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ABSTRACT. Tandem “Z-scheme” approaches to solar-to-chemical production afford the ability 

to independently develop and optimize reductive photocatalysts for CO2 reduction to multi-

carbon compounds, and oxidative photocatalysts for O2 evolution. To connect the two redox 

processes, molecular redox shuttles, reminiscent of biological electron transfer, offer an 

additional level of facile chemical tunability that eliminates the need for solid-state 

semiconductor junction engineering. In this work, we report a tandem inorganic-biological 

hybrid system capable of oxygenic photosynthesis of acetic acid from CO2. The photoreductive 

catalyst consists of the bacterium Moorella thermoacetica self-photosensitized with CdS 



 2

nanoparticles at the expense of the thiol amino acid cysteine (Cys) oxidation to the disulfide 

form cystine (CySS). To regenerate the CySS/Cys redox shuttle, the photooxidative catalyst, 

TiO2 loaded with co-catalyst Mn(II) phthalocyanine (MnPc), couples water oxidation to CySS 

reduction. The combined system M. thermoacetica-CdS+TiO2-MnPc, demonstrates a potential 

biomimetic approach to complete oxygenic solar-to-chemical production. 

 

Though they may project to outcompete natural photosynthesis, the conversion of solar 

energy into chemical bonds remains a daunting task for current artificial systems.1 Many 

semiconductor light harvesters have been developed as both monolithic photoelectrodes and 

suspended nanoparticle photocatalysts.2 However, the development of cheap, efficient and 

selective co-catalysts remains challenging for water oxidation and particularly for CO2 reduction 

to multi-carbon compounds.3 Biomimetic co-catalysts that emulate the active sites of the proteins 

employed within natural photosynthesis have yet to fully capture the performance of their 

biological inspiration due to the inherent complexity of enzyme catalysis.4  

To skirt these difficulties, several studies have recently demonstrated the use of whole 

cells and whole protein complexes in solar-to-chemical production schemes.5–8 We have recently 

shown the ability of the acetogenic bacterium Moorella thermoacetica to self-photosensitize by 

bio-precipitation of CdS nanoparticles, facilitating photosynthesis of acetic acid from CO2.
9 

While this system demonstrates high efficiency photoreductive capabilities, the inorganic-

biological hybrid organism operates at the expense of a sacrificial reductant, the thiol amino acid 

cysteine (Cys), which oxidizes to the disulfide form, cystine (CySS). 

Direct photooxidation of water to O2 by M. thermoacetica-CdS is infeasible due to the 

poor oxidative stability of many metal chalcogenides.10 We have thus taken a biomimetic 
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of Cys to CySS. Co-illumination of TiO2-MnPc drives the reduction of CySS back into Cys, 

coupled to oxidation of water to H2O. B) Energy level diagram depicting the relative alignment 

of the TiO2 and CdS with the relevant redox reactions. 

 

Taking inspiration from biological redox processes, a biocompatible CySS/Cys redox 

couple (RSH/RSSR) was selected.15 As depicted in Fig. 1, the tandem system investigated here 

consists of a TiO2 nanoparticle loaded with a manganese(II) phthalocyanine (MnPc) co-catalyst 

to reduce CySS back into Cys, rendering the formerly sacrificial reductant into a regenerative 

redox couple.  

The choice of a selective CySS reduction co-catalyst was crucial to prevent degradation 

of the CySS/Cys redox couple. Bare TiO2 alone has been shown to be a poor photocatalyst for 

CySS reduction due to irreversible oxidative degradation.16,17 Additionally, the inability of TiO2 

to absorb visible light severely limits its performance under solar illumination. Previous studies 

have reported on the electrochemical selectivity of various transition metal phthalocyanines 

(TMPc) to CySS reduction and Cys oxidation, and have suggested that MnPc displays the 

highest activity towards CySS reduction of the first row transition metals due to its stronger 

binding of Mn to CySS.18 Several first row TMPcs and unmetalated H2Pc were tested under in 

vitro conditions suitable for M. thermoacetica-CdS photosynthesis by loading on to TiO2 

nanoparticles and measuring Cys production rate under illumination (5% sun, AM1.5G).  

Reflectance spectra of the TiO2-TMPc photocatalysts were taken to confirm loading of MnPc 

(Fig. 2) and display strong retention of the absorption peaks of the molecular co-catalyst. 

As presented in Tbl. 1, MnPc exhibited the highest activity for CySS reduction. The time 

series presented in Fig. 3 under an inert N2 atmosphere as well 21% O2 demonstrate that even in 
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electrochemical activity. In addition, MnPc displays a significantly higher activity than all other 

tested Pc. While previous electrochemical studies employed relatively inert and non-interacting 

graphitic electrodes, reflectance spectra (Fig 2, S1) demonstrate a redshift in the low energy 

peaks around 650 nm, suggesting coupling between TiO2 and MnPc. The solubility of TMPc in 

EtOH (the solvent used for loading) may play a role, as MnPc has the highest EtOH solubility, 

perhaps leading to more even  loading on TiO2 and a greater number of exposed active sites.19 

However, both NiPc and CuPc have demonstrated lower solubility than FePc and CoPc, 

indicating that differences in coscatalyst loading fails to sufficiently explain the activity trend. 

The spectrum of TiO2-MnPc retains the distinct peak at 530 nm found in the neat MnPc 

spectrum (Fig. 2), whereas such spectral signatures are often lost in the other TiO2-Pc 

photocatalysts suggesting either poor loading, or perhaps interactions between the TMPc and 

TiO2 (Fig. S1). However, activity does not directly correlate with reflectance spectra, as NiPc 

and ZnPc which show the second highest and lowest activity, respectively, have similar 

reflectance spectra with deemphasized features.  

Since previous studies were conducted as electrocatalysts in dark, the differences in 

activity observed here suggest TMPc visible light absorption has an effect on catalytic 

performance. TMPcs have been widely employed as visible and IR sensitizers of dye-sensitized 

solar cells (DSSCs) due to the favorable energy alignment of their HOMO and LUMO with the 

conduction band of TiO2.
20 We do note that ZnPc, a common visible light sensitizer in DSSCs, 

demonstrates the lowest activity, perhaps due to the favorable charge injection from ZnPc to 

TiO2 that would impede CySS reduction. 

The activity of NiPc deviates most drastically from previous reports. While Zagal, et al. 

report NiPc as one of the least catalytically active for CySS reduction, photocatalytically, NiPc 
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was the second most active behind MnPc. Analysis of the MO diagram of NiPc shows that the 

HOMO-LUMO charge transfer is a ligand-to-metal charge transfer (LMCT) from the Pc a1u to 

the Ni 3dx
2

-y
2 centered b1g.

21 This shift of electron density towards the metal active site under 

illumination may improve CySS binding and increase reduction activity. In contrast, FePc and 

CoPc, the least photocatalytically active, exhibit largely metal-to-ligand charge transfer (MLCT) 

which may disfavor CySS binding. A similar LMCT argument may explain the higher activity of 

CuPc. H2Pc also demonstrates reasonable activity towards CySS reduction despite not having a 

metal site to facilitate disulfide binding. However, the close proximity of two hydrogens may 

favor a proton-coupled electron transfer. 

Illumination of various combinations of M. thermoacetica-CdS and TiO2-MnPc 

demonstrated that the CySS photoregenerative catalyst effectively pairs with the CO2 

photoreductive catalyst (Fig 4). When only M. thermoacetica-CdS was illuminated, the rate of 

acetic acid production leveled off after roughly 1 day, below the stoichiometric limit set by Cys 

as limiting reagent (i.e. no photoregeneration). Similarly, combination of TiO2-MnPc with CdS-

free M. thermoacetica cells yielded negligible acetate production (Fig. 4A). While the band gap 

of TiO2 is thermodynamically sufficient to drive microbially catalyzed CO2 reduction, the 

process remains kinetically unfavorable due to the poor interface between TiO2-MnPc and M. 

thermoacetica. TiO2 may also photosterilize M. thermoacetica in the absence of CdS 

nanoparticles via the formation of reactive oxygen species (ROS).22 Finally, the combination of 

M. thermoacetica-CdS for CO2 reduction to acetic acid and Cys oxidation, coupled with TiO2-

MnPc for CySS reduction and water oxidation produced a net amount of acetic acid at a higher 

rate than M. thermoacetica-CdS alone, and above the stoichiometric limit of Cys, clear evidence 

of CySS/Cys as a regenerative redox couple.  The photoprotective role of TiO2 (in addition to the 



 

protectio

thermoac

yields fo

comparab

potential 

participat

slightly o

 

Figure 4

System. 

acetic ac

only and

stoichiom

(4e-) yiel

(2e-) indi

the avera

n afforded b

cetica+TiO2-

or the reduc

ble stoichiom

loss of ac

tes within th

overestimate

4. Photosyn

A) Compar

id productio

d M.thermoa

metric limit 

lds after 3.5 

icated to bal

age and stand

by CdS alon

-MnPc comp

ced product

metries (Fig

cetic acid t

he redox cyc

ed. 

nthetic Perf

rison of M.th

on from the c

cetica+TiO2

imposed by

days. Electr

lance electro

dard deviatio

e) may also 

pared to M. 

t (acetic ac

. 4B). A slig

towards M. 

cle, CySS d

formance of

hermoacetic

combination

2-MnPc cont

y Cys (dashe

rons potentia

on equivalen

on of triplica

help to exp

thermoaceti

id) and oxi

ght excess o

thermoacet

derived elect

f M.thermo

ca-CdS and 

n of the tand

trols showed

ed line). B) 

ally derived 

nts between 

ate experime

plain the high

ica-CdS alon

idative prod

f oxidative p

tica biomas

tron equivale

oacetica-CdS

TiO2-MnPc

dem system. 

d lower acet

Comparison

from the ne

acetic acid 

ents. 

her photosyn

ne.23 Compa

ducts (O2 a

products are

ss.24 Additio

ents indicate

S and TiO2

c with contr

Both M. the

tic acid prod

n of acetic a

ext oxidation

and O2. All

nthetic rate o

arison of ele

and CySS) 

e indicated d

onally, as C

ed in Fig. 4B

2-MnPc Tan

rols show gr

ermoacetica

duction below

acid (8e-) an

n of Cys to C

l values repr

9

of M. 

ectron 

show 

due to 

CySS 

B are 

 

ndem 

reater 

a-CdS 

w the 

nd O2 

CySS 

resent 



 10

 

While the current system demonstrates reasonable net kinetic performance, several 

improvements could be made to further increase the photosynthetic rate. As seen in both Fig. 3 

(inset) and Fig. 4A, the rate of CySS reduction or acetic acid production begins to decrease from 

the initial rate, likely due to the effects of O2 accumulation. As the partial pressure of O2 rises, 

the back reaction of Cys oxidation begins to compete, giving a steady state concentration of Cys 

below the ~6 mM desired for high CO2 reduction rates by M. thermoacetica-CdS. Additionally, 

the O2 sensitivity of CdS and the anaerobic M. thermoacetica likely limit their performance at 

higher O2 concentrations.25 While engineering approaches such as gas purging could limit the 

detrimental effects of O2, a more elegant solution would call for physically separating the two 

incompatible processes through either physical space, or via a selective membrane.26 While 

physically separating the oxidative and reductive photocatalysts would create significant 

difficulties for solid-junction nanoparticle tandem systems, the use of a molecular redox shuttle 

enabled by diffusional or convective transport renders this design readily accessible. 

The limited light absorption of TiO2 and CdS likely bottlenecks the solar-to-chemical 

efficiency of the current system. Exploration of the semiconductor parameters space may yield 

lower bandgap semiconductors to raise the theoretical limit on solar-conversion efficiency. Due 

to the relative ease of engineering molecular rather than solid-state interfaces, the various 

components of this modular tandem inorganic-biological hybrid system may be switched out as 

newer, better performing materials become available. With these advances, this paradigm holds 

promise for the future of advanced solar-to-chemical production. 
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