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Abstract

There are at least three ways of learning how the world works:
learning from observations, from interventions, and from ex-
planations. Prior work on causal inference focused on how
people learn causal structures through observation and inter-
vention. Our study is the first to look at how explanations
support causal structure learning. We develop a normative in-
ference model that learns from observations and explanations,
and compare the model’s predictions to participants’ judg-
ments. The task is to infer the causal connections in 3-node
graphs, based on information about their co-activation, and ex-
planations of the kind “B activated because A activated”. We
find that participants learn better from explanations than from
observations. However, while the normative model benefits
from having observations in addition to explanations, partici-
pants did not.
Keywords: causality; explanation; counterfactuals; learning;
inference.

Introduction
How do people figure out how the world works? Imagine that
your friend Kingsley gifts you a brand new ‘Cor 10,000’ for
your birthday. You’re thrilled but you also have no idea how
this fancy-looking device works. Kingsley challenges you to
figure it out. It has three components with flashy lights on
top, labeled A, B, and C. When a component activates the
light turns on. To help you out a little, Kingsley tells you
that some components make the others go. So, for example,
it’s possible that component A activates component B, or that
B activates A, or that there is no direct connection between
them. Your task is to learn which components activate which.

There are at least three ways of going about this. First,
you could just observe the device. The pattern of statisti-
cal regularities provide some evidence about the underlying
causal model. If A and B repeatedly activate, but not C, it is
plausible that there is a connection between A and B (and no
connection with C). However, you would not know whether
A activates B, or vice versa. Second, you could take some
action by turning A on and seeing whether B also turns on.
If so, this would suggest that A activates B and not the other
way around. Third, you could ask for help. As it turns out, the
‘Cor 10,000’ comes with a little semi-helpful robot gives an
explanation every time something happens. ‘Semi-helpful’
because while what the robot says is always true, it doesn’t
necessarily give the most informative explanations. For ex-
ample, when A and C activated but not B, the robot might tell
you “C activated, but not because A activated”. Given this

explanation, it is still possible that A and C are not connected
to one another and that both activated by themselves, or that
it is in fact C that activates A.

In this paper, we study how people combine information
from observations and explanations in causal inference. We
first briefly review prior work and motivate our setup. We
then describe a normative computational model that learns
from observations and explanations. We compare the model’s
predictions with human causal inferences in an experiment
that contrasts learning from observations, learning from ex-
planations, and learning from both. We discuss the implica-
tions of this work and point out directions for future research.

Learning from observations
Most current AI models learn about the world through passive
observation. ChatGPT, for example, learned from “observ-
ing” large amounts of text from the internet. However, there
are limits to what one can learn about the causal structure of
the world from observations alone: correlation does not imply
causation (but see Kıcıman, Ness, Sharma, & Tan, 2023). Un-
der certain conditions, however, people can learn causal struc-
tures from purely observational data, such as when the under-
lying system is deterministic (Rothe, Deverett, Mayrhofer, &
Kemp, 2018), when there is information about the temporal
dynamics of the system (Bramley, Gerstenberg, Mayrhofer,
& Lagnado, 2018), or when inferring physical dynamics (Ull-
man, Stuhlmüller, Goodman, & Tenenbaum, 2018).

Learning from actions
Another mode of learning about the world is through active
exploration. With only covariational information, it would
be impossible to tell apart whether A causes B, or B causes
A. Certain causal models, such as A → B and A ← B, are
‘Markov equivalent’ and imply the same statistical dependen-
cies. However, if we could actively intervene on the causal
system of interest, we could tease the two models apart. If
A→ B were true, then intervening on A should activate B,
whereas if A← B were true, intervening on A would not ac-
tivate B (although B may activate by itself).

Psychologists have studied how people infer the underlying
causal structure through passive observation and active inter-
vention (Bramley, Dayan, Griffiths, & Lagnado, 2017; Bram-
ley, Lagnado, & Speekenbrink, 2015; Coenen, Rehder, &
Gureckis, 2015; Gong, Gerstenberg, Mayrhofer, & Bramley,
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Figure 1: Illustration of different causal devices and events.
Yellow nodes are active and gray nodes are not. Connections
with a ✓ worked, and connections with an ✗ didn’t work. In
a), the activation of A is causally overdetermined. In c) there
is a causal chain of activations from A to B, and B to C.

2023; Meder, Gerstenberg, Hagmayer, & Waldmann, 2010;
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003; Wald-
mann & Hagmayer, 2005). Generally, this work has found
that actively intervening helps with learning, and that people
make better causal judgments when they choose interventions
themselves, rather than observing someone else intervening
on the world (e.g. Bramley et al., 2015).

Learning from explanations
A third mode of learning about the world is by receiving ex-
planations from others (Keil, 2006; Lombrozo & Vasilyeva,
2017). “B happened because of A” not only tells you that A
and B both happened, but also that there exists a causal rela-
tionship between A and B. One way to analyze the meaning
of “because” in causal explanations is by way of a counterfac-
tual. Accordingly, “because” means that the following coun-
terfactual is true: B would not have happened if A had not
happened. Moreover, because people share systematic pref-
erences about how to explain things (Hilton, 1990), they can
infer much more from explanations than what is explicitly
communicated (Kirfel, Icard, & Gerstenberg, 2022).

Learning from observations and explanations
These three modes of learning about the world map roughly
onto the three levels of the causal hierarchy proposed by Pearl
(2000) (see also Bareinboim, Correa, Ibeling, & Icard, 2022;
Gerstenberg, 2022). On level I, we can answer questions
about statistical dependence of the form p(y|x). On level II,
we can answer questions about the hypothetical consequences
of acting on the world, such as how likely y would happen if
we were to intervene on x, p(y|do(x)). On level III, we can
answer questions about counterfactuals, such as whether y′

would have happened if x′ had happened, when in fact both x
and y happened, p(y′x′ |x,y). It is only on this third level of the
hierarchy that we can reason about why something happened.

Here, we ask the question of how well people can learn
about the causal structure of a system from explanations.
While prior work has looked at causal structure learning
based on observations and interventions, our study is the first
to look at learning from observations and explanations.

Computational model
Our computational model defines a generative process for ac-
tivations in directed acyclic graphs (DAGs) with 3 nodes and

up to 3 edges. It also defines a process for generating expla-
nations. We describe each in turn.

Generating activations
Figure 1 illustrates some causal devices in action. In our
setup, any node in the model without incoming connections
has a 50% probability of activating on its own. Nodes with in-
coming edges have a 10% probability of activating by them-
selves. Edges have a 90% probability of working. When a
parent node activates and an outgoing edge works, the con-
nected child also activates. One active parent node is suffi-
cient to activate a child node with multiple incoming edges.
For example, in Figure 1a, component C had a 50% chance
of activating. The connection from C to B didn’t work while
the other two connections worked. B only had a 10% chance
of activating spontaneously because it has an incoming con-
nection. A activated here because both B and C activated. A
would have also activated if only B (or only C) had activated.

There are 25 possible 3-node DAGs. We classify these into
6 different types of causal networks (see Figure 3a) where all
graphs in each category are isomorphs.

Generating explanations
For a given causal network and pattern of activations, our
model generates various possible explanations. We use the
following four templates for generating explanations:

1. factual+: “Y activated because X activated” (e.g., A acti-
vated because B activated in Figure 1a).

2. factual−: “Y activated, but not because X activated” (e.g.,
B activated but not because C activated in Figure 1b).

3. counterfactual+: “Y would have activated if X had acti-
vated” (e.g., B would have activated if A had activated in
Figure 1c).

4. counterfactual−: “Y would not have activated, even if X
had activated” (e.g., A would not have activated, even if C
had activated in Figure 1d).

Explanations describe two components that either both acti-
vated or did not activate. As alluded to earlier, we adopt a
counterfactual semantics of “because”. Accordingly, “Y acti-
vated because of X” is true if both X and Y activated, and if
it is true that Y would not have activated had X not activated.
Similarly, “Y activated but not because X activated” is true
when Y would have activated even if X hadn’t activated.

If a child component self-activates, its connection to parent
components are considered inactive, such as the connection
from C to B in Figure 1a. While explanations of the type
factual− may be less common in everyday life, we included
them in our study because we were interested to see what
inferences people draw from them.

Overdetermination A simple counterfactual definition of
“because” fails in situations of overdetermination such as in
Figures 1a and 1b. To handle such situations, we use the
model of actual causation by Halpern and Pearl (2005) which
uses a more relaxed criterion of counterfactual dependence.
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An event can qualify as a cause of an outcome even when
there is no counterfactual dependence in the actual situation,
as long as there is an admissible contingency in which the
counterfactual would have been true. In Figure 1a, “B caused
A to activate” is true because in the event that C had not been
active, A would have been counterfactually dependent on B.

Causal chains Figure 1c depicts a causal chain. Here, the
explanation “C activated because A activated” is valid be-
cause C would not have activated had A not activated.

Normative inference model
Given instances of activations and explanations, the goal is
to infer the underlying causal graph (i.e. the existence and
directionality of edges). For each device di in the set of de-
vices D , we start with a uniform prior P(0)(di) =

1
25 . Then,

after each trial t, given observation o(t) and explanation x(t),
we update the posterior probability for each device di using
Bayes’ rule. We define the union of node and edge activa-
tions as an event. Since the event is only partially observable
and multiple events can produce the same observations (e.g.
Figures 1a and 1c), we marginalize over the possible events
when performing the update using the conditional probabil-
ity of the event given the device P(e|di). We denote the set
of events consistent with the given observation o and expla-
nation x using E(o,x). An explanation is sampled from an
event, and we represent this using P(x(t)|e). Put together, the
full update rule for the normative model is

P(t)(di|o(t),x(t)) =
∑

e∈E(o(t),x(t))
P(x(t)|e)P(e|di)P(t−1)(di)

∑
d∈D

∑

e∈E(o(t),x(t))
P(x(t)|e)P(e|d)P(t−1)(d)

In the ‘observation only’ condition, we update P(t)(di|o(t))
and consider events consistent with only the observation:
E(o(t)). Likewise, in the ‘explanation only’ condition, we
update P(t)(di|x(t)) and consider events consistent with only
the explanation: E(x(t)).

To compare the model with participants’ responses, we
convert the posterior distributions over devices into distribu-
tions over connection states. For each connection c in {AB,
AC, BC}, we determine the probability of each state s in
{forward, backward, none} by marginalizing out the devices:

P(c;s) = ∑
d∈D

P(d)1(connection c of device d is state s)

Experiment
In this pre-registered experiment, we compare people’s causal
structure inferences against the predictions of the normative
model. The pre-registration and all materials including the
code and data for reproduction can be found at https://
github.com/cicl-stanford/show and tell.

Methods
Participants & Design We collected data via Prolific from
156 US-based participants (age: M = 38, SD = 13; gen-

Figure 2: Screenshot of the experiment for ‘observation + ex-
planation’ condition at trial 8 from a Pair device with connec-
tion A→ B. In this example, the participant correctly inferred
A→ B but incorrectly inferred C→ B.

der: 87 male, 65 female, 4 no response; race: 116 White, 11
Asian, 10 Black, 9 Mixed, 3 Other, 7 no response).

50 participants were assigned to the ‘observation only’
condition, 53 to ‘explanation only’, and 53 to ‘observation
+ explanation’. Participants were compensated a base rate of
$10/hour and a bonus of $0.03 for each edge guessed cor-
rectly, with average total earnings of $13.74/hour.

Procedure Participants were guided through instructions
on using the program interface and how the causal devices
work, including information on how they activate, how causal
connections work, and what sorts of explanations are valid
for different activation events. The task was described us-
ing a vignette about companies that are each given a device
of the same model, and try to figure out how it works. Par-
ticipants learned that they would receive explanations from a
robot who is truthful but not necessarily the most informative.

To ensure that participants understood everything, they
were given a series of comprehension checks throughout the
instruction sequence. Before the start of the main experiment,
participants were informed that they would receive observa-
tions only, explanations only, or both. Figure 2 shows an ex-
ample of a trial for a participant in the ‘observation + ex-
planations’ condition. Participants proceeded through 6 sets
of 10 trials, where each trial of a set consisted of an event
from the same graph. During each trial, participants would
be shown an observation, explanation, or both depending on
their assigned condition, and could indicate their current be-
lief about how the device works by clicking on the shaded
area between the nodes to toggle through arrows in either di-
rection, or no arrow. Participants would also be shown the
full history of observations and explanations from previous
trials of the same set (depending on their condition). On the
first trial of each set, the response interface started with no
connections. After the last trial of each set, participants were
shown the true underlying graph.
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Figure 3: Average accuracy measures for each condition and device type, measured as proportion of edges inferred correctly.
Since there are 3 possible edge states, chance accuracy is 33%. A. Accuracy over all 10 trials. Bars represent average human
accuracy, circles indicate model accuracy, and diamonds indicate asymptotic accuracy (what is theoretically possible given
infinite trials). Error bars are 95% bootstrapped confidence intervals. B. Average accuracy on each trial.

Results
Confirmatory analyses Figure 3 shows participants’ accu-
racy and model predictions on the different device types, sep-
arated by experimental condition. To compare participants’
overall accuracy (which we define as the proportion of edge
directions correctly inferred) between the three conditions,
we use a mixed-effects logistic regression model with pair-
wise contrasts, fitted to whether or not the participants’ re-
sponses matched the true edge. We found that participants in
the ‘observation only’ condition had significantly lower av-
erage accuracy than in the ‘explanation only’ condition (β =
−0.70,SE = 0.10, p < .001; β and SE are in logits) and in the
‘observation + explanation’ condition (β = −0.76, SE = 0.10,
p < .001). However, participants’ accuracy in the ‘explana-
tion only’ versus ‘observation + explanation’ condition did
not differ significantly (β = 0.07,SE = 0.01, p = .507).
This is in contrast to the normative inference model for
which having both observations and explanations leads to
significantly higher average accuracy than having only ex-
planations (β = 0.33,SE = 0.4, p < .001), which in
turn yields higher accuracy than having only observations
(β = 0.51,SE = 0.04, p < .001). Even when analyzing
individual device types, we find that the difference between
the ‘explanation only’ and ‘observation + explanation’ condi-
tions is not significant for any of the six types (lowest p = .317
for the ‘pair’ device).

Exploratory analyses In the following exploratory analy-
ses, we fitted Bayesian regression models (Bürkner, 2017) to

estimate posterior distributions and 95% credible intervals for
the predictors.

‘Observation + explanation’ vs. ‘Explanation only’ One
reason for why having both observations and explanations
is clearly beneficial compared to having only observations,
but not to having only explanations, might be because people
make their inferences primarily based on the explanations,
even when both types of evidence are offered. We test this
hypothesis by applying the normative inference model to the
same stimuli presented to participants who received both ob-
servations and explanations. For each participant, we apply
the model using the data as presented to the participants and,
separately, using only the explanations from the same stimuli.
We then compute the likelihood of the participants’ responses
using both models as a measure for how well each model ac-
counts for the data.

Using this method, we find that the model accounts for the
data better when using only explanations than when using
both observations and explanations for 91% (48 out of 53)
of our participants. This suggests that even when participants
were offered both observations and explanations, they base
their inferences primarily on the explanations.

How explanations improve inference Interestingly par-
ticipants’ accuracy in the ‘observation only’ condition re-
mains relatively flat, as shown in Figure 3b, even in devices
where the model exhibits clear increasing trends. We ana-
lyze the average accuracy over time using a mixed-effects lo-
gistic regression of the form “correct ∼ 1+ condition:trial+
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Figure 4: Participants’ responses that involved changing a
connection from or to a correct state.

(1 | subject)”, where “condition:trial” encodes an interaction
between condition and trial number. We assign a single in-
tercept 45.7% [26.0, 71.6] for all three conditions since par-
ticipants share the same degree of uncertainty before having
received any information. In the ‘observation only‘ condition,
we find that participants’ average accuracy does not improve
after 10 observations (43.6% [26.7, 55.0]), whereas accuracy
improves to 70.6% [50.8, 86.1] after 10 explanations, and to
66.7% [47.0, 86.5] after 10 observations and explanations.

If explanations produce more accurate inferences, what is
it about them that helps people to do so? We find that explana-
tions keep participants from mistakenly changing previously
correct responses to incorrect ones. Participants in the ‘ob-
servation only’ condition make this switch in 8.6% [8.0, 9.2]
of all responses, whereas those in the ‘explanation only’ and
‘observation + explanation’ conditions make this switch 6.6%
[6.1, 7.1] and 8.0% [7.46, 8.52] of all responses (Figure 4).
However, explanations alone are not much more informative
than observations alone in helping participants correct pre-
viously incorrect responses, though explanations do further
improve accuracy when also given observations. We find that
on average, participants in the ‘observation only’ condition
make this switch in 8.7% [8.1, 9.3] of all responses, whereas
participants in the ‘explanation only’ and ‘observation + ex-
planation’ conditions make this switch in 9.0% [8.5, 9.6] and
10.0% [9.4, 10.6] of all responses respectively.

Interpreting negative explanations Because different
events can produce the same explanations, it is impossible to
ascertain the exact device connectivity, especially when the
explanation indicates the connection was inactive (factual−

and counterfactual− explanations). For instance, if the ex-
planation ‘B activated but not because C activated’ was given
for the event in Figure 1a, one may correctly infer that the
connection from C to B did not work in this trial. However,
inferring that there is no connection between B and C, or that
the connection is from B to C, is also valid and reasonable.
How might people handle such ambiguous explanations?

The most direct inference that can be made from a nega-

Figure 5: Participants’ responses for the connection between
X and Y after receiving either a factual− explanation “Y ac-
tivated, but not because X activated” or a counterfactual− ex-
planation “Y would not have activated, even if X had acti-
vated”. ‘Reverse connection’ indicates that the connection
was set to Y→ X. ‘Forward’ responses (X→ Y) not shown.

tive explanation is on the very connection referenced in the
explanation, such as on the connection between B and C in
our above example. As shown in Figure 5, we find that par-
ticipants typically infer that there is no connection between
the two components or that the connection is reversed (i.e. ‘B
→ C’ in our example). As a point of reference, the norma-
tive model’s proportion of responses fall between 40.6% and
44.4% for both ‘no connection’ and ‘reverse connection’ re-
sponses for both factual− and counterfactual− explanations.

This bias towards no connections, however, is moderated
by whether the participant also sees activations along with
the explanations. When only explanations are presented,
we find no difference between factual− explanations and
counterfactual− explanations (31.6% [30.0, 33.3] vs. 32.7%
[30 .7, 34.7] for reverse responses). When explanations are
presented with observations, however, participants are more
likely to respond with reverse connections with factual− ex-
planations (41.1%, [38.0, 43.2]) than with counterfactual−

explanations (28.1%, [26.1, 30.2]). We note that explanations
also provide the same information about the activation states
of the two components being described, suggesting that this
interaction may be the result of the visual cues that are shown
in the ‘observation + explanation’ condition.

Being told that one component was not the cause of an-
other can also influence inferences on the connections with
the third component. Again, assume that what actually hap-
pened is shown in Figure 1a, and that a participant received
the explanation that “B activated but not because C activated”.
What inferences do participants draw about the potential con-
nection between A and B, and A and C in this case? First, we
note that people and the model don’t show notable differences
here in their inferences between the ‘explanation only’ and
‘observation + explanation’ conditions, and so we aggregate
across both conditions for our analyses here.

As shown in Figure 6, both people and the normative model
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Figure 6: Responses after receiving a factual− or
counterfactual− explanation of the form “Y activated but not
because X activated“ or “Y would not have activated, even
if X had activated”. Responses are for connections between
X and Z, and between Y and Z. ‘From component’ indicates
that the arrow points to Z and ‘To component’ indicates that
the arrow points away from Z.

make similar inferences about the connection between A and
C. They agree that it is more likely that the A ← C con-
nection is more likely than A→ C. People and the model
disagree, however, about the edge involving the connection
between A and B. The model infers that it is more likely
that A← B (31.3% [30.0, 32.7]) than A→ B (24.2% [22.9,
25.5]) whereas people infer the opposite (22.0% [20.8, 23.3]
vs 31.4% [30.0, 32.8]). When people here that “B activated
but not because C activated”, they are more likely to infer that
there is a connection from A→ B whereas the model would
more is more likely to infer that A← B.

General discussion
Explanations play a powerful role in causal inference. They
can disentangle merely correlated structures into cause and
effect, and accelerate convergence towards the correct un-
derlying structure by providing reliable signals in otherwise
highly stochastic environments. In this work, we explored
how people use explanations to infer causal structures of sim-
ple 3-node DAGs. While explanations help with learning,
participants’ inferences did not match those of our norma-
tive model. Interestingly, people deviated from optimality
systematically, suggesting that humans may possess certain
biases for interpreting and using explanations.

First, while participants who received explanations clearly
outperformed those without explanations, participants who
had access to both observations and explanations did not
achieve higher accuracy than those with explanations alone.
Our analysis suggests that people with observations and ex-
planations often behave as though they relied exclusively on
the explanations. One reason for this may be that participants
were explicitly told in our experiment that explanations were
guaranteed to be true, which may have encouraged overre-

liance on explanations (cf. Vasconcelos et al., 2023). It is
also possible that people are naturally biased towards reason-
ing through explanations based on prior experiences.

Next, we found that participants less frequently changed
correct inferences to incorrect ones when given explanations,
suggesting that explanations may help participants keep from
changing correct inferences to incorrect ones. Moreover, pro-
viding explanations on top of observations helped partici-
pants make correct inferences more often. Whereas it is
difficult to be confident about connections based on obser-
vations alone, explanations provide greater certainty about
which connections do or do not exist.

Lastly, participants interpreted more from explanations
than is directly communicated (cf. Kirfel et al., 2022). They
were generally more likely to infer that no connections ex-
isted than that the connections were reversed when given neg-
ative explanations. Moreover, there was an interaction that
affected only participants in the ‘observation + explanation’
condition that slightly increased the proportion of responses
that inferred reverse connections when the explanations were
factual− and further decreased when the explanations were
counterfactual−. This suggests that people may be biased to-
wards inferring causal connections when they can visually see
co-occurrences and no connections when they see co-non-
occurrences. People further extended their inferences from
negative explanations to connections not mentioned in the ex-
planations, such as inferring that C causes B after being told
that A does not cause B.

While these results hint at interesting features of how hu-
mans interpret and integrate explanatory information, our ex-
perimental setup also has some limitations. First, explana-
tions contain temporal information whereas observations do
not, since only the resulting activations are presented. This
raises the question of how much the difference resulted from
the explanatory versus the temporal information. Second,
even though explanations contain information about the acti-
vation states for two of the three components, it is not as visu-
ally salient as seeing the device light up. Similarly, the history
table containing information from previous trials provided
in the experiment displays the observational data graphically
whereas the explanations require reading each row. These
may have affected how effectively participants were able to
integrate explanatory information across trials, a limitation
that does not apply for the normative model.

We plan to address these limitations in future experiments
by adding temporal information to the observations, and by
including the activation information in the history table for
all conditions. Also, investigating how people provide and
interpret explanations by asking them to choose explanations
themselves may offer insight into the pragmatics of expla-
nation generation and understanding. Lastly, we have only
looked at how people use explanations with observations and
by themselves, but not with interventions, and we hope to in-
tegrate all three tools of causal reasoning in future studies.
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