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Abstract: The concept of disaster resilience is getting more prominent in the era of climate change 10 
due to the increase in the intensities and uncertainties of disaster events. To effectively assess the 11 
holistic capacity of structural systems, a disaster resilience analysis framework has been recently 12 
developed from a system-reliability-based perspective. The framework evaluates resilience in terms 13 
of reliability, redundancy, and recoverability and provides quantitative indices of reliability and 14 
redundancy for structures with a resilience threshold. Although this framework enables the 15 
comprehensive evaluation of disaster resilience performance, practical applications of such concepts 16 
to the structures subjected to dynamic excitations with large aleatory uncertainty, such as 17 
earthquakes, remain challenging. This study develops a framework to assess the resilience 18 
performance of structures by taking into account the aleatory uncertainties in external forces. Along 19 
with the development of reliability and redundancy curves that can effectively accommodate such 20 
excitations, a new resilience threshold representation is proposed to incorporate recoverability in 21 
the decision-making process. Moreover, we provide efficient procedures for calculating the 22 
reliability and redundancy curves to alleviate the computational complexity during the resilience 23 
analysis. Two earthquake application examples are presented targeting a nine-story building and a 24 
cable-stayed bridge system to demonstrate the enhanced practical applicability of the proposed 25 
framework. 26 

Keywords: Earthquake excitations; Structural system reliability; Resilience criteria; Resilience-based 27 
engineering; Aleatoric uncertainty 28 

 29 

1. Introduction 30 
Civil infrastructures are designed to limit the extent of damages for frequent hazardous events, and 31 
further, to ensure life safety under extreme hazardous events. The growing complexity of urban 32 
communities complicates the prediction of disaster performance and challenges the associated design 33 
decisions. Furthermore, the effects of such mispredictions are often extended to the recovery stages, 34 
demanding significant time and resources to regain the pre-event condition. As a result, there is a 35 
growing emphasis on incorporating long-term outcomes in the disaster risk management framework, 36 
such as technical, environmental, economic, and social consequences. To account for the broader 37 
impact of disasters, the risk management paradigm is being shifted from “fail-safe” to “safe-to-fail” 38 
(Ahern, 2011) – motivating the introduction of resilient infrastructure. 39 
 While disciplines such as physics, psychology, and economics, have been using different 40 
definitions for resilience, in the context of structural engineering, resilience is defined as the holistic 41 
ability or capacity of a structure to “sustain internal and external disruptions without discontinuity 42 
of the original functionality or, if discontinued, to recover fully and rapidly (ASME, 2009).” Based on 43 
the concept, a series of studies were undertaken to develop the criteria and methodologies for 44 
evaluating the resilience performance of civil structural systems (Bruneau et al., 2003; Lim et al., 2022). 45 
A framework consisting of four attributes - robustness, redundancy, resourcefulness, and rapidity - 46 
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is the most widely used resilience concept in the structural engineering field (Bruneau et al., 2003). 47 
Furthermore, by adopting the ‘resilience triangle model,’ i.e., a variant of that shown in Figure 1(a), 48 
to represent the initial loss after a disaster and the following restoration of the system functionality, 49 
many researchers have proposed different indices, metrics, and frameworks to assess the resilience 50 
performance of structural systems (Didier et al., 2018; Hosseini et al., 2016; Jiang et al., 2020; 51 
Rathnayaka et al., 2022). Although the framework enables quantitative assessment of the initial loss 52 
and the recovery process considering various uncertainties, Lim et al. (2022) identified its three 53 
critical limitations. First, the restoration curve models are often arbitrarily chosen by the modelers, 54 
which may lead to different resilience performance evaluations. Second, although the underlying 55 
structural functionality is determined by an intertwined relationship between components- and 56 
system-level performances, most of the research efforts based on the resilience triangle focused on 57 
estimating the resilience performance of either structural components or systems only. Third, it may 58 
not be straightforward to employ the resilience triangle framework in post-disaster decision-making 59 
because the component/system performances are often aggregated into a single measure, such as the 60 
area of the triangle.  61 
 To address such issues, Lim et al. (2022) proposed a new concept of disaster resilience from a 62 
system-reliability perspective. In their work, disaster resilience is characterized by three criteria, i.e., 63 
reliability, redundancy, and recoverability, and the roles of the criteria are delineated at the 64 
individual structure level. In the analysis, the resilience performance is described by inspecting 65 
possible sequences of the progressive system failure scenarios. For each initial disruption scenario, 66 
reliability (β), redundancy (π), and recoverability indices are computed and presented in a single plot 67 
as shown in Figure 1(b). Note that the recoverability index is visualized by a color. Such a two-68 
dimensional scattered plot is termed the β-π diagram in Lim et al. (2022), and is used to visualize the 69 
resilience performance of the structure. Moreover, those reliability and redundancy indices are 70 
capable of not only describing the likelihood of each disruption scenario but also identifying the fatal 71 
disruption cases by introducing a resilience performance limit – in terms of per-hazard de minimis 72 
level of risk. The de minimis risk stands for a threshold value of the annual system failure probability 73 
given a hazard below which a society normally does not impose any regulations (Paté-Cornell, 1994). 74 
This allows the β-π diagram to provide an instantaneous intuition on the likelihood of each disruption 75 
scenario (as a coordinate of β) and its impact (as a coordinate of π), as well as to define the system-76 
level safety limit, i.e., resilience limit, in terms of the two indices. 77 
 78 

  

(a) Resilience triangle model  (b) System-reliability-based resilience assessment 
Figure 1. Illustrative comparison of resilience triangle (left) with four resilience attributes (red), and 79 
system-reliability-based resilience diagram (right) with three resilience criteria (black) 80 
 81 

Although Lim et al. (2022) effectively addressed the limitations of the resilience triangle model, 82 
the practical application of the concept to structures under realistic loading conditions, e.g., 83 
earthquakes, remains challenging because of the following three reasons. First, since Lim et al. (2022) 84 
proposed the resilience indices focusing on the structural systems subjected to static loads, it is not 85 
straightforward to calculate such indices under the presence of high stochastic aleatory uncertainties. 86 
In other words, new formulations need to be derived for the reliability and redundancy indices that 87 
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consider the aleatoric uncertainty characteristics of external loads (i.e., the inherent randomness that 88 
cannot be explained by feature variables) and their impacts on the systems. Second, the initial 89 
disruption scenarios are defined as mutually exclusive and collectively exhaustive (MECE) events, 90 
but a procedure to obtain the resilience metrics for each MECE event was hardly addressed in Lim et 91 
al. (2022) limiting the widespread adoption of the method in real-world applications. Third, it is 92 
computationally demanding to evaluate a set of β and π when a large number of structural 93 
components are considered; yet no efficient methods have been proposed. 94 
 To address these research needs within the system-reliability-based resilience assessment 95 
framework, we aim to develop new formulations and algorithms that can accommodate earthquakes 96 
or earthquake-like dynamic excitations, which we refer to as “stochastic” excitations in this context. 97 
Note that the term “stochasticity” pertains to the “aleatoric characteristic” of the hazards and is not 98 
related to certain excitation (ground motion) models. In other words, the application of the proposed 99 
method is not limited to stochastic ground motion models, as demonstrated in the examples. 100 

After a literature review of the system-reliability-based disaster resilience framework, we newly 101 
formulate reliability and redundancy indices for structures exposed to stochastic excitations in 102 
Section 2. Motivated by the traditional performance-based engineering formulations which utilize 103 
fragility curves and total probability theorem, the new indices are built upon the concepts of 104 
reliability and redundancy curves. Furthermore, an improved resilience performance limit is 105 
proposed from the concept of factored de minimis risk. In addition to the definitions, the essential 106 
pieces of information required in resilience assessment are listed to show the framework at a glance 107 
and promote its practical applications. With an example of a three-story building structure exposed 108 
to earthquake excitations, the relationship between component failure and initial disruption scenarios 109 
represented by MECE events is thoroughly investigated. Section 3 proposes several efficient methods 110 
to reduce the computational demands in estimating the reliability and redundancy curves. To 111 
demonstrate the applicability and merits of the proposed method, the framework is applied to two 112 
earthquake engineering examples in Section 4. The paper concludes with a summary and discussion 113 
in Section 5. 114 

2. System-Reliability-based Resilience Assessment of Structures under Dynamic Excitations 115 
with High Aleatory Uncertainty 116 
The resilience performance of structural systems should be defined by joint states of statistically 117 
dependent components and their interrelationship (Song et al., 2021). To consider such characteristics 118 
in the resilience performance assessment, Lim et al. (2022) characterized disaster resilience using 119 
three criteria, i.e., reliability, redundancy, and recoverability, and developed reliability (β) and 120 
redundancy (π) indices for individual structures. The indices have limitations to a direct application 121 
to structures under earthquake ground motions or wind forces, which is characterized by high 122 
aleatory uncertainties. Thus, in this section, after reviewing the resilience indices in Lim et al. (2022), 123 
a new disaster resilience assessment framework is proposed to embrace the aleatoric characteristics 124 
of external forces. It is remarked that since the recoverability should be evaluated considering various 125 
factors of socioeconomic impacts, this study focuses on proposing reliability and redundancy indices 126 
and their relationship, while the recoverability index will be discussed more conceptually.  127 

2.1. Review of system-reliability-based resilience indices 128 
In Lim et al. (2022), the resilience criteria – reliability, redundancy, and recoverability – of a structure 129 
are proposed to be evaluated considering multiple progressive failure scenarios. In particular, given 130 
a system failure path or an “initial disruption scenario,” the initial component failures triggered by 131 
the external loads represent the lack of “reliability” of the system, and the subsequent system failure 132 
induced by both the external loads and the initial component disruptions are represented by the lack 133 
of “redundancy.” In other words, the reliability index represents the capability of structural elements, 134 
such as columns, joints, or cables, to avoid significant initial disruptions while the redundancy index 135 
requires to reflect the system’s capability in preventing a system-level failure after some structural 136 
members’ disruption. The third resilience criterion, recoverability, on the other hand, is associated 137 
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with the repair time and costs of structural elements to recover the original (or desired) level of safety 138 
or functionality of the structure. Thus, the three criteria are evaluated for different “initial disruption 139 
scenarios” (and different hazard types), and the collection of those values determines the overall 140 
system-level resilience. 141 
 Let us consider i-th initial disruption scenario 𝐹𝐹𝑖𝑖 and 𝑗𝑗-th hazard event 𝐻𝐻𝑗𝑗. The initial disruption 142 
scenarios are defined as different possible combinations of structural component failure events that 143 
occur immediately after an extreme hazard event, and the hazard is an event that induces external 144 
forces on structural systems. The reliability index for 𝐹𝐹𝑖𝑖 is formulated in terms of the probability of 𝐹𝐹𝑖𝑖 145 
given 𝐻𝐻𝑗𝑗 , i.e., 146 

𝛽𝛽𝑖𝑖,𝑗𝑗 = −Φ−1 �𝑃𝑃�𝐹𝐹𝑖𝑖�𝐻𝐻𝑗𝑗�� (1)  
where Φ−1(∙) denotes the inverse cumulative distribution function (CDF) of the standard Gaussian 147 
distribution. On the other hand, the redundancy index is defined in terms of the probability of 148 
system-level failure given 𝐹𝐹𝑖𝑖 and 𝐻𝐻𝑗𝑗 , i.e.,  149 

𝜋𝜋𝑖𝑖,𝑗𝑗 = −Φ−1 �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻𝑗𝑗�� (2) 
where 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 denotes the system-level failure of the given structure. For the recoverability index, Lim 150 
et al. (2022) employed the economic losses of the system for the given component disruption scenario. 151 
The reliability, redundancy, and recoverability indices estimated for each disruption scenario (𝑖𝑖) and 152 
hazard type (𝑗𝑗) are then used to plot β−π diagram (see Figure 1(b)), which is a two-dimensional scatter 153 
plot between 𝛽𝛽𝑖𝑖,𝑗𝑗 and 𝜋𝜋𝑖𝑖,𝑗𝑗 with the colors representing the recoverability. 154 
 Given that the initial disruption scenarios are mutually exclusive and collectively exhaustive 155 
(MECE), the unconditional annual failure probability of structural systems associated with the 156 
hazard 𝐻𝐻𝑗𝑗, 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗�, can be expressed by the two resilience indices as follows: 157 

𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗� = �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑗𝑗�
𝑖𝑖

= �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻𝑗𝑗�𝑃𝑃�𝐹𝐹𝑖𝑖�𝐻𝐻𝑗𝑗�𝜆𝜆𝐻𝐻𝑗𝑗
𝑖𝑖

= �Φ�−𝜋𝜋𝑖𝑖,𝑗𝑗�Φ�−𝛽𝛽𝑖𝑖,𝑗𝑗�𝜆𝜆𝐻𝐻𝑗𝑗
𝑖𝑖

 (3) 

where 𝑃𝑃(𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑗𝑗) stands for the annual probability of the system failure event originated from the i-th 158 
initial disruption scenario under 𝐻𝐻𝑗𝑗, and 𝜆𝜆𝐻𝐻𝑗𝑗 represents the annual mean occurrence rate of 𝐻𝐻𝑗𝑗. The 159 
upper threshold of 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗� or 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑗𝑗� should be decided based on social consensus. To this aim, 160 
Lim et al. (2022) employed the concept of de minimis risk (Ellingwood, 2006), the highest tolerable risk 161 
level in society, which is in the order of 10−7/𝑦𝑦𝑦𝑦 for the civil structural systems (Paté-Cornell, 1994). 162 
Using the de minimis risk level 𝑃𝑃𝑑𝑑𝑑𝑑 as the threshold, the following resilience constraint was obtained 163 
as  164 

𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖,𝑗𝑗� = Φ�−𝜋𝜋𝑖𝑖,𝑗𝑗�Φ�−𝛽𝛽𝑖𝑖,𝑗𝑗�𝜆𝜆𝐻𝐻𝑗𝑗 < 𝑃𝑃𝑑𝑑𝑑𝑑  (4) 
Dividing Eq. (4) by 𝜆𝜆𝐻𝐻𝑗𝑗, the inequality can be written as 165 

Φ�−𝜋𝜋𝑖𝑖,𝑗𝑗�Φ�−𝛽𝛽𝑖𝑖,𝑗𝑗� < 𝑃𝑃𝑑𝑑𝑑𝑑/𝜆𝜆𝐻𝐻𝑗𝑗 (5) 
where 𝑃𝑃𝑑𝑑𝑑𝑑/𝜆𝜆𝐻𝐻𝑗𝑗 stands for the per-hazard de minimis risk. By intertwining with the β−π diagram, it is 166 
possible to quantitatively assess the resilience performance of the structure, and further identify the 167 
critical components associated with the risky scenarios.  168 

Nonetheless, the original resilience threshold in Eq. (5) reveals two limitations. First, 169 
recoverability is not explicitly considered in Eq. (5), while it is important to incorporate recoverability 170 
into the resilience assessment to obtain a more comprehensive understanding of the system's ability 171 
to withstand and recover from disruptions. The second limitation pertains to the use of per-hazard 172 
de minimis risk as a resilience limit. While the framework allows for versatile choices of initial 173 
disruption scenario definitions, imposing the same per-hazard de minimis risk resilience threshold for 174 
different possible granularity of initial scenarios can potentially lead to over/under-estimation of the 175 
resilience performance. As an example on the extreme end, when the initial disruption scenarios are 176 
decomposed into a large number of sub-scenarios with extremely small occurrence probabilities, it is 177 
likely that all scenarios will satisfy the resilience threshold regardless of design details. This may not 178 
accurately reflect the resilience performance of the system, and to avoid this, the resilience threshold 179 
should be defined such that it is (approximately) inversely proportional to the total number of 180 
alternative failure paths considered in the analysis. 181 
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2.2. Disaster resilience assessment framework to consider aleatory uncertainties 182 
Two contributions are made in this section to develop a system-reliability-based disaster resilience 183 
assessment framework of structures under stochastic excitations. First, a new concept of reliability 184 
and redundancy curves is proposed to deal with the variabilities of stochastic excitations. Second, a 185 
new resilience limit-state surface that accounts for the recoverability and the different granularity of 186 
the initial disruption scenarios is proposed. 187 

2.2.1. Reliability and redundancy indices for stochastic excitations 188 
The resilience indices in Eqs. (1) and (2) are applicable to general types of individual structures. 189 
However, it is challenging to apply the current formulation of such indices to the structures subjected 190 
to stochastic excitations because of the high-dimensional nature in its randomness. To consider the 191 
variabilities in stochastic excitations in the system-reliability-based resilience framework, the concept 192 
of conditional probability expression of the structural response is introduced, which is widely 193 
adopted in the traditional performance-based engineering formulation represented as the fragility 194 
analysis. Intensity measure(s) (IM or im) are introduced to represent the stochastic excitations, and 195 
the failure probability of components and system (reliability and redundancy analysis, respectively) 196 
are evaluated conditional to 𝑖𝑖𝑖𝑖.  197 

Using this concept, the probability of the i-th failure scenario given a hazard event 𝐻𝐻 can be 198 
written through the total probability theorem as follows: 199 

𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻) = �𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖 (6) 

where 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻) is the scenario-level fragility given the hazard event 𝐻𝐻, termed as the “reliability 200 
curve,” and 𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻) is the probability density function (PDF) of 𝑖𝑖𝑖𝑖 given the hazard event 𝐻𝐻. For 201 
example, the hazard event 𝐻𝐻 for an earthquake event can be characterized by various features such 202 
as source and site conditions. On the other hand, the seismic event, which represents the site-specific 203 
realizations of ground motions for a given hazard event, is featured by intensity measures that 204 
inherently involve significant amount of aleatory uncertainty. The term 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)  captures the 205 
effect of the aleatory uncertainty of the latter. For the sake of notational simplicity, we hereafter omit 206 
the subscript 𝑗𝑗 in 𝐻𝐻 (i.e., 𝐻𝐻𝑗𝑗 in Eqs. (1) and (2)) to consider only a single hazard scenario. 207 

In a similar manner, the probability of a system-level failure given the i-th disruption scenario 208 
caused by the hazard event 𝐻𝐻 is  209 

𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖,𝐻𝐻� = �𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖, 𝑖𝑖𝑖𝑖,𝐻𝐻�𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖 ,𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖 (7) 

in which 𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖,𝐻𝐻� represents the system-level fragility induced by the i-th initial disruption 210 
scenario given the hazard event 𝐻𝐻, termed as the “redundancy curve,” and 𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖 ,𝐻𝐻) is the PDF 211 
of 𝑖𝑖𝑖𝑖  given 𝐹𝐹𝑖𝑖  and 𝐻𝐻 . Note that, not only the redundancy curve is conditioned on 𝐹𝐹𝑖𝑖  but the 212 
distribution of 𝑖𝑖𝑖𝑖 is also updated after 𝐹𝐹𝑖𝑖 has occurred. For example, an unlikely failure of a strong 213 
component or simultaneous failure of multiple components may indicate that the applied intensity 214 
of the stochastic excitation was high, and such a strong excitation is likely to cause the subsequent 215 
system failure. 𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖,𝐻𝐻) can be obtained through Bayes’ theorem as follows: 216 

𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖 ,𝐻𝐻) =
𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)

𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)  (8) 

By substituting Eq. (8) into Eq. (7), 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻� becomes 217 
𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻� =

1
𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)�𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖,𝐻𝐻�𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖 (9) 

which involves both the reliability and redundancy curves as well as 𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻). Following Eqs. (1) and 218 
(2), generalized reliability and redundancy indices are written as follows: 219 

𝛽𝛽𝑖𝑖 = −Φ−1�𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)� = −Φ−1 ��𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖� (10) 

 220 
𝜋𝜋𝑖𝑖 = −Φ−1 �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻�� = −Φ−1 �

1
𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)�𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖, 𝑖𝑖𝑖𝑖,𝐻𝐻�𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻)𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖� (11) 
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The dependency between the random variables of hazard and structural system in the reliability 221 
and redundancy analyses are graphically summarized in Figure 2 (a) and (b), respectively. Figure 222 
2(b) indicates that 𝐹𝐹𝑖𝑖 and 𝐹𝐹sys are dependent on the same 𝑖𝑖𝑖𝑖. This implicitly assumes that the hazard 223 
event that causes the initial disruption (in the reliability analysis context) is the event that triggers the 224 
system failure (in the redundancy analysis context). In such a case, the observation of 𝐹𝐹𝑖𝑖 changes the 225 
distribution of 𝑖𝑖𝑖𝑖  as in Eq. (8), and the redundancy index should consider this as in Eq. (11). 226 
However, when one wants to consider a case where each of the initial disruptions and the system 227 
failure occurs due to a sequence of independent hazard realizations, e.g., a sequence of main and 228 
aftershocks, unconditional 𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖| 𝐻𝐻) should be used instead of Eq. (8) to estimate the redundancy 229 
index as 230 

𝜋𝜋𝑖𝑖 = −Φ−1 �𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 ,𝐻𝐻�� = −Φ−1 ��𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖,𝐻𝐻�𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻)𝑑𝑑𝑖𝑖𝑖𝑖� (12) 

instead of Eq. (11). Under such assumptions, no arrow exists between 𝐼𝐼𝐼𝐼  and 𝐹𝐹𝑖𝑖  in Figure 2(b), 231 
indicating the 𝐼𝐼𝐼𝐼s in Figure 2(a) and (b) are treated as independent variables. In short, Eqs. (10) and 232 
(11) are employed for the resilience assessment of structures under a single event, while Eqs. (10) and 233 
(12) assume sequential events. The focus of this paper lies on the former. 234 
 235 

   
(a) Reliability analysis (b) Redundancy analysis 

Figure 2. Probabilistic relationship between hazard/structural random variables 236 

2.2.2. New resilience limit-state to account for the recoverability and granularity of the initial disruption 237 
scenarios 238 
In the original work of Lim et al. (2022), the per-hazard de minimis risk 𝑃𝑃𝑑𝑑𝑑𝑑/𝜆𝜆𝐻𝐻 was employed as the 239 
resilience threshold (Eq. (5)) in the disaster resilience assessment framework. While 𝑃𝑃𝑑𝑑𝑑𝑑/𝜆𝜆𝐻𝐻 240 
effectively incorporates the reliability and redundancy performance taking into account the annual 241 
occurrence rate of hazard, it does not explicitly consider the recoverability characteristics of each 242 
initial disruption scenario nor the number of MECE initial disruption scenarios. 243 

To address these limitations, we propose a factored de minimis risk, denoted as 𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖
∗ , by 244 

multiplying the original de minimis risk to the recoverability index and dividing it by the number of 245 
MECE events: 246 

𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖
∗ = 𝛾𝛾𝑖𝑖𝑃𝑃𝑑𝑑𝑑𝑑/𝑁𝑁𝐹𝐹 (13) 

where 𝛾𝛾𝑖𝑖  is a recoverability index given the 𝑖𝑖𝑡𝑡ℎ  component disruption scenario 𝐹𝐹𝑖𝑖 , which should 247 
always be positive, and 𝑁𝑁𝐹𝐹 represents the number of MECE events. The recoverability index in Eq. 248 
(13) plays a role as a scenario-specific reduction/amplification factor and its values are determined 249 
considering various socioeconomic parameters (e.g., importance of structure, social and economic 250 
factors, availability of engineers, and community capital). Meanwhile, 𝑃𝑃𝑑𝑑𝑑𝑑,𝑖𝑖

∗  decreases as the 251 
granularity of the MECE events increases. Note that 𝛾𝛾𝑖𝑖𝑃𝑃𝑑𝑑𝑑𝑑  represents a system-level resilience 252 
threshold, i.e., maximum allowable annual failure probability of structural system, where all possible 253 
failure paths are aggregated (consider the case of 𝑁𝑁𝐹𝐹 = 1 in Eq. (13)). 254 

Using the factored de minimis risk, Eq. (5) can be rewritten as 255 
Φ(−𝜋𝜋𝑖𝑖)Φ(−𝛽𝛽𝑖𝑖)

𝛾𝛾𝑖𝑖
< 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹) (14) 

This enables the comprehensive assessment of the resilience performance incorporating all three 256 
criteria, and accounting for the level of granularity in the selected initial disruption scenarios. For 257 

: Random variables

: Site characteristics
: Intensity measure
: Occurrence of -th component 
failure event (0 or 1)

: Deterministic/observed
variables
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instance, if an investigated disruption scenario does not have enough recoverability performance (i.e., 258 
low 𝛾𝛾𝑖𝑖), the resilience threshold becomes more stringent (i.e., low 𝑃𝑃𝑑𝑑𝑑𝑑∗ /𝜆𝜆𝐻𝐻) requiring higher values of 259 
reliability and redundancy indices to satisfy Eq. (14). Furthermore, if the number of MECE events is 260 
extremely large, the resilience threshold again becomes more stringent. Such adjustment allows the 261 
framework to be less affected by the arbitrary selection of MECE events. The relationship between 262 
the three indices with the resilience limit surface is visually illustrated in Figure 3. We refer to this 263 
three-dimensional scatter plot as a “β−π−γ diagram.” 264 

Finally, it is remarked that one notable merit of the system-reliability resilience analysis 265 
framework is the clear separation of the recoverability index from the other two indices. This is 266 
attributed to the fact that each of the three resilience indices is directly conditioned on the initial 267 
disruption scenarios. This facilitates interdisciplinary communications and collaborations by 268 
allowing engineers to focus on assessing the “structural” performance only, while social scientists 269 
only aim at evaluating the recoverability performance for each initial disruption scenario without 270 
demanding onerous efforts to understand complex structural failure mechanisms. Ongoing research 271 
is being conducted to further demonstrate this concept, and the numerical examples in this study 272 
focus on the reliability and redundancy indices only, by assuming 𝛾𝛾 = 1. 273 

 274 

 275 
Figure 3. β−π−γ diagram and new resilience threshold 276 

2.3. Required information in the resilience assessment framework 277 
The assessment of resilience performance for structures subjected to stochastic excitations requires 278 
five essential pieces of information: (1) hazard model, (2) initial disruption scenarios, (3) component-279 
level limit-state, (4) component damage model and system-level limit-state, and (5) socioeconomic 280 
information. Figure 4 depicts the roles of each feature adopting the illustrational analogy in Lim et 281 
al. (2022). The detailed descriptions associated with the five features are illustrated in the following 282 
paragraph with an example of a three-story building structure under seismic hazard environments 283 
to facilitate a comprehensive understanding. 284 
 285 

  286 
Figure 4. Five critical features for the system-reliability-based resilience assessment  287 
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• Target Structure 288 
A numerical model of the target structure is required to estimate the reliability and resilience curves 289 
used in Eqs. (10) and (11), respectively. As an example, Figure 5 shows a three-story, four-bay SAC 290 
building structure which is designed by Brandow & Johnston Associates as a benchmark structure in 291 
the SAC joint venture project. The design meets the seismic code of typical low- and medium-rise 292 
buildings located in Los Angeles, California. A numerical simulation model is constructed in 293 
OpenSees (McKenna, 2011) utilizing a bilinear material (Steel 01) and a fiber section for both beams 294 
and columns. Each story consists of a weak column on the rightmost side of the building, and a rigid 295 
diaphragm assumption has been made. The first mode period of the structure is estimated as 1.01 296 
sec, and further details of modeling parameters including material properties are found in (Kim et 297 
al., 2021a; Ohtori et al., 2004). 298 
 299 

  300 
Figure 5. Configuration of the three-story steel building 301 

 302 
• Hazard model 303 

Hazard discerption is used twice in the analysis framework. The first is to get the site-specific IM 304 
distribution, 𝑓𝑓𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖|𝐻𝐻) used in Eqs. (10) and (11), and the second is to select/generate a site-specific 305 
events, e.g., ground motions, when estimating the reliability and redundancy curves. Recall that the 306 
main goal of the hazard analysis is to produce an explicit description of the distribution of future 307 
hazardous events considering various uncertainties. As such, the relationship between IM and its 308 
annual mean rate of occurrence is the main outcome of the hazard analysis, in general. IM could be 309 
either a scalar value or a combination of various IMs depending on the problem. For example, in the 310 
earthquake engineering field, spectral acceleration at the first mode period, 𝑆𝑆𝑆𝑆(𝑇𝑇1), which shows a 311 
strong correlation with typical engineering demand parameters (EDP) is a widely used IM. Hazard 312 
analysis could be carried out probabilistically or deterministically, of which details are provided by 313 
many researchers (ASCE, 2019; Cornell, 1976; Kramer, 1996).  314 
 In the demonstration examples, we used the response spectrum estimated from a ground motion 315 
prediction equation (GMPE) by Boore & Atkinson (2008) as a design spectrum. The annual mean 316 
occurrence rate of the hazard, 𝜆𝜆𝐻𝐻, is set to 10−3. With a series of assumptions – unspecified fault type, 317 
moment magnitude 7, 30 km of the Joyner-Boore distance, and 700 m/s of the shear-wave velocity 318 
over the top 30 m – the seismic hazard curve for 𝑆𝑆𝑆𝑆(𝑇𝑇1 = 1.01) and the PDF of 𝑆𝑆𝑆𝑆(𝑇𝑇1 = 1.01) are 319 
respectively determined as shown in Figure 6(a) and (b). Note that the seismic hazard curve in Figure 320 
6(a) is the multiplication of 𝜆𝜆𝐻𝐻 to the complementary cumulative distribution function (CCDF) of the 321 
PDF in Figure 6(b). 322 
 323 

  
(a) Seismic hazard curve (b) Frequency function 

Figure 6. Hazard curve and the corresponding hazard frequency function 324 
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• Initial disruption scenarios 325 
In order to express the system failure probability in terms of β and π following Eqs. (3) and (14), it is 326 
important to ensure that the initial disruption scenarios 𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝐹𝐹 are MECE events, in which 327 
𝑁𝑁𝐹𝐹 is the number of initial disruption scenarios. One may be tempted to select the initial disruption 328 
scenarios in terms of the failure of structural components, 𝐶𝐶𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑐𝑐, where 𝑁𝑁𝑐𝑐 is the number 329 
of components of interest, but such a set, in most cases (if not always), violates the MECE combination. 330 
To illustrate the difference between 𝐶𝐶𝑖𝑖  and 𝐹𝐹𝑖𝑖 , let us consider the three-story building model. The 331 
failure of i-th story weak column is considered as the component failure events of the building, 𝐶𝐶𝑖𝑖, 332 
𝑖𝑖 = 1,2,3. Figure 7 shows that 𝐶𝐶1 , 𝐶𝐶2 , and 𝐶𝐶3  are not mutually exclusive due to the intersection of 333 
multiple events, e.g., joint failure of i-th and j-th stories.  334 

Using the set theory, however, the MECE initial disruption scenarios can easily be defined in 335 
terms of the component failure events: 336 

𝑭𝑭 = �𝐹𝐹| 𝐹𝐹 = (∩𝑖𝑖∈𝐒𝐒 𝐶𝐶𝑖𝑖) ∩ �∩𝑗𝑗∈𝐒𝐒𝒄𝒄 𝐶𝐶𝚥𝚥��, 𝐒𝐒 ⊂ {1, 2, … ,𝑁𝑁𝑐𝑐} � (15) 
where 𝐶𝐶𝚥𝚥�  denotes the survival of member j and 𝐒𝐒𝐜𝐜 is the complement set of 𝐒𝐒. For example, in the 337 
three-story building, 𝐹𝐹6 = 𝐶𝐶1̅𝐶𝐶2𝐶𝐶3 (intersection notation ∩ is omitted here) represents 6-th disruption 338 
scenario of which 2nd and 3rd floors have failed (𝐒𝐒 = {2, 3}) while the first floor has survived (𝐒𝐒𝐜𝐜 = {1}). 339 
According to Eq. (15), the number of disruption scenarios increases exponentially as the number of 340 
components increases, i.e., 𝑁𝑁𝐹𝐹 = 2𝑁𝑁𝑐𝑐. However, as will be discussed in Section 3, many scenarios in 341 
fact are significantly rare (i.e., extremely low 𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻)) and can be disregard in the resilience analysis. 342 
 Note that the choice of components for defining the MECE is not unique and the number of 343 
MECE failure scenarios can be flexibly chosen based on engineering judgment and the computational 344 
costs. For instance, in the building example, it is possible to further divide weak columns or beams 345 
into several sections and treat these sections as individual components. This finer granularity allows 346 
for a more detailed analysis of the resilience performance of specific structural elements. It is 347 
remarked that, as mentioned in Section 2.2.2, the resilience threshold is adjusted based on the number 348 
of MECE events to minimize the effect of different MECE choices on the final evaluation of the 349 
structural resilience status.  350 
 351 

  352 
Figure 7. An example of MECE events (F) and non-MECE events (C) of the three-story building 353 

 354 
• Component-level limit-state 355 

A numerical definition of component failure is essential in obtaining the reliability curve in Eq. (10). 356 
Given that the disruption scenarios are defined as Eq. (15), the limit-state functions of each 𝐹𝐹𝑖𝑖 , 𝑖𝑖 =357 
1, 2, … ,𝑁𝑁𝐹𝐹  can be defined in terms of those of the component failure event  𝐶𝐶𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝐶𝐶 . For 358 
example, in the previous building model, the limit-state for the component failure can be established 359 
by excessive tensile stress at the weak column (rightmost column) of each story: 360 

𝐶𝐶𝑖𝑖 = �𝜎𝜎tr,𝑖𝑖 − 𝜎𝜎𝑖𝑖 ≤ 0�,      𝑖𝑖 = 1, … ,3 (16) 
where 𝜎𝜎𝑖𝑖  is the maximum tensile stress computed at i-th story’s weak column, and 𝜎𝜎tr,𝑖𝑖  is its 361 
maximum allowable threshold level. Using Eq. (16), the limit-state function of 𝐹𝐹𝑖𝑖 is then defined as 362 
the joint occurrence of 𝐶𝐶𝑖𝑖 and 𝐶𝐶�̅�𝑗 as defined in Eq. (15). For the explanation purpose, in the three-story 363 
building, 𝜎𝜎tr,𝑖𝑖 = 350 Mpa is assumed. Estimated reliability curves 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻) and indices 𝛽𝛽𝑖𝑖 will be 364 
investigated in Section 3. 365 
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• Component damage model and system-level limit-state  366 
The estimation of redundancy analysis starts by numerically modeling the degraded performance 367 
originating from the given disruption scenarios. Given the fact that the performance degradation 368 
stems from the component-level (or scenario-level) disruptions, one of the convenient options to 369 
represent the performance degradation is to replace the material properties, e.g., stiffness and 370 
strength, or geometric area with those of the damaged ones. Figure 8 shows an illustrative example 371 
in which the bilinear envelope (solid line) of the material model of the damaged weak columns is 372 
replaced by a new bilinear envelope (dashed line). The stiffness of the original material property, 𝑘𝑘1, 373 
is reduced by multiplying 𝛼𝛼𝐸𝐸, while the yield strength 𝐹𝐹𝑠𝑠 is reduced to 𝛼𝛼𝑠𝑠𝐹𝐹𝑠𝑠, in which 𝛼𝛼𝐸𝐸 = 0.4 and 374 
𝛼𝛼𝑠𝑠 = 0.2 are used in this example following Li (2006). The degraded numerical model can describe 375 
the load redistribution initiated by the disruption scenario and properly represent the performance 376 
degradation of the structure. 377 

In addition to the updated numerical model, a proper system-level limit-state needs to be 378 
defined to estimate the redundancy curve in Eq. (11). The system failure event in our example is 379 
defined in terms of the global response of the system following the common practice (ATC-58, 2012a, 380 
2012b) given by 381 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 = �𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖 ≤ 0� (17) 
where 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 stands for the maximum allowable peak roof drift, and 𝑑𝑑roof,i represents the peak roof 382 
drift of the structure obtained from the dynamic analysis with taking into account the initial 383 
disruption 𝐹𝐹𝑖𝑖 . In our example, 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 = 0.07  is assumed. Detailed procedures to estimate the 384 
redundancy curves will be addressed in Section 3.  385 
 386 

 387 
Figure 8. Properties of damaged components 388 

 389 
• Socioeconomic information 390 

Since recoverability stands for the ability to quickly respond to disaster impacts and rapidly recover 391 
the damaged structural components to the original state or the desired performance level, it should 392 
be determined not only as a direct repair cost but by a comprehensive analysis of the structure and 393 
social science aspects. Furthermore, the recoverability index should incorporate enough information 394 
to help engineers or stakeholders determine whether the structure needs to be retrofitted or not. 395 
Based on the desired properties, proper socioeconomic information is required to estimate 396 
recoverability. Many research efforts have been made to incorporate social science aspects in the 397 
recoverability index (Cimellaro et al., 2010; Didier et al., 2018; Liang & Xie, 2021), nevertheless no 398 
index is available to estimate the recoverability index for each initial disruption scenario. Thus, 399 
further study is currently underway to quantitatively define the recoverability index and investigate 400 
its relationship with the resilience limit-state. 401 

3. Estimation of reliability and redundancy curves for each disruption scenario 402 
The estimation of reliability and redundancy curves is the most computationally intensive step in the 403 
proposed resilience assessment framework. This section provides computationally efficient and 404 
practically feasible methods to estimate those curves. For the sake of notational brevity, we use the 405 
followings to represent the reliability and redundancy curves, respectively. 406 

𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖,𝐻𝐻) (18) 
 407 
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𝑃𝑃𝜋𝜋,𝑖𝑖(𝑖𝑖𝑖𝑖) = 𝑃𝑃�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠�𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖,𝐻𝐻� (19) 
Unlike conventional fragility curves often defined as non-decreasing functions, the reliability 408 

curves typically have a non-monotonic shape because the initial disruption scenario 𝐹𝐹𝑖𝑖 describes a 409 
mixed state of failed and survived components instead of only the failed components. In fact, the 410 
MECE condition of the initial disruption scenarios constrains the sum of the reliability curves to 411 
always be 1, regardless of 𝑖𝑖𝑖𝑖 values. For instance, when 𝑖𝑖𝑖𝑖 = 0, i.e., no external forces are applied to 412 
the structure, the probability of the “no components failure” scenario should be 1, while the other 413 
scenarios take the probability of zero. On the other hand, considering another extreme case where 414 
𝑖𝑖𝑖𝑖 → ∞, only the “all components failure” scenario will have the probability of 1, which implies that 415 
the reliability curves of the other scenarios will decay to zero. In other words, all except these two 416 
special cases has skewed bell-shape curves along with IM. This implies that the reliability curves 417 
cannot (1) be assumed to have a simple functional form, such as a lognormal CDF, and (2) be 418 
calibrated independently for each 𝐹𝐹𝑖𝑖 because of the constraint that all the reliability curves should 419 
sum up to 1. 420 

After a high-level overview of the existing fragility analysis following Yi et al. (2022), three 421 
methods are proposed to estimate the reliability curves to consider the aforementioned 422 
characteristics, followed by a discussion on the redundancy analysis. To provide a comprehensive 423 
overview, we present Table 1 to summarize the computational aspects of the proposed three methods 424 
for estimating reliability curves. The methods are illustrated using the three-story building example. 425 

 426 
Table 1. Summary of proposed methods to compute reliability curves 427 

Method 
Subtraction method 

(Section 3.2.1) 

Multinomial logistic 
regression 

(Section 3.2.2) 

Screening of force majeure 
scenarios 

(Section 3.2.3) 

Purpose  To obtain reliability curves 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) in Eq. (18) 
To screen out trivial (force 

majeure) scenarios that can be 
disregarded in β-π analysis 

Strategy 
Recursive subtraction of joint 
components failure fragility 

curves (𝑃𝑃(𝐶𝐶𝑆𝑆|𝑖𝑖𝑖𝑖)) 

Multinomial classification 
using logistic regression 

model 

Inspect the lower bound of 
𝛽𝛽𝑖𝑖  to find 𝐹𝐹𝑖𝑖  of which the 
resilience requirement is 

satisfied with a large margin  

Assumptions 

Fragility curves of joint 
components failure 

(𝑃𝑃(𝐶𝐶𝑆𝑆|𝑖𝑖𝑖𝑖)) can be obtained 
by regular fragility analysis, 

e.g., under log-normal 
assumption. 

Reliability curves follow the 
membership probability of 

the logistic regression 
model 

No assumption 

Definition 
Eq. (28), where 

𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) = 𝑃𝑃�𝐶𝐶𝑆𝑆𝑖𝑖𝑆𝑆�̅�𝑖𝑐𝑐 |𝑖𝑖𝑖𝑖� 
Eq. (35) and (36) 

𝐹𝐹𝑖𝑖 that satisfies Eq. (38)  
is trivial (force majeure) 

Pros 
Conventional fragility 

analysis methods (Section 
3.1) can be utilized 

All reliability curves are 
obtained as a single 

regression model 
- 

Cons 
Errors in estimation can 
accumulate during the 

subtraction process 

MLE optimization is 
needed 

- 

3.1. High-level overview of fragility analysis methods 428 
The fragility curve is defined as the conditional failure probability given IM of a hazard: 429 

𝑃𝑃𝑟𝑟(𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐷𝐷𝑆𝑆 = 1|𝑖𝑖𝑖𝑖) (20) 
where 𝐷𝐷𝑆𝑆 is a binary damage state index that takes one if the component or system is damaged, and 430 
zero otherwise. In practice, 𝐷𝐷𝑆𝑆 is represented as the demand being greater than capacity, i.e., 431 
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𝐷𝐷𝑆𝑆 = 𝕀𝕀{𝛿𝛿𝑐𝑐 − 𝑑𝑑 ≤ 0} (21) 
where 𝕀𝕀(∙) is an indicator function, 𝛿𝛿𝑐𝑐 represents the response threshold (capacity), and 𝑑𝑑 stands for 432 
the response of the component/system due to hazard loads (demand), which is often referred to as 433 
an engineering demand parameter. Among various fragility analysis methods, incremental dynamic 434 
analysis (IDA), cloud analysis, maximum likelihood estimation of the binary classification model, 435 
and extended fragility analysis are summarized in the subsequent paragraphs. 436 

IDA gained popularity in light of intuitive analysis steps and the easiness of calibrating the 437 
parameters of a fragility function (Vamvatsikos & Cornell, 2002). IDA creates multiple splines on 438 
{𝑖𝑖𝑖𝑖,𝑑𝑑} space, each obtained by running multiple dynamic structural analyses for varying scales of 439 
ground motion time histories. The uncertainty in the capacity of the system is represented in terms 440 
of IM values at which the splines cross the response threshold 𝛿𝛿𝑐𝑐. The fragility curve of typical IDA 441 
procedure takes the form of lognormal CDF 442 

𝑃𝑃𝑟𝑟(𝑖𝑖𝑖𝑖) = Φ�−
𝜃𝜃 − ln 𝑖𝑖𝑖𝑖

𝛽𝛽
� (22) 

The parameters 𝜃𝜃 and 𝛽𝛽 are respectively log-mean and log-standard deviation of the collected IM 443 
capacity samples during the IDA analysis.  444 

The cloud analysis predicts the mean response by introducing the power law assumption 445 
between IM and 𝑑𝑑 (Cornell et al., 2002) 446 

𝐸𝐸[ln𝑑𝑑] = 𝑆𝑆 + 𝑏𝑏 ln 𝑖𝑖𝑖𝑖 + 𝜀𝜀 (23) 
where 𝜀𝜀  follows a normal distribution, whose mean is zero and the standard deviation is 𝜎𝜎 , i.e., 447 
𝑁𝑁(0,𝜎𝜎2) . By minimizing the squared error of the linear regression under homoscedasticity 448 
assumption, {𝑆𝑆, 𝑏𝑏,𝜎𝜎} are estimated. Using the estimated parameters, the following fragility curve is 449 
obtained. 450 

𝑃𝑃𝑟𝑟(𝑖𝑖𝑖𝑖) = Φ�−
ln 𝛿𝛿𝑐𝑐 − ln𝑑𝑑

 𝜎𝜎
� (24) 

Next, a method by Shinozuka et al. (2000) treats the fragility analysis as a binary classification 451 
task. Using the lognormal CDF in Eq. (22) as the form of the fragility function, parameters 𝜃𝜃 and 𝛽𝛽 452 
are obtained by maximizing the following Bernoulli likelihood function 453 

𝐿𝐿 = � 𝑃𝑃𝑟𝑟�𝑖𝑖𝑖𝑖(𝑛𝑛)�
𝐷𝐷𝑆𝑆(𝑛𝑛)

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛=1

�1 − 𝑃𝑃𝑟𝑟�𝑖𝑖𝑖𝑖(𝑛𝑛)��
1−𝐷𝐷𝑆𝑆(𝑛𝑛)

 (25) 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠  represents the number of samples obtained from dynamic analyses, and the 454 
superscript (𝑛𝑛) stands for the 𝑛𝑛-th analysis data. Once 𝜃𝜃 and 𝛽𝛽 are calibrated, the fragility can be 455 
described using Eq. (22). 456 

Lastly, as an alternative to the lognormal CDF, a log-logistic distribution is used as a fragility 457 
function in the extended fragility analysis method (Andriotis & Papakonstantinou, 2018) 458 

𝑃𝑃𝑟𝑟(𝑖𝑖𝑖𝑖) =
1

1 + exp−(𝛼𝛼𝑟𝑟 + 𝛼𝛼1 ln 𝑖𝑖𝑖𝑖)
 (26) 

where 𝛼𝛼𝑟𝑟 and 𝛼𝛼1 are coefficients calculated again by maximizing Eq.(25). A merit of introducing the 459 
Bernoulli likelihood function is that the parameters of the fragility function are estimated in terms of 460 
𝐷𝐷𝑆𝑆 instead of the actual response quantity 𝑑𝑑. This is useful particularly when the system failure is 461 
defined as a combination of multiple response quantities, e.g., 462 

𝐷𝐷𝑆𝑆 = 𝕀𝕀�∩𝑖𝑖=1
𝑁𝑁𝑐𝑐 (𝛿𝛿𝑖𝑖 − 𝑑𝑑𝑖𝑖 ≤ 0)� (27) 

3.2. Estimation of the reliability curves 463 

3.2.1. Method 1: Subtraction method 464 
To address the challenges discussed in the beginning of Section 3, a new method termed the 465 
“subtraction method” is introduced. This method allows us to apply conventional fragility methods 466 
for the reliability tasks by drawing a relationship between the probability of 𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1, 2, … ,𝑁𝑁𝐹𝐹  and 467 
those of joint 𝐶𝐶𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑐𝑐 in Eq. (15). For an initial disruption scenario 𝐹𝐹𝑖𝑖 = 𝐶𝐶𝑺𝑺𝑺𝑺�𝒄𝒄, the reliability 468 
curve can be reformulated using the subtraction method as 469 
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𝑃𝑃(𝐶𝐶𝑺𝑺𝑺𝑺�𝒄𝒄|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶𝑺𝑺|𝑖𝑖𝑖𝑖) − � 𝑃𝑃�𝐶𝐶𝑺𝑺𝐶𝐶𝑗𝑗|𝑖𝑖𝑖𝑖�
𝑗𝑗∈𝑺𝑺𝒄𝒄

+ � 𝑃𝑃�𝐶𝐶𝑺𝑺𝐶𝐶𝑗𝑗𝑗𝑗|𝑖𝑖𝑖𝑖�
(𝑗𝑗<𝑗𝑗) for 𝑗𝑗,𝑗𝑗∈𝑺𝑺𝒄𝒄

− ⋯+ (−1)𝑁𝑁𝑺𝑺𝒄𝒄𝑃𝑃(𝐶𝐶𝑺𝑺𝑺𝑺𝑐𝑐|𝑖𝑖𝑖𝑖)    (28) 

in which  470 
𝐶𝐶𝑺𝑺𝑺𝑺�𝒄𝒄 = (∩𝑖𝑖∈𝑺𝑺 𝐶𝐶𝑖𝑖) ∩ �∩𝑗𝑗∈𝑺𝑺𝒄𝒄 𝐶𝐶𝚥𝚥��, 𝑺𝑺 ⊂ {1,2,3, … ,𝑁𝑁𝑐𝑐} (29) 

and  471 
𝐶𝐶𝑺𝑺 = (∩𝑖𝑖∈𝑺𝑺 𝐶𝐶𝑖𝑖),            𝑺𝑺 ⊂ {1,2,3, … ,𝑁𝑁𝑐𝑐} (30) 

where 𝑁𝑁𝒔𝒔𝒄𝒄 is the number of elements in 𝑺𝑺𝒄𝒄. The subtraction method converts the task of the reliability 472 
curve estimation (lefthand side term of Eq. (28)) to the fragility analysis of joint component failures 473 
(righthand side terms of Eq. (28)). Thereby, no care needs to be made to consider the constraints 474 
discussed previously. Since these joint component failures do not condition on survival events, 𝐶𝐶𝚥𝚥�  in 475 
Eq. (28), the conventional fragility analysis methods, e.g., under lognormal assumption, can be 476 
adopted in the reliability analysis. 477 
 For example, in the three-story building example, we can represent the reliability curve of 𝐹𝐹1 =478 
𝐶𝐶12�3� using Eq. (28) as follows: 479 

𝑃𝑃(𝐹𝐹1|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶12�3�|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶1|𝑖𝑖𝑖𝑖) − 𝑃𝑃(𝐶𝐶12|𝑖𝑖𝑖𝑖) − 𝑃𝑃(𝐶𝐶13|𝑖𝑖𝑖𝑖) + 𝑃𝑃(𝐶𝐶123|𝑖𝑖𝑖𝑖) (31) 
In the same manner as above, the followings are the expressions of other MECE events using the 480 
subtraction method 481 

𝑃𝑃(𝐹𝐹4|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶123�|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶12|𝑖𝑖𝑖𝑖) − 𝑃𝑃(𝐶𝐶123|𝑖𝑖𝑖𝑖) 
𝑃𝑃(𝐹𝐹5|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶12�3|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶13|𝑖𝑖𝑖𝑖) − 𝑃𝑃(𝐶𝐶123|𝑖𝑖𝑖𝑖) 
𝑃𝑃(𝐹𝐹7|𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐶𝐶123|𝑖𝑖𝑖𝑖) 

(32) 

A graphical illustration of the subtraction method used in the three-story building example is shown 482 
in Figure 9. The following is the summary of the procedure when applying the subtraction method 483 
to the three-story budling. 484 
 485 

 486 
Figure 9. MECE events (F) and their supersets (red) of the three-story building example 487 

 488 
Procedure 489 

1. Estimate reliability curves of each joint component failure events 𝐶𝐶𝑺𝑺𝑖𝑖 ,  𝑺𝑺𝑖𝑖 ⊂ {1,2,3}  using 490 
fragility analysis methods described in Section 3.1. The Bernoulli model-based fragility 491 
method is used in this example. 492 

i. Collect/generate the multiple ground motion time histories for a specific region of 493 
interest, and run structural dynamic analysis to collect a cloud of data samples 494 
�𝑖𝑖𝑖𝑖(𝑛𝑛), 𝑧𝑧1

(𝑛𝑛), 𝑧𝑧2
(𝑛𝑛), … , 𝑧𝑧𝑁𝑁𝐹𝐹

(𝑛𝑛)� , 𝑛𝑛 = 1, … ,𝑁𝑁𝑠𝑠𝑖𝑖𝑑𝑑 , where 𝑁𝑁𝑠𝑠𝑖𝑖𝑑𝑑 = 50  is the total number of 495 
model evaluations, 𝑁𝑁𝐹𝐹 = 2𝑁𝑁𝑐𝑐 = 8, and 𝑧𝑧𝑖𝑖 is the binary occurrence index that takes 1 if  496 
𝐶𝐶𝑺𝑺𝑖𝑖  has occurred, and 0 otherwise.  497 

ii. For 𝑖𝑖 = 1, … ,𝑁𝑁𝐹𝐹 , using �𝑖𝑖𝑖𝑖(𝑛𝑛), 𝑧𝑧𝑖𝑖
(𝑛𝑛)� , calibrate the fragility function parameters in Eq. 498 

(22) by maximizing the likelihood defined in Eq. (25) to obtain the fragility curves 499 
𝑃𝑃(𝐶𝐶𝑺𝑺𝑖𝑖|𝑖𝑖𝑖𝑖). 500 

2. Calculate the reliability curves of 𝐹𝐹𝑖𝑖 = 𝐶𝐶𝑺𝑺𝑖𝑖𝑺𝑺�𝑖𝑖𝑐𝑐  using Eq. (28), i.e., 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) = 𝑃𝑃 �𝐶𝐶𝑺𝑺𝑖𝑖𝑺𝑺�𝑖𝑖𝑐𝑐 |𝑖𝑖𝑖𝑖�. 501 
 502 

Damage includes 
story 1 failure

Damage 
includes 
story 1 and 3 
failure

Damage 
includes
story 1 and 2 
failure
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Figure 10 describes the estimated reliability curve using the above procedure. A total of 50 503 
ground motions are used in the dynamic analysis which are spectrum-matched or spectrum-504 
compatible to a design spectrum presented in Section 2.3 (See Figure 14(b)). The ground motion time 505 
histories are selected from the NGA-West database (Power et al., 2008). It is remarked that one may 506 
get a negative 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖)  using the subtraction method. To the authors’ observation, the effect of 507 
negativity was not significant as it was apparent only at the improbable range of hazard magnitude, 508 
e.g., beyond 4g in the numerical example, where g is the gravitational acceleration. Thus, we decided 509 
to enforce the negative values to zero in the calculation. However, it is possible to strictly prevent the 510 
negative probability density by applying a constraint such that a single dispersion parameter, 𝛽𝛽 in 511 
Eq.(22), is assigned to all 𝑃𝑃(𝐶𝐶𝑺𝑺𝑖𝑖|𝑖𝑖𝑖𝑖), i.e., 𝛽𝛽1 = 𝛽𝛽2 = ⋯ = 𝛽𝛽𝑁𝑁𝐹𝐹 = 𝛽𝛽. In other words, only the median 512 
parameters 𝜃𝜃𝑗𝑗  and 𝛽𝛽  are optimized during the maximum likelihood estimation. Note that similar 513 
tricks are often introduced in the traditional fragility analysis to prevent crossings between multiple 514 
damage states, for example, as used in Shinozuka et al. (2003). 515 

 516 

  
(a) Fragility curves for 𝐶𝐶𝒔𝒔 (b) Reliability curves for the MECE events 

Figure 10. Reliability curves using the subtraction method 517 
 518 
Furthermore, an approximation approach is proposed to facilitate the efficient estimation of the 519 

joint component fragility function 𝑃𝑃(𝐶𝐶𝑺𝑺|𝑖𝑖𝑖𝑖) (and all the lefthand side terms in Eq. (28)) using the 520 
fragility functions of the single components 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑖𝑖𝑖𝑖), 𝑖𝑖 ∈ 𝑺𝑺, and their correlation information. By 521 
substituting the component failure definition in Eq. (21) into Eq. (30) after applying the natural 522 
logarithm, the joint component failure is written as a series system reliability problem 523 

𝑃𝑃(𝐶𝐶𝑺𝑺|𝑖𝑖𝑖𝑖) = 𝑃𝑃(∩𝑖𝑖∈𝑺𝑺 𝐶𝐶𝑖𝑖|𝑖𝑖𝑖𝑖) = 𝑃𝑃(∩𝑖𝑖∈𝑺𝑺 {log(𝛿𝛿𝑐𝑐𝑖𝑖) − log(𝑑𝑑𝑖𝑖) ≤ 0}|𝑖𝑖𝑖𝑖) (33) 
Assuming that log(𝑑𝑑𝑖𝑖) are joint normal distribution, the below can be derived (Der Kiureghian, 2005; 524 
Hohenbichler and Rackwitz, 1983) 525 

𝑃𝑃(𝐶𝐶𝑺𝑺|𝑖𝑖𝑖𝑖) = Φ𝑑𝑑(−𝜷𝜷(𝑖𝑖𝑖𝑖);𝑹𝑹(𝑖𝑖𝑖𝑖)) (34) 
where Φ𝑑𝑑(∙;𝑹𝑹(𝑖𝑖𝑖𝑖))  is the 𝑖𝑖 -dimensional multivariate standard Gaussian CDF with correlation 526 
matrix of 𝑹𝑹(𝑖𝑖𝑖𝑖) , 𝜷𝜷(𝑖𝑖𝑖𝑖)  is a vector of reliability indices whose element is defined as 𝛽𝛽𝑖𝑖 =527 
Φ−1(𝑃𝑃(𝐶𝐶𝑖𝑖|𝑖𝑖𝑖𝑖)), and 𝑹𝑹(𝑖𝑖𝑖𝑖) is constructed by the inner product of the normalized negative gradient 528 
vector of each components’ limit-state function at the design point. Using Eq. (33) and 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑖𝑖𝑖𝑖), 529 
𝑃𝑃(𝐶𝐶𝑺𝑺|𝑖𝑖𝑖𝑖)  can be approximated with a small computational cost, which facilitates the efficient 530 
computation of the subtraction method. However, one should be cautious about the fact that it relies 531 
on the normality assumption because this error can be accumulated in the calculation of Eq. (28). 532 
Therefore, for example, one may want to perform a goodness-of-fit test to measure how well log(𝑑𝑑𝑖𝑖) 533 
follows the joint normal distribution. This effect of error accumulation is alleviated when the scenario 534 
screening, which will be discussed in Section 3.2.3, is introduced. 535 

3.2.2. Method 2: Multinomial logistic regression 536 
Alternatively, the task of estimating reliability curves can be formulated into a multi-class 537 
classification problem of which the input is IM and the categorical outcomes are 𝐹𝐹𝑖𝑖 . Then the 538 
membership probability, i.e., the probability that a given sample belongs to a particular category, is 539 
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in nature equivalent to the definition of reliability curve. In particular, the membership probability 540 
of the logistic regression model takes the form of (Long & Freese, 2006) 541 

𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) =
exp(𝑏𝑏𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑖𝑖 ln 𝑖𝑖𝑖𝑖)

1 + ∑ exp�𝑏𝑏𝑟𝑟𝑗𝑗 + 𝑏𝑏𝑗𝑗 ln 𝑖𝑖𝑖𝑖�𝑁𝑁𝐹𝐹−1
𝑗𝑗=1

 (35) 

for 𝑖𝑖 = 1, … ,𝑁𝑁𝐹𝐹 − 1, and 542 
𝑃𝑃𝛽𝛽,𝑁𝑁𝐹𝐹(𝑖𝑖𝑖𝑖) =

1
1 + ∑ exp�𝑏𝑏𝑟𝑟𝑗𝑗 + 𝑏𝑏𝑗𝑗 ln 𝑖𝑖𝑖𝑖�𝑁𝑁𝐹𝐹−1

𝑗𝑗=1

 (36) 

Therefore, the formulation naturally satisfies ∑ 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) = 1𝑁𝑁𝐹𝐹
𝑖𝑖=1  . The coefficients 𝑏𝑏𝑟𝑟𝑖𝑖  and  𝑏𝑏1𝑖𝑖  are 543 

calibrated by maximizing the following likelihood function 544 

𝐿𝐿�{𝑏𝑏𝑟𝑟𝑖𝑖 , 𝑏𝑏1𝑖𝑖}|�𝑖𝑖𝑖𝑖(𝑛𝑛), 𝑧𝑧(𝑛𝑛)�� = � �𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖(𝑛𝑛)) 𝕀𝕀�𝑧𝑧
(𝑛𝑛)=𝑖𝑖�

𝑁𝑁𝐹𝐹

𝑖𝑖=1

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛=1

 (37) 

where 𝑧𝑧(𝑛𝑛) is the n-th sample of the categorical outcome as the index of the disruption scenario. Once 545 
{𝑏𝑏𝑟𝑟𝑖𝑖 , 𝑏𝑏1𝑖𝑖}  for 𝑖𝑖 = 1, … ,𝑁𝑁𝐹𝐹 − 1  are obtained by maximizing the likelihood function of Eq. (37), the 546 
reliability curve for 𝑖𝑖 = 𝑁𝑁𝐹𝐹 can be automatically determined from Eq. (36). A merit of this procedure 547 
is that the reliability curves for all disruption scenarios are obtained simultaneously with attaining 548 
the condition ∑ 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) = 1𝑁𝑁𝐹𝐹

𝑖𝑖=1 . The following is the application of the multinomial logistic regression 549 
to estimate the reliability curves of the three-story building.  550 
 551 
Procedure 552 

1. Perform structural dynamic analysis using a set of ground motions to obtain a cloud of data 553 
samples �𝑖𝑖𝑖𝑖(𝑛𝑛), z(𝑛𝑛)�, 𝑛𝑛 = 1, … ,𝑁𝑁𝑠𝑠𝑖𝑖𝑑𝑑, where 𝑁𝑁𝑠𝑠𝑖𝑖𝑑𝑑 = 50.  554 

2. Find {𝑏𝑏𝑟𝑟𝑖𝑖 , 𝑏𝑏𝑖𝑖}, where 𝑖𝑖 = 1, … ,7, by maximizing the likelihood function in Eq. (37).  555 
3. Following the definition, the reliability curves are equivalent to the calibrated logistic 556 

regression model in Eqs. (35) and (36). 557 
 558 
Figure 11 shows the results of the reliability curve estimated using the multinomial logistic 559 

regression. As shown in Figure 11(a), the summation of 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) for all MECE events is always 1 for 560 
every IM. Figure 11(b) plots the reliability curves of each MECE event, which shows a good 561 
agreement with the results using the subtraction method in Figure 10(b). Note that 𝐹𝐹2, 𝐹𝐹3, and  𝐹𝐹6  are 562 
not observed in the dataset �z(𝑛𝑛)�, thus assumed to have zero probability. The underlying assumption 563 
is that the reliability indices of those scenarios are smaller than those observed. Therefore, if deemed 564 
needed, one needs to revisit this assumption, and run more simulations to make sure all the critical 565 
cases are taken into account in the resilience assessment. The additional simulations are not needed 566 
if at least one scenario in the β−π diagram satisfies the screening condition that will be discussed in 567 
Section 3.2.3. 568 
 569 

  
(a) Participation of MECE events along with IM (b) Reliability curves for MECE events 

Figure 11. Reliability curves obtained by multinomial logistic regression 570 
  571 
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3.2.3. Method 3: Screening of force majeure scenarios 572 
One critical challenge in the resilience assessment is that the number of initial disruption scenarios 573 
increases exponentially as that of the structural components increases. Since the previously 574 
introduced methods should check whether the reliability index satisfies the resilience limit-state for 575 
every MECE event, it is still limited to applying the reliability-based resilience assessment framework 576 
to a structure having a large number of structural components such as a cable-stayed bridge. 577 
However, since there are lots of force majeure MECE events, which have extremely small occurrence 578 
probability, the screening method can exclude those from the resilience analysis. 579 
 In particular, for a scenario of 𝐹𝐹𝑖𝑖  ⊂ 𝐶𝐶𝑺𝑺, if one can show that the below is satisfied 580 

𝑃𝑃(𝐶𝐶𝑺𝑺|𝐻𝐻)Φ(−𝜋𝜋𝑖𝑖) < 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹) (38) 
no more reliability analysis is required for 𝐹𝐹𝑖𝑖 because 𝐹𝐹𝑖𝑖 will always satisfy the resilience threshold in 581 
Eq. (5) (𝑃𝑃(𝐹𝐹𝑖𝑖|𝐻𝐻) = Φ(−𝛽𝛽𝑖𝑖) < 𝑃𝑃(𝐶𝐶𝑺𝑺|𝐻𝐻) always holds). For instance, in Figure 9, if the failure probability 582 
of C1 satisfies the resilience performance threshold of Eq. (38), we can infer that 𝐹𝐹1,𝐹𝐹4,𝐹𝐹5, and 𝐹𝐹7 (or 583 
𝐶𝐶12�3�,𝐶𝐶123� ,𝐶𝐶12�3,  and 𝐶𝐶123 , respectively) meet the disaster resilience goal without further analysis. 584 
Similarly, if C23  satisfies the resilience limit-state, the analysis of F7  and 𝐹𝐹6  ( 𝐶𝐶123  and 𝐶𝐶1�23) can be 585 
disregarded in the resilience analysis. Using this property, it is possible to drastically reduce the 586 
number of MECE events considered in the resilience assessment framework. Moreover, the screening 587 
method enables not only to efficiently assess the resilience performance of the existing structures but 588 
also to quickly check whether a candidate structure is within the resilience-safe domain with the 589 
β−π−γ diagram during the design phase. 590 

3.3. Estimation of the redundancy curves 591 
The redundancy curve in Eq. (19) can be straightforwardly obtained from a fragility analysis 592 
described in Section 3.1 after considering the component damage scenarios in the numerical model. 593 
In the analysis, the same stochastic excitation set used in the reliability analysis is employed. As 594 
already discussed in Lim et al. (2022), the force majeure scenarios with sufficiently low occurrence 595 
probability can be omitted in the redundancy analysis. For example, if 596 

Φ(−𝛽𝛽𝑖𝑖) < 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹) (39) 
is satisfied, Eq. (14) is already satisfied for the scenario 𝐹𝐹𝑖𝑖  regardless of the redundancy index 𝜋𝜋𝑖𝑖 . 597 
Furthermore, by extending the discussion in Section 3.2.3, it can be shown that if 598 

𝑃𝑃(𝐶𝐶𝑺𝑺|𝐻𝐻) < 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹) (40) 
is satisfied, any reliability and redundancy analyses associated with all 𝐹𝐹𝑖𝑖  ⊂ 𝐶𝐶𝑺𝑺 can be omitted. A 599 
procedure to estimate the redundancy curves for the three-story building example is provided in the 600 
following.  601 
 602 
Procedure 603 

Repeat below for 𝑖𝑖 = 1, … , 8: 604 
1. If Eq. (39) or Eq. (40) is satisfied, label 𝐹𝐹𝑖𝑖 as safe and exclude 𝐹𝐹𝑖𝑖   from further analysis. In other 605 

words, neglect Steps 2 and 3 and move on to 𝑖𝑖 + 1, else move on to Step 2. 606 
2. Update the structural model in accordance with the damage scenario 𝐹𝐹𝑖𝑖. 607 
3. Perform fragility analysis with a predefined system-level limit-state using the damaged 608 

structure to obtain 𝑃𝑃𝜋𝜋,𝑖𝑖(𝑖𝑖𝑖𝑖) 609 
 610 

Figure 12(a) provides an example of the IDA results to evaluate the system performance given 611 
𝐹𝐹1 = 𝐶𝐶12�3� (failure of the first story only), while Figure 12(b) illustrates the estimated redundancy 612 
curves. Note that among the failure scenarios, 𝐹𝐹1, 𝐹𝐹4, 𝐹𝐹5, 𝐹𝐹7, and 𝐹𝐹8 are inspected in accordance with 613 
the discussion in Section 3.2.2. By comparing the curves of 𝐹𝐹8 and 𝐹𝐹7, one can notice that, in this 614 
example, only a minor performance decay is observed even when many components failed, 615 
indicating that the component damages do not in fact have a critical influence on the global structural 616 
response. This is attributed to the assumption of the damage model we introduced. A summary of 617 
the reliability and redundancy analyses is presented in Table 2 with the traditional fragility analysis 618 
in performance-based engineering. 619 
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(a) IDA results of 𝐹𝐹1 (b) Redundancy curves 

Figure 12. Results of the redundancy analysis 620 
 621 
Table 2. Summary of reliability and redundancy curves in comparison with traditional fragility 622 
curves 623 

Category 
Performance-based 

Engineering 
Resilience-based Engineering 

Step Fragility analysis Reliability analysis Redundancy analysis 

Definition* 
𝑃𝑃𝑟𝑟(𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐷𝐷𝑆𝑆 = 1|𝑖𝑖𝑖𝑖) 

Eq. (20) 
𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖) = 𝑃𝑃(𝐹𝐹𝑖𝑖|𝑖𝑖𝑖𝑖) 

Eq. (18) 
𝑃𝑃𝜋𝜋,𝑖𝑖(𝑖𝑖𝑖𝑖) = 𝑃𝑃�𝐹𝐹sys�𝐹𝐹𝑖𝑖 , 𝑖𝑖𝑖𝑖� 

Eq. (19) 

Failure limit-
state 

Component- or system- level 
failure 

Component-level failures 
corresponding to initial 
disruption scenario 𝐹𝐹𝑖𝑖 

System-level failure 

System status 
before the 
analysis 

No damage No damage 
Joint components damages 
corresponding to initial 
disruption scenario 𝐹𝐹𝑖𝑖 

Methods 
IDA, multiple strip analysis 
(MSA), extend fragility 
method, etc. 

Subtraction method, 
multinomial logistic 
regression 

IDA, MSA, extend fragility 
method, etc. 

Hazard types Dynamic excitations with high aleatory uncertainty (i.e., stochastic excitations) 

* 𝐻𝐻 in the conditioning term is omitted following the convention in fragility analysis 624 

4. Numerical Investigations 625 
The proposed seismic resilience assessment framework is demonstrated using a mid-rise building 626 
and a bridge model. For the reliability analysis, the multinomial logistic regression method (Section 627 
3.2.2) and screening approach (Section 3.2.3) are respectively applied in the examples.  628 

4.1.Nine-story building 629 

4.1.1. Target structure and hazard 630 
The first example considers a benchmark nine-story building model shown in Figure 13 adopted from 631 
the SAC Phase II Steel project report. This building is designed to meet the design standard of the 632 
mid-rise building located in Los Angeles, California, region. The model has a basement level as 633 
shown in Figure 13, and the horizontal displacement at the ground level is restrained to be zero. The 634 
building is modeled using OpenSees (McKenna, 2011) using bilinear material model (Steel 01) for 635 
both beams and columns, and the Rayleigh damping with damping ratio of 0.03 is introduced. The 636 
first mode period of the structure is T1 = 2.27s. The hazard description in Section 2.3 is employed, 637 
which is characterized by the PDF of spectral acceleration Sa(T1 = 2.27)  shown in Figure 14(a). 638 
Moreover, a set of spectrum-compatible 50 ground motion time histories is shown in Figure 14(b). 639 
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 640 

  641 
Figure 13. Nine-story Steel building model 642 

 643 

  
(a) Frequency function (b) Response spectrum of the ground motions 

Figure 14. Hazard description 644 

4.1.2. Initial disruption scenarios and limit-states 645 
The component failure events are defined as an occurrence of an excessive drift ratio at each story: 646 

𝐶𝐶𝑖𝑖 = {𝛿𝛿𝑖𝑖 − 𝑑𝑑𝑖𝑖 ≤ 0},      𝑖𝑖 = 0, … ,9 (41) 
where 𝑑𝑑𝑖𝑖 is the peak inter-story drift ratio at the i-th story and 𝛿𝛿𝑖𝑖 = 0.02 is its maximum allowable 647 
threshold. Note that the response at the basement level is indexed with 𝑖𝑖 = 0. The ten components 648 
lead to 1024 (210) initial disruption scenarios. The system-level limit-state is represented in terms of 649 
the maximum roof drift ratio as in Eq. (17) with 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 = 0.07. 650 

4.1.3. Resilience performance 651 
Using 50 ground motions with different scaling factors, a total of 485 simulations are performed, and 652 
84 among possible 1,024 scenarios are observed. The framework assumes that only 84 scenarios are 653 
plausible, while other scenarios are considered to have an occurrence probability (near) zero. The 485 654 
data points are used to estimate the logistic regression parameters in Eq. (35), and the results are 655 
shown in Figure 15. Figure 15(a) and Figure 15(b) are equivalent figures that show the probability of 656 
the system lying in a certain initial disruption scenario given IM, where the significant scenarios are 657 
labeled as “C𝑺𝑺” meaning that members in 𝑺𝑺 fail while all the other members are safe, i.e., equivalent 658 
to 𝐶𝐶𝑺𝑺𝑺𝑺�𝑐𝑐 in Eq. (29). As expected, the probabilities of all MECE events always sum up to one because 659 
of the MECE condition. The figure shows that the probability of a “no component failure” case 660 
decreases as the IM increases. In the range of high IM values, the event of C1-9 (all components except 661 
for the basement level failure) dominates the response followed by C1-8 (all components except for 662 
the basement and the top story failure). Figure 15(c) and Figure 15(d) summarize the results in terms 663 
of the number of failed components. Among different cases, the “no component failure” case 664 
dominates under relatively small IM values, but the increase has been observed for the probability of 665 
“8 to 10 components failure” cases as IM increases. 666 
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 667 

  
(a) Probability of each event occurrence (b) Reliability curves 

  
(c) Summarized probability of event occurrence  (d) Summarized reliability curves  

Figure 15. Reliability curves of nine-story building (“C𝑺𝑺” represents the failure of components in 𝑺𝑺 668 
and survival of all the other components) 669 
 670 

The redundancy analysis is performed for the 84 scenarios and the results are presented in 671 
Figure 16. It is shown in Figure 16(a) that the most critical scenarios in terms of redundancy curves 672 
are the “all components failure” case and C0-8. On the other hand, the “no component failure” case 673 
and several scenarios with a few members failure cases such as C3 and C8 appear to be relatively 674 
redundant, which agrees well with the general intuition - a larger number of remaining load-resisting 675 
members leads to a higher redundancy. Meanwhile, the updated distribution of IM (as defined in 676 
Eq.(8)) used for redundancy analysis is presented in Figure 16(b) and the scenarios with the five 677 
largest and five smallest mean IM of the updated distribution are listed in Table 3, where 𝐸𝐸[∙] 678 
represents the mathematical expectation. It can be seen that different scenarios lead to various ranges 679 
of updated IM. 680 

 681 
Table 3. Mean of IM conditioned on each disruption scenario 682 

Largest Smallest 
Disruption scenarios (𝑭𝑭𝒔𝒔) E[𝑺𝑺𝑺𝑺|𝑭𝑭𝒔𝒔] Disruption scenarios (𝑭𝑭𝒔𝒔) E[𝑺𝑺𝑺𝑺|𝑭𝑭𝒔𝒔] 

C3 0.048 C3-5,8 5.60 
No Component failed 0.056 C1,2,4-9 5.41 

C2,3,7,8 0.060 C1,2,4,5,7-9 3.95 
C2-6,8 0.061 C1,4,5,7-9 3.12 

C2-5,7-9 0.063 C1-4,8,9 2.71 
 683 

All
components failed

C1-9

No component failed

C1-8

C8

C8,9 C7-9

C3-5,8

No component failed

All components 
failed

C1-9

C1-8

C3-5, C8

Number of 
failed
components

Number of 
failed
components



Submitted for Publication in Earthquake Engineering and Structural Dynamics 20 of 25 

 

  
(a) Redundancy curves (b) Updated distribution of IM 

Figure 16. Redundancy curves of the nine-story building (“C𝑺𝑺” represents the failure of components 684 
in 𝑺𝑺 and survival of all the other components) 685 

 686 
The β−π diagram is shown in Figure 17(a). The color represents the number of failed 687 

components, which can be used as a recoverability indicator. From the decaying trend of the scatter 688 
plot, one can draw insight into the complementary nature of the reliability and redundancy across 689 
the scenarios. The event C1,2,4-9, for example, has high reliability (i.e., it is rare to have the 690 
combination of components 1,2,4-9 failed) and low redundancy (i.e., the failure of the components 691 
1,2,4-9 is associated with high IM values as shown in Table 3, which is likely to trigger the progressive 692 
system failure). On the contrary, C3 has a low reliability but a high redundancy level.  693 

To investigate the effect of IM updating in the redundancy assessment, the β−π diagram without 694 
updating the IM (i.e., using Eq. (12)) is presented in Figure 17(b). While the reliability indices remain 695 
the same as Figure 17(a), the redundancy characteristics are significantly different from those with 696 
updating. In this case, π directly follows the trend observed in the redundancy curves in Figure 16(a). 697 
Meanwhile, the reason that some single-member failures have higher reliability than multiple-698 
member failures can be explained by the high correlation between the member failure events. In other 699 
words, it is likely to have multiple member failures than only a single member failure in this example. 700 

 701 

  
(a) With updating of intensity measure 

distribution 
(b) Without updating of intensity measure 

distribution 
Figure 17. β−π diagram of the nine-story building structure 702 

4.2. Cable-stayed bridge 703 

4.2.1. Target struture  704 
A cable-stayed bridge is introduced to attest to the applicability and effectiveness of the proposed 705 
framework to a more complex civil structure. A nonlinear three-dimensional finite element model is 706 
constructed using OpenSees (McKenna, 2011) as shown in Figure 18. The bridge consists of 2 pylons, 707 
girder, and 128 cable elements, and its total length is 1,069 m. Note that no soil-structure interaction 708 
is considered in this study. 709 

All components failed, C0-8

No component failed
C3, C8, C9
C7,8
C8,9
C1,8,9
C7-9
C1,7-9

No component failure
C3
C2,3,7,8
C2-6,8

C2-3, C5-10 failed

No component failed

C3

C2-5, C1-6, C2-4

C0-8
C1-9

All 
components 
failed

C3-5,8, C1,2,4-9

No component failed

C3

All 
components 

failed

C0-8

C1,2,4,5,7-9
C1,2,4-9

C2-5
C1-6
C2-4
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 710 

 711 
Figure 18. Configuration of the example structural system 712 

 713 
A bilinear tension-only material with a yield stress of 1,770 MPa and 1% of the post-yield 714 

stiffness ratio is introduced to model the cable elements. The sagging of each cable element is 715 
considered from Ernst (1965) with Young’s modulus of the cable strand of 195 GPa. The initial tension 716 
force of the cable element is converted to the initial strain in the truss model. On the other hand, linear 717 
elastic frame elements are employed to model the girder and pylons. In addition, linear springs are 718 
used to model the bridge bearings for simplicity. Because no nonlinear element except the cables is 719 
introduced in the numerical model, a limitation exists in describing the local collapse of structural 720 
elements and seismic behaviors after the yield point. The damping ratio of 3% is assumed based on 721 
the literature (Kim et al., 2021b; Tang et al., 2008; Zhong et al., 2017). 722 

Dynamic characteristics of the numerical model are investigated by performing the eigenvalue 723 
analysis. The estimated modal periods are tabulated in Table 4, while Figure 19 illustrates the 724 
corresponding mode shapes. Note that the eigenvalue analysis is performed after applying the dead 725 
load and pretension force of the cables. 726 
 727 

 728 
Figure 19. Modal shapes of the long-span bridge 729 

 730 
Table 4. Modal periods of the cable-stayed bridge 731 

Mode 1 2 3 4 5 6 
Period (s) 3.947 3.089 3.074 2.268 1.946 1.863 

4.2.2. Hazard analysis 732 
In the same manner as the three- and nine-story building examples, we assume a point source 733 
earthquake event with moment magnitude of 𝐼𝐼 = 7. The distance between the epicenter and the 734 
cable-stayed bridge and the shear wave velocity are set as 20 km and 750 m/s, respectively. Under 735 
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these assumptions, the PDF of the IM given the hazard is obtained by using the GMPE by Boore and 736 
Atkinson (2008).  737 

4.2.3. Initial disruption scenarios and limit-states 738 
Among various system damage scenarios, this study considers those induced by initial cable 739 
disruptions, as the cable elements are the main medium of the load transfer from the superstructure 740 
to the pylon. Note that while other structural elements or combinations of various structural elements 741 
could be selected to define the initial disruption scenarios, this study only employs the cable elements 742 
for the purpose of explaining the proposed framework. The limit-state of the cable elements used to 743 
derive reliability curves, 𝑃𝑃𝛽𝛽,𝑖𝑖(𝑖𝑖𝑖𝑖), is defined as the seismic demand exceeding 50% of the yield stress 744 
(i.e., 885 MPa). Since there are 128 cable elements in the model, the total number of MECE initial 745 
disruption scenarios is 2128, including the “no element failure” scenario. 746 
 Since the cable-stayed bridge in the system-level has multiple failure modes, the system failure 747 
limit-state function, in this research, is defined as the presence of at least one failure mode. Thus, the 748 
redundancy analysis is considered as a series system reliability problem following the approach 749 
summarized by Der Kiureghian, 2005. Based on the literature survey (Nielson & DesRoches, 2007; 750 
Padgett & DesRoches, 2008; Pang et al., 2014; Yi et al., 2007), four critical system failure scenarios are 751 
identified, and the corresponding limit-states are summarized in Table 5. When computing the 752 
redundancy curves, 𝑃𝑃𝜋𝜋,𝑖𝑖(𝑖𝑖𝑖𝑖) , dynamic analyses are conducted after removing the failed cable 753 
elements of the bridge. 754 
 755 
Table 5. System-level limit-states of the cable-stayed bridge 756 

Components Engineering demand parameter (EDP) Limit-states 
Pylon PM safety factor (Kim et al., 2021b) <0 
Pylon Ratio of the peak displacement of pylon to the height of pylon >1% 
Girder Ratio of the peak transverse displacement of girder to the length of girder  >1% 
Cable Cable tension force >885 Mpa 

4.2.4. Resilience performance 757 
As discussed earlier, a huge number of structural components in the cable-stayed bridge may result 758 
in numerous initial disruption scenarios. However, it may not be necessary to evaluate all the 759 
reliability and redundancy indices for each scenario, if many scenarios conservatively satisfy the 760 
resilience threshold as discussed in Sections 3.2.3 and 3.3. In this example, we illustrate a case where 761 
it is sufficient to assess the resilience performance for individual component failure events instead of 762 
all initial disruption scenarios. In other words, as described in Section 3.2.3, a set of β and π is first 763 
estimated for 𝐶𝐶𝑖𝑖 (128 cases) and is shown that we do not need to estimate them for all 𝐹𝐹𝑖𝑖 (2128 cases) 764 
because they are guaranteed to be safe. However, note that if some scenarios do not secure the 765 
resilience criteria, further steps are needed to estimate β and π for initial disruption scenarios 𝐹𝐹𝑖𝑖. 766 

To test the applicability of the proposed framework to general stochastic excitations, spectrum-767 
compatible, bi-directional artificial ground motions are generated by following an algorithm and 768 
parameter sets provided in Kim et al. (2021). Although the algorithm enables to simulate multi-769 
variate ground motions, in this research, the same set of orthogonal ground motion time histories is 770 
used for each support. By assuming the mean of a response spectrum obtained using the assumptions 771 
in Section 4.2.2 as the target spectrum, 30 sets of ground motion time histories are generated. When 772 
generating the spectrum-compatible orthogonal ground motion time histories, we scale the target 773 
spectrum to capture the seismic behavior of the structural system for a broad range of ground motion 774 
intensities. 30 different scale factors are introduced to make peak ground acceleration (PGA) of the 775 
target spectrum ranging from 0.16 g to 1.0 g. Using the cloud analysis in Section3.1, both the reliability 776 
and redundancy curves are estimated for the component failure scenarios. The scalar IM is 777 
established as the geometric mean of PGA of the two orthogonal ground motions.  778 
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Figure 20 shows the β−π diagram of 32 component failure cases with the resilience limit-state 779 
surface corresponding to 𝑃𝑃𝑑𝑑𝑑𝑑/(𝜆𝜆𝐻𝐻𝑁𝑁𝐹𝐹) = 10−4. Note that because of the bidirectional symmetry of the 780 
bridge system, only a quarter of the elements are considered. In the figure, we disregard the 781 
component failure scenario having a reliability index greater than 12, which is considered as force 782 
majeure. Because all the β values already exceed the resilience criterion, no redundancy analysis is 783 
required. However, for visualization purposes, the redundancy is evaluated where the conditioning 784 
scenario is “every component survives but member i." As shown in the figure, even though we 785 
conservatively assess the reliability performance of the bridge, all cases of the β−π are located outside 786 
the resilience limit-state surface (i.e., satisfy the socially-accepted criteria). The estimated reliability 787 
and redundancy values are well-matched with the characteristics of the cable bridge, in that scatter 788 
points indicated by blue solid and red dashed boxes in Figure 20 are respectively the failure scenario 789 
of the first and second outermost cables in which the highest tension forces are measured during the 790 
seismic excitations. Furthermore, a typical inverse proportional relationship between reliability and 791 
redundancy, where higher reliability corresponds to lower redundancy, is observed in the numerical 792 
example. 793 

 794 
Figure 20. β−π diagram of the cable-stayed bridge 795 

5. Conclusions 796 
This study newly established a resilience assessment framework for structures subjected to external 797 
forces having high aleatory uncertainties from a system-reliability-based perspective. The framework 798 
leveraged the concept of reliability and redundancy curves to accommodate the aleatoric variabilities 799 
in excitation. Using these curves, a pair of reliability and redundancy indices were estimated for each 800 
mutually exclusive and collectively exhaustive (MECE) initial disruption scenario, which was then 801 
evaluated by the factored de minimis level of risk that considers the recoverability of each failure 802 
scenario and the number of MECE events. To facilitate a comprehensive understanding of the 803 
proposed concept, we presented and summarized five core elements needed to successfully assess 804 
the resilience performance of structures subjected to stochastic excitations. Furthermore, to increase 805 
the applicability of the proposed framework, efficient and effective computational procedures for 806 
calculating the reliability and redundancy curves were provided. 807 

After describing the developed procedure using a three-story building structure, two more 808 
sophisticated structural systems were studied with an example of earthquake excitations to 809 
demonstrate the ideas and potential benefits of the proposed framework. The numerical investigation 810 
confirmed that the proposed framework can systemically assess the disaster resilience performance 811 
of structures subjected to stochastic excitations by efficiently dealing with MECE initial failure 812 
disruption scenarios. Although the numerical investigations focused on evaluating the seismic 813 
performance, the concept can be applied to other types of hazards such as winds, waves, or vibrations 814 
from vehicles. Currently, two further studies are underway to extend the framework and enhance 815 
the applicability of the assessment procedure. First, a mathematical expression is being developed to 816 
define and quantify the recoverability index in Eq. (14). Second, the framework is being extended to 817 
consider aging infrastructure under varying environmental conditions associated with climate 818 
change. Furthermore, it is desirable to investigate the results of resilience analysis for different 819 
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scales/granularities of initial disruption scenarios. A sequential decomposition approach can be 820 
employed to systematically explore the resilience of the system and provide insights into the 821 
hierarchical nature of different components to the overall system resilience. Another interesting 822 
research topic would be to further extend the proposed methods to accommodate uncertain 823 
structural properties. 824 

The proposed resilience assessment methodology and computational procedure are expected to 825 
enhance the applicability of the framework to more complex civil engineering systems and realistic 826 
hazards, further bridging the gap between advanced reliability theories and current performance-827 
based engineering practices. 828 
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