
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Symbolic Variables in Distributed Networks that Count

Permalink
https://escholarship.org/uc/item/7gm9d3hp

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Grant, Satchel
Wu, Zhengxuan
McClelland, Jay
et al.

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gm9d3hp
https://escholarship.org/uc/item/7gm9d3hp#author
https://escholarship.org
http://www.cdlib.org/

Symbolic Variables in Distributed Networks that Count
Satchel Grant (grantsrb@stanford.edu)

Stanford University
Deptartment of Psychology

Zhengxuan Wu (wuzhengx@stanford.edu)
Stanford University

Deptartment of Computer Science

James L. McClelland (jlmcc@stanford.edu)
Stanford University

Deptartment of Psychology

Noah D. Goodman (ngoodman@stanford.edu)
Stanford University

Dept. of Psychology and Computer Science

Abstract

The discrete entities of symbolic systems and their explicit
relations can make symbolic systems transparent and easy to
communicate. This is in contrast to neural systems, which
are distributed, often with opaque inner mechanisms. It is un-
derstandable that psychologists tend to pursue interpretations
of human cognition using symbolic characterizations, and it
is clear that the ability to find symbolic variables within neu-
ral systems would be beneficial for interpreting Artificial Neu-
ral Networks (ANNs). Symbolic interpretations can, however,
oversimplify non-symbolic systems. This has been demon-
strated in children’s performance on tasks thought to depend
on a concept of exact number, where recent findings suggest a
gradience of counting ability in children’s learning trajectories.
In this work, we take inspiration from these findings to explore
the emergence of symbolic representations in ANNs. We align
recurrent neural representations with symbolic representations
of number by causally intervening on the neural system. We
find that symbolic representations of numbers do emerge in
ANNs. We use this to inform the discussion on how neural
systems represent quantity. We also show that the symbol-like
representations evolve with learning, and can continue to vary
after the neural network consistently solves the task, demon-
strating the graded nature of symbolic variables in distributed
systems.
Keywords: Mathematical cognition; symbolic number; con-
nectionist models; Distributed Alignment Search; neural net-
works

Introduction
Both biological and artificial Neural Networks (NNs) have
powerful modeling abilities. Aside from the impressive capa-
bilities of human cognition within biological NNs, artificial
NNs have had recent successes crowning them as the “gold
standard” in many machine learning communities (Alzubaidi
et al., 2021). Despite their success, the inner workings of NNs
remain largely opaque to humans, partly because representa-
tions in NNs are often highly distributed. Individual neurons
in NNs often play multiplex roles (McClelland, Rumelhart,
& PDP Research Group, 1986; Smolensky, 1988). Mean-
while, current tools often lack the ability to uncover precise
mechanisms of artificial NNs (ANNs) from their distributed
representations.

Symbolic systems, in contrast, defined by clear, discrete
entities and explicit rules and relations, have the benefit of
greater interpretability. These systems can often be designed
so as to maintain mechanistic simplicity and interpretablity.
Often this comes with the benefit of causal power over the
systems, enabling us to change intermediate components for

a desired output. Symbolic systems can lack, however, the
expressivity and performance capabilities of NNs. This is
apparent in the field of natural language processing where
NNs such as Transformers (Vaswani et al., 2017) have swept
the field. The field has witnessed a transformation from the
power of scalable learning objectives and model scale using
ANNs (Brown et al., 2020; Kaplan et al., 2020), easily sur-
passing the existing purely symbolic approaches. Is it possi-
ble to gain the interpretability of a symbolic system in these
NNs? How can we explore the causal relationships of ANN
representations?

Regardless of the performance differences of symbolic vs
neural models, a main goal of scientific discovery is centered
on the generation of simplified, symbolic interpretations of
complex systems. These simplifications are necessary for
understanding the essential parts of a system and how they
causally interact. This form of understanding grants goal di-
rected agents causal power over the system. Indeed, it could
be argued that symbolic simplifications are necessary for goal
directed agents to successfully interact with the world, or at
least to share information with each other about how to do so.

One symbolic system is the system of natural or counting
numbers – a system that many, but not all, humans know. In
addition to young children, adults in some aboriginal tribes
have been found to lack both number words and the ability
to perform numeric equivalence tasks (Gordon, 2004; Frank,
Everett, Fedorenko, & Gibson, 2008; Pica, Lemer, & Izard,
V., & Dehaene, 2004; Pitt, Gibson, & Piantadosi, 2022). This
has sparked intrigue about the necessary conditions for hu-
mans to learn representations of exact number. Is formal ed-
ucation required for humans to learn about numbers? Can
symbolic representations of numbers exist without possessing
words for them? How did humans develop symbolic number
systems in the first place?

Theories of the development of numerical abilities have of-
ten been cast within a symbolic framework, but recent evi-
dence suggests that many of these theories may fail to cap-
ture signs of gradience in children’s acquisition of number.
Gelman and Gallistel (1986) proposed that children’s early
performance on such tasks depends on 3 symbolic counting
principles: one-to-one correspondence, stable ordering, and
cardinality. This theory was challenged, however, by Wynn
(1992), who showed that children who demonstrated the abil-
ity to perform counting tasks with very small numbers often

2811
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

FFN FFNFFN

FFN FFNFFNFFN

FFN GRU

h ih i-1

y

GRU

ℓ

h i+1

ℓ

p i p i+1p i-1

Q=8
P=1

Q=0
P=1

T

h 3h 2

GRU

h 4

p 3 p4p2

Q=1
P=0

Q=1
P=1

Q=0
P=1

GRU

Base
Sequence

Source
Sequence

DAS
Interchange

h 1

yp1

Q=0
P=0

GRU

h i Q=7
P=1

h 0

Q=0
P=0

GRU

s s s s s

d d v v

GRU

h i

p i-2

d

Q=9
P=1

s s s s

vv d d

Q=1
P=1

i
v y i+1

v

1
sy0

s

i i+1

Figure 1: Diagram of a causal interchange performed on the hidden state of the GRU in the base sequence. The triangles
are Feed Forward Networks (FFNs); the trapezoids are GRU cells; the thought clouds show the values of the hypothesized
variables where Q is the Quantity and P is the Phase; in the upper right corner, ℓi and ℓi+1 denote the loss over predicted logits.
All other shapes other than the DAS rectangle are either h, for hidden state vector; p for predicted logits; or y which is a one
hot encoding of ground truth. During the demonstration phase of the task, ground truth tokens are fed into the GRU. During the
response phase, we use the models’ predictions as input to each subsequent step in the GRU. The trigger token T signals the
phase transition from demonstration to response. For simplicity, we draw an arrow directly from the logits or one hot encodings
into the GRU cell, but in actuality, we use an embedding selected from the predicted unit with the maximum value. We harvest
variables from the source sequence and inject them into the destination sequence for the causal interchange. In this example
the source hidden state is hs

2 and the destination hidden state is hd
i where the subscript denotes the index in the sequence, and

the superscript denotes what sequence it is used in—s for source, d for destination (referred to as ”base” in previous work),
and v for intervened. We use a trained model with frozen weights to produce all predictions. We back-propagate into the DAS
rotation matrix using prediction error on the counterfactual sequence under the hypothesized symbolic variables and causal
interchange. Red arrows indicate the gradient flow in back-propagation.

failed to perform correctly with larger values in their count
lists. The idea then arose that the induction of such principles
coincided with the ability perform such tasks with sets con-
taining more than 3 or 4 items. Sarnecka and Carey (2008)
offered additional tasks thought to assess reliance on these
principles, but the idea that these principles applied generally
to all numbers in the child’s count list was not supported by
the subsequent work of Davidson, Eng, and Barner (2012);
instead these authors found evidence of gradual acquisition of
the ability to perform such tasks, progressing from smaller to
larger numbers within the child’s count list as several number-
relevant abilities improved, consistent with the view that chil-
dren’s numerical abilities emerge gradually, and raising the
possibility that their behavior may come to better align with
symbolic principles as they gain more and more experience.

In our work, we take inspiration from the number cogni-

tion literature to ask if we can find symbolic representations
of number in ANNs trained on numeric tasks. We then probe
deeper into the relationship between model performance and
symbolic alignment. We first show that we can find symbolic
representations of number in Gated Recurrent Unit (GRU)
(Cho et al., 2014) Recurrent Neural Networks (RNNs). We
source this evidence by training a GRU to 100% accuracy on
held-out test quantities in a counting task, and then we find
a causal alignment between the latent representations of the
trained GRU and a symbolic program. We find this align-
ment using a technique called Distributed Alignment Search
(DAS) (Geiger, Lu, Icard, & Potts, 2021; Geiger, Wu, Potts,
Icard, & Goodman, 2023) which enables us to test for the ex-
istence of symbolic programs in distributed representations
using causal interventions. We find that the GRUs use a count
up, count down strategy which increments and decrements a

2812

single count variable based on the phase of the task. We con-
trast this with an alternative symbolic program that solves the
counting task with two separate count variables—one to track
the target quantity and another to track the response quan-
tity. We further demonstrate the significance of our results by
showing that the symbolic number alignment does not emerge
in models trained on a similar task that can be solved using
an exact token copy operation.

We use our results to demonstrate the utility of sym-
bolic alignments within cognitive models. The alignments in
this paper demonstrate the emergence of symbolic numbers
within connectionist models. These findings have implica-
tions for the origins of exact symbolic number systems and
for the necessary conditions for neural systems to learn how
to count. These results serve as an initial step towards the uni-
fication of the symbolic and connectionist camps of thought
in cognitive modeling.

We then explore deeper into the relationship between the
symbolic alignment and the model performance to show that
the symbolic alignment has a strong correlation with model
accuracy, often being a leading indicator of a training phase
transition. The relationship between the two, however, is
not a perfect one-to-one correspondence, and frequently the
alignment accuracy continues to change despite the model’s
ceiling task performance. We relate this to the symbolic gra-
dience observed in children’s number cognition, noting the
similarity of these findings to that of children learning to
count. Although this work is in its early stages, it has the
potential to enhance our understanding of the emergence of
symbols in the human mind.

We summarize the contributions of this paper as follows. 1.
We demonstrate how and why to use DAS to interpret recur-
rent cognitive models. 2. We find the emergence of symbol-
like counting variables in models trained to solve a numeric
matching task, serving as a proof-of-principle for symbolic
representations of number in human cognition. 3. We find
that the symbolic representations of number strongly co-vary
with model performance, although there is not a perfect one-
to-one correspondence. 4. We use our findings to enhance our
understanding of emergent symbolic variables in neural sys-
tems, making an initial step towards unifying symbolic and
connectionist frameworks.

Methods
Overview
At a high level, we first train a model to completion on
a numeric equivalence task, and then we use Distributed
Alignment Search (DAS) (Geiger et al., 2021, 2023) to
test for alignments between hypothesized symbolic ab-
stractions/programs and the model’s neural representations.
Specifically, DAS learns an orthonormal rotation matrix (a
change-of-basis matrix) at a given model layer to align a sub-
space of the neural representations at that layer with a causal
variable from a hypothesized symbolic program. Concretely,
we use the rotation matrix on the hidden representations at

some layer and then swap a subspace (some fixed number of
dimensions of the rotated representations) from the rotated
representations under one model input into the rotated repre-
sentation under a different input. We then invert the rotation
and allow the model to make predictions using the intervened
representation. The training objective for the rotation matrix
is to find the change-of-basis such that the model will pre-
dict the hypothesized counterfactual outputs under the inter-
vention given the hypothesized symbolic program. To eval-
uate how well the NN aligns with the symbolic abstraction,
we perform these causal interventions on held out data and
record the NN’s performance on the counterfactual labels.
The causal interventions allow us to verify whether or not the
model is performing the task in a way that is consistent with
the existence of the hypothesized symbolic abstraction.

Tasks
The tasks we focus on in this work consist of variable length
sequences of tokens. We compare two relatively simple nu-
meric equivalence tasks in this framework. The first task is
called the Copy Task, and the second is called the Count-
ing Task. Both tasks begin by uniformly sampling a target
quantity from 1 to 20. After determining the target quan-
tity, the sequence is constructed from two phases. The first is
called the demonstration phase which begins with a Begin-
ning of Sequence (BOS) token and continues with a number
of demonstration tokens provided by the environment. Once
the number of demonstration tokens following the BOS token
is equal to the initially sampled target quantity, the environ-
ment provides a Trigger token (T) indicating the beginning
of the response phase. The model is then tasked with out-
putting the same number of tokens as was observed during the
demonstration phase followed by an End of Sequence (EOS)
token to indicate that it has finished its response. The Copy
and the Counting task variants differ as follows:

Copy Task: other than the BOS, T, and EOS token types,
there is a single token type, C, that is used to both indicate
the target quantity during the demonstration phase and the
response quantity during the response phase. It is possi-
ble to solve this task without using an explicit notion of
quantity, by copying the literal sequence of tokens in the
demonstration sequence.

Counting Task: in addition to the BOS, T, and EOS to-
ken types, there are 3 demonstration token types (D1,D2,
and D3) and a single response token type (RESP) that
is different from the possible demonstration token types.
During the demonstration phase, the demonstration tokens
are uniformly sampled from the possible demonstration to-
ken types. The response phase deterministically uses the
unique response token type. This task variant prevents a
solution that uses a direct copy operation, and this variant
has N3 possible input sequences for each target quantity,
N, making it more difficult to solve using a memorization
strategy.

2813

During DAS training we sampled 1000 sequences for train-
ing, and 500 samples of held out target quantities for vali-
dation. The held out target quantities were 4, 9, 14, and 17,
selected to be relatively evenly distributed amongst the possi-
ble quantities.

Counting Model
We trained Gated Recurrent Units (GRUs) (Cho et al., 2014)
to solve the aforementioned tasks. GRUs are a specific type of
RNN that are similar to a Long Short-Term Memory (LSTM)
networks except that GRUs have the advantage of using a sin-
gle recurrent state vector. The hidden state, ht , of the GRU
at a particular step, t, is updated according to the following
equations:

rt = σ(Wirxt +bir +Whrht +bhr) (1)
zt = σ(Wizxt +biz +Whzht +bhz) (2)
nt = tanh(Winxt +bin + rt ∗ (Whnht +bhn)) (3)

ht+1 = (1− zt)∗nt + zt ∗ht (4)

After each update step in the sequence, we make a predic-
tion pt+1 of the next token, yt+1, using softmax classifica-
tion on the vector ht+1. Concretely, we feed ht+1—with a
size of 20—into a Feed Forward Network (FFN) with a sin-
gle hidden layer of 80 units, a Gaussian Error Linear Unit
(GELU) nonlinearity (Hendrycks & Gimpel, 2023), dropout
applied on the hidden activations with 0.5 probability to drop
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014), and a softmax applied to the outputs of the second
layer to create a probability distribution over possible output
tokens. We use the cross entropy of the predictions with the
ground truth tokens as the loss, L , and minimize the loss us-
ing batch gradient decent with a batch size of 128. The loss
for a batch of training data is calculated as follows:

Li = −
S−1

∑
t=1

y⊤t log(pt) (5)

L =
1

NS

N

∑
i=1

Li (6)

Where i refers to the index of a single sequence in the batch,
t is the index of the step in the sequence of length S where the
0th step is not predicted, yt is a ground truth, one-hot encoded
column vector, and pt is the output of the softmax function at
the end of the FFN.

We used the ground truth tokens as input at each step in
the sequence during the demonstration phase (i.e., teacher-
forcing) up to and including the trigger token. After the trig-
ger token, we use the predicted token of the current time step
as the input token for the next time step (i.e., autoregressive)
prediction vector to select the input token for the next step.

We used PyTorch with AutoGrad (Paszke et al., 2019), an
Adam optimizer (Kingma & Ba, 2017) with default settings,
an initial learning rate of 0.001, a learning rate decay sched-
ule following that described in the original transformer paper

(Vaswani et al., 2017). We trained 5 model seeds, each for
300 epochs. Models were trained using Nvidia Titan X GPUs.
All models achieved > 99.9% accuracy on both training and
validation sequences, where accuracy refers to the proportion
of responses with the correct number of RESP tokens follow-
ing the T token and ending with an EOS token.

Recurrent DAS
Causal abstraction is a hypothesis testing framework that
manually tests if the causal mechanism of a variable in a sym-
bolic program abstracts the causal mechanism of neural rep-
resentations relative to a particular alignment (Geiger et al.,
2021). Distributed Alignment Search (DAS) (Geiger et al.,
2023) is a recent variant of causal abstraction where it turns
the brute-force hypothesis search process into an optimization
problem. DAS actively learns an aligned linear subspace of
the full vector space by rotating the original neural represen-
tations using an orthonormal matrix. The question remains,
how does the rotation matrix learn to find this subspace?

In this work, in each DAS training, we fix the number of
dimensions of the intervention subspace. We allow these di-
mensions to be contiguous within the rotated representation
under the assumption that a learned rotation matrix will be
able to equivalently adapt to the particular dimensions that
we isolate for the intervention. This narrows the number of
possible subspace dimension choices to the range 0-D, where
D is the dimensionality of the hidden state vector, ht . We then
perform a hyper-parameter search, trying different sizes of the
subspace, and pick one based on alignment performance. For
the rest of this work, we set the subspace to 10 dimensions
given that the performance was relatively unchanged between
approximately 5 and 15 dimensions.

With a fixed number of dimensions established, we can
now write the the DAS intervention as follows:

hv
i = R−1(m∗Rhs

j +(1−m)∗Rhd
i) (7)

Where hs and hd refer to the GRU’s hidden states under some
randomly selected source and destination sequences respec-
tively. hv is the resulting, intervened hidden state. The sub-
scripts i and j refer to the indices of the hidden states within
their respective sequences. m is a mask of 1s and 0s of the
same size as h where ∗ denotes the Hadamard product. We
use m to select the neural subspace from the source vector, hs,
and inject it into the destination vector, hd . Conceptually, we
use m to inject some number of units from the rotated source
vector to the rotated destination vector. R is the learned ro-
tation matrix that is constrained to be orthonormal using Py-
Torch’s orthogonal parametrization module.

The last piece of the DAS procedure is creating the training
signal for the rotation matrix. The general idea is to predict
the counterfactual tokens under the hypothesized symbolic
program given the causal intervention. See Figure 1 for a
diagram of the full process. Specifically, we create the train-
ing signal by using the symbolic causal program to generate
the tokens we would expect under the causal intervention. We

2814

then use these tokens for the same autoregressive, next token
prediction task that we used to train the neural model on the
original task. We freeze the model weights and backprop-
agate the learning signal into the orthogonally parametrized
rotation matrix. We use the model’s accuracy on the coun-
terfactual labels to evaluate the validity of the alignment. In
the case where there exists a meaningful alignment between
the neural model and the symbolic program, we expect the
model’s accuracy to be high under the fully trained causal in-
terventions. In the case where there does not exist a valid
alignment, the resulting accuracy should be low.

In sequence based modeling, the ordering of the tokens
conveys important information. We have the option of which
indices to sample for the destination and source vectors when
performing DAS. In this work, we exclude indices that corre-
spond to BOS, trigger, and EOS tokens. We show results that
uniformly sample the source and destination indices j and i
from both the demonstration and response phases (excluding
sampling of indices that correspond to the BOS and EOS to-
kens).

For the training, we used 10000 destination-source se-
quence pairs with 1000 pairs for validation. Similar to the
standard model training, we used the held out target quanti-
ties 4, 9, 14, and 17 for the validation sequences. Using held
out target quantities gives more insight into the generaliza-
tion capabilities of the models’ solutions. It also gives insight
into DAS’s capabilities, as it is a relatively young technique
for interpreting neural models. We used a learning rate of
0.001 and a batch size of 512 sequence pairs. We trained the
rotation matrix until convergence on the autoregressive loss.

Table 1: Alignment Results

Task Program Variable Acc
Counting Stack Quantity 0.94±0.02
Counting Stack Phase 0.91±0.02
Counting Match Demo Quant 0.40±0.03
Counting Match Resp Quant 0.35±0.02

Copy Stack Quantity 0.52±0.05
Copy Stack Phase 0.60±0.07
Copy Match Demo Quant 0.24±0.02
Copy Match Resp Quant 0.30±0.06

Causal Models
As previously described, DAS requires that the experimenter
first has a testable, high level, symbolic, causal program.
DAS then finds the best alignment of this program within the
neural representation space. We tested for the existence of
two different causal programs. The Stack Program is an al-
gorithm in which the model uses a Quantity variable (Q in
Figure 1) to track the count and a Phase variable (P in Fig-
ure 1) to track the phase of the sequence. It increments the
Quantity during the demonstration phase and decrements it
down during the response phase, knowing to stop when it

25 50 75 100 125
Model Learning Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
DAS

Figure 2: The relationship between model accuracy and DAS
over training. Each point is from a model checkpoint trained
on the Counting Task. The models’ task performance is de-
noted by darker hues with circle markers. The DAS perfor-
mance on the Quantity variable for the same checkpoint is in
lighter hues with triangle markers. Here we see that the DAS
performance correlates with task performance.

hits 0. In contrast, the Match Program uses a Phase vari-
able and two count variables—Demo Quant and Resp Quant.
It increments these count variables during the demonstration
and response phase respectively knowing to stop when Demo
Quant is equal to Resp Quant during the response phase. We
included Algorithm 1 in the Appendix to detail a step-by-step
account of a single sequence step in the the Stack and Match
programs.

We note the existence of an infinite number of equivalent
implementations of each of these programs respectively. For
example, an equivalent program to Stack is one where the
program immediately adds and subtracts 1 from the Quan-
tity variable before carrying out the rest of the program as
we have described. DAS only has the ability to discrim-
inate between programs that are causally distinct from one
another. We wish to acknowledge that there are many more
experiments that we could do to further refine the symbolic
program(s) in this work. We leave this exploration to future
work.

Results/Discussion
We begin by addressing the symbol-like nature of the NN task
solutions and by demonstrating that DAS can help us identify
which symbolic program the NNs find. We can see from Ta-
ble 1 the results of our DAS alignments. First, we note that we
see relatively high alignment accuracies in the Quantity and
Phase variables from the Stack program for the Counting Task
models compared to the results from the Match program. We
see this comparative difference when comparing the Quantity
variable to both the Demo Quant and Resp Quant variables.

2815

0.00 0.05 0.10 0.15
Model Accuracy

0.00

0.05

0.10

0.15
DA

S
Ac

cu
ra

cy

Figure 3: The x-axis shows task performance whereas the y-
axis shows the DAS performance for the same model check-
point on the Quantity variable. Colors denote model seed. We
see that DAS performance tends precede the model’s learning
transition.

These comparisons suggest that the Stack model character-
izes the solutions better than the Match program.

To further explore the meaning of our results, we compare
models trained on the Copy and Counting tasks. The pur-
pose of this comparison is to demonstrate that our findings
for the Counting Task models are not merely performing an
object dependent, copy operation, but rather performing an
object independent numeric operation. We see from the com-
paratively low alignments of the Copy Task models that the
two training variants have resulted in networks with different
solutions. Although we cannot make claims about the exact
nature of the model solutions from this result, we can use it
to further delineate the interpretation of our alignment accu-
racies.

These results demonstrate that symbol-like representations
of discrete numbers do emerge in neural models that have
only been trained to produce the same number of items that
they first observed. This is a proof of principle that neural
systems do not need formal instruction for symbolic repre-
sentations of number to emerge, nor do they need built in
counting principles to inform their learning. This has im-
plications for the mechanisms by which humans developed
symbolic number systems. Perhaps the need to keep track of
specific quantities arose in some cultures, creating task situa-
tions that depended on the ability to learn to represent exact
quantities.

We turn now to the developmental trajectory of the causal
alignments displayed in Figure 2. We can see from the per-
formance curves that both the model accuracy and DAS per-
formance begin a transition away from 0% at similar epochs.
They also exhibit similar performance trajectories. We note
that in all cases, the jump in DAS alignment precedes that of

the model, as shown in Figure 3. This result can be contrasted
with a hypothetical result in which the alignment curves lag
behind the performance of the model. In this hypothetical,
alternative case, a possible interpretation could have been
that the network develops unique solutions for many different
input-output pairs and progressively unifies these solutions.
The results that we see in Figures 2 and 3 can be used as
evidence for an early sign of an emergent, symbol-like solu-
tion in the NNs even at earlier training epochs. Perhaps this
is to be expected in light of works like Saxe, McClelland,
and Ganguli (2019) and Saxe, Sodhani, and Lewallen (2022)
which show an inherent tendency for NNs to find solutions
that share network pathways.

Despite the similarities between the model performance
and alignment performance in Figure 2, we can see that the
alignment performance often fails to achieve 100% align-
ment. Furthermore, the alignment performance continues to
vary despite the models’ ceiling task performance. We in-
terpret these results as a reminder that representations in dis-
tributed systems exist on a continuum despite seemingly dis-
crete, symbolic performance on the task. These results have
an analogy to children’s number cognition in which children
may appear to possess a symbol-like understanding of ex-
act numbers and their associated principles, but when probed
deeper, the symbol-like picture falls apart. This can also be
related to the Large Language Model (LLM) literature, in
which the notion of sharp changes in performance as a func-
tion of LLM scale have been demonstrated to be a function of
metric rather than a sudden change in innate ability Schaeffer,
Miranda, and Koyejo (2023).

We use these results to highlight the nuances of symbolic
interpretations in cognitive science. In one light, we have
shown that we can find causal symbols within the distributed
representations of the neural systems. We have also shown
that these symbol-like representations emerge in a way that
correlates with model performance. These results can inform
our thoughts on the nature of distributed solutions in cogni-
tive models—symbol-like representations are perhaps an in-
herent property of general distributed solutions, at least when
the task is one that can be solved by relying on such repre-
sentations. In another light, however, we see that it is easy
to overly simplify our understanding of a distributed system
based on task performance alone. There is a nuanced picture
to distributed solutions that must be considered to understand
the full picture of human cognition.

Lastly, we highlight the utility of DAS for interpreting dis-
tributed systems. In this work, DAS has revealed a crucial
piece of the puzzle to understanding number representations
in neural systems. DAS also demonstrated the subtle, graded
nature of distributed solutions, which we see in human cog-
nition. These findings serve as a bridge between connection-
ist and symbolic frameworks for understanding human cog-
nition, suggesting that DAS will continue to be a useful tool
for understanding the computations performed in cognitive
models that rely on ANN systems.

2816

References

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A.,
Duan, Y., Al-Shamma, O., . . . Farhan, L. (2021).
Review of deep learning: concepts, CNN archi-
tectures, challenges, applications, future directions.
Journal of Big Data, 8(1), 53. Retrieved from
https://doi.org/10.1186/s40537-021-00444-8 doi:
10.1186/s40537-021-00444-8

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., . . . Amodei, D. (2020). Language models are
few-shot learners.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014). Learning phrase repre-
sentations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078. Retrieved from
http://arxiv.org/abs/1406.1078

Davidson, K., Eng, K., & Barner, D. (2012).
Does learning to count involve a semantic in-
duction? Cognition, 123(1), 162-173. doi:
https://doi.org/10.1016/j.cognition.2011.12.013

Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E.
(2008). Number as a cognitive technology: Evidence from
pirahã language and cognition. Cognition, 108(3), 819-
824. doi: https://doi.org/10.1016/j.cognition.2008.04.007

Geiger, A., Lu, H., Icard, T., & Potts, C. (2021). Causal
abstractions of neural networks. CoRR, abs/2106.02997.
Retrieved from https://arxiv.org/abs/2106.02997

Geiger, A., Wu, Z., Potts, C., Icard, T., & Goodman, N. D.
(2023). Finding alignments between interpretable causal
variables and distributed neural representations.

Gelman, R., & Gallistel, C. R. (1986). The child’s under-
standing of number. Harvard University Press.

Gordon, P. (2004). Numerical cognition without words: Evi-
dence from Amazonia. Science, 306(5695), 496–499. doi:
10.1126/science.1094492

Hendrycks, D., & Gimpel, K. (2023). Gaussian error linear
units (gelus).

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., . . . Amodei, D. (2020). Scaling laws
for neural language models.

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochas-
tic optimization.

McClelland, J. L., Rumelhart, D. E., & PDP Research Group
(Eds.). (1986). Parallel distributed processing. Volume
2: Psychological and biological models. Cambridge, MA:
MIT Press.

Paszke, A., Gross, S., Massa, F., Lerer, A., Brad-
bury, J., Chanan, G., . . . Chintala, S. (2019). Py-
torch: An imperative style, high-performance deep learn-
ing library. CoRR, abs/1912.01703. Retrieved from
http://arxiv.org/abs/1912.01703

Pica, P., Lemer, C., & Izard, V., & Dehaene, S. (2004). Ex-
act and approximate arithmetic in an amazonian indigene
group. , 306(5695), 499–503.

Pitt, B., Gibson, E., & Piantadosi, S. T. (2022, feb). Ex-
act Number Concepts Are Limited to the Verbal Count
Range. Psychological Science, 095679762110345. doi:
10.1177/09567976211034502

Sarnecka, B. W., & Carey, S. (2008). How counting rep-
resents number: What children must learn and when they
learn it. Cognition, 108(3), 662–674.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2019, May).
A mathematical theory of semantic development in deep
neural networks. Proceedings of the National Academy
of Sciences, 116(23), 11537–11546. Retrieved from
http://dx.doi.org/10.1073/pnas.1820226116 doi:
10.1073/pnas.1820226116

Saxe, A. M., Sodhani, S., & Lewallen, S. (2022). The neural
race reduction: Dynamics of abstraction in gated networks.

Schaeffer, R., Miranda, B., & Koyejo, S. (2023). Are emer-
gent abilities of large language models a mirage?

Smolensky, P. (1988). On the proper treatment of connec-
tionism.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: A simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research, 15(56), 1929–1958. Retrieved from
http://jmlr.org/papers/v15/srivastava14a.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., . . . Polosukhin, I. (2017). Attention
is all you need. CoRR, abs/1706.03762. Retrieved from
http://arxiv.org/abs/1706.03762

Wynn, K. (1992). Children’s acquisition of the number words
and the counting system. Cognitive psychology, 24(2),
220–251.

Algorithm 1 One sequence step of the Stack Program
q← Quantity, p← Phase, y← input token
if y == BOS then ▷ BOS is beginning of sequence token

q← 0, p← 0
return sample(DEMO) ▷ sample a demo token

else if y ∈ DEMO then ▷ DEMO is set of demo tokens
q← q+1
return sample(DEMO)

else if y == T then ▷ T is trigger token
p← 1

else if y == RESP then ▷ RESP is response token
q← q−1

end if
if (q == 0) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return RESP

2817

