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ABSTRACT: We present a workflow that traces the path
from the bulk structure of a crystalline material to assessing its
performance in carbon capture from coal’s postcombustion
flue gases. This workflow is applied to a database of 324
covalent−organic frameworks (COFs) reported in the
literature, to characterize their CO2 adsorption properties
using the following steps: (1) optimization of the crystal
structure (atomic positions and unit cell) using density
functional theory, (2) fitting atomic point charges based on
the electron density, (3) characterizing the pore geometry of
the structures before and after optimization, (4) computing
carbon dioxide and nitrogen isotherms using grand canonical
Monte Carlo simulations with an empirical interaction potential, and finally, (5) assessing the CO2 parasitic energy via process
modeling. The full workflow has been encoded in the Automated Interactive Infrastructure and Database for Computational
Science (AiiDA). Both the workflow and the automatically generated provenance graph of our calculations are made available
on the Materials Cloud, allowing peers to inspect every input parameter and result along the workflow, download structures and
files at intermediate stages, and start their research right from where this work has left off. In particular, our set of CURATED
(Clean, Uniform, and Refined with Automatic Tracking from Experimental Database) COFs, having optimized geometry and
high-quality DFT-derived point charges, are available for further investigations of gas adsorption properties. We plan to update
the database as new COFs are being reported.

■ INTRODUCTION

Covalent organic frameworks (COFs) are a class of emerging
materials composed of covalently bonded organic residues.1

While classical covalent crystals like diamond, graphene, or
carbon nitride could also be considered as COFs, this
nomenclature highlights the concept of reticular design,
where the precursor molecules, termed ligands or linkers, are
rationally combined into a framework structure. The ancestors
of COFs are metal organic frameworks (MOFs), where ligands
form coordinate bonds with metal centers. In COFs, however,
ligands are directly connected, forming the topology of the
structure.
The first two-dimensional microporous COFs, named COF-

1 and COF-5, were synthesized by condensation reactions of
phenyl diboronic acid in the group of Yaghi.2 Two years later,
the same group employed a similar condensation reaction to
obtain the first three-dimensional COFs.3 To date, hundreds of
different COFs have been reported by different research
groups.4,5 This new class of materials attracted the interest of
the scientific community for applications ranging from gas
adsorption6 to catalysis7 and photocatalysis,8 setting the stage
for a possible commercial use in the near future.9 In addition to

the synthesized COFs, new hypothetical COF structures have
been designed in silico10−13 and investigated to highlight
possible promising frameworks that experimental chemists
could target in their synthesis. The total number of these
hypothetical structures exceeds 560 000.
Similarly to MOFs, we see a rapid increase in the number of

novel COFs that are being reported. Often these materials are
synthesized with a particular application in mind, and
experimental data are often limited to this application; it is
simply not practical to experimentally test a novel material for
all possible applications. For such studies a computational
screening to identify the most promising candidates is often
the most efficient first step. Essential in these computational
studies is that all experimental structures are curated in, what is
referred to in the literature as, “Computation-Ready Exper-
imental” (CoRE) structures,14,15 The importance of this
curation step cannot be emphasized enough, and as we will
argue in this work, in particular for COFs, the lack of a
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systematic approach makes it impossible to reliably compare
structures for different applications.
The first public database to present the “CoRE” concept is

the CoRE-MOF database, which collects over 5000
structures.14 This database has been used by many different
groups for a large range of studies. The importance of such a
database is that all structures are reported in a uniform format
(e.g., crystallographic information files, CIFs, with P1
symmetry). Indeed, the possibility of easily accessing and
computationally analyzing these frameworks allows the screen-
ing of thousands of different materials, comparison of their
performance for specific applications, and the finding of
correlations between geometric properties and performances.16

An important point is that the CoRE-MOF database not only
involves a conversion to a uniform format but also includes a
minimal curation, that mainly involves the removal of solvent
molecules from the pores of the framework. Solvent molecules
are often present in the reported structure of MOFs, and they
can be (partially) removed. The idea of the CoRE-MOF
database is to arrive at a solvent-free material which serves as a
reference for computational modeling. The difficulties of
simply removing the solvent molecules from the structure
become clear if one realizes that for some MOFs the solvent
molecules are essential; without solvent the framework
collapses. Another important issue is that from the X-ray
data one does not have sufficient information on the position
of the H atoms. These are then often added manually or using
different software packages, where different protocols would
put them on slightly different positions. In addition, depending
of the quality of the X-ray data there can be uncertainty in the
position of the atoms. The net result of all these small
difference is that these screening studies are of limited use and
a potential source of artifacts, due to the lack of uniformity
between the investigated structures.
Contrary to MOFs, the atomic coordinates of synthesized

COFs are not deposited in commonly available standardized
databases. Therefore, it is already difficult to precisely estimate
how many have been reported so far, and an extensive
literature review is necessary to collect these structures: they
must be extracted from experimental papers, checked, and
converted into a common format for storing atomic
coordinates. Recently, Tong et al.17 published a collection of
280 structures, which were parsed from the experimental
literature, and that we used as a starting point to build the
database of frameworks of the present study.
It is interesting to note that only a very small fraction of

these COFs have been reported in the popular Cambridge
Structural Database18 (CSD). To be accepted into the CSD, a
structure has to be determined directly f rom X-ray and neutron
dif f raction studies, and from powder studies using a constrained
ref inement.19 This is the case of the recently synthesized single
crystal COF-300, COF-303, LZU-79, and LZU-111.20 In most
of the cases though, the poor long-range crystallinity makes it
impossible to resolve the structure directly. The fact that from
an experimental point of view it is difficult to obtain sufficiently
reliable crystal structures requires experimental groups to
increasingly rely on computational techniques to make a model
of the material. These proposed structures are subsequently
validated by comparison with experimental properties, such as
NMR and/or the “DFT pore-size distribution” fitted from gas
isotherms.2 Part of this work was motivated by the notion that,
for these types of computational structure creations from
scratch, there are no standards available. Depending on the

methodology, it is easy to optimize toward different metastable
states; different approaches may use different bond lengths,
different positions of hydrogen atoms, etc. In addition, these
computations often involve geometry optimizations which are
performed with very different procedures (e.g., using different
ab initio density functional theory methods or empirical force
fields) that are often poorly documented. A direct use of these
structures for molecular simulations therefore becomes a
source of artifacts; these seemingly small differences in the way
a structure is determined can lead to significant differences in
the prediction of, for example, the thermodynamic properties
of these materials.
In this work, we make a first step toward a systematic

approach, which allows for a standardization. The challenge we
aim to address is to develop a protocol that not only allows
such a standardization (i.e., all materials are optimized
identically and using a reproducible protocol) but also allows
for systematic improvements and additions. Our approach
aims to address on one hand the needs of synthetic chemists
with limited knowledge of computational methods, but that
would like to use state of the art methods in an automated
protocol to standardize the geometry of their just-synthesized
crystal. On the other hand we provide a tool to the
computational community to collectively improve these
optimization protocols.
In this work, we consider a total of 324 COFs reported

experimentally from 2005 to 2018 (we refer to the Materials
Cloud, see the Acknowledgements, for the references to the
original structures), cleaned from solvent molecules, and with
no partial occupations or disorder in the structures. We
propose a systematic approach to organize and store these
frameworks in a curated database, to track eventual corrections
to the structures or additions to the database, and to link each
entry back to its original source. The atomic coordinates and
the cell dimensions have been optimized using density
functional theory (DFT) to give a coherent geometry to all
the frameworks. In addition, we have analyzed the results from
DFT calculations to spot and correct errors in the structure
and to achieve a robust and automated procedure to perform
the DFT modeling and the optimization. DFT-derived partial
charges of the structures are computed and provided for
molecular simulations.
Whereas the optimization of a single structure can be seen as

a routine DFT calculation, the optimization of over 300
hundred structures, including both 2- and 3-dimensional
topologies, is particularly challenging. For a single structure,
one can develop a recipe that is tailor-made and optimized for
a given material. For such a large number of structures, the
challenge is to build a workchain that is sufficiently general and
robust such that any COF structure can be optimized.
Moreover, given the number of calculations, one cannot afford
to manually check all the outputs and ensure that all the
calculations proceeded correctly. Therefore, it is important for
the workchain not only to print out just the important values
that the user needs to monitor but also to automatically act
when a known problem is encountered. Our aim is to shift the
attention from the single calculation to the inner logic of the
workchain that, performing multiple calculations and tests, can
chose automatically the most efficient path that leads to the
solution (in this case the optimized geometry), and which can
be extended to identify more problems and improve its
robustness.
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The important additional complication is that our workchain
requires the interaction of multiple codes. Here, we show the
advantage of employing a supervision tool that can automati-
cally execute these codes. For this purpose we used the
Automated Interactive Infrastructure and Database for
Computational Science (AiiDA),21 that allows the representa-
tion of our simulation protocol (the “workchain”) in a form of
python script and its execution in an automated manner. It also
gives a common language for different groups to collaborate in
extending and improving the routines we designed.
A novel aspect of this work is not only the development of

this workchain but also the full integration between AiiDA and
the Materials Cloud. The importance of this integration
becomes clear once groups start using our refined structures.
For example, for 5% of the structures our workflow did not
succeed in obtaining a converged structure because of
inconsistencies or errors in the deposited crystal structure.
These errors range from missing hydrogen to incorrect labeling
of atoms, wrong cell dimensions, etc. The access to the
Materials Cloud allows any user to inspect all corrections we
have made on the original structure, the outcome of the
geometry optimization, and the computed partial charges to be
used for molecular simulations. In addition, the reader can find
on the Materials Cloud the detailed workchain, i.e., the logic
and the input/output files for all programs that have been used
to compute and characterize the final structures. These
workchains can be downloaded, allowing any researcher to
reproduce our results or extend our calculations while
maintaining their complete providence. We feel that it is
important to create a precedent on the level of transparency
and reproducibility that can be obtained.
The other important point we aim to highlight is the

potential for future extensions of the entries in our COF
database: the number of novel COFs that are published each
year is still increasing; novel structures can be added easily,
allowing different groups to collectively contribute to
extending the number of structures with uniformly refined
geometry.
Therefore, in this work we go beyond the “CoRE” approach,

presenting the “CURATED” COF database, where the focus is
on the full tracking and reproducibility of the operation that
are needed to make the database (possibly) error-free,
consistent, uniform, and easily upgradable.
Finally, optimizing >300 structures also gives important

insights in the state of the art of COF synthesis and in the
applicability of the different programs that were used in our
workchain. To show an example usage of the structure we
obtained, with refined geometry and partial charges, we
screened the COFs in our database for their potential
application in capturing carbon dioxide from coal’s post-
combustion gases.

■ BUILDING OF THE DATABASE
We aim to build a database of COFs structures reported from
the literature and with refined geometry. In the following, we
will refer to these structures as CURATED COFs, an acronym
that stands for Clean, Uniform, and Ref ined with Automatic
Tracking f rom Experimental Database. The database includes
one set of CURATED COF structures that contains the
original frameworks as reported in the literature, with uniform
orientations of the layers and minor corrections in the case of
typos, chemical errors, or solvent removal (“CURATED from
literature”, 324 COFs), and another set containing the

structures that succeeded the DFT optimization (“CURATED
DFT-optimized”, 308 COFs). The whole design of the
CURATED COFs repository was conceived to easily correct
for possible errors and to be upgraded with more recently
reported frameworks.

Structure Labels. In the CURATED database, covalent
organic frameworks are labeled using 7-character strings (see
Figure 1) that encode information about their structure
(charge state and dimensionality) as well as their provenance
(publication year, article ID, and structure ID).

Therefore, simply looking at a structure’s label one can
realize in one glance that, for example, COFs 07010N3,
07011N3, 07012N3, and 07013N3 are all 3D, do not contain
charge-balancing counterions, and were published in the same
paper of 2007 (p0701).3

Data Cleaning. In this work, we argue that an important
requirement of our database is that the source of the initial
structures as well as all the modifications that these structures
underwent during the data cleaning process need to be fully
tracked. Modifications are necessary to ensure a uniform
formatting of the structures and to remove errors in the
structure that were detected after a visual inspection or a
suspect failure in the DFT optimization.
Our database contains 324 CURATED structures from the

literature. Most of them come from the previous collection
done by Tong et al.; in particular, we focused on the second
version of their CoRE database.17,22 In the three versions of
their database, Tong et al. collected 187,23 280,17 and, only
very recently, a third version of the database containing 309
COF structures.24 Most of these structures were manually
parsed from the PDF documents in the Supporting
Information of the relative papers, and some COFs reported
without atomic coordinate f iles are constructed following the
experimental information provided in the corresponding synthetic
studies.23 As mentioned in the introduction, only a few of the
known COFs are deposited in the CSD database. Despite the
care of the authors in this necessary manual parsing, errors are
unavoidable. Indeed, we had to apply ca. 20 corrections to the
structures originally provided in the database of Tong et al. As
our parsing was also done manually, and is therefore equally
prone to errors, we used the Git version-control system to
permanently keep track of these modifications.25 Our
repository is built from the 280 structures reported in the
second version of Tong et al.’s database.17

Figure 1. Structure labels used throughout this work. The structure
ID is a progressive counter starting from zero and following the order
of insertion into the database (not the chronological order of
publication). The charge state of a framework may be neutral (N) or
charged (C, needing floating counterions to balance its charge). The
first four integers are therefore an index for the reference paper, e.g.,
p0701, where “p” stands for “paper”. Note that the counting for the
IDs starts form zero.
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It is important to realize that most of the errors were found
by warnings in the convergence of the DFT optimization and
subsequently manually corrected. It was therefore important to
monitor this optimization step and double-check the input
structure of problematic runs. Problems in the initial structure
are typically missing hydrogen atoms, incorrect elements,
highly unfavorable protonation states, overlapping atoms
(originated by the parsing of partial occupations), and
incorrect unit-cell dimensions.
To extend the database, we added new structures from the

literature research by querying papers that contain the
keywords “covalent−organic framework” or “COF” in the
title. For most of the new structures, we had to manually parse
the coordinates and apply a few modifications: solvent
removal, manual fix of partial occupations, unit cell’s
realignment for 2D COFs, or correction of typos in the
original publication.
It is instructive to discuss a few examples of this detection

and correction of typos. In three cases the DFT calculation
failed, and from visual inspection we observed unphysical bond
lengths. The problem was fixed by keeping the same fractional
coordinates for the atoms and rescaling the unit cell dimension
to obtain physical C−C bonds in benzene rings (see COFs
18021N3, 18121N3, and 18122N3).26,27 We see this as an
example of a reasonable but ad-hoc fix, which might be
challenged in the future. In another case, a significant change in
the unit cell was found after optimization, and this was caused
by a manual error in the parsing from the SI: the COF with ID
120 in the database of Tong et al.17 was incorrectly obtained
by mixing the unit cell of HAT-NTBA-COF with the atomic
coordinates of HAT-NTBCA-COF.28 The mistake has been
corrected in the present database, and the two structures are
now reported as 17061N2 and 17060N2, respectively.
Geometry and Cell Optimization. In this database, 85%

of the COFs are layered structures. To have consistent
representation of all these layered COF structures, the unit
cells were chosen to contain two layers for all COFs, and these
layers were placed perpendicular to the z axis (c dimension).
The stacking of two-dimensional COFs is important for the
evaluation of adsorption properties, and having only one layer
would not allow the geometry to find its energy minimum in a
possible AB stacking during the optimization. Out of 274 2D
COFs, 253 single-layer structures were found and expanded
assuming perfectly eclipsed stacking. We would like to
emphasize that one also could opt for 3 or more layers, but
this would make the optimization even more CPU-intensive.
For the DFT optimization, it is important to mention that

the unit cells of several structures in the database have more
than 1000 atoms and volumes beyond 100 000 Å3. Such large
volumes and numbers of atoms pose a challenge for
performing density function theory in a high-throughput
context, informing our choice for the DFT code. Therefore,
our choice of the CP2K package is motivated by its efficient
DFT implementation, that exploits the mixed Gaussian and

plane waves (GPW) method based on pseudopotentials, and
the efficient orbital transformation (OT) method for the
optimization of the wave function. Since the OT method is not
suited for structures with a vanishing DFT gap, in the case of a
final band gap smaller than 0.1 eV (a total of only 44
structures) the calculation was flagged, and different settings
were used for the workchain, applying diagonalization and
smearing (see the Methods section for the details).
For the unit cell and geometry optimization we designed

within AiiDA an advanced workchain that ensures a more
robust convergence by performing a “three-stage” optimiza-
tion. First, a preliminary cell optimization with a fixed unit cell
angle is run for a maximum of 20 steps. Then, 100 steps of
flexible cell ab initio molecular dynamics (AIMD) were
performed to give a “shake” to the structure and escape from
metastable states. At the end, a final cell optimization is
performed without constraints on the unit cell’s angles. All the
details on the parameters can be found in the reported
workchain on the Materials Cloud and are summarized in the
Methods section.
In the second step, the AIMD stage was found to be

particularly necessary for the optimization of 2-dimensional
COFs. We report in the Supporting Information the
comparison with a standard direct cell optimization protocol,
where we typically observe that, without the AIMD, the
geometries become stuck in a more symmetric state with
higher energy, typically the perfectly eclipsed AA configuration
for 2D COFs.
In the way we designed and applied this workchain, it can

almost be seen as a chemical sanity check: if a structure does
not pass this stage it most likely violates the collective
knowledge of quantum chemistry. This either implies DFT to
have some severe inaccuracies in modeling the crystal or, what
we found in most of the cases, chemical inconsistencies in the
initial structure that need to be fixed manually before the
structure can be optimized.

Geometric Properties and Partial Charge Assign-
ment. To characterize the structures before and after the cell
optimization, a number of geometric descriptors were
evaluated, e.g., pore surface, pore volume, largest free sphere,
pore size distribution, etc.
DFT-derived partial charges (DDEC protocol; DDEC,

density-derived electrostatic charge) are computed for the
optimized structures, utilizing the electron density that was
already computed in the previous optimization stage. These
partial charges are already a valuable result of our study as it
allows for the modeling of the interactions with polar
adsorbates such as CO2 or H2O.

Adsorption Calculations and Parasitic Energy. As an
illustration of the use of these COFs, we screened the materials
for their performance to separate CO2 from flue gases in a case
study in which these materials are use to capture carbon from a
coal-fired power plant followed by geological sequestration of
the captured CO2. In our model, we mimic a temperature−

Figure 2. Block diagram of the workflow used in this work.
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pressure swing process to separate CO2 from coal post-
combustion flue gases and its compression to 150 bar for
underground storage. The aim is to find the materials that give
the lowest parasitic energy. This parasitic energy is defined as
the loss of electricity production caused by separation and
compression of 1 kg of CO2.

29 To evaluate this energy we need
to predict the pure component isotherms of CO2 and N2 in the
COFs at 300 K, as evaluated from grand canonical Monte
Carlo (GCMC) simulations.30 We have developed an AiiDA
workchain to compute the minimal CO2 parasitic energy from
the optimized structures, provided with DDEC charges. The
full workflow is sketched in Figure 2.

■ RESULTS AND DISCUSSION
Analysis of Experimental Structures. The database of

experimental COFs we are considering contains 324 structures,
with 310 being neutral and the remaining 14 being charged: in
this second case counterions are necessary to maintain the
neutrality of the system, and these charged molecules have
been kept in the pore as reported in the reference paper. The
counterions found in these structures are dimethylammonium,
tetrafluoroborate, and single atom ions, e.g., Li+, NA+, F+, Cl+,
Br+, and I+. Figure 3 reports the variety of elements in these

crystals, distinguishing between 2D/3D and neutral/charged
frameworks. One can note that these COFs contain a number
of transition metals, e.g., Co, Ni, Cu, and Zn. However, unlike
MOFs, these metals are not part of the connection nodes, but
they are embedded in ligands, typically in porphyrins and
phthalocyanines.
An important point that we need to discuss is the stacking of

2D COFs, i.e., the arrangement of neighboring layers, sticking
together because of noncovalent interactions. Reviewing the
experimental literature about the synthesis and characterization
of COFs,2,4,31 we found that it is common to consider just two
types of stacking: the eclipsed AA stacking, where the different
layers are perfectly superimposed, and the staggered AB
stacking, where there is an alternation of even and odd layers
with an offset in the xy plane. Figure 4 shows as example these
two configuration for COF-1 and COF-5.
Lukose et al. found that the minimum energy configuration

for these COFs has a slightly tilted stacking.32 Instead of the
perfectly aligned AA and AB, COF-1 and COF-5 were found
to have its minimum energy when the layers have an offset of

ca. 1.4. This misalignment was shown to be hard to distinguish
from the experimental PXDR pattern, and it is better to rely on
computational methods. Recognizing the correct stacking is
indeed a crucial aspect for many applications,1−4 and
particularly for gas adsorption, where a shifted or staggered
configuration results in a shrinking of the channel diameter,
possibly blocking the channels to the diffusion of gas
molecules.
Analyzing the collected 2D COFs we noted that in only a

few cases (21) two layers are reported in the unit cell, and it is
often not clear the method that was used for the generation of
that particular stacking configuration over all possible ones. For
the remaining 253 structures only one layer was reported,
assuming AA stacking. Therefore, by consistently considering
two layers in the conventional unit cell for these 2D COFs, we
allow the geometry optimization to explore both the “serrated”
configuration (i.e., where odd layers are slightly shifted) and
the “inclined” configurations (i.e., where there is a constant
offset of the layers, resulting in tilted unit cells). Note that the
serrated configuration cannot be obtained when only one layer
is considered.

Cell Optimization. We performed the cell optimization for
the 310 COFs that do not contain counterions in their pores
(i.e., labeled as N, neutral). As we reported in the previous
section, most of the problems in the DFT optimization routine
were solved after a careful inspection and fixing of the initial
structures. The problems that could be effectively attributed to
the DFT implementation are related to only two structures:
18081N2 and 18082N2. These two both have cobalt, and they
need electron smearing in the SCF: even testing different input
parameters (e.g, lower mixing alpha, spin state, etc.) did not
lead to a successful optimization. Considering that cobalt’s
pseudopotential is designed for 17 valence electrons (the

Figure 3. Distribution of elements for the 324 COFs actually present
in the database. COFs are also distinguished into 3D or 2D, and
neutral (N) or charged (C, that need floating counterions).

Figure 4. AA and AB stacking for (a) 05000N2 and (b) 05001N2, as
reported in the experimental reference,2 are compared. Conventional
names are COF-1 and COF-5, respectively. In that report, the
assessment of the presumed stacking was done by generating for both
COFs the AA configuration and reasonable AB configurations, and
comparing the computed XRD with the experimental PXRD.
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largest number of electrons in the set we used), this is known
to be a challenging element for the SCF diagonalization, and
some effort is needed to design a more effective protocol for
this particular element. However, AiiDA allowed the full
tracking of the problem and reporting of the issue to the CP2K
developers.
Given that more than 99% of the structures in the database

converged, our three-stage DFT optimization routine is
suitable for high-throughput calculations. For comparison, in
a previous attempt of a systematic DFT-based geometry
optimization of 2612 MOFs, only 879 (33.7%) successfully
converged.33 In that case the unit cell dimension was not
optimized, and no check was included for the band gap.
Figure 5 shows the evolution of DFT energy over our three-

stage structure optimization workchain for two exemplary
structures: 05000N2 (COF-1) and 05001N2 (COF-5).

As one can note for the COF 05000N2 structure,2 we
already find the minimum in the first stage, and there is no
apparent need for stages two and three. For COF 05001N2,
however, the MD “shaking” of the structure results in it finding
a more stable minimum that is 13.7 meV/atom more stable.
This final optimization results from a shifting of the perfectly
eclipsed layers in the reported structure, coherently with the
work of Lukose et al.32 In the Supporting Information, we
show that, without the intermediate AIMD stage, the structure

becomes stuck in the first minimum, due to the high initial
symmetry where layers are perfectly eclipsed.
To evaluate for the entire COF database the relative

importance of the two cell optimization stages, we plotted in
the histograms of Figure 6 the difference in energy in the first
cell optimization (with constrained angles) and the further
drop in the energy for the final cell optimization, showing also
the contribution of dispersion interactions. This last is
intended as the change in the energy due to the DFT-
D3(BJ) terms only.
We observe that in most cases dispersion interactions play

the major role in the final cell optimization. In the first cell
optimization, where the typical changes in energy are larger by
a factor of 10 (cf. the y axis scaling in Figure 6), we mainly
observe from the optimization trajectories a rearrangement of
the atomic bonds and an increase of the distance between
nonbonded fragments when this is set too close in the starting
geometry. If we further inspect the statistics of Figure 6, we can
observe that, for the first cell optimization, in only one case
there was an increase in the energy: this is related to COF
12011N2 and results from a false step of the BFGS minimizer,
which did not have the time to relax back in the limit of 20
steps. For as many as 153 COFs (49.68%) the cell
optimization converged within the first 20 steps (i.e., at the
“preliminary” cell optimization stage), but only 19.61% of
these had a negligible energy drop (<1 meV) in the final cell
optimization, meaning that still for most of the cases the AIMD
helped to find a lower minimum. More detailed statistics are
reported in Table 1, distinguishing between two- and three-
dimensional COFs.
The difference in the structures before and after the

geometry and cell optimization can be appreciated from the
change of the geometric properties, as plotted in Figure 7.
We can see that in many cases the DFT optimization leads

to lower density, corresponding to a shrinking of the unit cell
of the COF. The most evident case is for COF 18120N3
(Figure 8), where the density increases from 0.49 to 1.13 g/
cm3, with a correspondent decrease of the geometric void
fraction from 0.72 to 0.39. After the optimization, this
structure becomes nonporous (i.e., null N2-accessible pore
volume and surface). By inspecting the change in the atomic
positions and the unit cell lengths we can notice that the
structure shrunk to reach a more favorable configuration that
optimizes the conformation of the ligands and their van der
Waals interactions. For this COF, the measured pore volume
from the nitrogen uptake is 0.36 cm3/g,27 i.e., well below the
value computed from the reported structure (accessible N2
probe occupiable volume equal to 0.96 cm3/g). We can
therefore expect that this structure can shrink after desolvation.
For this COF the rigid crystal assumption would not hold to
model the adsorption: the reported structure would lead to
artificial results.
For the two-dimensional COFs, we observe in most of the

cases a shift in the layers (i.e., the “inclined” configuration) that
maximizes the noncovalent interactions. This results in a
general reduction of the largest free sphere, as shown in Figure
7. We observe that the energy stabilization due to this shift is
very low. Considering the 133 layered structures where the
geometry converged at the first cell optimization stage, the
energy stabilization at the end of the final cell optimization, i.e.,
due to the tilting, is on average −13.1 meV/atom. This is a
relatively low energy, and one may therefore expect that, at
finite temperature, there is no unique stacking of these

Figure 5. Energy profile during the optimization workchain for COFs
(a) 05000N2 and (b) 05001N2. Conventional names are COF-1 and
COF-5, and the starting configurations of the layers, as reported,2 are
staggered and eclipsed, respectively. The three colored regions of the
plot correspond to the first cell optimization with constrained cell
angles and 20 steps maximum (red), the NPT AIMD at 400 K/1 bar
for 50 fs, i.e., 100 steps, (yellow), and the final cell optimization
without constraints (green). The energy is shifted to assign a 0 value
to the minimum.
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materials. While our protocol successfully identifies a close-by
local minimum for both 2D and 3D structures, for 2D
materials, a complete screening of all possible stacking
configurations and the averaging over those accessible at finite
temperature need to be further explored.
CO2 Separation Performances. The systematically

optimized structures with high-quality charges, that have
been obtained for 308 COFs (CURATED DFT-optimized
set), allow us to model the interaction with polar molecules,
e.g., considering Coulombic attractions, and evaluate the
performance of these materials for gas adsorption. As an

example, we investigate the use of COFs for the removal of
carbon dioxide from coal’s postcombustion flue gases.
To highlight the importance of high-quality input structures

(i.e., DFT-optimized and with DDEC charges) for the
evaluation of CO2 adsorption, we computed also the empirical
Qeq charges for the nonoptimized structures: this is a cheaper
protocol that is usually exploited for high-throughput screen-
ings. In Figure 9, we compare the CO2 Henry coefficient and
adsorption energy at infinite dilution (i.e., computed from the
Widom insertion method) for the two protocols, where the
absolute change in the void fraction is shown by the color of
the markers. It is striking to see the impact of both the
optimization and the use of accurate partial charges. One can
observe at best a weak correlation between the two protocols.
The implication of these results is that using the COF-
structures as reported combined with a simple charge
assignment scheme will potentially result in many false
positives and neglecting good-performing materials. This
observation is one of the main motivations of this work and
illustrates the need to extend our CURATED approach to
other databases. More details of the contributions that charges
and geometry have to the CO2 interactions are included in the
Supporting Information.

Figure 6. Comparison of the difference in the energy in the (a) first and (b) third cell optimization stages. These two stages are also referred in the
text as “preliminary” and “final”, respectively. Differences in energies (blue) are sorted for the 308 COFs in the histogram, showing also the relative
contribution given by dispersion interactions (orange).

Table 1. Statistics on the Optimization Process of the 308
COFs that Succeeded DFT Optimization

2D COFs 3D COFs all COFs

number of optimized structures 261 47 308
converged in preliminary cell opt. 50.96% 42.55% 49.68%
converged, but ΔE final cell opt.
> −1.0 meV/atom

12.03% 70.00% 19.61%

avg. steps in preliminary cell opt. 16.3 16.5 16.3
avg. steps in final cell opt. 150.3 113.3 144.7
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With our DFT-optimized set of CURATED COFs with
DDEC charges, we are now in a position to evaluate their
performance for CO2 capture and geological storage from a
coal-fired power plant. For consistency, we use the same
protocol that our group employed in previous studies to
evaluate different classes of microporous materials.29,35 In this
protocol we assume a pressure−temperature swing adsorption
process to separate CO2 from a CO2/N2 mixture and
subsequent compression of purified CO2 to 150 bar, the
requirement for underground storage. The key parameter to
assess the performance of this process is the minimal parasitic
energy, i.e., the energy that is required to separate and
compress 1 kg of CO2. However, other key parameters are also
important for the evaluation: one should aim for high purity of
the final high-CO2 concentration gas, and high working
capacity of the materials, to achieve the same productivity
with less material or with fewer adsorption/desorption cycles.

Of all the COFs we considered, 12 COFs are nonporous for
CO2 or N2 (according to the atomic radii definition from UFF,
i.e., half of the Lennard-Jones sigma) and need to be excluded
from the calculation. In addition, eight structures have
inaccessible pores, which need to be blocked to prevent
GCMC from growing particles in these narrow pockets. In the
present study, we assumed that the COFs are rigid and
therefore maintain their stacking upon adsorption. One can
envision changes in the stacking upon adsorption. It would be
prohibitively expensive to include framework flexibility in our
screening structures, but it would be important to study these
effects if one further considers top performing structures.
In Figure 10, we compared the simulated CO2 isotherms for

the first seven entries of our CURATED DFT-optimized COF
database (i.e., the oldest synthesized) with experimental data.36

A notable difference is found for COF 05000N2 (COF-1),
which we found to be nonporous under the rigid framework
assumption: the small uptake that was measured is possibly the
consequence of the motion of the layers that creates interstices
where the CO2 molecule can percolate and occupy the pores.
Considering the uptake in the low-pressure range, we note
from the isotherms a systematic overestimation of the CO2−
framework interactions, that reflects in higher Henry
coefficients. Also, in the 3D COFs 07010N3 and 07011N3
the apparently higher saturation found in simulations may be
related with the imperfect crystallinity of the sample or partial
desolvation. A more detailed comparison is provided in the
Supporting Information. Considering that we carry out a high-
throughput approach, we conclude that the agreement with
experiments is acceptable.
To compute the minimal parasitic energy of a material, we

need as input the pure component isotherms and the heats of
adsorption for CO2 and N2. The adsorbing bed is assumed to
have a void fraction of 0.3, due to the pelletization and packing

Figure 7. Parity plots that compare the geometric properties of COFs before and after the optimization: (a) density, (b) accessible surface area, (c)
largest free sphere, (d) accessible probe occupiable volume, (e) accessible probe occupiable void fraction, and (f) geometric void fraction. To
determine the accessibility of the pore volume and surface, a spherical probe with radius 1.86 Å (i.e., the conventional kinetic radius of nitrogen)
was considered. The “geometric” void fraction is considered as all of the portion of the pore volume that does not overlap with the atoms.34 The
colors distinguish between 2-dimensional (blue) and 3-dimensional (red) structures.

Figure 8. Structure of COF 18120N3 before (left) and after (right)
the cell optimization.
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of the crystal. The volumetric working capacity measures the
amount of CO2 that one cubic meter of bed can evacuate
between adsorption and desorption.
In Figure 11 the minimal parasitic energy is plotted as a

function of the Henry coefficient, the volumetric working
capacity, and the final molar purity. In all three comparisons
we see a strong correlation. However, for materials with low
parasitic energy, i.e., below 1 MJ/kg where the process is
potentially more energy efficient than ammine-based tech-
nologies, the correlation becomes less evident. One can, for
example, select among the materials with low parasitic energies
(that is an index for operative costs) the ones with higher

working capacity, that would correspond to the need of less
adsorbent (and therefore lower capital costs).
The envelope for the minimum parasitic energy versus the

Henry coefficient that one can draw in Figure 11 can also be
compared with the results obtained for Lin et al. for a database
of more than 300 000 hypothetical zeolites and zeolitic
imidazolate frameworks (ZIFs),35 and later by Huck et al.,
for MOFs and porous polymer networks (PPNs).29 In the
present work, the lowest parasitic energies are obtained in the
range of the Henry coefficient between 10−4 and 10−3 mol/(kg
Pa). These results are coherent with the earlier findings on
other materials. However, the Henry coefficient for COFs
rarely exceeds 10−4 mol/(kg Pa), and none were found to
exceed 10−3 mol/(kg Pa). Our effort consistently extends the
“materials genome” for carbon capture and sequestration, now
including also COFs. When compared with the best material
found in the work of Huck et al.,29 we observe that the
performances of these COFs are still below the best performer
MOF-74, for which we get 0.705 MJ per kg of CO2, with a
purity of 0.943 and a volumetric working capacity of 64.87 kg
of CO2 per cubic meter of bed. In total, 14 materials over 60
were indicated by Huck et al. to have a low parasitic energy for
coal flue gas (in the range 0.7−0.85 MJ/kg), including 6 cation
exchanged zeolites, 5 MOFs, and 3 porous polymers. However,
the consideration that COF materials contain only light atoms,
being potentially cheap, can be an important criterion of
choice, making this class of materials appealing for CO2
separation.
Since we used AiiDA for the data-tracing of the full

workflow, from the reported structure to the performances
evaluation, we can now easily inspect every intermediate stage,
backtracking the provenance of the final results. We illustrate
this for three COFs: 18041N3 having the lowest parasitic
energy (0.819 MJ/kg), 13180N3 having the maximum working
capacity (30.42 kg/m3), and the test case 05001N2 (COF-5),
which has a relatively high parasitic energy of 2.681 MJ/kg and
therefore is not promising for this particular application. For
these materials we can inspect in one glance (Figure 12) the

Figure 9. Comparison of the CO2 Henry coefficient and the adsorption energy at infinite dilution for nonoptimized COFs with Qeq partial charges
and DFT-optimized COFs with DDEC charges. Dashed lines show the condition of equal values for both axes. The color of the markers indicates
the absolute change of the geometric void fraction after the optimization. Points that lie close to the axes (i.e., null Henry Coefficient and
adsorption energy) indicate nonpermeable structures, where all the pores are inaccessible. Blocking spheres have been used in all the calculations to
exclude inaccessible pores, as described in the Methods section.

Figure 10. Comparison of simulated (lines) CO2 isotherms with
experimental ones (triangles).36 The isotherms were obtained at 300
and 298 K, respectively. Note that the simulated uptake of COF
05000N2 is set to zero because, from geometric analysis, no accessible
volume was found for CO2 nor N2. The conventional names of these
COFs are, in the same order as in the legend, COF-1, COF-5, COF-
10, COF-6, COF-8, COF-102, and COF-103.
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Figure 11. For a set of 296 porous and DFT-optimized COFs the CO2 parasitic energy is plotted versus the Henry coefficient for CO2. The dotted
line gives the comparable parasitic energy of the amine-based capture process. In the lower plots the parasitic energy is plotted versus the other two
main outputs from the process modeling: the CO2 working capacity per cubic meter of adsorbent bed and the final CO2 molar purity of the
mixture.

Figure 12. Results obtained from the full workflow are sketched for three COFs: 18041N3, 13180N3, and 05001N2. From the left to the right we
can find the initial geometry, the energy profile during the three-stage optimization, the final geometry and its main geometric properties, the CO2
and N2 isotherms and heat of adsorption, and finally the results from the process modeling. “SA”, “PV”, and “LFS” labels indicate, respectively, the
nitrogen-accessible surface area, pore volume, and the largest free sphere’s diameter. “PE” and “WC” stand for the minimal parasitic energy and the
CO2 working capacity in the adsorbent, respectively.
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energy profile during the optimization, the changes in the
structures, the uptake sampling, and the details of the process
simulation. The reader can access a similar visualization from
the Materials Cloud, in the Discovery section (see Acknowl-
edgments).
It is interesting to compare our results with the original

articles, which report the synthesis details for these COFs. For
example, it is important to confirm that the experimental
structure can be desolvated. This is the case for 18041N337 but
not for 13180N3,38 where the COF is reported to lose its
crystallinity and porosity after solvent removal. Therefore, to
use this material for gas adsorption, the fact that our
optimization routine converges to a stable structure suggests
that this material can be stable without a solvent; this indicates
that it would be worthwhile to investigate different synthesis
protocols that may allow for milder conditions for the
activation and possibly retain the crystallinity of the sample.

■ CONCLUSIONS

We presented a systematic way to optimize the structures of
covalent−organic frameworks (COFs) using density functional
theory. In addition, we have assessed their performance for
CO2 capture as estimated from classical simulations. The
optimization revealed some substantial changes, mainly in the
layers rearrangement of these materials, and finally provided a
set of frameworks that have been obtained from a consistent
and reproducible protocol. The Automated Interactive Infra-
structure and Database for Computational Science (AiiDA)
has been used to achieve the result, and this set of 308
CURATED DFT-optimized COFs is made available, with
optimized structure and high-quality partial charges, for further
computational investigations. The acronym stands for Clean,
Uniform, and Ref ined with Automatic Tracking from Exper-
imental Database. We plan to extend our CURATED set of
COFs periodically with the most recently reported frameworks.
It can serve as a reference for consulting and for molecular
simulations.
We show that the computed adsorption isotherms for CO2

are in fair agreement with experiments, allowing for a reliable
ranking of these materials for carbon capture. The modular
design of our workchain allows for future testing of different
force fields and settings, to improve the overall match of
simulation with experiments: we believe that this will be
possible with the parallel effort of building a consistent
repository to collect experimental adsorption measurements.
We plan to extend the same concept to other classes of

materials, e.g., metal organic frameworks (MOFs) and zeolites,
aiming for an extensive database for adsorption properties,
useful not only for comparison but also for training machine
learning models that can later be used to prescreen new
materials from quickly computed geometric properties. We will
need to face more complex challenges, e.g., dealing with the
DFT modeling of transition metals, or tuning the standard
force fields to better describe the interaction with open metal
sites in MOFs. In this perspective, AiiDA can serve as a
common language for the whole scientific community to
collaborate, systematically improving and recombining work-
chains that need to model more and more complex systems.

■ METHODS

DFT Calculations. DFT calculations were performed using
the Perdew−Burke−Ernzerhof (PBE) exchange-correlation

functional39 with DFT-D3(BJ) dispersion corrections.40 The
Quickstep code of the CP2K package was used,41 employing
GTH pseudopotentials,42 DZVP-MOLOPT-SR contracted
Gaussian basis sets, and an auxiliary plane wave basis set.
The plane waves cutoff is set to 600 Ry cutoff, and these are
mapped on a 4-level multigrid, with relative cutoff of 50 Ry and
progression factor of 3. The orbital transformation (OT)
method was used, and if a band gap <0.1 eV was found, the
calculation was rerun from scratch using Broyden diagonaliza-
tion and Thomas−Fermi smearing at 300 K.
For geometry optimization, we considered the atomic

positions to be converged once the maximum force on the
atoms dropped below 1.0 millihartree/bohr (as well as a root-
mean squared value below 0.7). The threshold for the pressure
is set to 100 bar for the cell optimization. For the first stage
(preliminary cell optimization) the BFGS minimizer is used.
For the second stage (AIMD), an NPT_F43 simulation is
performed at 400 K and 1 bar, using the CSVR thermostat44

and the barostat from Martyna et al.45 As for the third stage
(final cell optimization), the Limited-memory BFGS (L-
BFGS) minimizer is employed. Further details on the choice
of the convergence threshold and minimizer can be found in
the Supporting Information.
The workchain is kept efficient by always restarting the wave

functions from the calculation of the previous stage, and using
the Always Correct Predictor-Corrector (ASPC)46 to have a
more accurate first guess of coefficients of the wave function at
every cell optimization or MD step.

Partial Charges. Density-derived electrostatic charges
(DDECs)47 are evaluated, using the software Chargemol,48

and feeding the electron density of the optimized structures as
computed from CP2K. The version 6 of the protocol, i.e.,
DDEC-6,49 is used.
Qeq charges are computed with the same protocol we tested

in our previous work:50,51 the periodic-Qeq (PQeq) calculator
egulp52 was used with GMP parameters. Out of 310 neutral
COFs, only one did not converge the Qeq calculation
(17131N2).

Geometry-Based Descriptors. Geometric properties are
evaluated using the software Zeo++ (version 0.3).53 The
software’s default definition of the atomic radii was used. The
accessibility of the internal pore volume and surface was
assessed using a spherical probe of 1.86 Å, i.e., the
conventionally used kinetic radius for nitrogen.
When computing the probe-occupiable accessible pore

volume34 and the blocking spheres54 to be used for the
molecular simulation, we adopted a different set of radii,
consistently with the force field of the simulation. The
frameworks’ atomic diameters were set equal to Lennard-
Jones sigma in UFF, and we considered spherical probes with
diameters of 3.05 and 3.31 Å for CO2 (oxygen’s sigma in
TraPPE) and N2 (nitrogen’s sigma in TraPPE), respectively.

Parasitic Energy Evaluation. CO2 and N2 isotherms are
computed using the Raspa package,55 at 300 K, within the
range 0.001−30 bar. The TraPPE force field is employed to
model the gases,56 and the dispersion interactions with the
framework are computed using Lorentz−Berthelot mixing
rules, employing the UFF parametrization57 for the atoms of
the COFs. The pressure points for the sampling are selected
using a novel protocol that we describe in the Supporting
Information. The uptakes are computed from the lowest
pressure, running GCMC for 1000 cycles for initialization and
10 000 for production, and restarting from the final
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configuration, for the next pressure calculation. The heat of
adsorption is computed during GCMC using the particle
fluctuation method.58 Blocking spheres are considered, to
prevent the insertion of gas molecules in nonaccessible pores.
COFs with null probe-occupiable accessible pore volume are
considered nonporous, and for these materials the isotherms
were not computed.
Finally, we used the in-house code from the work of Huck et

al.,29,59 to compute the optimal parameters for the temper-
ature−pressure swing process, the parasitic energy, the working
capacity, and the final purity of the CO2-rich mixture.
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