction times (in 

seconds) of two participants on the task grouped by location of target presentation. The red bars 

indicate incongruent trials whereas the blue bars denote congruent trials. Error bars represent 

standard deviation.  

The endogenous/ sustained attention RSVP task is represented in a different manner 

compared to the exogenous attention task. Particularly, here we show the reaction time 

differences between the congruent and incongruent trials, when the participant makes 

switches towards and away from their specific PRL location. Comparison of these 

reaction time differences between the 3 locations (PRL, untrained retinal locus (URL), 

and neutral location) allows us to track performance across the three locations. For 

example, in Figure 3.19, panel A, the participant’s preferred location is indicated as PRL 

(on the left) whereas the other location is indicated as the URL (on the right). The bottom 

location is indicated as the neutral location. The arrows towards and away from each 

location are color coded as pink, blue and green and the values indicate the reaction time 

differences between the congruent and incongruent trials for each location. A negative 
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reaction time difference indicates that the participant was faster during congruent trials 

whereas a positive value indicates the converse (slower during congruent trials). It can be 

observed from Figure 3.19A that the participant was faster when switching from PRL to 

URL during congruent trials (RT diff = -0.094s) but not when switching from PRL to 

neutral location (RT diff = 0.044s). Additionally, this participant was faster on the 

congruent trials when switching from the neutral location (RT diff = -0.041s) towards the 

PRL as opposed to the URL (RT diff = 0.041s) and was slower when switching to both 

the PRL and the neutral location from the URL (RT diff towards PRL = 0.027s; RT diff 

towards Neutral location = 0.107s). Similarly, from Figure 3.19B it can be observed that 

participant 2 is (i) faster when switching from the PRL to neutral (RT diff = -0.007s) but 

not URL (RT diff = 0.057s); (ii) faster when switching from neutral to both PRL (RT diff 

= -0.031s) and URL (RT diff = -0.044s); and (iii) slower when switching from URL to 

PRL (RT diff = 0.011s) but faster when switching from URL to neutral location (RT diff 

= -0.06s).   
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Figure 3.19. Endogenous attention Analysis: This figure shows the reaction time differences 

between the congruent and incongruent trials when switching from one location to another. A 

negative value indicates that participants are faster in responding to congruent trials and vice 

versa. The PRL for participant 1 (panel A) is on the left of the scotoma (pink) whereas the PRL 

for participant 2 (panel B) is on the right of the scotoma (blue). The other locations are indicated 

as the untrained retinal locus (URL) and neutral location.  

Performance on Ecologically Valid Tasks: 

Performance on MNRead task is represented as the time it takes to read the sentence 

without any errors. The task ends when the participant cannot read the sentence. Figure 

3.20 A&B shows the performance of the two participants on the MNRead task. As 

expected, the time taken to complete each sentence increases as the font size decreases. 

From this, we can estimate reading acuity (i.e., smallest font size correctly read), 

maximum reading speed and the critical print size and compare these metrics within and 

between participants. Performance on the Trail Making Task is represented in Figure 3.20 

C as the total time to completion for both Part A (connecting numbers in sequence of 

ascending order) and Part B (connecting alternating numbers and letters in sequential 

order). Although the total number of elements in both Part A and Part B are the same, 
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participants take longer to complete Part B, consistent with findings from previous 

studies (Gaudino et al., 1995).  

 

Figure 3.20. Analyses of ecologically valid assessment tasks: Response time (in seconds) as a 

function of the sentence font size for Participant 1 (panel A) and Participant 2 (panel B). Panel C 

shows the time to completion (in seconds) for both Part A and B of the Trail Making Task. Blue 

and red bars denote participant 1 and 2 respectively.  

 

 

https://paperpile.com/c/EW1JRA/FOST
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Fixation Stability Analysis: 

To understand peripheral viewing strategies after CVL, we focus on analyzing fixation 

distributions to estimate fixation stability and the location of the PRL (Crossland et al., 

2004; Maniglia, Visscher, et al., 2020). Dispersion of eye positions within a trial is 

characterized by controlling for differing fixation locations across trials to obtain the 

average dispersion of eye positions within trials. This metric is a within-trial measure of 

the dispersion of eye positions after the first fixation of the trial, consistent with previous 

studies (Kwon et al., 2013; Liu & Kwon, 2016). We compute it by calculating the BCEA 

encompassing a given percentage of fixations (typically 68%) over a certain period (i.e., 

15-30 seconds). However, in contrast to the previous studies the dispersion of fixations 

for each trial was normalized by trial duration and averaged across trials (Figure 3.21, 

column 2). This means that if the fixations are centered in different locations on different 

trials, this method plots all the distributions at the same location. We also used a 

probability density analysis that uses a KDE to visually represent clusters of high density 

of fixations (Figure 3.21, column 3). Of note, these analyses provide an overview of the 

gaze patterns of participants over time, and do not dissociate how gaze patterns differ 

between trials. 

https://paperpile.com/c/EW1JRA/Ugwb+nUP7
https://paperpile.com/c/EW1JRA/Ugwb+nUP7
https://paperpile.com/c/EW1JRA/dJfU+4Gc5
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Figure 3.21. Fixation Stability Analysis: The figure shows the BCEA and KDE plots of fixation 

distributions for the two participants. The blue ellipse shown encompasses 68% of the total 

number of fixations in the BCEA plots. The bright yellow region in the KDE plots represent the 

highest density of fixations.  

DISCUSSION: 

In this methodological paper, we propose a gaze contingent framework for conducting 

perceptual learning research in simulated central vision loss. Here, we emphasize on 

several hardware, design, and methodological considerations that are required to (1) 

simulate central vision loss in healthy individuals, (2) administer a wide range of 

perceptual tasks, and (3) measure oculomotor and perceptual performance of participants 
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within this paradigm. Specifically, we first measure the combined latency of different 

hardware and software systems that concur to render the perception of s-CVL. Our 

findings indicate that latency significantly reduces when using a Windows OS system 

compared to Mac iOS system to design tasks. Additionally, we also found small 

qualitative improvements when using a VPixx eye tracker compared to the Eyelink 1000.  

The current study also emphasizes the need for implementing several checks when 

designing tasks (and subsequently collecting data) using gaze contingent display. 

Particularly of importance, is the adaptation and familiarization of participants to the 

modified viewing conditions using the scotoma by training participants to maintain stable 

fixations (required for fixation dependent tasks) and jump-starting oculomotor behavior, 

both of which are critical to perform perceptual tasks. We achieve this by subjecting the 

participants to a fixation training and PRL induction task prior to any exposure to the 

perceptual tasks. We also address experimenter bias by implementing a double-blind 

assignment of participant conditions in addition to providing clear and uniform visualized 

instructions (i.e., instructional task videos) to circumvent any verbal instructional biases 

that may impede the participants’ understanding of the tasks.  

A novel aspect of our framework is its ability to support a wide range of perceptual tasks 

catered to measuring performance across different levels of visual processing (low-, mid-, 

and high-level). In order to effectively measure performance on these tasks, it is 

important to (1) provide sufficient breaks within and between each task, and (2) design 

the psychophysical demands of the tasks to estimate performance in a quick and reliable 



111 

 

manner that doesn’t cause fatigue owing to prolonged use of visual periphery in 

participants with intact central vision. Thus, we use a two-stage adaptive staircase method 

(with some modifications in CI task) to estimate performance thresholds across different 

low- and mid-level visual assessments. We also ensure that the assessments are 

administered across two sessions such that each session is 90 minutes long including 

breaks implemented within each task and between tasks. Finally, we also briefly discuss 

the different metrics that can be analyzed to quantify oculomotor behavior representative 

of different peripheral looking strategies of participants.  

Adapting the framework for testing in MD patients: 

While this framework is designed for s-CVL in healthy individuals, it can be extended for 

research in MD patients. Indeed there is both prior and ongoing research in MD patients 

using gaze contingent displays for scotoma awareness (Fletcher et al., 2012; Fletcher & 

Schuchard, 1997; Frennesson et al., 1995) and we briefly discuss how our framework can 

be adapted for perceptual training in patients with MD. When adapting this framework 

for patients, it is important to keep in mind that their viewing strategies drastically differ 

from that of the normal sighted individuals. Firstly, it is well known that patients with 

MD tend to have unstable fixations, thus despite recent attempts at calibrating eye 

tracking devices used in vision research in this population (Harrar et al., 2018), this might 

prove challenging. To address this, we adapted the nine-point calibration/ validation for 

MD patients by presenting larger calibration points along with wedges and reducing the 

distance between the dots to appear more towards the center of the screen to avoid 

https://paperpile.com/c/EW1JRA/glok+ba80+EHeSC
https://paperpile.com/c/EW1JRA/glok+ba80+EHeSC
https://paperpile.com/c/EW1JRA/5CWG
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viewing targets at extreme eccentricities. Furthermore, since several of the tasks designed 

with our framework require stable central fixation, we incorporate additional fixation aids 

i.e., wedges that fan out from the center of the fixation box for ease of detection. 

Secondly, simulated and pathological scotoma present a number of differences in terms of 

the time course of development of compensatory strategies, overall fixation stability, and 

might be qualitatively different (Ağaoğlu et al., 2019). It is however possible to map the 

shape and size of the scotoma in MD patients through Macular Integrity Assessment 

(MAIA) and use this to define the shape of the scotoma in our tasks (Ramírez Estudillo et 

al., 2017). Thirdly, while the metrics we have presented here might not be typical of what 

we might observe in patients, the possibility of breaking down eye movement behaviors 

and being able to characterize the development of oculomotor strategies at different 

stages of simulated training is a valuable tool for better understanding of the visual 

systems’ adaptation to simulated or pathological CVL.  

Using s-CVL as a model to test specificity and generalization of PL: 

We are currently in the process of conducting a clinical trial study using the proposed 

framework to test different perceptual training strategies, using s-CVL as a model to 

understand specificity and generalization of PL. The motivation behind using s-CVL as a 

model is twofold: (1) it serves as a blank canvas to test the proposed training strategies 

and assess transfer of learning to other untrained tasks and location, and (2) ideal use of 

peripheral vision requires improvement across multiple vision domains i.e., low-, mid- 

and high-levels. We aim to investigate how different vision domains change together 

https://paperpile.com/c/EW1JRA/NciB
https://paperpile.com/c/EW1JRA/czbb
https://paperpile.com/c/EW1JRA/czbb
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through PL after CVL. To date, PL studies have examined a narrow range of behavioral 

outcomes, severely limiting our understanding of PL (Maniglia & Seitz, 2018). By 

measuring an array of learning outcomes, we aim to characterize profiles of learning and 

dissociable patterns of generalization across outcome measures. To do this, we train 

peripheral vision in s-CVL to determine how training different domains of vision gives 

rise to different distributions of behavioral changes. In addition to implementing a range 

of perceptual assessments that encompass all levels of visual processing, we also 

implement four perceptual training tasks. The training tasks designed within this 

framework targets early visual processing (contrast sensitivity training), mid-level visual 

processing (contour integration training), attention and eye movement training, and a 

combination training that includes all of these domains. 

While not exhaustive, the proposed training strategies encompassing all three domains of 

visual processing, capture fundamental aspects of vision and are known to be, at least 

partly, separable both from visual performance and neuroscience perspectives. Here, we 

train participants for 20 sessions (each session lasting approximately 45 minutes) on one 

of the four training tasks assigned randomly. Prior to training, participant specific PRL is 

obtained from the PRL induction task, which is then used for training (trained retinal 

locus). Both baseline and post training measures of performance on the different 

assessment tasks are obtained to observe for transfer of learning to other tasks and 

untrained locations (i.e., locations other than the trained retinal locus). In addition to this 

we also examine pre-post changes in eye movement metrics across these tasks. Since all 

training conditions involve learning to perform visual tasks in the PRL, we expect both 

https://paperpile.com/c/EW1JRA/OtJc
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contrast sensitivity and contour integration training tasks to show some behavioral 

change related to attention, albeit less than both the attention and combined training 

tasks. Given that the combined training condition encompasses all the other three training 

conditions, we expect (1) to observe behavioral changes related to all three domains of 

vision, (2) greatest effects in the ecologically valid tasks (MNRead and Trail Making) 

compared to the other three training conditions, and (3) to examine the extent to which 

cross-training is beneficial to each of the domains. Moreover, we also examine how PL in 

MD patients compares to conditions of s-CVL. Similar behavioral changes between the 

healthy individuals with s-CVL and MD patients would provide an important validation 

of the current framework, whereas finding differences between the two groups would 

inform which aspects of s-CVL provide a good proxy for MD patients and which aspects 

need further refinement. It is important to note that the clinical study conducted using this 

framework only examines learning and transfer of learning within two discrete locations 

(right or left PRLs, with the exception of the RSVP task), and does not account for 

participant specific PRLs and subsequently performance in other locations (top or bottom 

locations, although this can be examined using this framework).  

Limitations: 

While this framework is currently being used to train and assess performance of both 

healthy individuals (using simulated scotoma) and patient populations, it has a few 

limitations that need to be addressed. In our study we use a visible scotoma that can lead 

to compensatory eye movements or other strategies that may not be present in a real-
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world scotoma that is invisible. Moreover, the use of static scotoma as opposed to 

dynamic scotoma that change/ grow both in shape and size (as observed in patients) 

doesn’t allow us to study the effect of CVL longitudinally. However, it is possible to 

track the physical properties of the scotoma in patients (i.e., size and shape) through 

MAIA. Additionally, the current tasks designed using our framework do not account for 

visual impairments that are related to color deficiencies or face perception, but it is 

possible to test these aspects of vision as well. Finally, while in our study we use 

computer displays to simulate CVL, it is also important to study the effect of CVL in 

more ecological settings. While it is possible to provide a more subjective and immersive 

experience of s-CVL in healthy individuals using virtual reality, it is important to 

characterize the latency of such systems to render a smooth perception of the scotoma.  

CONCLUSION: 

The current paper proposes a gaze contingent display framework for conducting 

perceptual learning research in healthy individuals with simulated central vision loss with 

a specific focus on highlighting the design considerations associated with the 

development of such a framework. In addition to this, our novel multidimensional 

framework integrates multiple approaches to addressing plasticity after central vision 

loss, making this the first study to the best of our knowledge to explicitly evaluate the 

premise that effective use of the periphery after CVL jointly depends on multiple visual 

domains.   
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Chapter 4: Performance on a Contour Integration task as a function of Contour 

shape 

This study presented in this chapter discusses the implications of using a gamified vision 

training paradigm for promoting learning in patients with schizophrenia. While Chapters 

2 and 3 propose methods and tools for PL research, this chapter takes a closer look at the 

advantages of designing a vision training paradigm with a translational motive. When 

designing perceptual training paradigms for vision rehabilitation, it is crucial that training 

generalizes to other tasks and domains. With this in mind, we incorporated a contour 

integration training paradigm that utilizes diverse stimuli, adaptive procedures and 

enriched feedback, components that are critical for facilitating transfer of learning, and 

what we attribute to being “gamified” in this case. While the study discussed here does 

not draw any conclusions about the generalizability of such a training paradigm, when 

performance on the training task was retrospectively analyzed, it revealed novel findings 

pertaining to the nuances of mid-level visual impairments in patients with schizophrenia. 

These findings are critical for the understanding of the nature and extent of visual 

impairments, and thereby the development of more targeted rehabilitation techniques for 

these patients. This study is a collaborative effort between University of California, 

Riverside, University of Rochester Medical Center, Nathan S. Kline Institute for 

Psychiatric Research, and Weill Cornell Medicine, and has been published in Vision 

Research. 

My contributions to this work included analyzing training data, writing the manuscript 

for publication and submission, addressing reviewers’ feedback and comments, and 
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proposing directives for future research informing the design of vision training paradigms 

for research in patients with schizophrenia. 

  



125 

 

Title: Performance on a Contour Integration Task as a function of Contour shape in 

Schizophrenia and controls 

Authors: Samyukta Jayakumar1, Anthony O. Ahmed2, Pamela D. Butler3, Steven M. 

Silverstein4, Judy L. Thompson4, Aaron R. Seitz*5 

1 Department of Psychology, University of California, Riverside 

2 Department of Psychiatry, Weill Cornell Medicine 

3 Nathan S. Kline Institute for Psychiatric Research 

4 University of Rochester Medical Center 

5 Northeastern University 

Corresponding author: Samyukta Jayakumar (samyukta.jayakumar@email.ucr.edu)  

Number of pages: 35 

Number of figures: 7 

Number of words in abstract (229), introduction (1253), discussion (1648) 

Conflict of interest statement: The authors declare no competing financial interests. 

Acknowledgements: The study was supported by the National Institute of Health NIMH 

R61/R33 MH115119 grant. We thank Dr. Kimia Yaghoubi and Dr. Marcello Maniglia for 

their valuable insights in data analysis.  

mailto:samyukta.jayakumar@email.ucr.edu


126 

 

ABSTRACT: 

Contour Integration (CI) is the ability to integrate elemental features into objects and is a 

basic visual process essential for object perception and recognition, and for functioning in 

visual environments. It is now well documented that people with schizophrenia (SZ), in 

addition to having cognitive impairments, also have several visual perceptual deficits, 

including in CI. Here, we retrospectively characterize the performance of both SZ and 

neurotypical individuals (NT) on a series of contour shapes, made up of Gabor elements, 

that varied in terms of closure and curvature. Participants in both groups performed a CI 

training task that included 7 different families of shapes (Lines, Ellipse, Blobs, Squiggles, 

Spiral, Circle and Letters) for up to 40 sessions. Two parameters were manipulated in the 

training task: Orientation Jitter (OJ, i.e., orientation deviations of individual Gabor 

elements from ideal for each shape) and Inducer Number (IN, i.e., number of Gabor 

elements defining the shape). Results show that both OJ and IN thresholds significantly 

differed between the groups, with higher (OJ) and lower (IN) thresholds observed in the 

controls. Furthermore, we found significant effects as a function of the contour shapes, 

with differences between groups emerging with contours that were considered more 

complex, e.g., due to having a higher degree of curvature (Blobs, Spiral, Letters). These 

data can inform future work that aims to characterize visual integration impairments in 

schizophrenia.   
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INTRODUCTION: 

Schizophrenia is a psychotic disorder characterized by delusions, hallucinations, 

disorganized thoughts and speech, social dysfunction, and cognitive deficits (Patel et al., 

2014). In addition, a range of visual perceptual problems have been reported in 

individuals with schizophrenia (S. M. Silverstein, 2016). These include impairments in 

low-level vision such as visual acuity and contrast sensitivity (Pamela D. Butler et al. 

2005; Viertiö et al. 2007; Halász et al. 2013; Martínez et al. 2012; S. M. Silverstein et al. 

2014; (S. M. Silverstein, 2016); mid-level vision including different aspects of perceptual 

organization (Chen, 2011; S. M. Silverstein & Keane, 2011; S. M. Silverstein et al., 2012; 

Tadin et al., 2006; Uhlhaas & Silverstein, 2005); and high-level vision such as the effect 

of prior knowledge on visual perception (Hahn et al., 2012; Keane et al., 2013).  It has 

further been shown that these visual processing deficits relate to significant impairments 

in higher-level cognitive and social functions such as visual working memory (Dias et al., 

2011; Revheim et al., 2006, 2014; Steven Silverstein et al., 2005), object recognition (S. 

M. Silverstein & Keane, 2011) and facial emotion decoding (P. D. Butler et al., 2009), 

along with poorer functional outcomes (Green et al., 2012; Rassovsky et al., 2011). 

According to the NIMH funded CNTRICS (Cognitive Neuroscience Treatment Research 

to Improve Cognition in Schizophrenia) initiative, two key processes have been identified 

as being involved in visual impairments in schizophrenia: gain control and integration 

(Pamela D. Butler et al., 2008). The aim of this study was to investigate visual integration 

impairments in schizophrenia by leveraging data collected in the context of a clinical trial 

of a visual training intervention. 
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Perceptual organization involves a series of visual processes responsible for integrating 

visual features into object representations (S. M. Silverstein & Keane, 2011). Perceptual 

organization is a fundamental visual process required to perform day-to-day activities 

such as object and face recognition and processing complex visual scenes. It is also 

integral for several higher-order social, functional and cognitive processes that rely on 

this visual information (P. D. Butler et al., 2009; Pamela D. Butler et al., 2013; Curby et 

al., 2013; Korjoukov et al., 2012; Sehatpour et al., 2010). It is broadly studied using a 

variety of tasks such as figure-ground segmentation (Roelfsema et al., 2002), shape 

completion (Vogels & Orban, 1987), integration of contours (Kuai & Yu, 2006; S. M. 

Silverstein et al., 2012), and coherent motion detection (Kurylo et al., 2017). Contour 

Integration (CI) refers to the ability to bind locally fragmented elements to form a 

perceptual shape and has been the topic of much study in efforts to understand PO. CI 

depends on a wide range of parameters such as (i) openness and closure of the shape of 

contours (Kovács & Julesz, 1993; Polat & Sagi, 1994), (ii) number of individual elements 

that make up the shape (Inducer number - IN), (iii) orientation offsets of the elements 

from the aligned orientation for that shape (Orientation jitter - OJ) (Mark W. Pettet, 

1999), and (iv) curvature of the shape (Braun, 1999; Hess et al., 2003). In the current 

study we aim to characterize the performance of schizophrenia patients and controls over 

a wide range of contour shapes by manipulating OJ and IN. In the sections below, we 

review the processes and mechanisms governing CI in healthy individuals as well as the 

impairments in these processes associated with schizophrenia. 
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CI in patients with schizophrenia (SZ) 

Numerous studies have documented mid-level visual processing impairments in SZ using 

a variety of behavioral, event-related potential (ERP), and functional magnetic resonance 

imaging (fMRI) techniques (S. M. Silverstein, 2016; S. M. Silverstein & Keane, 2011; 

Uhlhaas & Silverstein, 2005). For example, in a behavioral CI task that involved 

identifying oval shapes made up of discrete elements, patients demonstrated impaired 

performance in identifying shapes with high OJ compared to controls (S. M. Silverstein 

et al., 2012). Patients also showed abnormal performance when attempting to identify 

novel, ambiguous or highly fragmented forms (Beck & Palmer, 2002). 

These deficits appear to have detrimental effects on higher-order functions such as 

perceiving degraded face stimuli (Joshua & Rossell, 2009), forming visual memory 

representations (Cocchi et al., 2007; Steven Silverstein et al., 2005) and decoding 

emotion information from faces (Turetsky et al., 2007). Such impairments are notable as 

they are not related to a "general deficiency” in processing information since patients 

perform better than controls when the task requires judgments about individual 

characteristics, an effect that appears to be secondary to deficits in perceptual 

organization  (Uhlhaas & Silverstein, 2005). 

fMRI investigations of CI in SZ by Silverstein and colleagues revealed reduced activity 

in areas of the visual cortex that have been previously observed to be crucial for CI in 

healthy humans and monkeys, specifically areas V2, V3, and V4 (Altmann et al., 2003; 

Kourtzi et al., 2003; Ostwald et al., 2008; S. Silverstein et al., 2010; S. M. Silverstein et 
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al., 2009). Patients exhibited elevated (possibly compensatory) activity in higher regions 

involved with shape processing, such as the fusiform gyrus, temporal gyri, and regions of 

the prefrontal cortex, coupled with overall reduced activity in frontal and parietal areas. 

CI deficits in SZ have also been associated with impairments in a distributed network of 

occipital, prefrontal, parietal and ventral temporal areas. Both ERP and fMRI studies 

have shown reduced activation to contours made up of Gabor elements in the extrastriate 

visual areas in SZ compared to neurotypical individuals (NT) (Pamela D. Butler et al., 

2013; S. Silverstein et al., 2010; S. M. Silverstein et al., 2012).. 

While considerable research has investigated CI in both controls and patients by 

manipulating individual parameters of contours one at a time, as a first step, the current 

study sought to examine the CI process in schizophrenia across a wide range of shapes 

using a modified version of a CI paradigm that the CNTRICS initiative recommended for 

use in treatment studies of schizophrenia (Barch et al., 2009; S. M. Silverstein et al., 

2012). To this effect, we retrospectively analyzed data from a multi-site visual training 

study that employed a variety of contours (Circle, Ellipses, Lines, Squiggles, Blobs, 

Spiral and Letters) in both SZ and NT participants.  We characterized CI performance of 

SZ and NT as the difficulty of identifying a given shape was adjusted by parametrically 

manipulating the orientation (OJ) and number (IN) of the Gabor elements that made the 

shape. The variety of shapes which differed in structure and complexity, allowed us to 

explore whether these features influenced CI task performance among SZ and NT 

participants. We note that although the stimuli used in the current study were inspired by 

previous investigations, the shapes were designed for the purpose of presenting a variety 
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of stimuli to participants during visual training – individual elements of the shapes were 

not systematically controlled or manipulated to adjust shape complexity per se. 

Consistent with previous studies, we observed decreased performance in SZ compared to 

NT across all shapes. However, a closer examination of the effect sizes revealed a more 

nuanced picture. The largest effect sizes between SZ and NT were observed for complex 

contours that either included abstract shapes (Blobs, Spiral) or required top-down 

contributions (Letters) from higher cortical areas. As discussed below, these results are 

consistent with prior observations regarding the nature of visual integration impairments 

in SZ, i.e., normal for stimuli with strong organizational cues (e.g., symmetry, familiarity, 

continuous contour) but impaired under conditions that place more burden on perceptual 

organization processes (e.g., fragmented contours, novel stimuli requiring higher 

demands from top-down contributions) (R. A. Knight, 1992; Raymond A. Knight & 

Silverstein, 2004; S. M. Silverstein et al., 1998; Steven Silverstein et al., 2005). 

METHODS: 

Subjects 

The data used for this study were collected across three sites: Weill Cornell Medicine 

(WCM), Nathan S. Kline Institute for Psychiatric Research (NKI), and the University of 

California, Riverside (UCR). In total, 23 SZ and15 NT were recruited, specifically 13 SZ 

at WCM (8 males; mean age = 33.5 yrs [SD = 8.48]), 10 SZ at NKI (8 males; mean age = 

45.6 yrs [SD = 9.54]), and 15 NT at UCR (5 males; mean age = 19.93 yrs [SD = 2.15]). 

All subjects reported normal or corrected to normal vision. Participants signed written 
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informed consent and were compensated for their participation ($10/hr at all sites). The 

study was approved by the IRB at all three sites. 

General Procedure 

Stimuli: 

The training task was administered using a 12.9” iPad Pro (2nd generation) at all sites. 

The screen was placed at a distance of approximately 2ft from the participants.  The 

screen resolution was 2732 x 2048 with the viewable screen subtending approximately 

18.3° x 24.4° of visual angle. The size and orientation differences between adjacent 

elements in each of the contour shapes used is delineated in Table 4.1. Two parameters 

were manipulated using an adaptive 3 down 1 up staircase: 1) OJ which is the degree of 

change in orientation of the individual Gabor elements that make up the shape, relative to 

their optimal position, i.e., in terms of forming a smooth contour on the curve (Figure 

4.2A); and 2) IN, which is the total number of elements that make up the shape (Figure 

4.2B). Of note, the range of IN varied across shapes. For example, the circle shape had 16 

elements whereas lines included 8 elements. The stimulus grid was made up of a total of 

~440 Gabors, and the overall number of elements remained constant as both OJ and IN of 

the target shapes were varied.  When OJ was manipulated, the elements making up the 

target shape were offset in orientation from the optimal orientation required for the 

contour. When IN was varied, the distribution of Gabor elements across the contour and 

distractors changed i.e., a decrease in the number of inducers was accompanied by an 

increase in the number of distractor elements and vice versa. This led to an increase in the 
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spacing between contour elements, where in all cases the elements that made up the 

contour were equally spaced. We note that the absolute number of inducers that can be 

removed before the visibility of the contours is impacted depends on the contour and the 

template that a participant may use to find the contour. All the Gabor elements were 

identical in each trial except for their positions and rotations. There were on average 2 

Gabors per degree of visual angle (dva). The distribution of the distractor Gabors on the 

screen was held constant to minimize any density cues that would aid in identifying the 

shape.  

 

 

 

 

 

 

 

 

 



134 

 

Contour Shape Size (in dva) Range of Orientation differences 

between adjacent inducer elements (in 

deg°) 

Circle 6.1 0 – 30 

Vertical Line 8.38 0 

Horizontal Line 8.38 0 

Vertical Ellipse 6.1 0 – 30 

Horizontal Ellipse 6.1 0 – 30 

Rotated Ellipse 6.1 0 – 30 

Spiral 5.24 0 – 30 

Blob 1 6.86 0 – 30 

Blob 2 6.86 0 – 30 

Blob 3 6.86 0 – 30 

Vertical Squiggle 10.75 0 – 30 

Horizontal Squiggle 10.75 0 – 30 

Letter p 7.62 0 – 90 

Letter b 7.62 0 – 90 

Letter d 7.62 0 – 90 

Table 4.1. Size and range of orientations differences between adjacent elements for each of the 

contour shapes used in the study. 
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Figure 4.1. Sample image of the Circle contour shape on the screen as presented to the 

participants at 0° orientation jitter and 16 inducer Gabor elements (easy condition). 
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Figure 4.2. A) Different levels of jitter difficulty was used during the course of training. (i) Jitter 

of 10° (moderate difficulty), and (ii) Jitter of 34° (high difficulty). B) Varying numbers of 

inducers were also used; the lower the number of inducers, the harder the task, (i) A Circle shape 

made up of 16 elements (low difficulty), and (ii) of 11 elements (high difficulty). The contour 

shape is highlighted within the red box and is surrounded by distractor Gabors of random 

orientations. 
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Experimental Procedure: 

Subjects participated in 40 visual training sessions (S. M. Silverstein et al., 2020), which 

included performing the CI training task that is the focus of this study. In each session 

participants completed multiple blocks of CI training for approximately 30 minutes per 

session, during which they were presented with a subset of different contours of varying 

shapes (Figure 4.3) on an iPad screen with background distractors (Figure 4.1). The 

Circle shape was presented as the first stimulus for every training session, whereas the 

other contour shapes (lines, ellipses, spiral, blobs, squiggles and letters) were only 

presented for a subset of the training sessions. As noted above, the study was designed to 

introduce stimulus variety during training and not to specifically test differences in 

processing across contour shapes; thus, individual contour shape frequency was unevenly 

distributed across sessions. The two contour salience manipulations, OJ and IN, were 

varied in alternating blocks for each shape (Figure 4.2A and 4.2B).  On each trial, a 

single stimulus of one of the contour shapes was presented within a field of distractor 

elements. Participants were required to tap (using a stylus tool) anywhere on or within the 

border of the contour shape for their response to be recorded as correct. Trials were 

presented in 2-min blocks. Each trial lasted up to 10 s (depending on the participant’s 

reaction time) during which the stimulus would appear on the screen and remain so until 

a response was made, or the participant was timed out of the trial. Thus, the number of 

trials per block, and total number of blocks per session, depended on the speed of the 

participant’s responses to targets. The NT group completed on average a total of 

approximately 9 ± 0.62 blocks per session and about 37 ± 5.67 trials within each block. 
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Similarly, the SZ group completed a total of about 9 ± 0.96 blocks per session with each 

block comprising approximately 36 ± 5.55 trials. Participants received trial by trial visual 

and auditory feedback, specifically a smiley face for correct and a red cross for incorrect 

responses and increasing tones over an octave for correct and an unpleasant beep for 

incorrect responses, respectively. Visual feedback for correct responses comprised 3 

levels: a yellow smiley face denoted a quick response (< 3 s), a white smiley face denoted 

a slightly delayed response (> 3 s but < 6 s) and an orange smiley face denoted a very 

delayed response (> 6 s). Participants were presented with their overall performance 

scores (i.e., total number of correct and incorrect responses) at the end of each block 

(Figure 4.4). The SZ group underwent training on the contour shapes for up to 40 

sessions (3-5 sessions a week). NT performed the 40 training sessions in 20 days i.e., two 

sessions per day. The order of the contour shapes presented to both the groups was fixed 

throughout the study. 
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Figure 4.3. Examples of the contour shapes by stimulus category presented to the participants 

during the CI training. For the full set of contour shapes used, refer to Supplementary Figure 1. 

We operationalized performance on the CI training task using OJ and IN thresholds. For 

each contour shape, participants started at the easiest level (0° jitter and the largest 

number of elements for each corresponding shape) during each block. The parameters 

were adapted in 2 stages. The first stage used a “streaking” staircase in which the 

difficulty level was increased on every trial until an error was made. Once an error was 

made, the second stage was initiated, which used a conventional 3 down 1 up staircase 

procedure. For each contour shape, thresholds for OJ and IN were calculated by taking 

the average of the reversals on the staircase over all blocks and over all training sessions 

for that shape. We calculated the within subject standard error of mean for each shape 
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and group using methods described by (Loftus & Masson, 1994). This involves 

subtracting the grand mean across all conditions for each participant prior to estimating 

standard deviation and then dividing by the square root of the number of participants. 

 

Figure 4.4. Task structure in each trial and block. Each session consisted of multiple blocks, 

with a single type of contour shape presented in each block, with shape type varying across 

blocks. Each block started with presenting the shape to be detected, followed by the stimulus 

screen, which was presented for approximately 8 seconds or until the participant responded. 

Feedback was provided, specifically a smiley face for correct responses paired with a pleasant 

tone and a red cross paired with an unpleasant beep for incorrect responses. Each block was made 

of multiple such trials and lasted for a total of 120 seconds. A summary screen of the participant’s 

performance was provided at the end of each block.     
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RESULTS: 

CI Performance: Orientation Jitter Manipulation: Figure 4.5 presents the average jitter 

thresholds of NT and SZ on 7 contour shapes averaged across all training sessions. We 

performed a 2 (groups) x 7 (shapes) Mixed Methods ANOVA (MM- ANOVA) on the 

average orientation jitter thresholds across all participants for each shape. Since the 

Mauchly’s test of sphericity was significant 𝛘2(20) = 42.889, p = 0.002, the Greenhouse-

Geisser corrected results are reported (ε = 0.735). The MM-ANOVA revealed main 

effects of contour shapes (F (4.412,149.998) = 83.282, p < 0.001, ηp
2 = 0.710, 

Greenhouse-Geisser ε = 0.735) and, group (F (1,34) = 7.706, p < 0.01, ηp
2 = 0.185) and a 

significant shape x group interaction (F (4.412, 149.998) = 4.492, p = 0.001, ηp
2 = 0.117, 

Greenhouse-Geisser ε = 0.735). These results indicate that thresholds differed both as a 

function of contour shape and group (NT vs SZ). Qualitatively, NT outperformed SZ in 

identifying contours of all types, with the exception of Blobs (Figure 4.5). Cohen’s d 

effect sizes were calculated to observe the magnitude of these group differences for each 

contour shape. Large effect sizes for shapes that significantly differed between the two 

groups on the OJ parameter were observed (Spiral t (37) = 3.616, Bonferroni corrected p 

< 0.001, Cohen’s d = 1.1130; Letter t (37) = 3.575, Bonferroni corrected p < 0.01, 

Cohen’s d = 1.0912). 
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Figure 4.5. Jitter thresholds for SZ and NT by Contour Type: Average Orientation Jitter 

thresholds of SZ and NT groups on families of different contour shapes. Here red bars denote the 

performance of NT, and blue bars the performance of SZ. Error bars denote within subject 

standard error (Loftus & Masson, 1994). The y axis denotes the average jitter thresholds (with 

higher thresholds indicating better performance), and the x-axis represents the family of contour 

shapes used.  ** → p < 0.01; *** → p < 0.001 

CI Performance: Inducer number Manipulation: Figure 4.6 shows performance of SZ 

and NT groups as inducer numbers were manipulated.  We conducted a Greenhouse - 

Geisser corrected (Mauchly’s test 𝛘2(20) = 51.710, p < 0.0001, ε = 0.694) 2x7 MM-

ANOVA using the average inducer thresholds calculated from the blocks in which the 

inducer numbers were manipulated and observed a similar pattern of results as reported 
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for jitter. The ANOVA indicated significant main effect of shapes (F (4.163,141.547) = 

704.824, p < 0.001, ηp
2 = 0.954) and group (F (1,34) = 17.094, p < 0.001, ηp

2 = 0.335) 

and a significant interaction for shapes x group (F (4.163,141.547) = 12.618, p < 0.001, 

ηp
2 = 0.271). Large effects of shape and a moderate effect of group x shape interaction 

was also observed as indicated by the ηp
2 values. Thus, as observed for the jitter 

thresholds, the inducer thresholds differed both as a function of the contour shape and 

group (NT v, SZ). Of note, lower inducer thresholds indicate better performance on a 

contour shape. This can be conceptualized as requiring fewer elements to detect a contour 

embedded in a noisy background. Posthoc tests on this parameter were conducted using 

Bonferroni corrected p values and Cohen’s d effect sizes. Results indicated large effect 

sizes and significant differences between some of the shapes as shown in the Figure 6 

(Blobs t (37) = 8.259, p < 0.001, d = 2.2391; Squiggles t (37) = 3.819, p < 0.001, d = 

1.1102; Letters t (37) = 4.001, p < 0.001, d = 1.2223). As displayed in Figure 4.6, 

qualitatively, NT outperformed SZ for all contour shapes. The largest group differences 

were observed for the Blob contours. 

Performance on CI task as a proportion of inducer reduction: We also analyzed the 

performance on the CI task as a function of the proportion of inducer reduction that can 

be tolerated (Figure 4.7). Each shape had different starting inducer values (refer to 

Supplementary Table T1). Thus, in order to directly compare performance across shapes, 

we calculated the percentage of inducer elements that, when deleted from the original 

starting number of elements, impacts the performance of participants in the NT and SZ 

groups. To do this we divided the absolute threshold (i.e., difference between the starting 
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inducer value and the threshold of the participants during each training session) by the 

starting inducer value for each shape (original number of elements that make up the 

contour shape). This was then averaged across all training sessions and participants for 

each shape and multiplied by 100 to obtain the percentage of tolerance of inducer 

reduction. A higher positive value on the y axis in Figure 4.7 indicates better tolerance 

for inducer deletion. We then conducted a Greenhouse – Geisser corrected (Mauchly’s 

test 𝛘2(20) = 72.076, p < 0.001, ε = 0.547) 2x 7  MM-ANOVA on these values and 

observed significant main effects of shape (F (3.28,111.516) = 57.008, p < 0.001, ηp
2 = 

0.626) and, group (F (1,34) = 15.916, p < 0.001, ηp
2 = 0.319) and a significant interaction 

for shape x group (F (3.28,111.516) = 5.594, p < 0.001, ηp
2 = 0.141). Moderate to large 

effects for group x shape interaction and shapes were observed as indicated by the 

respective ηp
2 values. Post-hoc tests revealed large effect sizes between the two groups on 

different contour shapes as well as significant differences between the groups on all 

shapes with the exception of lines and ellipses (Figure 4.7).  Consistent with previous 

studies, NT group has better tolerance for inducer deletion across all contour shapes 

compared to the SZ group. 

Evaluating Effect Sizes for each Contour Shape: Effect sizes are an efficient and reliable 

method to compute the magnitude of an experimental effect, independent of sample size  

(Cohen, 1992; Ferguson, 2009). For the purpose of this study, we computed the Cohen’s 

d effect sizes of the group differences for each shape by parameter manipulation, i.e., OJ 

and IN after controlling for multiple comparisons (Table 4.2). Large effect sizes (d > 1) 

were observed for complex contour shapes i.e., Spiral, Blobs and Letters, for both the OJ 
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and IN manipulations (highlighted in dark red). These results indicate that the 

performance of the SZ and NT groups were strikingly different when these contour 

shapes were presented. We observed notable similarities between the effect sizes for the 

OJ and IN manipulations overall (although see results for the Blobs, Table 4.2). The most 

interesting finding was the large effect sizes between the two groups (SZ and NT) for 

contours such as Blobs, Spiral and Letters, all of which are complex shapes that require 

integrations over multiple regions of the contour for identification. 

 

Figure 4.6. Inducer thresholds for SZ and NT by Contour Type: Average Inducer thresholds 

of SZ and NT groups for families of different contour shapes. Red bars denote the performance of 

NT, and blue bars the performance of SZ. Error bars denote within subject standard error (Loftus 

& Masson, 1994). The y axis denotes the inducer number thresholds, and the x-axis represents the 

family of contour shapes used. The lower the inducer thresholds, the better performance. * → p < 

0.05; *** → p < 0.001 
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Figure 4.7. Inducer thresholds expressed as a proportion of original contour length for SZ 

and NT by Contour Type: The proportion was calculated as the reduction of inducer number at 

threshold relative to the inducer number in the original contour for families of contour shapes and 

expressed as a percentage. Red bars denote the performance of NT, and blue bars the 

performance of SZ. Error bars denote within subject standard error (Loftus & Masson, 1994). The 

y axis denotes the % reduction of inducer number, and the x-axis represents the family of contour 

shapes used. Higher values on the y axis indicate better tolerance to deletion of elements. * → p < 

0.05; *** → p < 0.001 

DISCUSSION: 

The current study examined performance of NT and SZ on a range of contour shapes 

differing in their degrees of curvature and closure.  Specifically, we implemented a CI 

task using 15 different shapes that can be classified into 7 families as seen in figure 4.3 

(also refer to supplementary figure S1), in the context of a visual training study. These 
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shapes inherently vary in terms of curvature and closure while the orientation and the 

number of elements making up the shape were manipulated during each training session. 

Consistent with prior findings, we observed that contour integration was impaired in SZ 

when compared to NT. While this points to an overall impairment in the ability to 

integrate disconnected collinear fragments for numerous types of shapes, a novel finding 

from this study is that the degree of impairment appears to vary as a function of the type 

of shape. 

  

Table 4.2. Cohen’s d effect sizes of group differences (NT vs SZ) for each contour shape in a 

color-coded fashion, with dark red indicative of the largest effects and the light pink indicating 

the smallest. 

Several previous studies controlled for curvature of the contours, and open contours were 

often constructed by introducing “turning points” which is done by cutting and flipping a 
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part of a closed contour thereby changing the angle between two adjacent elements at 

least once (Braun, 1999; M. W. Pettet et al., 1998; Poom, 2002; Tversky et al., 2004). 

Open contours can also be conceptualized as contours that are discontinuous around the 

shape. Multiple studies have observed that increasing the number of turning points 

negatively impacts the performance on a contour shape (Kovács & Julesz, 1993; Mathes 

et al., 2006; M. W. Pettet et al., 1998; Mark W. Pettet, 1999). However, these studies 

have only focused on simple shapes that involved, for example using circles and/or 

connecting two halves of a circle to form an ‘S’ shape. Our aim here was to characterize 

CI in SZ using a wide variety of 2D representations of simple and complex shapes that 

resembled shapes that may be familiar to participants. These contained varying degrees 

of curvatures ranging from having equal (circle) or no turning points (lines), to having a 

large number of turning points (spiral/ blobs/ letters). Our results appear to be in 

accordance with previous observations for shapes with high curvatures i.e., poorer 

performance on these shapes in both groups. However, to the best of our knowledge, 

there have been no prior studies that examined the performance of NT and SZ on highly 

complex shapes akin to the spiral, letters and blobs used in this study.   

We note that the current study failed to find significant differences between the groups on 

squiggles and lines, which has been observed in previous studies (Robol et al., 2013; 

Schallmo et al., 2013). This could be attributed in large to the methodological differences 

adopted in the current study. Firstly, while both studies focused on peripheral contour 

detection, the present study was a foveal visual search task where the stimulus stayed on 

the screen for a long duration (8 s) allowing the participants to search the grid for the 
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target. Secondly, we had designed the squiggles to be relatively easy to find, including 

having more inducers, and so the stimuli are not directly comparable as well. Further, the 

number of elements in the squiggle shape was at the cusp of the inducer threshold that 

could have also potentially contributed to the task itself being harder, leading to the lack 

of significant differences observed. Again, we note that our study was designed for 

contour training and thus our contours were not systematically controlled in the same 

manner as some previous studies in literature. 

It is also possible that the large effect sizes for group differences for complex contours 

could be explained by the RBC (Recognition – By – Components) theory as put forth by 

Biederman (Biederman, 1987). According to this theory, geons (generalized cone 

components) can be derived from five detectable properties in a 2D image: curvature, 

collinearity, symmetry, parallelism and cotermination, and when two or three geons can 

be recovered from the input, objects can be quickly recognized even when they are 

degraded. RBC also posits that if contours were deleted at regions of high saliency (i.e., 

points along the contour that would be easy to bridge by extensions of collinearity or 

curvilinearity), then recognition would be impossible. For example, when IN is 

manipulated, these may possibly be degrading the regions of concavity in complex 

contours, which would explain the strikingly large effect sizes (table 4.2) for Blobs when 

IN is changed. This would also lead to potential tradeoffs between the two parameters 

that were manipulated (OJ and IN). 
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We note that further research will be necessary to better understand mechanisms, and 

likely individual differences in how SZ leads to decreased performance on CI. In the case 

of the specific deficit in identifying complex contours could be due to the impaired top-

down feedback found in previous studies of schizophrenia (Pamela D. Butler et al., 2013; 

S. Silverstein et al., 2010; S. M. Silverstein et al., 2012). However, an alternative 

explanation could be the weakened long-range horizontal connections in both striate and 

extrastriate visual areas (Pamela D. Butler et al., 2008; Keane et al., 2012; Kéri et al., 

2005). While this study cannot address these mechanistic questions, our findings 

highlight that CI is a dynamic process in which changes in several parameters (e.g., 

curvature, contour smoothness, contour element density) can lead to changes in 

perception.   

Limitations 

While there are several interesting insights from the current study regarding perceptual 

organization, and specifically about how contour integration is affected in individuals 

with schizophrenia relative to neurotypical individuals especially for complex contours, 

there are several limitations of the current study that must be kept in mind when 

considering these findings: Firstly, we note that this study was a retrospective analysis of 

the data obtained from a training study, and thus contours were not specifically chosen to 

parametrically determine the specific features of the contours that influenced the 

performance. Further, we averaged thresholds across multiple sessions of the training 

period and did not explicitly address training effects (although each contour was 
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distributed across training, and both NTs and SZs were presented with the same sequence 

of contours). In addition, while we examined performance on a wide range of shapes, the 

shapes were initially designed with the purpose of achieving variety during training, and 

differences between shapes, such as complexity and curvature, were not systematically 

manipulated. Secondly, the sample size is small, and so there may not have been 

sufficient power to detect some group differences. Specifically, we did not observe 

significant aging effects between the two groups despite previous studies observing such 

differences (E. Roudaia et al., 2012; Eugenie Roudaia et al., 2008, 2013). While on 

average SZ were older than the NT group, lack of these effects could be due to the small 

sample size in our study. Nevertheless, even with the current sample size, the study was 

able to show effective qualitative and quantitative differences in the performance 

between the two groups. Thirdly, dissimilar training structure might also be another cause 

for a lack of marked differences for certain shapes. SZ underwent training for 40 sessions 

with 3-5 sessions per week (with a maximum of one session per day), whereas the NT 

completed the same 40 sessions over 20 days, with two sessions per day. This may have 

contributed to differential training effects across groups and could have resulted in 

fatigue in the control group which might have also affected their performance. Fourthly, 

in addition to the contour shapes being different, insufficient/ unequal sessions per 

contour shape presentation could have affected the results. For example, participants 

were presented with the Circle contour for all 40 training sessions while the Spiral 

contour was presented for 9 sessions. The total number of sessions for the rest of the 

contours (including different subsets of each family of contour shape) are denoted in 
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parentheses as follows: Lines (3), Ellipse (5), Blobs (6), Squiggles (2) and Letters (6). 

This could have contributed to better performance on shapes that were presented more 

frequently than others. We did, however, examine potential differences between 

perceptual and learning thresholds for the circle contour, as explained in the 

Supplementary material (Appendix 1). 

Additionally, NT and SZ participants in the study were recruited from different sites 

leading to uncontrolled differences between these research sites impacting the 

performance. While we ensured that the experimental setup across all sites were identical 

(i.e., viewing conditions, display devices, and tasks) further studies are needed that 

recruit participants for both groups at the same site to eliminate the likelihood of any 

differences in performance. 

Lastly, the task was particularly challenging for high curvature contours when IN was 

manipulated, most likely because the baseline number of elements was not sufficient to 

capture the shape of the contour when embedded in a noisy background. This might have 

put the participants in a difficult condition at the beginning of the trial, which could have 

affected their performance as well. 

Future Directions 

The current study represents an exploratory investigation of CI in schizophrenia using 

several commonly studied shapes. A more thorough and balanced study that 

systematically assesses the parameters should be conducted to further advance our 
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understanding of how CI impairment in schizophrenia varied as a function of shape type. 

It would also be beneficial to systematically vary the curvature of the closed and open 

shapes independently with an equal number of trials between participants to arrive at a 

more accurate and reasonable threshold for each shape. 

We also note that prior studies in healthy older adults using the CI task indicate age-

related deterioration in performance, specifically when varying parameters of orientation 

jitter and closure of the shape (Casco et al., 2011; Hipp et al., 2014; E. Roudaia et al., 

2012; Eugenie Roudaia et al., 2008, 2013). While our sample was likely too small, and 

not sufficiently varied to address age-effects in contour integration, it will be important 

for future studies to use age-matched controls to offer more clarity regarding 

schizophrenia-related deficits. 

SUMMARY: 

The current study extends past work on perceptual organization in schizophrenia by 

examining performance under different shape conditions, and with multiple grouping 

manipulations (contour smoothness, contour density, and contour closure). Consistent 

with several prior studies we observed a general pattern of reduced performance in SZ 

compared to controls on all the shapes. Upon close observation, the shapes in which we 

observed the largest group differences were the more complex shapes, as judged 

intuitively i.e., shapes with curvatures that require integration over multiple regions of the 

contour. However, further studies, with larger samples, that control the manipulation of 

parameters like curvature and additional stimulus types, are needed to confirm these 
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results. Nevertheless, the current study reinforces that in addition to a pattern of generally 

poor perceptual organization in schizophrenia, there are certain conditions and stimulus 

parameters that are more likely to reveal impairments in patients.  In particular, stimuli of 

moderate complexity, for which rapid top-down effects normally help achieve contour 

integration and perceptual closure, are the most demanding for patients relative to 

controls, suggesting a schizophrenia-related breakdown in modulating perception based 

on top-down feedback involving stored shape information. Future studies centered on 

visual rehabilitation for patients with schizophrenia should focus more on strategies that 

could improve performance on these key factors.  
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SUPPLEMENTARY MATERIAL: 

 

Figure S1: Outline of all the contour shapes used in the study 
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Figure S2: Subset of contour shapes A) Blob3, B) Vertical Line, C) Spiral, D) Letter P along 

with distractors used in the study. The shapes are highlighted within the red box.   
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Contour Shape Starting # of inducers 

Circle 16 

Vertical Line 8 

Horizontal Line 8 

Vertical Ellipse 16 

Horizontal Ellipse 16 

Rotated Ellipse 16 

Spiral 16 

Blob 1 19 

Blob 2 19 

Blob 3 19 

Vertical Squiggle 10 

Horizontal Squiggle 10 

Letter p 16 

Letter b 16 

Letter d 16 

Table T1: Starting number of inducers for each contour shape 

Appendix 1: 

Here we look at potential differences between patients with schizophrenia and 

neurotypical individuals on the circle contour shape keeping in mind any effects of 

learning that might have affected the thresholds.  We specifically focus on the circle 

contour because it is the only shape that was presented across all 40 training sessions in 
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the current study. We group the performance of the participants into two: Perceptual 

Threshold which is the average performance on the first 10 sessions (leaving out session 

1 as we assume that any performance during the first session is related to learning the 

task cognitively) and Learning Threshold which is the average performance on the last 10 

sessions. Figure S3 below shows these thresholds for both groups.  

 

 

Figure S3: Figure shows the orientation jitter (left) and inducer number (right) thresholds for the 

circle contour shape. Perceptual thresholds are calculated by averaging the performance of 

participants during sessions 2-11 and learning thresholds are calculated by averaging performance 

during sessions 31-40. Red and blue bars denote NT and SZ participants respectively. Error bars 

denote 2 SE. * → p < 0.05, ** → p < 0.01 

It can be observed from the figure that SZ group showed no statistically significant 

difference between the perceptual and learning thresholds when both OJ and IN were 

manipulated. On the other hand, significant differences were found between the 

perceptual and learning thresholds for the NT group when both OJ (t (27.19) = -2.56, p < 
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0.05) and IN (t (26.35) = 3.61, p < 0.001) were manipulated indicating that NT showed 

larger degrees of improvement as a result of training on the circle contour shape. We also 

found significant differences between the learning thresholds in SZ and NT groups when 

IN was manipulated (t (33) = -2.15, p < 0.05).   
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Chapter 5: Discussion and Conclusion 

As a first step towards addressing the limitations and gaps that exist in the field of PL, we 

discuss the design and development of methods and tools that can potentially achieve 

robust and unbiased results, as well as even aid and inform future studies aiming to 

understand mechanisms that facilitate specificity and generalizability of PL strategies. 

Moreover, current work discussing novel findings regarding mid-level visual impairment 

in patients with schizophrenia, emphasizes the implications of designing a “gamified” 

vision rehabilitation paradigm with a translational motive, stressing the need for the 

development of informed and targeted methods with strong foundations in the field of 

PL. While this work has merely opened avenues for further studies, it holds significance 

in the advancement of PL research.   

Applications in basic PL research: 

The field of PL has had a plethora of findings that contributed to understanding theories 

surrounding the specificity and generalizability of several paradigms. However, given 

that most of these results stemmed from small N studies and suffered from replicability 

issues, there is not yet well defined and robust results suggesting which PL paradigms 

lead to specificity and which ones lead to transfer of learning, and even more so the 

extent to which each of the established paradigms can transfer. While theories and 

mechanisms of PL provide key insights and answers to some of these questions, it is 

important to conduct large scale studies across multiple sites, with heterogeneous and 

diverse samples to test these different paradigms (Seitz et al., 2023).  

https://paperpile.com/c/W4bPbo/jIgC


167 

 

On one hand, the PLFest platform described in Chapter 2 is designed to serve this exact 

purpose. Firstly, this platform is capable of functioning on both tablets and computers 

with the ability to support a wide range of perceptual and cognitive tasks. This allows 

researchers to design PL paradigms to explore different theories of perceptual learning. 

Rightfully so, currently, this platform is being used to implement existing paradigms that 

have previously shown specificity and transfer of learning to identify the mediators 

(different PL paradigms) and moderators (participants and individual differences) of PL. 

At present, PLFest supports PL of spatial vision and approaches that include training of 

not only standard perceptual paradigms (like orientation discrimination tasks), but also 

training with flanking stimuli (Polat et al., 2012; Yu et al., 2004), use of noise (DeLoss et 

al., 2015), training with diverse stimuli (Deveau, Jaeggi, et al., 2014; Deveau, Lovcik, et 

al., 2014), attentional training (Donovan et al., 2015; Szpiro & Carrasco, 2015), and even 

allows for testing multisensory facilitation (Seitz et al., 2006; Shams & Seitz, 2008). 

Given that this platform is able to reliably measure performance in selective yet 

fundamental visual tasks, it allows for achieving robust and unbiased results targeted at 

answering these long-standing questions in the field. Potential applications of this 

platform is virtually limitless: (1) it can be coupled with EEG and eye tracking tools to 

examine the oculomotor and neural underpinnings of training, (2) it holds potential for 

testing and/or training participants in remote conditions providing access to research in 

underserved communities, (3) is flexible and adaptable for designing new PL paradigms, 

and (4) is open source and free of cost thereby removing barriers to access publicly 

available datasets and promote transparency in research.   

https://paperpile.com/c/W4bPbo/ITAj+CVPM
https://paperpile.com/c/W4bPbo/JuGo
https://paperpile.com/c/W4bPbo/JuGo
https://paperpile.com/c/W4bPbo/xMSM+C9ub
https://paperpile.com/c/W4bPbo/xMSM+C9ub
https://paperpile.com/c/W4bPbo/jGLT+zvJ8
https://paperpile.com/c/W4bPbo/CfvE+QsMt
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On the other hand, the gaze contingent framework highlighted in Chapter 3 aims to 

inform basic PL research by utilizing s-CVL as a model to test specificity and 

generalizability of selective PL paradigms. While not exhaustive, this model allows for a 

more comprehensive understanding of training related benefits of PL particularly due to 

the fact that it taps into the blank slate of the visual periphery thereby allowing for the 

ability to identify locus of plasticity across different brain regions. This framework is a 

useful tool for advancing basic perceptual learning research because it allows researchers 

to: (1) investigate the role of oculomotor behavior in PL by tracking eye movement 

during perceptual training helping researchers gain insights into how eye movements can 

contribute to learning and how can it be optimized to improve training outcome, (2) 

design training paradigms that can improve both perceptual and oculomotor function by 

providing a controlled environment in which to manipulate visual stimuli and 

corresponding oculomotor behavior facilitating the development of training paradigms 

that either target both the combined perceptual and oculomotor systems, or each of these 

systems individually, and (3) study the effects of PL on oculomotor behavior by 

measuring several metrics across a wide range of tasks both before and after training. A 

notable selling point of the proposed framework is that, to the best of our knowledge, 

there is no existing body of work that meticulously factors into several design related 

aspects, such as the concurrence of hardware and software components, priming crucial 

oculomotor behavior for efficient use of visual periphery, and carefully considering the 

psychophysical and visual demands for conducting PL research using this model.   
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Applications in visual rehabilitation: 

There exists a large body of research in VPL that has demonstrated brain plasticity and 

improvements in perceptual performance inspiring researchers to apply PL strategies in 

clinical settings for patients with visual impairments (Cavanaugh et al., 2015, 2019; Levi, 

2020; Maniglia et al., 2021; Polat et al., 2012; Sabesan et al., 2017). However several 

challenges remain (Levi, 2020; Lu et al., 2016) due to specificity of PL paradigms 

limiting the benefits of training to the trained stimuli and tasks negatively impacting the 

translational merit of these paradigms. However, a few studies have overcome this 

specificity of training by implementing a combined approach to training including 

diverse and naturalistic stimuli, rich feedback and gamified paradigms (Deveau et al., 

2013; Deveau, Lovcik, et al., 2014; Deveau & Seitz, 2014) and observed transfer of 

learning in clinical populations.  

While the studies highlighted in chapters 2 and 3 mainly focus on research in healthy 

individuals, these methods and tools can be adapted to test and/or train patients with a 

wide range of visual impairments. Firstly, the PLFest platform, although currently not 

validated in clinical populations, holds great promise in supporting research and 

development of PL paradigms that are of translational importance. Specifically, the 

simplicity of this platform to support established PL strategies that have previously 

shown generalization of learning is encouraging for research in clinical populations. 

Secondly, while the gaze contingent framework described in chapter 3 shows 

representative results from healthy individuals with s-CVL, it can be easily adapted for 

conducting PL research in patients with age-related macular degeneration. The ability of 

https://paperpile.com/c/W4bPbo/kakf+0My8+CVPM+wxkl+ATIg+XQ7O
https://paperpile.com/c/W4bPbo/kakf+0My8+CVPM+wxkl+ATIg+XQ7O
https://paperpile.com/c/W4bPbo/0My8+0v3A
https://paperpile.com/c/W4bPbo/xMSM+Dvos+dxHo
https://paperpile.com/c/W4bPbo/xMSM+Dvos+dxHo
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this framework to support a more holistic intervention approach, encompassing eye 

movement planning, cognitive control mechanisms and visual perceptual learning holds 

great promise in identifying key strategies that could lead to generalizability of learning 

in these patients. Prior research conducted in our lab with a modified version of this 

framework has shown improvements in visual acuity at the preferred retinal locus in 

these patients (Maniglia et al., 2021). 

The study emphasized in Chapter 4 is proof of concept that such diverse training could in 

theory allow for the development of targeted visual rehabilitation in clinical populations. 

While findings from this study do not answer questions regarding the generalizability of 

training, it does provide valuable insights into the nature and extent of visual impairments 

in patients with schizophrenia. Taken together, the result from this study underscores the 

importance of developing rehabilitation that is more focused towards exploiting the 

findings of this study, thereby alleviating in part this mid-level visual impairment in 

patients.  

Limitations and Future directions: 

The current work emphasized in my thesis holds great potential for PL research, 

however, it is also important to note that there are few limitations to its practical 

applications. Firstly, one of the primary limitations of my thesis is that the collective 

body of work is best suited for studies conducted in controlled laboratory settings and 

therefore, cannot be, at the moment, substantiated to real world practical changes and 

must be met with skepticism. Secondly, although the proposed tools and methods open 

exciting possibilities of research for PL of spatial vision, it does not account for studies 

https://paperpile.com/c/W4bPbo/kakf
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and research centered around using moving visual stimuli and thereby cannot provide 

insights into the specificity and generalizability of PL trained using these tasks. Thirdly, 

the novel findings from chapter 4 need to be validated with more controlled 

manipulations and task design before integrating into visual rehabilitation paradigms. 

Finally, it is important that these methods and tools are validated in clinical populations 

prior to conducting PL studies in patients. 

Final Remarks:    

This collection of studies investigates different facets of PL, with a focus on developing 

rigorous and accessible methods to advance PL research. While each chapter in this thesis 

addresses this need in distinctive ways, collectively these studies emphasize the need for 

achieving unbiased and robust findings in PL research, introduce novel tools and 

approaches to address limitations in the field, and provide insights into the nuances of 

visual processing deficits in clinical populations, thus paving the way for future research 

in this field. 
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