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ABSTRACT 

Classical-limit S-matrix (CLSM) theory, previously formulated 

for Coulomb excitation of the ground band in even-even nuclei, is 

extended to rotation-vibrational bands. A perturbation approximation 

is introduced for which the results are conceptually simple, and lend 

themselves to an illuminating classical description of rotational­

vibrational excitation. Numerical calculations performed with this 

formalism for the K= 0 octupole band in 238u are in good agreement 

with calculations based on the semi-classical Alder-Winther theory. 

It is suggested that methods analogous to those described here could 

be used to describe nucleon and cluster transfer in deformed systems. 
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1. INTRODUCTION 

Classical-limit s~matrix theory (CLSM) for rotational excitation 

f d f d 1 . b h . . "1 l-S b d d o e orme nuc e1 y eavy-1on proJeCt1 es may e exten e to 

investigate other processes in heavy-ion scattering having classical 

analogs. In this paper we extend the.CLSM to the case where both rota-

tiona! and vibrational modes of the target nucleus are excited by the 

heavy-ion projectile. We concentrate specifically on the rotational 

signature of the vibrational bands in deformed even-even nuclei. In 

Section 2 we study the excitation of a permanently deformed even-even 

target nucleus with axial symmetry, and in Section 3 we consider the case 

of shape vibrations. Finally, in Section 4 we give a less rigorous 

but more illuminating derivation of the S-matrix elements and discuss 

its implications. 

Before closing this brief introduction let us mention that the 

simpler case of vibrational excitation in spherical nuclei has been 

successfully treated by an approach closely related to the one described 

here. 6 

2. PERMANENT DEFORMATION 

Let us consider, as in Ref. 3, an even-even target nucleus with an 

axially symmetric shape, and a projectile nucleus, incident with zero 

impact parameter on the target nucleus. We assume the projectile to be 

spherical and disregard any projectile excitation during the collision 

process. 

The classical Hamiltonian for this system may be written 
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2 

_:x_ ( _!_ + ~) + 2 J' mr 

VCoul ( X) + V 
R->2 r' nuc (1) 

Caul where VR-> 2 (r,X) represents multipole-monopole Coulomb interactions of 

higher order than quadrupole, and V represents a nuclear potential nuc ·. 

(possibly complex). The reason for writing the Hamiltonian in this 

particular form will become apparent shortly. The angle X is defined 

by the symmetry axis of the target and the line joining the centers of 

target and projectile, · r is the distance between these centers, pX and 

Pr are the quantities canonically conjugate to X and r, defining the 

rotational angular momentum of the target and the relative linear momentum 

between target and projectile, respectively. See Fig. 1 for an illustra-

tion of the coordinate system. The other quantities appearing in Eq. (1) 

are the charges of projectile and target, Zpe and Zte respectively, the 

reduced mass of the system m, the moment of inertia .:/ of the target, 

d h 1 . d 1 f h Q( 2) an t e e ectr1c qua rupo e moment o t e target 
0 

. The usual 

Legendre polynomial is denoted by P2(cosX). 

given explicitly by 

. Caul The term VR-> 2 (r,X) is 

where 

VCoul (r X) 
R->2 ' . 

Q
(R.) 
0 e 

=I: 
R->2 

ZPQ~R.) e2 PR. (cosX) 

2rR.+ 1 

f R. 3 2 r PR.(cos8) p(r~8)d r 

and p(r,8) is the nuclear charge density. 

(2) 

(2a) 
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We remark that so far we are considering only permanent deformations. 

Shape oscillations will be introduced in the next section. 

Since the nuclear potential V enters the CLSM formalism on the nuc 

same footing as the Coulomb interaction it is easily and accurately 

included in CLSM calculations (see ref. 4). However, we will neglect 

its influence here for simplicity, and consider only Coulomb excitation 

in the discussion to follow. The classical limit of the quantum-mechanical 

S-matrix is given in section 2.2 of ref. 5 as 

J=O s 
O+I = 

7f 

~v'2I + 1 J PI (cosX) 

0 

where <I>' is given by 

<I>' = 

I . - dX ei<l>' dXo VsinX 0 smX dX 
0 

(3) 

The quantities appearing in Eqs. (3) and (4) are those used in Ref. 5. 

The bar and tilde quantities are defined in the Appendix. They basically 

represent the previously defined dynamical variables transformed to an 

. . 3 5 
interaction representat1on. ' 

As demonstrated in refs. 3 and 5, this expression may be integrated 

numerically, or evaluated by saddle-point methods, to yield a highly 

accurate approximation to the quantum-mechanical S-matrix. However, we 

may simplify evaluation of this expression in the limit that the higher-

. Coul 
order mult1pole terms of V~> 2 (r,X) are small compared to the quadrupole 

term in Eq. (1). In that case the S-matrix elements [Eq. (3)] may be 

Coul calculated by considering V~>2 (r,X) as a perturbation on the phase <I>', 
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neglecting its effect on the classical orbit itself. The contribution 

Coul to the phase of V~>Z (r,X) in this limit is given by 

~<I>~ = <t>~FO - <t>~=O = k joo V(r(t),X(t))dt (5) 
-00 

where r(tj, X(t) in Eq. (5) are evaluated with the unperturbed Hamiltonian, 

. . VCoul o·. E (1) 1.e., sett1ng ~>Z = 1n q. . 

This approximation is related in spirit to the Alder-Winther semi­

classical method13 •14 which treats the quadrupole excitation of nuclear 

states using quantum mechanics, but neglects the effect of the quadrupole 

potential on projectile dynamics. However, we note that in this approx-

imation we accurately include the effect of the quadrupole potential 

on the orbit, and only ignore the (generally smaller) higher-order 

15 terms. This approximation may also be compared to Broglia, et al. who 

neglect the effect of an imaginary nuclear potential on the projectile 

orbit, including only its contribution to an imaginary phase which 

gives rise to a damping of amplitudes. 

For a single term of V ~> 
2 

(r, X) in Eq. ( 2) we have 

= dt (6) 

Since ~ > 2 and X(t) varies slowly for excitation of a heavy target, most 

of the contribution to the integral in (6) is around the point of closest 

approach (CA) of the trajectory. Therefore we replace X(t) in Eq. (6) 

by its value at this point XCA; ~<I>~~ is how given by 

00 

At+,' ~ 1 ·z QC~) 2 P C x ) J u"'V~ 2ft p o e ~ cos CA 
-oo 

dt (6a) 



then 
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Replacing ~~ in Eq. (3) by 

I 

~VIO = 

Tf 

I ""' I ~V=O + Ll ~V 
.R->2 .R, 

= \lv'21+ 1 J P1 (cosXJ 

0 

l . - dX V sinX 0 s1nX dX 
0 

('7) 

i(~l +L: 4>\r) 
e V=O .R->2 .R, dX 

(8) 

Coul Under the present assumption that V.R-> 2 (r,X) constitutes a 

perturbation, we can expand 

= (9) 

where 
00 

co = lj z Q(.R,) 
JV p 0 •'! dt (10) 

-oo 

The S-matrix element is finally written as 

0 

J=O 
8o+I 

Tf 

= \lv' 2I + 1 J PI (cosX) 
I . - dX i~~=O { } v sinXO S1nX dXO e 1 + ~2 c.R, p .R, (cosXCA) dXO 

0 (11) 

In this form the contribution from each multipole deformation (.R, > 2) 

appears explicitly as a form factor P.R. (cosXCA) multiplied by a strength 

coefficient C.R,. 

We reiterate that in this approximation all quantities appearing 

in Eq. (11) are evaluated considering the Hamiltonian [Eq. (1)] with 

VCoul( X) .R->2 r, set equal to zero . 
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In the preceding analysis the quadrupole potential was formally 

separated from the higher multipole interaction terms because of its 

normal dominance in rotational excitation. Obviously this is not a 

restriction, and one could group the terms in a different way. For 

example~ if the target nucleus has a very large hexadecapole electric 

moment, we could pull the hexadecapole interaction term from Coul 
v~,> 2 (r,X) 

and include it in the unperturbed part of the Hamiltonian. The modifica-

tion of Eq. (11) in such a case is obvious. We stress that the expression 

for the CLSM given by Eq. (3) is accurate for large values of Coul 
V~> 2 (r,X) 

but Eq. (ll) is valid only as long as those terms (~ > 2) may be considered 

as a perturbation relative to the monopole and quadrupole terms. 

3. SHAPE VIBRATIONS 

The formalism developed in the previous section is especially 

useful for nuclear vibrations, since they will affect the classical 

motion of the system less than a permanent deformation, due to their 

oscillatory character. Therefore, if these vibrations are not too large 

in amplitude, they can also be considered as a perturbation. 

To fix ideas let us assume we have a deformed target nucleus with 

just a quadrupole deformation, and we are interested in studying a 

~ particular harmonic monopole vibration of order 2 . From the previous 

section it is straightforward to add other permanent deformations or 

vibrations. 

The Hamil toni an for this system is now 
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2 2 

H(r,X,q,pr,pX,n) 
Pr Px (! + -

1
-) + flw$1. (n + ~) + = -- + 2m 2 $ mr 2 

Z Q( 2) e 2
P (cosX) 

Caul p 0 2 
+ + V$1.> 2 (r,X,q,n) 

2r 3 

where 

Caul 
V$1.> 2 (r,X,q,n) = 

ZPQ~$1,) (q,n) e
2 

PR.{cos X) 

2r$1.+ 1 

ZpZTe 
2 

r 

+ v 
nuc 

(12) 

(13) 

In Eqs. (12, 13), q is the phase of the vibration and n, the classical 

analog of the vibrational quantum number, is canonically conjugated to q. 

As before, we will neglect for simplicity the nuclear potential Vnuc and 

consider only Coulomb excitation in the following. 

The oscillating electric multipole moment Q~$1,) is related to q 

and n by 

= 

where K$1, is a proportionality factor depending only on the charge 

distribution and radius of the nucleus. 

(14) 

The expression for the S-matrix to be used is that of ref. 10 and 

11, with the considerations made in ref. 3 for the case of Coulomb exci-

tation, i.e., a generalization of the previous expression for the CLSM 

[Eq. (3)] to include the new degree of freedom, the oscillator phase. 

It is given by 

sJ=o 
O,O+I,n = .J2I+l 

47T 

I 

(15) 

i<P' 
e 
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- -The definitions of q . and q are similar to that of X, and are 
0 

given in the Appendix. Equation (15) may be integrated numerically in a 

tractable but time-consuming double integration. However, considerable 

i simplification and insight results if it is possible to treat the 2 -pole 

vibration as a perturbation in the sense previously discussed. Assuming 

that the vibration affects only the phase and not the other quantities 

appearing in the integrand, the Jacobian may be factored as 

ac<j,x) 
acq , x ) 

0 0 

since ax;aq ~ 0 . 
0 

= (16) 

This factorization and the separation of ~' into two terms, corre­

sponding to permanent quadrupole and oscillating 2i-pole contributions, 

allows separation of the double integral in Eq. (15) as follows: 

1T 
..; 21 + 1 f J sinX 0 

i~~=O J=O - . - ax 
So,O+I,n = dX

0 
P1 (cosX) S1nX ax e 2 

0 

0 

1 f21T- f!Fq 
X - dq --

21T o aq 
0 0 

I -
i C~v +qn) 

e i (17) 

dt 

(18) 

100 Q~i) (q (t)) 

-oo --r-(t_)_R-_+~1-- dt = 
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By expanding exp(i~~ ) as before [Eqs. (9,10)] we find that 
R. 

J=O 
SO,O-+I,n 

where 

= 
y' 2I + 1 

2 

F 
n 

1 f21T- ~ 
- 21T dqo ~~ 

0 0 

iqn 
e 

{19) 

(20) 

We again see the perturbation appearing as a form factor multiplying 

the integrand of the unperturbed CLSM expression [Eq. (3)]. The form 

factor has the same functional form as in the case of small permanent 

deformations, which is to be expected if these are considered as vibrations 

with a very large period compared to the collision time. 

As an application of this formalism we will consider excitation of 

the lowest octupole vibrational band of 238u, which has been strongly 

excited by heavy-ion beams. 12 This band is primarily K = 0 for the low 

spin members, with K-mixing evident for higher spins. 

Since only the lowest vibrational state is excited in this ~ase, 

then n = 1. Further, the band levels have spins I= 1,3,5,etc. due to the 

octupole symmetries. Therefore for the sum (1 +Cl3 (cosXCA)) appearing 

in the integrand of Eq. (19), only the second term has a non-zero contri-

bution. (We note also that for the ground band, n = 0, I= 0,2,4,etc., 

and only the first term (1) in that sum would contribute.) 
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The final CLSM expression for the K = 0 octupole band is 

= 
y2I + 1 

2 

(20) 

where I = 1 , 3, 5, .... 

Apart from the constant factor F1 ~ 3 , the only difference between 

Eq. (20) and Eq. (3) (which is valid for the ground band) is in the form 

factor P3(cosXCA). 

Comparisons of the K=O octupole band excitation signature found by 

of Eq. (20) and by the standard Winther-deBoer 13 means computer code,· 

which is based on :the semiclassical Alder-Winther (A-W) theory 14 for 

Coulomb excitation is shown for two cases in Figs. 2 and 3. The agreement 

found is seen to be quite reasonable. 

We remark that just as in the case of the ground state rotational 

band, in the limit where the Sommerfeld parameter n becomes infinity and 

the adiabaticity parameter t,; approaches zero, the expression (20) for 

the classical-limit S-matrix becomes identical to the corresponding one 

3 5 in the Alder-Winther theory' (see Eq. 5.7 in Ref. 14). Therefore, the 

considerations of Ref. 5 concerning the nature and accuracy of semiclassical 

and classical-limit scattering theories are applicable here also. 

4. ALTERNATIVE DESCRIPTION AND ITS IMPLICATIONS 

Expression (20) for the S-matrix differs from the one for the case 

of pure rotational excitation of the ground band only in the factor 

P3 (cosXCA) appearing in the integrand. From its derivation it is apparent 

that this factor is due to the octupole vibration, and i:t may be explained 
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in a less rigorous but more illuminating way. The K = 0 octupole vibration 

appears as a standing-wave shape vibration of the nuclear surface with a 

P3 (cos6) dependence. The excitation of this vibration by a projectile 

will be strongly dependent on the particular trajectory followed by the 

projectile, especially at the point of closest approach where the inter-

action is at its maximum. 

In particular we expect that trajectories, such as the one labeled 

(1) in Fig. 4, that approach the target along a node of the octupole 

vibration will excite that mode only slightly, while those like (2) will 

excite it much more since their point of closest approach will be near 

the region where the vibrational amplitude is maximum. If the excitation 

intensity is small enough (as is actually the case) the excitation amplitude 

will be linear in the vibration amplitude at the point of closest approach, 

i.e., in P3 (cosXCA). 

The amplitude for the excitation of the rotation and the vibration 

is then found by integrating the product of the rotation amplitude times 

this vibration amplitude over all initial orientations. (This implies 

that the coupling between the two motions is neglected.) The rotational 

excitation amplitude for a given trajectory is given by 

(2I + l) d(cosX) 
d(cosX

0
) 

(21) 

Thus we have rederived Eq. (20) and the term P3(cosXCA) is now interpreted 

as a form factor for the excitation of the octupole vibration. 

This interpretation allows us to extend this particular approximation 

to the CLSM method to other situations where conditions similar to those 

encountered in the case of the K = 0 octupole vibrations are met; more 
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precisely a small interaction strength, little coupling to the rotational 

motion, and the possibility of describing the process in classical terms. 

We are presently considering the extension of this formalism to cases 

that satisfy these conditions, in particular, sub-barrier nucleon and 

cluster transfer processes. In both cases it is expected that the 

amplitude (form factor) for transfer will be peaked in certain regions 

of the deformed nuclear s_urface, due to the angular orientation of the 

high-lying nucleon orbits available for transfer. Such an angle-dependent 

form factor for transfer is formally analogous to the angle-dependent 

form factor for vibrational excitation which we have just discussed, and 

should in like manner give rise to a characteristic signature in the 

ground rotational band of the deformed transfer product. 
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APPENDIX 

As noted in the text, the bar and tilde quantities appearing in 

Eq. (4) and thereafter arise from a unitary transformation of the 

original variables appearing in the Hamiltonian, Eq. (1). The purpose 

of the transformation is to remove an oscillatory asymptotic time 

dependence in·the integral representation for the S-matrix element. 

Therefore it is closely related to the unitary transformation from the 

Schrodinger to interaction representatiON in quantum mechanics. We 

sketch the basic equations here. A further discussion may be found in 

Refs. 3, 5, and 11. 

-The quantities X, q
0 

and q are defined in a similar way as in 

Ref. 11, i.e., by considering the tangential elastic trajectory in the 

asymptotic regions defined by 

E = 

- 2 
Pr 
-- + 2m 

(A.1) 

In this expression pX and n are taken to be constant and equal 

to their value at some point in the asymptotic region for the collision; 

r and Pr are the radial coordinate and momentum for an elastic collision 

trajectory that coincides with the actual trajectory at the point 

mentioned above. By defining rT as the turning point of the radial 

motion in this elastic trajectory, i.e. 

-X, q
0 

and q are given by 
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r 
aj) 

X+ i X 
r dr = 

aj)x 
rT 

out 

(A. 2) 

r 
apr ) dr qo = qo an 

(A. 3) 

rT. 
1nc 

r 
apr ·J dr q = q 
an 

(A. 4) 

r 
Tout 

As we see in Eqs. (A. 2- A. 4), q
0 

is defined on the incoming branch 

of the trajectory and_ q, X, are defined on the outgoing branch. 
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FIGURE CAPTIONS 

Fig. 1. Geometrical illustration of the coordinate system used in the 

calculations. 

Fig. 2. Signature of the K = 0 octupole band excitation in 238u by 

170 MeV 40Ar ions scattered at backward angles. The energies 

are taken from the rotational model with E1_ = 0.7313 MeV for 

the octupole band and E2+ = 0.0449 MeV for the ground band. 
. 238 

The quadrupole moment of U is taken to be 11.12b for both 

bands. The solid line represents the calculation described 

here, and the dashed line that of the Alder-Winther method. 14 

The probabilities for octupole band excitation are normalized 

to unity. 

Fig. 3. Same as Fig. 2 using 400 MeV 86Kr ions as projectiles. 

Fig. 4. The K = 0 octupole vibration is represented as a standing wave 

on the nuclear surface. The trajectory labeled (2), which has 

its point of closest approach near a maximum in the vibrational ...... __ 

amplitude, excites the octupole vibration much more than 

trajectory (1), which has its point of closest approach near 

a node in the vibration. 
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