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Cytosine DNA methylationis essential in brain development and is implicated in

various neurological disorders. Understanding DNA methylation diversity across

the entire brain in a spatial context is fundamental for acomplete molecular atlas of
brain cell types and their gene regulatory landscapes. Here we used single-nucleus
methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)*
technologies to generate 301,626 methylomes and 176,003 chromatin conformation-
methylome joint profiles from 117 dissected regions throughout the adult mouse
brain. Using iterative clustering and integrating with companion whole-brain
transcriptome and chromatin accessibility datasets, we constructed a methylation-
based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated
subclasses. We identified 2.6 million differentially methylated regions across the
genome that represent potential gene regulation elements. Notably, we observed
spatial cytosine methylation patterns on both genes and regulatory elementsin cell
types within and across brain regions. Brain-wide spatial transcriptomics data
validated the association of spatial epigenetic diversity with transcription and
improved the anatomical mapping of our epigenetic datasets. Furthermore,
chromatin conformation diversities occurred inimportant neuronal genes and were
highly associated with DNA methylation and transcription changes. Brain-wide cell-type
comparisons enabled the construction of regulatory networks thatincorporate
transcription factors, regulatory elements and their potential downstream gene
targets. Finally, intragenic DNA methylation and chromatin conformation patterns
predicted alternative gene isoform expression observed in a whole-brain SMART-seq?
dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D
multi-omic atlas and provides a valuable resource for comprehending the cellular-
spatial and regulatory genome diversity of the mouse brain.

The mouse brain is acomplex organ comprising millions of cells that
form diverse anatomical structures and cell types®®. Advances in
single-cell transcriptome and epigenome technologies are revealing
theintricate molecular diversity of the mammalian brain, whichin turn
are offering insights into epigenetic mechanisms central to orchestrat-
ing this biological diversity® ™.

Cytosine DNA methylation (5mC), acovalent genome modification
in post-mitotic cells throughout their lifespan®, is associated with

neuronal function, behaviour and various diseases®. Although 5mC
predominantly occurs at CpG sites (mCG) in mammalian genomes,
non-CpG cytosine methylation (mCH, whereHcanbe A, Cor T) isalso
prevalent in neurons™'®. CpG and CpH methylation modulate tran-
scription factor (TF) binding and gene transcription through dynamic
occurrence at regulatory elements and gene bodies”. Both types of
methylation directly influence the DNA binding of methyl-CpG bind-
ing protein 2 (MeCP2)®2, a crucial SmC reader and the cause of Rett
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Fig.1|Single-cell DNA methylome and multi-omic atlas chart the cellular
and genomicdiversity of the whole mousebrain. a, The workflow of
dissection, nucleiand library preparation for snmC-seq3 and snm3C-seq. P56,
postnatal day 56.b, The117 dissected regions from 18 coronal slices (600-pm
thick) were grouped into 10 major brainregions (see Supplementary Table 10
forabbreviations). Fach dissectionregion s registered to the 3D CCF>. ¢, The
cellatlas: methylome-based iterative clustering of snmC and snm3C datasets.
Left, t-distributed stochastic neighbour embedding (¢-SNE) plot coloured by
modality. Middle, plotaggregatedinto 4,673 cell group centroids and coloured

syndrome?. Genome-wide differential methylation analyses have pre-
dicted millions of regulatory elements and have produced a cellular
taxonomy and a base-resolution genome atlas®?.

Furthermore, cis-regulatory elements in complex mammalian
genomes can operate over long distances to regulate target genes®.
Understanding the relationships between the physical contact fre-
quency of enhancers and promoters and their collective impact on
genebody epigenetics and transcriptomic statusis crucial for decoding
the molecular diversity of the mammalian brain. Our previous work
used single-nucleus methylome (snm) and chromatin conformation
capture (3C) sequencing (snm3C-seq) to concurrently examine these
aspects’. However, a detailed brain-wide map of chromatin conforma-
tion remains to be charted.

In this study, we used enhanced single-nucleus methylation
sequencing (snmC-seq3) and snm3C-seq technologies to analyse DNA
methylomes and the 3D genome in detail®>*. We collected 301,626
methylomes and 176,003 m3C joint profiles from the entire mouse
brain to produce a dataset comprising 786 billion methylation reads
(snmC-seq3 plus snm3C-seq) and 33 billion cis-long-range chromatin
contacts (snm3C-seq). This rich dataset identifies 4,673 cell groups,
which aligned well with other BRAIN Initiative Cell Census Network
(BICCN) data®". The methylome clusters were annotated using the
nomenclature from companion transcriptomic studies®, thereby offer-
ing acomprehensive multi-omic resource.

Our analysis underscore the spatial information in the epigenome,
which was validated using a multiplexed error-robust fluorescence
in situ hybridization (MERFISH)? dataset created using genes that
showed distinct gene-body methylation patterns across brainregions.
Wealso explore theregulatorylandscapes of individual genes by exam-
ining thousands of aggregated epigenetic profiles. Notable connections
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by 274 cell subclasses. Right, cross-modality integration of brain-wide datasets
from BICCN, detailsin Fig.2. RNA data fromref. 6. ATAC data fromref. 11. Acc.,
accessibility. d, The genome atlas: the Tle4 gene exemplifies pseudo-bulk
profiles of five modalities across the whole brain, with genome browser view
ofthe ‘L6 CT CTX Glut’ and ‘Pvalb GABA’ subclasses in the bottom. Interactive
browser available at tinyurl.com/figld. Schematicin acreated using BioRender
(www.biorender.com). Brain atlasimagesinbwere created based onref.3and
the Allen Brain Reference Atlas (atlas.brain-map.org), © 2017 Allen Institute for
Brain Science.

emerge between chromatin conformation diversity and gene-body
methylation profiles across multiple genome scales. Intersecting this
epigenetic dataset witha correlation-based analysis, we construct gene
regulatory networks (GRNs) that connect TFs, differentially methylated
regions (DMRs) and potential target genes. Finally, integration with a
whole-brain full-length SMART-seq dataset® illuminates the interplay
between epigenetic profiles and transcriptional dynamics withinlong
neuronal genes.

To facilitate access to this resource, we introduce the mouse brain
cellular and genomic browser (mousebrain.salk.edu), a user-friendly
platform for data query and visualization. By unveiling the multifac-
eted complexities of the molecular architecture of the mouse brain,
our study deepens insights into the epigenetic and transcriptomic
intricacies that underpin brain function and diseases.

The methylome and 3D genome atlas

We developed snmC-seq3, an optimized single-nucleus methylome
sequencing method (Supplementary Methods), to profile genome-wide
SmCatbaseresolution (Fig.1a) across 117 dissected regions in the whole
brain from adult male C57BL/6 mice (Fig. 1b, Extended Data Fig. 1a
and Supplementary Table 1). We also used snm3C-seq, a multi-omic
technology', tojointly profile the DNA methylome and chromatin con-
formation from 33 dissected regions (Extended Data Fig. 1b), which
addedthe 3D genome context across all brain cell types (Fig.1a). Each
dissectedregionisrepresented by two to three replicates, which were
obtained from pooling the same region from at least six animals.
Single nuclei were captured using fluorescence-activated nucleisort-
ing (FANS), which enriched for neurons that were positively labelled
with a NeuN antibody (NeuN" neurons constituted 92% of snmC and
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78% of snm3C data, with the remaining data being NeuN™ neurons or
non-neurons; Methods). Collectively, we obtained 324,687 (301,626
passed quality control (QC)) DNA methylome profiles, including
102,783 nuclei from previous research®. On average, the snmC-seq
dataset had 1.44 + 0.50 million (mean = s.d.) final reads that covered
72 + 24 million (6.5% + 2.2%) cytosine bases in the mouse genome.
We also obtained 196,172 (176,003 passed QC) joint methylome
and 3C profiles, with each cell having 1.99 + 0.57 million final reads
that covered 72 + 20 million (6.5% + 1.8%) cytosine bases. The 3C
modality of each cell had 188,000 + 81,000 (18.3% + 5.7% of the total
fragments) cis-long-range contactsand 108,000 + 41,000 (10.4% + 2.3%)
trans-contacts (Extended Data Fig. 2, Methods and Supplementary
Tables 2 and 3).

After QC and preprocessing, we analysed the datain cellular and
genomic contexts (Fig. 1c,d). During the cellular analysis, we con-
ducted iterative clustering of the mCHand mCG profilesin 100-kb bins
throughout the genome to establish amethylome-based whole-brain
cell-type taxonomy. At the highest level of granularity, we obtained
atotal of 4,673 cell groups. To validate and annotate the dataset, we
integrated the methylome data with other brain-wide chromatin acces-
sibility" and transcriptome datasets®, which resulted in cluster-level
mapping across modalities and annotations of these clusters into 30
class labels and 274 subclass labels shared with acompanion transcrip-
tome study® (Supplementary Table 4 and see below).

On the basis of the clustering and integrative annotations, we pro-
duced pseudo-bulk profiles of five modalities (mCH/mCG fraction,
chromatin conformation, accessibility and gene expression) for each
cellgroup, thereby providing a cell-type-specific, multi-omic atlas for
the mouse genome (Fig. 1d). With more details covered in subsequent
sections, we use the TLE family member 4 (Tle4) gene, amarker for the
‘L6 CT CTX Glut’ subclass, asanexampletoillustrate the power of this
comprehensive dataset (details in Supplementary Note 1).

Overall, our study utilizes brain-wide single-cellmC and m3C datasets
to achieve the following aims: (1) define cellular taxonomy based on
the DNA methylome; (2) integrate with other atlas-level datasets from
the BICCN; and (3) generate a multi-omic cell-type-specific genome
atlas for the mouse brain. This resource enabled us to conduct several
detailed analyses and make various discoveries, as we described below.

Methylome-based cell-type taxonomy

Following QC and preprocessing (Methods), we used iterative cluster-
ing to classify methylome-based cell populationsin the snmC-seqand
snm3C-seq datasets, utilizing mCH and mCG profiles in 100-kb bins
across the genome®?. In the final iteration, we identified 2,573 clusters
and further separated them on the basis of brain dissection regions into
4,673 cluster-by-spatial groups, which served as the finest granularity
level for subsequent analyses (Fig. 2a and Extended Data Fig. 3). To
establish a hierarchical structure for whole-brain cell types and to sup-
port multi-omic data analyses, we iteratively integrated the methylome
datasets with acompanion brain-wide single-cell transcriptome dataset
(seenextsection). Followingintegration, we annotated the mC-based
cellgroupsinagreement with 30 transcriptome-based classes and 274
subclasses® (Supplementary Table 4). The subsequent analyses relied
onthecell-group and subclass levels of cell classifications (Fig.2a and
Extended Data Fig. 3a,d).

We organized our dissections into ten major brain regions (Fig. 2b,c
and Extended DataFig.4) according to their specific cell-type composi-
tionand neuronal functionality (Fig. 2d) as follows: the isocortex (CTX);
olfactoryareas (OLF; including the olfactory bulb and piriform cortex);
amygdalaareas (AMY;includingthe cortical subplate (CTXsp) and the
striatum-like amygdala nuclei (SAMY)); cerebral nuclei (CNU; including
the striatumand pallidum, but excluding the sSAMY); the hippocampal
formation (HPF; including the hippocampus and parahippocampal
cortex); the thalamus (TH); the hypothalamus (HY); the midbrain (MB);
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the hindbrain (HB; including the pons and the medulla); and the cer-
ebellum (CB). Most neuronal subclasses (218) were each derived froma
single major region. Eighteen neuronal subclasses were situated across
two adjacent regions, which could be due to imprecise dissections
but may also represent neuronal types shared between neighbouring
brain regions (Supplementary Table 5). In addition, marked cellular
diversity was observed in non-telencephalic regions (the TH, the HY,
the MB and the HB; Fig 2d,e and Extended Data Fig. 4), whichisa com-
mon feature observedin other single-cell brain atlases thatinvestigate
various molecular modalities®®". Notably, the global methylationlevel
substantially changed across cells and dissection regions (Extended
DataFig.3g,h), with subcortical neuronal subclasses exhibiting mark-
edlyincreased mCH levels compared with cortical excitatory neurons
(Extended DataFig. 3i,j and Supplementary Note 2).

Last, our dataset extensively profiled non-neuronal cells and adult
immature neurons (IMNs) throughout the brain (Extended Data Fig. 4
and Supplementary Tables 4 and 5). Consistent with other modalities®",
we detected spatial differences in astrocyte methylomes, particularly
between telencephalic and non-telencephalic regions. Initially, IMNs
clustered with astrocytes, butlater iterations resolved one population
in the subgranular zone of the dentate gyrus and another population
inareas overlapping the rostral migratory stream?. Furthermore, the
oligodendrocyte lineage demonstrated spatial distinctions between
telencephalic and non-telencephalic regions at the cluster level
(Extended Data Fig. 4). Our dataset also encompasses other immune
and vascular cell types, including microglia, pericytes, endothelial cells,
arachnoid barrier cells and vascular leptomeningeal cells.

Consensus cell-type taxonomy

Developing a brain cell-type taxonomy requires integrating various
molecular modalities, verifying cell clusters on the basis of multiple
molecular information and applying a uniform nomenclature®. We
began this endeavour by performing an integrative analysis with a
brain-wide transcriptome dataset from the BICCN consortium®. After
strict QC, this single-cell RNA sequencing (scRNA-seq) dataset estab-
lished a celltaxonomy that categorized 4.3 million cellsinto 5,200 cell
clusters, 1,045 supertypes, 306 subclasses, 32 classes and 7 divisions.
Various aspects wereincorporated into the cluster annotation, includ-
ing spatial distribution®’, neurotransmitter identity, marker genes and
existing cell-type knowledge?®.

We used an efficient framework (adapted from the Seurat package®’;
Methods) foriterative cross-modality integration to leverage this sub-
stantial effort. The initial integration effectively matched neuronal
spatial distribution and high-level annotations (Fig. 2e), whereas subse-
quentiterationsrefined cluster matching within subclasses to greater
detail (Fig. 2f). We utilized integration overlap scores (Methods) to
map methylome cell groups to transcriptome clusters and to annotate
methylome datasets into subclasses using consistent nomenclature
(Supplementary Table 4). Insummary, we matched all methylome cell
groupswith 4,669 (90%) transcriptomic clusters, whichencompassed
4.19 million (97.4%) cells corresponding to 274 subclasses (Fig. 2f).
The 531 unassigned transcriptomic clusters represented only 2.6% of
cells, which were primarily rare populations (<0.03% of the total RNA
dataset) that were insufficiently represented in the methylome dataset.
We calculated the transcriptome profile for each cell group on the basis
of these integration results (Methods).

The overlap score for the final iteration within each subclass revealed
a high-granularity correspondence between methylome and tran-
scriptome clusters (Fig. 2f, boxes). We further examined vital neural
functional genes to demonstrate this accurate match between mC
and RNA levels (Extended Data Fig. 5). Overall, this high-resolution
cross-modality integration offers multi-omic evidence for identify-
ing thousands of cell clusters in the adult mouse brain, and lays the
groundwork for subsequent genomic and epigenomic analyses.
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colour by 117 dissectionregions. ¢, 3D CCF registration and cell -SNE of each
major region. d, Cell subclass (top row) and neurotransmitter composition
(bottom row) of each braindissectionregion (each upper dot) grouped by
major region. Other neurotransmitters are not shownin the plot, but the
informationis provided in Supplementary Table 2. e, Integration t-SNE of all
neurons fromthe snmC-seq, snm3C-seq, SnATAC-seq and scRNA-seq datasets,
coloured by matched cell subclasses. For each plot, thelight grey cellsin the
background represent cells from the other three modalities. RNA data from
ref. 6. ATAC data fromref. 11. f, Brain-wide cluster map between the snmC-seq
andscRNA-seq datasets (Supplementary Table 4) based oniterativeintegration.

Cell-type-specificregulatory elements

Having established a consensus cell taxonomy across the entire mouse
brain, we further identified 2.56 million non-overlapping CpG DMRs
between the subclasses of the whole brain or the clusters of each major
brainregion (Methods). These DMRs involved 44% of the total CpG sites
in the genome, with an average length of 189 + 356 bp (mean + s.d.)
and containing 3.9 + 6.0 CpG pairs (each containing 2 bases). The CpG
DMRs provide predictions about cell-type-specific cis-regulatory
elements, and hypomethylationinthe DMRregion usually indicates the
activeregulatory status in adult brain tissue®? (Fig. 2g). To annotate the
accessibility status of the DMRs in asystematic manner, we performed
iterative integration between the methylome and chromatin accessibil-
ity dataset from the BICCN", using non-overlapping chromosome 5-kb
bins (Methods). This dataset, generated using single-nucleus assay for

Each dot, coloured by subclasses, onthe diagonal represents alink between the
mC clusters (x axis) and RNA clusters (y axis). Two examples in floating panels
demonstrate highly granular correspondence of cell clustersin the final
integration round: integration t-SNE of ‘MB-MY Glut-Sero’and ‘L5ET CTX Glut’
cells frommC and RNA coloured by intramodality clusters and confusion
matrix of overlap score between the intramodality clusters (see Extended Data
Fig.5for more gene details). g, Dot plots of mCG fraction (left) and chromatin
accessibility (right) of cell-type-specific CG-DMRs (columns) in each cell subclass
(row). The colour of each dot represents an aggregated epigenetic profile of
1,000 DMRsinacellsubclass; deeper colour indicates that these DMRs are more
hypomethylated or accessible in asubclass. See Extended Data Fig. 6 for more
mC-ATAC integration details.

transposase-accessible chromatin with sequencing (snATAC-seq) with-
out NeuN enrichment by FANS, contains 1,372,646 neurons and 939,760
non-neuronal cells. As this dataset shares the same dissection samples
with the snmC-seq dataset, we used this metadatainformationto assess
theintegration alignmentscore®* between neurons analysed using mC
and ATAC. Notably, the dissected regions were precisely aligned (score
of 0.89 + 0.11), which indicated extensive concordance in the cellular
diversity of both epigenomic modalities (Extended Data Fig. 6a,b). After
integration, we also calculated the chromatin accessibility profile for
each cell group using their matched ATAC-analysed cells. The result-
ing mCG fractions and chromatin accessibility levels at DMR regions
showed similar cell-type-specificity across brain cell subclasses. This
result confirmed the correct match of cell-type identities (Fig. 2g and
Extended DataFig. 6c, d). By integrating the mC and ATAC datasets, we
achieved high concordanceincellular diversity across both epigenomic
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modalities, which further validates the accuracy of our approach in
determining cell-type-specific regulatory elements and their activities.

Spatial epigenomic diversity

Tens of millions of cells in the mouse brain accurately form complex
anatomical structures that are controlled by their diverse gene expres-
sionand epigenetic regulation. Our clustering analysis demonstrated
cell-type composition differences across brain regions (Fig. 2). To
further explore the spatial information in the DNA methylome, we
performed differentially methylated gene (DMG) and DMR analyses
across anterior-to-posterior, dorsal-to-ventral and medial-to-lateral
axes in the brain using representative dissection regions (Extended
DataFig.7a-c).Inall three axes, we identified hundreds of thousands
of DMGs related to various neuronal functions and DMRs associated
with these genes. This result highlights the marked spatial diversity
encoded inthe methylome.

To increase the spatial resolution of the analysis and to investigate
whether the observed methylation spatial pattern corresponds to
actual transcriptomic diversity, we used MERFISH technology, which
enables in situ profiling of the expression level of hundreds of genes
in brain sections”?”*!, We designed a 500-gene panel (Supplemen-
tary Table 6) selected on the basis of cell type and spatial diversity in
gene-body hypomethylation across the brain (Methods). We then pro-
filed six coronal sections corresponding to our mC and m3Cbrain slices
(Extended DataFig. 7d). After QC, we obtained 266,903 MERFISH cells
and annotated their cell subclasses by integrating with the scRNA-seq
dataset® (Extended DataFig. 7e,fand Supplementary Table 7). We then
performed cross-modality integration between the neurons in the
methylome and MERFISH datasets, imputing the spatial location of
eachmethylationnucleus (Fig. 3aand Supplementary Table 8). Notably,
the predicted spatial coordinates of the methylation nuclei closely
matched the dissected regions (Fig. 3b). For example, glutamatergic
cells showed arealization®?among cortical areas within eachsslice and
dorsal-ventral separation was observed among medium spiny neurons
dissected fromthe caudoputamen (CP) and nucleus accumbens (ACB)
regions. Moreover, many subcortical dissection borders were faithfully
preservedintheimputed spatial embedding. The spatial locationimpu-
tation also assigned many cell subclasses to fine anatomical structures,
which were considerably smaller than our dissection regions (Fig. 3¢
and Extended Data Fig. 7g). For instance, laminar layer information
was mapped among cortical excitatory cells (for example, ‘L2/3 IT
CTXGlut’, ‘LSET CTX Glut’ and ‘L2/3 IT ENTI-PIR Glut’). In addition,
many subcortical neurons were allocated to specific brain nuclei (for
example, ‘STN-PSTN Pitx2 Glut’and ‘ZI Pax6 GABA'), which highlights
the correspondence between the cell-subclass identity and anatomical
structure in these areas.

The high spatial resolution in the imputation was attributed to the
strong association between cell locationand DNA methylation of crucial
genes and regulatory elements. For example, the Elavl2 gene, which
encodes aRNA-binding proteininvolved in post-transcriptional regula-
tion functionsinneurons®, exhibited adorsal-ventral increased expres-
sion patterninsubcortical neuronsinslice 10, whichwas also observed
as a decrease in gene-body mCH methylation of Elav[2 and a nearby
mCG methylation of a DMR (Fig. 3d). Notably, the chromatin interac-
tions between the DMR and Elavl2 showed stronger contacts inregions
where Elav[2 was highly expressed. Likewise, Rasgrf2, which encodes
aguanosine nucleotide exchange factor for Ras GTPases, displayed
differential expression and methylation across cortical layers. DMRs
near Rasgrf2 were highly correlated, with chromatin conformation
data supporting physical proximity when both the DMR and Rasgrf2
were active (Fig. 3e). Negrl also showed similar correspondence among
modalitiesin cortical dissected regions (Extended DataFig. 7h). These
findings demonstrate a clear spatial pattern in DNA methylation that
aligns with the spatial transcriptome, which implies that epigenetic
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regulation exerts precise control over the cellular spatial location. To
extend this spatial annotation to the entire brain, we comprehensively
integrated the MERFISH dataset from a companion study® that con-
tained 51 coronal slices and 3.9 million cells. The integration helped
us to position each nucleus from the methylome dataset into a spe-
cific spatiallocation, which facilitated the interpretation of epigenetic
profilesinbrain-wide anatomical structures (Extended Data Fig. 8 and
Supplementary Table 9).

Chromosomal conformation dynamics

The annotated multi-omic datasets enabled us to leverage the cell-type
diversity across the entire brain to understand the chromatin conforma-
tionlandscape ofindividual genes. Here we systematically evaluated the
variability of different 3D genome features (chromatin compartment,
topologically associated domain (TAD) and highly variable interac-
tions) across cell subclasses. We associated them with gene activity by
correlating chromatin contact strengths with methylation fractions.

We initiated this effort by examining the chromatin compartment,
agenome topology feature that brings together genomicregions tens
to hundreds of megabases away**. The genomes are organized into two
major compartments, Aand B, corresponding to active chromatin and
silent chromatin, respectively**. After calculating the compartment
score of cell subclasses at the 100-kb resolution, we observed numer-
ous A/B compartment switches in megabase-long regions (Fig. 4a).
For instance, the chromosome 2 region spanning 3.5 million bases to
10.6 million bases exhibited a strong negative compartment score
(B compartment) in mature oligodendrocytes (‘Oligo NN’), but positive
scores (A compartment) in cortical excitatory neurons such as ‘L2/3
IT CTX Glut’ (Fig. 4b). Notably, this compartment-switching region
overlapped with Celf2, agene thatencodes a vital RNA-binding protein
that modulates alternative splicing in neurons®.

Giventhese observations, we sought to determine whether compart-
ment switching correlated with DNA methylation changes within the
same regions. After calculating the Pearson correlation coefficient
(PCC) values across cell subclasses, we found a negative correlation
between the compartment score and mCG or mCH fraction of 100-kb
chromatin bins, with mCG exhibiting astronger correlation than mCH
(Extended DataFig.9a). We also observed that the compartment score
of negatively correlated bins demonstrated greater variability across
cellsubclasses than the positively correlated bins (Fig. 4cand Extended
DataFig. 9b,c), which suggested that these negatively correlated bins
exhibit wide activity change across a wide range of cell subclasses.

Wethendiscovered that genes overlapping with the negatively cor-
related bins were enriched* in numerous neuronal functions, including
nervous system development (Fig. 4d). To explore this aspect further,
we examined another scRNA-seq atlas of mouse brain development®
and found that the negatively correlated bins overlapped with genes
thatdisplay asubstantial increase in expression during prenatal brain
development. By contrast, uncorrelated or positively correlated bins
demonstrated no such trend (Extended Data Fig. 9d). These results
suggest that large chromosomal conformation changes might be estab-
lished during early development and subsequently maintain cellular
specificity in adult brain nuclei®.

TAD and long gene boundary association

Wealsoinvestigated TADs* and their boundaries at a 25-kb resolution
(Methods). By firstidentifying boundaries inindividual cells and sub-
sequently using the domainboundary probability at the cell-subclass
level, we were able to represent the strength of domain boundaries at
each 25-kb bin (Extended Data Fig. 9e). To evaluate the variability of
boundary probabilities across the genome, we performed a Chi-square
test on each bin and identified 83,518 bins with significant variability
across subclasses (false discovery rate (FDR) <1x 1073; Methods). For
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example, we observed that at the Lingo2 locus—a ‘L2/3 IT CTX Glut’
hypomethylated gene linked to essential tremor and Parkinson’s
disease**—the TAD boundaries aligned with the transcription start
site (TSS) and the transcription termination site (TTS) of the gene
(Fig. 4e). Across all the neuronal subclasses, the boundary probabil-
ity of the 25-kb bin at the Lingo2 TSS exhibited a negative correlation
with the transcript body mCH fraction (PCC =-0.65, FDR < 0.001,
permutation-based test; Methods and Fig. 4f).

To generalize this observation, we calculated the average bound-
ary probability at all gene TSSs and TTSs in the genome, separating
them by transcript length (<100 kb as short, >100 kb as long™). Long
genes displayed increased levels of boundary probability at the TSSs
and TTSs (Fig. 4g), which suggested that TADs are more likely to form

genes and their associated DMRs. The Elval2 gene represents the spatial
patternamongsubcortical regions. The left column shows the gene-body
mCH fraction, the DMR (chromosome 13:91164342-91165792) mCG fraction
and RNA expression. Theright column displays a heatmap of normalized
contactsbetweenthe DMR and the gene. e, The Rasgrf2gene and associated
DMR (chromosome 13:92027775-92028983) exhibit cortical layer differences
inthe samelayoutasd.

around the gene body (that is, gene body domains). Our analysis then
focused ontherelationship between variable domainboundaries and
genebodies, particularly long genes (>100 kb) implicated in neuronal
pathogenicity and potentially regulated by mCH and MeCP2 (ref. 19).
We next calculated the PCC of gene transcript body mCH or mCG frac-
tions with the boundary probabilities of all 25-kb bins within transcript
+2 Mb distances (Extended Data Fig. 9f). The top negatively correlated
boundaries were predominantly located at the TSSs and TTSs of the
corresponding gene transcripts (Fig. 4h and Extended Data Fig. 9f,g).
We also observed a few significantly positively correlated boundaries
to the transcript body mCH or mCG, although they lacked clear TSS-
TTS colocalization (Extended Data Fig. 9f,g). Functional enrichment
analysis® revealed that genes with strongly negatively correlated

Nature | Vol 624 | 14 December 2023 | 371



Article

a b c d
Genome
a a,
scale 02“ ' s . ° Nervous system development
(] - m
Synaptic transmission
2|2 € (3 (3 Synapse assembly
g2 R0 ¢ ] &
£ -8 1 ‘t J 'Y Anterograde trans-synaptic signalling
g - . v . Glutamate receptor pathway
g x D o Ve A Chemical synaptic transmission
o 25 o i -1 % Neurotransmitter secretion
c ] ® N .
H P 'v’hw_‘m‘l‘u’v‘l‘l"“"]mlnmlﬁ '“I.’I“I‘I' () M“‘(#’m, S PR =% D:15 . u:1-0 Cell junction ass.embly o
g > Aq Zoom in Zoom in Zoom in Y 15 .W 03 Chemical synaptic transmission
= o - r T T T
S|~ B1 _ M 1 Compartment score e---c--+ Bin mCG fraction } diusted P 3
- Celf2 e Chr.2(Mb) «m A —log,i(adjusted F)
3.5-10.6
€ C1:'L2/3IT CTX Glut’ C3: ‘STR D2 GABA’ f h
Rl - = > TR L
3 5004
4
E & 0
= -04
£ c3 .
3 e ’“"’a;
z Lhringy™ hg -0.6
8 v 4 }
o ol O‘ £ C1\
S o .
(0] ‘NS £ % S, i
L oS o 5154‘ ey u:m 2Mb TSS TIS +2Mb 08
o 3% 05 — Long gene (>100 kb) PfCZ Vb TéS s 2 Mb
ility @--er-- i — Short gene (<100 kb) A
P Boundary probability e e Gene mCH fraction i Relative distance to transcripts
=
k 1
g Interaction 1 Interaction 2
5 2 g
g o o u :
£ 'k ‘a’ 299Gy | TR
A » 71% il . . S
§Le - N 63% |12
2| # $ 37% | 88% " g7 Lsamp Legend
2 U-D D-1 - L
T D D 55 AR
15 15 85% | 77% |33% i w0
H 15% |23%  |67% 07 J A %)
0 0 1 ] %o
5Mb TSS  TTS  +5Mb IMb fa
Normalized contact strength Relative distance to transcripts - Gene body

Fig. 4 |Highly dynamic chromatin conformation features correlate with
DNA methylation around neuronal genes. a, Top, PCC chromatin
conformation matrices for chromosome 2. Middle, compartmentscores
(red for Acompartments, blue for Bcompartments). Bottom, zoom-in view of
the Celf2locus. Columnsrepresent ‘L2/31T CTX Glut’ (C1), ‘Oligo NN’ (C2) and
Avalues (C1-C2).b, Cell-group-centroid ¢-SNE for the bin chromosome 2
(6800000-6900000; Celf2) coloured by compartment score and the bin
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scores.d. valuesacross cell subclasses (y axis). Blue contoursindicate the
kernel density of the dot. d, Functional enrichment for neuronal genes
intersected with negatively correlated chrom100k bins (boxed in ¢). Adjusted
Pvalues obtained fromone-side Fisher’s exact test after FDR correction.

e, Top, normalized chromatin contact matrices around Lingo2for Cland ‘STR
D2 Gaba’ (C3).Bottom, pseudo-bulk ATAC and methylome genome tracks.

f, t-SNE coloured by the Lingo2 TSS (bin: chromosome 4 (36950000-36975000))
boundary probability and mCH fraction. g, Mean boundary probabilities for

gene-body domains were significantly enriched for crucial neuronal
and synaptic functions. By contrast, positively correlated TAD bounda-
ries were not associated with genes enriched for specific functions
(Extended Data Fig. 9h). Together, these results indicate that TAD
boundaries are closely associated with the TSSand TTS of long genes
implicated in neuronal pathogenicity and pivotal functions.

Diverse chromatininteractionlandscapes

To thoroughly profile the chromatin conformation diversity at high
resolution and tolink genes to their potential regulatory elements, we
analysed chromatin interactions at 10-kb resolution (Extended Data
Fig.10a). We first performed a one-way analysis of variance (ANOVA)
across cell subclasses, using F statistics to summarize the variability
of all interactions. Highly variable interactions corresponded to dot
or strip-like patterns around genes (Fig. 4i).

Subsequently, we calculated the PCC values between transcript
body mCH fraction and the contact strength of highly variable inter-
actions within 5 Mb of the transcript body (Fig. 4j). Highly variable and
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25-kbbins around long and short genes; error bands represent +s.d.

h, Scatterplot showing the location of the most negatively correlated boundary
foreachlonggenetranscript. They axisisthe PCC between the 25-kb bin
boundary probabilities and transcript body mCH fractions; the x axis is the
relative genome location to the transcripts. i,j, Heatmap indicates variance in
contactstrengthacross cell subclasses using F statistics from one-way ANOVA
(i) and the PCC between the Lingo2 mCH fraction and contact strength of highly
variableinteractions (j). White circles identify two loop-like, highly variable
interactions. Arrows pointto strips betweeninteractions and gene bodies.

k, t-SNE coloured by contact strengths of interactions1and 2 fromj.1, Pileup
view of the relative genome location of correlated interactions from all genes
(using long genes (>100 kb)). The coloursin the upper triangle are average PCCs.
Abbreviationsindicateintragenic (I), upstream (U) and downstream (D) and
their combinations. m, Gene-specific chromatinlandscape of megabase-long
genes. Green marks genebodies; the lower triangle shows F statisticsasini,and
theupper triangle depicts PCCvalues similar toj.

gene-correlated interactions were assigned to ageneif any anchors of
the interaction overlapped with the gene body. Through this assign-
ment, the majority (95%) of gene-associated interactions were located
within 1.2 Mb of the TSS of the gene (Extended Data Fig. 10b). Genes
with numerous correlated interactions exhibited crucial neuronal
and synaptic functions, overlapping with those genes that displayed
anegatively correlated gene-body domain boundary as described
in the previous section (Extended Data Fig. 10c,d). For instance, in
the Lingo2locus, highly variable interactions were identified within
the gene body, at gene body domain boundaries or corresponding to
distal loop structures* (Fig. 4j, circles). The correlation analysis fur-
ther stratified interactions as positively or negatively correlated with
the methylation change of the gene. Notably, the correlated interac-
tionanchorscanbe upto1.6 Mbdownstream (interaction 1) or 3.2 Mb
upstream of the Lingo2 TSS (interaction 2) while associating with strips
along the entire gene body (Fig. 4j,k).

We then summarized the distribution of significantly correlated
interactions surrounding all long genes by categorizing them into six
groups on the basis of their relative location to the gene: intragenic,
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upstream, downstream, upstream-intragenic, downstream-intragenic
and upstream-downstream (Fig. 41). Our results revealed that the con-
tact strength of intragenic, upstream and downstream interactions
were mostly negatively correlated with gene body methylation (per cent
negative PCC, intragenic = 88%, upstream = 71%, downstream = 67%),
aresult consistent with the observation that the gene-body domain
forms between the TSS and TTS, insulating the interactions between
intragenic, upstream and downstream while increasing their inter-
action within each group. Moreover, the upstream-intragenic and
downstream-intragenicinteractions were primarily positively corre-
lated with gene-body methylation (per cent positive PCC, upstream-
intragenic = 63%, downstream-intragenic = 77%). However, the
negatively correlated interactions probably remain crucial as they
potentially link distal regulatory elements to intragenic regions (Fig. 4;).
Upstream-downstream interactions exhibited the least negative cor-
relations (per cent negative PCC, upstream-downstream =15%) and
did not directly interact with the gene body, which potentially relates
to their higher-level chromatin conformation regulation.

Despite these general trends, the specific chromatin conforma-
tion landscapes of individual genes were highly diverse (Fig. 4m).

coloured by the NfiamCH fraction and mCG fraction of a positively correlated
DMR.f,Schematic of the TF-DMR-target triple and the final score. g, Distribution
ofthe final scores of all triples (from f) in the final network. Histograms show
thenumber of triples thateach TF, geneand DMRisinvolved. h, Exampletriple
comprising £grl (TF), Nab2 (target) and DMR (chromosome 10:127578032~
127578186). t-SNE plot colour by the mCH fraction and RNA level of the gene;
mCG fraction and chromatin accessibility of the DMR; and the gene-DMR
contactscore.i, Left, schematic explaining the PageRank (PR) score calculation.
Right, dot plots of the normalized PageRank score and RNA expression of TFsin
hindbrainsubclasses, with red dots coloured and sized by PageRank score; purple
dots coloured by RNA counts per million (CPM) and sized by the percentage of
cellsinthe subclass with gene expression. All the PCC values were calculated
across cell subclasses (n =274), and adjusted P values were obtained using
permutation testand FDR correction (Methods).

In addition to the notable upstream-intragenic and downstream-
intragenic interactions observed in Lingo2, many megabase-long
genes displayed complex intragenic subdomain patterns (for exam-
ple, Ptprd, Nrxn3 and Lsamp; Fig. 4m and Extended Data Fig. 10e-j).
These patterns may correspond to more subtle gene activity regula-
tion, including alternative TSS and exon usage, which will be explored
below.

The multi-omic GRNs

Numerous important TFs orchestrate the intricate spatial and
cell-type-specific gene expression patterns within GRNs, which can
be elucidated using multi-omic information****>. Here we present a
framework that connects TFs with DMRs and their potential down-
stream target genes, leveraging DNA methylome and chromatin con-
formation signalsto construct GRNs for whole-brain neurons (Fig. 5a,
left, and Methods). Our approach uses mCH fractions as proxies for
gene status and mCG fractions as indicators of regulatory element
activity. To further support our findings, we incorporated integrated
transcriptome and accessibility profiles as complementary evidence
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because of their strong negative correlation withgene mCH and DMR
mCG fractions, respectively (Fig. 5a, right).

We built connections between the following elements: (1) DMRs
and their potential target genes (DMR-target edge); (2) TFs and their
potential target genes (TF-target edge); and (3) TFs and their potential
binding DMRs (TF-DMR edge). We established DMR-target edges
by accounting for the correlation of methylation fractions between
the DMR and surrounding genes and the chromatin conformation
landscape of the gene as discussed above (Fig. 5b and Methods). This
approachintersected the diversity of both modalities measured in
our snm3C-seq assay by limiting correlation-based edges to genome
regions displaying distinct chromatin conformation changes. This
step generated 1.2 x 10° edges between 5.7 x 10° DMRs and 2.1 x 10*
genes, with 27% of edges connecting intragenic DMRs to genes and
73% linking distal DMRs (Fig. 5¢). For instance, the edges of Psd2 and
Celf2 demonstrated highly concordant cell-type-specificity of DNA
methylation and chromatininteraction between gene bodies and their
associated DMRs (Extended Data Fig. 11a). Next, we proceeded to con-
nect TF-target edges onthe basis of their correlated methylation frac-
tions (Fig. 5d). We identified a total of 4.6 x 10° edges between 1,705
TFsand 2.6 x10* genes.

Asthe TF-target edge aloneisinsufficient to discern gene regulation
relationships*, we also quantified the TF-DMR edges by considering
the correlation of methylation fractions between the DMR and TF gene
body and the enrichment of TF binding motifs in the correlated DMR
sets (Extended Data Fig. 11b and Methods). In the motif enrichment
analysis, we discovered that many TFs have their motifs solely enriched
inthe DMRs that positively correlated with TF gene-body methylation,
such as Nfia, Onecut2 and RfxI (Fig. 5e and Extended Data Fig. 11c).
This findingimplies that the binding of these TFs potentially activates
the underlying regulatory elements of these genes. We also observed
some TFs with motifs enriched in negatively correlated DMRs, such as
for FOXP2 (Extended Data Fig. 11d), which has been reported to have
transcription repression functions*, whichis potentially achieved by
repressing active enhancers. We identified 1.2 x 10’ edges between 843
TFsand 4.6 x10° DMRs (Extended Data Fig. 11e).

We combined all three types of edges (DMR-target, TF-target and
TF-DMR) to construct the final GRN with TF-DMR-target triples. Each
triple was assigned a final score that represented the overall correla-
tion of cell-type specificity between the three components (Fig. 5fand
Methods). The resulting network comprises1.04 x 10’ triples, involving
830TFs, 20,101 genes and 291,752 non-overlapping DMRs (Fig. 5g). The
different combination of correlationsinatriple providesinsightsinto
regulatory relationships among the TF, DMR and target gene (Extended
Data Fig. 11f,g and Supplementary Note 3).

Inaddition, the individual TF-DMR-gene triples predicted numerous
TF and gene relationships, pinpointing their intermediate regulatory
elements. These relationships were supported by the DNA methylome
and chromatin conformation data, as well as the integrated transcrip-
tome and chromatin accessibility data. For example, one high-scoring
triple (0.74) linked the crucial neuronal TF EGR1 to its downstream
target gene Nab2through a distal DMR (Fig. 5h). Expression of Nab2is
known to beinduced by EGR1, and the NAB2 protein in turn represses
EGR1activation function, thereby forming a negative feedback loop™®.
Two additional triples (EgrI-Erfand Egr1-Synpo) are illustrated in Sup-
plementary Note 4 (Extended Data Fig.12a-d). These examples dem-
onstrate the power of our approach to identify new and biologically
relevant gene regulatory relationships by leveraging multi-omic data.

Key TFsin the GRN

TFsplay a crucial partin regulating cell identity*. To demonstrate the
importance and specificity of TFs within each cell subclass, we utilized
our comprehensive GRN with the Taiji framework". Using the PageRank
algorithm, this framework identifies key TFs by propagating gene and
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regulatory elementinformation on the GRNwith node and edge weights
specific to each cell subclass.

Focusing on the hindbrain (Fig. 5i) and midbrain (Extended Data
Fig.12g) as examples, we discovered key TFs that exhibited highly spe-
cific PageRank scores among cell subclasses within these complex brain
regions. The combination of TF PageRank scores uniquely identified
each cellsubclassinthese regions, aligning with their respective tran-
scription specificities. Notably, the PageRank score was able to capture
the specificity of TFs that were expressed at extremely low levels (Fig. 5i
and Extended Data Fig. 12h), which is probably due to the gene-body
methylation measurements.

Furthermore, we noted multiple instances of TFs within the same
family, such as the RFX family, that displayed distinct cell-type-specific
PageRank scores despite having nearly identical DNA-binding motifs
(Extended Data Fig. 12i and Supplementary Note 5).

The comprehensive GRN and the PageRank algorithm effectively
identified key TFs with high cell-type specificity indiverse brainregions.
Thisapproach generated numerous predictions about TF functionsin
determining cell identity and paves the way for future perturbation
experiments*®,

Epigenetic and RNA isoform heterogeneity

Alternative splicing leads to the production of differentisoforms from
the same gene, and dysfunction of this process in the brain has been
associated with various neurodevelopmental disorders®. Itis regulated
by various RNA-binding proteins and has recently been associated
with DNA methylation®. The diversity of isoform expression has been
reported in several cortical cell types®. However, their diversity ina
considerably wider range of cell types across the entire mouse brain
and their relationship with the epigenome remains to be elucidated.
Toinvestigate these questions, we integrated the snmCand snm3C-seq
datasets with acompanion full-length scRNA-seq (SMART-seq) dataset
from the BICCN, which contains 195,680 cells covering the entire adult
mouse brain® (Methods). This integration enabled us to explore the
intragenic diversity of DNA modification and topology in conjunction
with RNA transcript and exon level measurement at cell-group resolu-
tion (Fig. 6a and Methods).

To exemplify this framework, we first examined the methylation
pattern of the gene encoding neurexin 3 (Nrxn3), a crucial presynaptic
genethat regulates synapse recognition through alternative isoforms®.
We observed that Nrxn3is broadly expressed across neurons, with its
isoforms (a-Nrxn3 and -Nrxn3) showing diverse patterns among cell
subclasses (Fig. 6b). Notably, the expression patterns of these isoforms
also matched with the methylation fraction of single CpGs located
around the Nrxn3 gene body (Extended Data Fig. 13a), with two par-
ticularly highly correlated regions positioned downstream of the first
exon on a-Nrxn3 and B-Nrxn3 (Fig. 6¢c, regions 1and 2, respectively).
Similarly, the neuron-specific antioxidant gene OxrI also exhibited
intragenic methylation heterogeneity that matched the diversity of
several transcripts and exons (Extended Data Fig. 13b).

To systematically analyse this phenomenon, we conducted a
machine-learning-based analysis to quantify the predictability of
alternative splicing using intragenic DNA methylome or chromatin
conformation featuresin each cell group (Methods). Specifically, we
assessed the level of improvement that can be obtained by incorpo-
rating high-resolutionintragenicfeatures to predictisoform expres-
sion levels compared with using whole gene-body measurements as
a proximate averaged activity of isoforms. To that end, we trained
two models for each gene (Fig. 6d): one with the true intragenic fea-
tures and another using within-sample shuffled features that dis-
rupted intragenic correspondence but preserved the sample-level
information for each gene. We calculated PCC scores between
the predicted and true values across cell groups for both models.
The APCC value between the true and shuffled models represented
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Fig. 6| Epigeneticheterogeneity predicts geneisoformdiversity. a, Workflow
fortheintegrative analysis between epigenome and transcriptome datasets.

b, Cell-group-centroids t-SNE plot coloured by Nrxn3 CPM in scRNA-seq (10x)
data, Nrxn3transcript per million (TPM) in SMART-seq (sum up all transcripts),
a-Nrxn3TPM (Ensembl database identifier ENSMUST00000163134) and 8-Nrxn3
TPM (Ensembl database identifier ENSMUST00000110130). ¢, Scatterplots

of the correlation (Corr.) between transcript expression (y axis) and the
methylation level of adjacent single CpG sites (dot) at the Nrxn3gene body.
Thearrows point to two most correlated regions (region 1and region 2). From
toptobottom, the scatterplots show the correlationinformation for CpGmCG
fractions with a-Nrxn3and B-Nrxn3transcript TPM, and the per cent spliced in

the gainin predictability through adding intragenic features (Fig. 6e
and Extended Data Fig. 13c). Many crucial neuronal and synaptic
genes known to express functional alternative isoforms exhibited a
large APCC in their highly variable transcripts and exons (for exam-
ple, Nrxnl, Nrxn2and Nrxn3 (ref. 52), Ntrk2 (ref. 53) and Oxr1 (ref. 54);
Fig. 6fand Extended Data Fig.13d). Notably, chromatin conformation
features demonstrated better overall prediction accuracy than DNA
methylationin these alternatively spliced genes (Fig. 6f and Extended
Data Fig.13c), which is possibly because these features account for
genome 3D interaction, whereas methylation features only consider
1D. This observation aligns with the understanding that many alter-
native splicing events involve nuclear compartmentalization and
long-range genome interactions®.

Finally, the prediction models prioritized specific transcripts and
exons for which alternative usage is more likely under epigenetic regu-
lation. We evaluated several representative examples in the genome
browser, such asthe promoters for a-Nrxn3and B-Nrxn3or the firstexon
of Orx1 (Supplementary Note 6 and Extended Data Fig.13e,f). Together,
theseresults highlight the complexinterplay between epigenetic regu-
lation and alternative splicing, unveiling potential cell-type-specific
regulatory mechanisms contributing to the post-transcriptional diver-
sity of neuronal and synaptic genes in the brain.

(PSI) values of the first exon of a-Nrxn3and S-Nrxn3. Interactive browser for
region lavailable at tinyurl.com/figéc-regionl, and for region 2 at tinyurl.com/
fig6c-region2.d, Schematic of the process for constructing the prediction model
withtrue or shuffled features. For each gene, we used the exon, exon-flanking
regionand intragenic DMRs as the mC features. The 3C features are all the
intragenic highly variable interactions (Methods). e, Scatterplot of the PCC
values between predicted TPM and true TPM for each highly variable transcript
(dot), using methylation features (mCG; left) and chromatin contactinteractions
(3C; right) for prediction. f, Scatterplot of the APCC in mC models (x axis) and
m3C models (y axis) for highly variable transcripts (dot). Top transcripts with
large APCC values are listed by their corresponding gene names.

Discussion

This study presented asingle-cell DNA methylation and 3D multi-omic
atlas of the entire mouse brain. By utilizing methylome-based cluster-
ing and cross-modality integration with additional BICCN companion
datasets®", we established a cell-type taxonomy consisting of 4,673
cell groups and 274 subclasses. Our integrative approach combined
five molecular modalities—gene mCH, DMR mCG, chromatin con-
formation, accessibility and gene expression—to create a multi-omic
genome atlas featuring thousands of cell-type-specific profiles. Fur-
thermore, weidentified 2.6 million DMRs at two clustering granulari-
ties, which offers a large pool of candidate regulatory elements for
various analyses. Notably, the intricate cellular diversity within the
mouse brain exhibited extensive concordance across all molecular
modalities, as evidenced by the aligned cell-type-specific patterns
observed in numerous essential neuronal genes (Extended Data Fig. 5)
and groups of regulatory elements (Extended Data Fig. 6). These find-
ings underscore the fundamental interplay between epigenetics and
transcriptomicsinshapingthe cellular diversity of the brainand serve
asafoundationforincorporating additional complementary molecu-
lar modalities, such as histone modification, 5ShmC, translatome and
proteome, in future analyses. However, the comprehensive scope of
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this study presented challenges in addressing additional biological
aspects such as intrahemispheric differences, individual variability
and sex differences. Future research endeavours are anticipated to
explorethese areas to contribute toa more comprehensive molecular
atlas of the brain.

We also observed extensive spatial diversity encoded within the
DNA methylome across the entire mouse brain. This epigenetic spatial
pattern demonstrated high concordance with spatial transcriptional
diversity, as evidenced through integration with a MERFISH dataset
generated from spatially diverse methylated genes. By leveraging
whole-brain MERIFSH datasets from a companion study®, we achieved
adetailed spatial map of DNA methylation and chromatin conforma-
tion profiles within delicate brain structures. The results offer a valu-
able anatomical context for methylation and 3D multi-omic cell data
and emphasize the considerable influence of epigenetic regulation on
spatial cell organization within the brain.

Building on the foundation of our high-resolution, spatially anno-
tated multi-omicbrain cell atlas, we expanded our investigation to the
mouse genome to explore the underlying gene regulatory diversity
across multiple scales. At the whole-chromosome level, the chromatin
compartment identity of megabase-long regions can undergo signifi-
cantalterations among different brain cell types. These changes were
negatively correlated with DNA methylation, particularly at mCGsites.
Geneswithinthese regions play important partsinneuronal functions,
especiallyinneurodevelopment. We also observed that TAD boundaries
tended toformaround neuronal long genes, with anegative correlation
identified between boundary probability and the transcript body mCH
fraction. Arecent discovery of asimilar gene boundary feature termed
the transcription elongation loop offers a potential explanation for the
higher gene domain boundary probability observed>®. However, the
mechanism by which the diversity of this feature arises across various
brain cell types remains to be elucidated.

We also conducted an unbiased investigation of the chromatin
conformation context surrounding individual genes by performing
ANOVA and correlation analyses using whole-brain populations. This
approach produced gene-specific chromatin conformation landscapes
that offer predictions about the importance of individual chromatin
interaction pixels at 10-kb resolution. These results offer numerous
candidate loci that can potentially elucidate the causal relationships
between DNA methylation statuses and chromatinstructures. It paves
the way for using advanced technologies such as epigenetic editing®’
infuture investigations.

Integrating the extensive gene, DMR and chromatin conformation
dataenabled us to constructacomprehensive GRN for gene regulation
in the mouse brain. This network predicted regulatory relationships
between TFs and their target genes through the precise DMRs contain-
ing TF-binding motifs. Furthermore, numerous TF motifs were strongly
enriched in DMRs, at which mCG fractions correlated positively or
negatively with the TF mCH fraction. This result indicated dominant
activation or repression roles for the corresponding TFs. Personalized
PageRank analysis of the GRN identified the most influential TFs for
eachcellsubclassinsubcortical regions characterized by vast cellular
diversity. The GRN also revealed diverse cell-type-specific patterns
among members of the same TF family. Finally, the high-resolution
methylome and chromatin conformation data enabled us to exam-
ine the relationship between epigenetic modalities and alternative
isoforms. Our findings suggest that extensive intragenic epigenetic
heterogeneity may contribute to the regulation of alternative promoter
and exon splicingin these genes. The predictive model identified top
candidates for further investigation into their causal relationships.

In summary, our analyses underscored the potential of this
whole-brain dataset to characterize cellular, spatial and epigenomic
diversity at high resolution. Furthermore, this resource, as demon-
strated in our web application (mousebrain.salk.edu/), offers valuable
insights into the fundamental gene regulation principles that shape
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the complexity of the mammalian brain and lay the groundwork for a
deeper understanding of the molecular underpinnings of the human
brain.
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Methods

Mouse brain tissues

All experimental procedures using live animals were approved by the
Salk Institute Animal Care and Use Committee under protocol number
18-00006. Adult (P56) C57BL/6) male mice were purchased from the
Jackson Laboratory at 7 weeks of age and maintained in the Salk animal
barrier facility on 12-h dark-light cycles with food ad libitum for up to
10 days (housing conditions: temperature of 21-23 °C, relative humid-
ity of 61-63%). Brains were extracted (between P56 and P63), sliced and
dissected in an ice-cold dissection buffer as previously described’. For
snmC-seq3 samples, brains were sliced coronally at 600-pum intervals
from the frontal pole across the whole brain, producing 18 slices, and
dissected brain regions were obtained according to the Allen Brain Refer-
ence Atlas CCF (version 3)* (CCFv3) (Extended Data Fig. 1a) For all the
snm3C-seq samples, brains were sliced coronally at 1,200 pm, which
resulted inatotal of 9 slices and dissected 2-6 combined brain regions
according to the CCFv3 (Extended Data Fig. 1b). For nucleiisolation,
eachdissected regionwas pooled from3-30 animals, and 2-3 biological
replicas were processed per region. Comprehensive brain dissection
metadataare providedin Supplementary Table 1. No statistical methods
were used to predetermine sample sizes. We empirically determined the
use of two to three biological experiments for all single-cell epigenomic
experimentsto achieve minimum reproducibility for this large-scale pro-
ject.Blinding and randomization was not performed during handling of
thetissue samples. Additionally, all dissected regions were digitally reg-
istered into CCFv3 using ITK-SNAP®° (v.4.0.0) at 25 pm resolution (details
ofthe annotated voxel file available in the Data availability section).

Isolation of nuclei and FANS

For snmC-seq3 samples, the nuclei were isolated and sorted into
384-well plates using previous methods’® with modifications described
in Supplementary Methods (sections I and IlI). In brief, single nuclei
were stained with AlexaFluor488-conjugated anti-NeuN antibody (A60,
monoclonal, MAB377X, Millipore, 1:500 dilution) and Hoechst 33342
(62249, ThermoFisher) followed by FANS using a BD Influx sorter in
single-cell (one drop single) mode. For each 384-well plate, NeuN"*
(488") nuclei were sorted into columns 1-22, whereas NeuN™ (488")
nuclei were sorted into columns 23 and 24, achieving an 11:1 ratio of
NeuN*toNeuN™ nuclei (Supplementary Note 7). The snm3C-seq proto-
colincluded additional in situ 3C treatment steps during preparation
ofthe nuclei, which allowed the chromatin conformation modality to
be captured. These steps were performed using an Arima-3C BETA kit
(Arima Genomics), withadetailed protocol provided in Supplementary
Methods (section II).

Library preparation and Illumina sequencing

Both snmC-seq3 and snm3C-seq samples followed the same library
preparation protocol (detailed in Supplementary Methods). This pro-
tocol was automated using a Beckman Biomek i7 and Tecan Freedom
Evo instrument to facilitate large-scale applications. The snmC-seq3
and snm3C-seq libraries were sequenced on an Illumina NovaSeq 6000
instrument, using one S4 flow cell per 16 384-well plates and using
150 bp paired-end mode. The following software were used during this
process: BD Influx (v.1.2.0.142; for flow cytometry), Freedom EVOware
(v.2.7;for library preparation), lllumina MiSeq control (v.3.1.0.13) and
NovaSeq 6000 control (v.1.6.0/RTA, v.3.4.4; for sequencing), and Olym-
pus cellSens Dimension 1.8 (for image acquisition).

Mapping and primary QC

The snmC-seq3 and snm3C-seq mapping was conducted using the
YAP pipeline (cemba-data package, v.1.6.8) as previously described®.
Specifically, the main mapping protocolincluded the following steps:
(1) demultiplexing FASTQ files into single cells (cutadapt®, v.2.10);
(2) read-level QC; (3) mapping (one-pass mapping for snmC, two-pass

mapping for snm3C) (bismark®,v.0.20; bowtie2 (ref. 63),v.2.3); (4) BAM
file processing and QC (samtools®, v.1.9; Picard, v.3.0.0); (5) methyl-
ome profile generation (allcools, v.1.0.8); and (6) chromatin contact
calling (snm3C-seq only). Snakemake® pipeline files with detailed
mapping steps are provided in the Code availability section. All reads
were mapped to the mouse mm10 genome. The gene and transcript
annotation used in this study was based on a modified version of the
GENCODE vm23 GTF file generated by the BICCN consortiuminaccord-
ance with a previous study®.

Primary QC for DNA methylome cellsincluded the following criteria:
(1) overallmCCClevel of <0.05; (2) overallmCH level of <0.2; (3) overall
mCG level of >0.5; (4) total final reads of >500,000 and <10,000,000;
and (5) bismark mapping rate of >0.5. Note that the mCCC level esti-
mates the upper bound of the cell-level bisulfite non-conversionrate.
Additionally, we calculated lambda DNA spike-in methylation levels to
estimate the non-conversion rate for each sample. All samples dem-
onstrated alow non-conversion rate (<0.01; Extended Data Fig. 2i).
We chose loose cut-offvalues for the primary filtering step to prevent
potential cell or cluster loss. The clustering-based QC described below
accessed potential doublets and low-quality cells. For the 3C modal-
ity in snm3C-seq cells, we also required cis-long-range contacts (two
anchors >2,500 bp apart) >50,000.

Analysis infrastructures

The whole-brain dataset comprised nearly 0.5 million single-cell or
5,000 pseudo-bulk mC profiles and 0.2 million single-cell or 2,500
pseudo-bulk 3C profiles. The dataset size was much larger than pre-
vious bulk and single-cell studies of mC or 3C"’. To enable efficient
whole-brain data analysis, we formatted the entire multidimensional
epigenomicdatainto three primary tensor datasets and used them as
inputs for analysis at two different stages.

The first stage was cellular analysis. We used a cell-by-feature tensor
called methylome cell dataset (MCDS) to carry out methylome-based
clustering and cross-modality integration, as illustrated in Figs. 2
and 3. Here we focused on individual cells with aggregated genomic
features, such as kilobase chromosome bins and gene bodies. This
analysis enabled us to aggregate single-cell profilesinto pseudo-bulk
levels by clustering and annotation. The pseudo-bulk merge increased
genome coverage while eliminating the need to frequently access hun-
dreds of terabytes of single-cell files in the subsequent analysis stage.

The second stage was genomic analysis, for which we used a
pseudo-bulk-by-base tensor for mC, called base-resolution dataset
(BaseDS), and a pseudo-bulk-by-2D-genome tensor for 3C, termed
cooler dataset (CoolDS), to perform methylome and chromatin confor-
mation analysis at flexible genomic resolutions, as depicted in Figs. 4-6.
These pseudo-bulk tensors were generated at cell-group (thousands of
profiles) and subclass (hundreds of profiles) levels to support multiple
cellular granularities required by different analyses.

The large tensor datasets were stored using the chunked and com-
pressed Zarr format®®, hosted within the object storage of the Google
Cloud Platform. Data analysis was conducted using ALLCools’, Xarray®’
and dask®® packages. To facilitate large-scale computation, the Snake-
make package® was used to construct pipelines, whereas the SkyPilot
package®® was utilized to set up cloud environments. Additionally, the
ALLCools package (v.1.0.8) was updated to perform methylation-based
cellular and genomic analyses, and the scHiCluster” package (v.1.3.2)
was updated for chromatin conformation analyses. In the Data and
Code availability sections, we provide information for these tensor
storage and reproducibility-related details (package version, analysis
notebook and pipeline files). For simplicity, the description below
focused mainly on key analysis steps and parameters.

Methylome clustering analysis
After mapping, single-cell DNA methylome profiles of the snmC-seq
and snm3C-seq datasets were stored inthe “all cytosine’ (ALLC) format,



atab-separated table compressed and indexed by bgzip/tabix™. The
‘generate-dataset’ command in the ALLCools package helped gen-
erate a methylome cell-by-feature tensor dataset (MCDS). We used
non-overlapping chromosome 100-kb (chrom100k) bins of the mm10
genome to perform clustering analysis; gene body regions +2 kb for
clustering annotation and integration with the companion transcrip-
tome dataset; and non-overlapping chromosome 5-kb (chromS5k) bins
forintegration with the chromatinaccessibility dataset. Details about
the integration analysis are described below.

Pre-clustering. We performed two iterative clustering analyses
for both the snmC and snm3C datasets. The first was a four-round
pre-clustering step for QC purposes. The pre-clusters defined in this
round contained potential doublets or low-quality cells (corresponding
todebris or debris clumpsinsorting). We started with all cells passing
the primary QC filters and used the plate-normalized cell coverage
(PNCC) metric to mark problematic pre-clusters. This metric was cal-
culated using the finalmCreads of each cell divided by the average final
reads of cells from the same 384-well plate. We reasoned that cells at
the same plate underwent all the library preparation steps inside the
same PCR machine, thereby sharing the closest batch conditions. We
observed some pre-cluster aggregating cells mostly showing extreme
PNCC values (<0.5-fold or >2-fold) compared with most other clusters,
which is a hallmark of problematic cells (Extended Data Fig. 2i). For
eachpre-cluster, we performed a permutation-based statistical test to
callthis abnormality. First, we randomly sampled null-population cells
with the cluster size, stratified on sample composition 10,000 times.
We then calculated P values for the observed PNCC mean (two-tailed
test, larger or smaller) and standard deviation (s.d., one-tailed test,
larger) compared with the null PNCC mean and s.d. distribution. After
calculating the FDR using the Benjamini-Hochberg procedure’, we
marked pre-clusters as low-quality with absolute(log,(PNCC)) > 0.8
and FDR < 0.01 (for mean or s.d.). Intotal, 8,979 (2.77%) snmC and 737
(0.38%) snm3C cells were removed from further analyses.

Methylome clustering. We then performed iterative clustering using
the DNA methylome to determine whole-brain cell clusters. For both
thesnmC and snm3C datasets, we performed four rounds of iteration
with themCH and mCGfractions of chrom100k matrices. The clustering
analysis within each iteration has been described ina previous study”.
We also provide information about annotated Jupyter notebooksinthe
Code availability section, detailing the functions and parameters used
in each step. Most functions were derived from the allcools’®, scanpy”
andscikit-learn™ packages. In summary, asingle iteration consisted of
the following main steps:

1) Basicfeaturefiltering based on coverage and the ENCODE blacklist”.

2) Highly variable feature (HVF) selection.

3) Generation of posterior chrom100k mCH and mCG fraction matri-
ces, asused in the previous study’ and initially introduced in ref. 76.

4) Clustering with HVF and calculating cluster enriched features
(CEFs) of the HVF clusters. This framework was adapted from
the cytograph2 (ref. 37) package. We first performed clustering
based on variable features and then used these clusters to select
CEFs with stronger marker gene signatures of potential clusters.
The concept of CEF was introduced in ref. 77. The CEF calling and
permutation-based statistical tests wereimplementedin ALLCools.
clustering.cluster_enriched_features, for which we selected for
hypomethylated genes (corresponding to highly expressed genes)
in methylome clustering.

5) Calculate principal components (PCs) in the selected cell-by-CEF
matrices and generate the t-SNE”® and UMAP”’ embeddings for visu-
alization. t-SNE was performed using the openTSNE® package using
previously described procedures®.

6) Consensus clustering. We first performed Leiden clustering®?200
times, using different random seeds. We then combined these result

labels to establish preliminary cluster labels, which were typically
larger than those derived from a single Leiden clustering owing to
itsinherent randomness®. Following this, we trained predictive
modelsinthe PCspaceto predictlabelsand compute the confusion
matrix. Finally, we merged clusters with high similarity to mini-
mize confusion. The cluster selection was guided by the R1and R2
normalization applied to the confusion matrix, as outlined in the
SCCAF package®.

The iterative process of training and merging continued until the
performance of the model on withheld test data achieved a specified
accuracy (0.95 for the first round, >0.9 for all subsequent rounds).
The resolution parameter of the Leiden algorithm significantly influ-
enced cluster number and randomness (that is, variation in cluster
membership asrandomseeds changed). Therefore we used relatively
smallresolution values during each clustering stage (0.25 for the first
iteration, 0.2-0.5for the remainingiterations; the Scanpy defaultis1).
Thisapproach substantially reduced randomness while also underes-
timating cluster numbers. However, during the four rounds of itera-
tion, any under-split clusters were further delineated in subsequent
rounds. This framework was incorporated in ALLCools.clustering.
ConsensusClustering.

For each clustering round, we assessed whether a cluster required
additional clustering in the nextiteration based on two criteria: (1) the
final prediction model accuracy exceeded 0.9, and (2) the cluster size
surpassed 20. In total, we executed four iterative clustering rounds,
which produced the following cluster numbers: 61 (L1),411(L2),1,346
(L3)and 2,573 (L4). We further separated cells within L4 clustersin the
final round by considering their brain dissection region metadata. We
firstdivided all dissection regions with more than 20 cellsinan L4 clus-
ter while combining other regions with fewer than 20 cells with their
nearest regions based on the average Euclidean distance inthe PC space
of L4 clustering. The final 4,673 cell groups combined L4 clusters and
dissectionregions. Incorporating dissection region data, which offered
insights into the physical location of a cell, enhanced the flexibility of
the analysis, such as enabling spatial region comparisons. Furthermore,
we acknowledged that generating pseudo-bulk profiles from cell-level
data demanded substantial computational resources. Aggregating
cells at a higher granularity initially facilitated more straightforward
merging later, such as combining them at the subclass level during
subsequent analyses.

Cluster-level DNA methylome analysis
After clustering analysis, we merged the single-cell ALLC files into
pseudo-bulk level using the allcools merge-allc command. Next, we
used allcools generate-base-ds to generate the BaseDS from multiple
ALLC files. The BaseDS was a Zarr dataset storing sample-by-base ten-
sors for the entire dataset and allowed querying cytosines by genome
positionand methylation context (CpG and CpH). Next, we performed
DMR calling as previously described®®%* using the ALLCools.dmr.call_
dms_from_base_ds and ALLCools.dmr.DMSAggregate functions that
were reimplemented for BaseDS. In brief, we first calculated CpG dif-
ferential methylated sites using a permutation-based root mean square
test®*. The base calls of each pair of CpG sites were combined before
analysis. We then merged the differential methylated site into a DMRif
they were within250 bp and had PCC > 0.3 across samples. Because the
genome coverage was unbalanced between samples, we proportionally
downsampled the coverage at each base in each sample to base call
coverage of 50 and a total base call coverage across samples of 3,000.
We applied the DMR calling framework across subclasses of the whole
mousebrainand cell clusters within each major region. The two sources
of DMRs were combined to capture the CpG fraction diversity in dif-
ferent cell-type granularities. There were around 10 million unique
yet overlapping DMRs after the combination. We then merged the
DMRsto obtain afinal non-overlapping DMRlist (bedtools merge-d 0),
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whichincluded 2.56 million DMRs. We reportall the overlapping DMRs
and non-overlapping DMRs in the Data availability section. In the sub-
sequent analysis, when DMR was used to calculate correlation or scan
motif occurrence, we started with the 10 million overlapping DMRs.
We sselected the DMR with the strongest value (that is, most significant
PCC or highest motif score) among the overlapping ones. The DMRs
in the final results were non-overlapping.

Atlas-level dataintegration and cluster annotation

We established a highly efficient framework based on the Seurat R
package® integration algorithm to perform atlas-level data integra-
tion with millions of cells. The integration framework consisted of
three major steps to align two datasets onto the same space: (1) using
dimension reduction to derive embedding of the two datasets in the
same space; (2) using canonical correlation analysis (CCA) to capture
the shared variance across cells between datasets and find anchors as
five mutual nearest neighbours between the two datasets; (3) aligning
the low-dimensional representation of the two datasets together with
the anchors. We used genes tointegrate methylome and transcriptome
profiles, and chromS5k bins to integrate methylome and chromatin
accessibility profiles.

Integration of methylome and transcriptome profiles. Tointegrate
oursnmC-seq dataset with scRNA-seq data®, the gene expression levels
of RNA cells were normalized by dividing the total unique molecular
identifier count of the cell and multiplying the average total unique
molecularidentifier count of all cells and then log-transformed. For mC
cells, the posterior gene-body mClevel was used. The cluster-enriched
genes (CEGs, similar to CEFs described above) were identified in each
cellsubclass and cluster using mC data. We checked the variance of the
mC CEGs among the mC cells and RNA cells and only used the CEGs with
mC variance values of >0.05 and expression variation values of >0.005
for the analyses. We reversed the sign of mC levels before integration
owingtothe negative correlation between gene-body DNA methylation
and gene expression (Fig. 1d). We fit a principal component analysis
(PCA) model with the mC cells and transformed the RNA cells with the
model. The PCs were normalized by the singular value of each dimen-
sion to avoid the embedding being driven by the first few PCs.

To find anchors between mC and RNA cells, we first Z-score-scaled
the mC matrix and expression matrix of CEGs across cells, and the
resulting matrices were represented as X (mC: cell-by-CEG) and Y (RNA:
cell-by-CEG), respectively. CCA was used to find the shared low-
dimensional embedding of the two datasets, which was solved using
singular value decomposition of their dot product USV" =XY”. Uand
Vwere normalized by dividing the L2-norm of each row, and were used
tofind five mutual nearest neighbours asanchors and to score anchors
using the same method as Seurat™°.

The original CCA framework of Seurat (v.3) is difficult to scale up to
millions of cells owing to the memory bottleneck, whereby the mC
cell-by-RNA matrix was used as the input to CCA. To handle this limita-
tion, we randomly selected 100,000 cells from each dataset (X,
andY,) as areference to fit the CCA and transformed the other cells
(X4ry and ) onto the same CC space. Specifically, the canonical
correlation vectors (CCVs) of X, and Y,¢ (denoted as U,; and V,.¢,
respectively) were computed using UV = X,o¢Y Top, Where Ul (U, s = 1

and V!¢V, c=1. Then the CCV of Xyry and ¥y, (denoted as U, and

ry qry qry

Vary» r€spectively) were computed using Uqry:ery(Yfefl/ref)/S and
Vary = Yary(X T.tU.e)/S, respectively. The embeddings from the reference

and query cells were concatenated for anchor identification.

The PCs derived from the first step were then integrated using the
same method as Seurat®® through these anchors. Rather than working
onthe raw feature space in Seurat, our integration step projected the
PCs of scRNA-seq (query, denoted as U,) to the PCs of the snmC-seq
(reference, denoted as U,,) while keeping the PCs of the reference
dataset unchanged. This approximation considerably reduced the

time and memory consumption for computing the corrected
high-dimensional matrix and redoing the dimension reduction. For
anchor kpairingmCcell k,,andRNA cellk,, B, = Unny, =~ Umry WS consid-
ered the bias vector between mC and RNA. Then foreachRNA cell as a
query, weused its 100 nearest anchors to compute a weighted average
bias vector representing the distance to move a RNA cell into the mC
space. The distance between the query RNA cell and an anchor was
defined as the Euclidean distance on the RNA dimension reduction
space between the query RNA cell and the RNA cell of the anchor. The
weights for the average bias vector depended on the distances between
the query RNA cell and the anchors, for which close anchors received
high weights.

Integration of methylome and chromatin accessibility profiles.
PCA on gene-body signals was insufficient to capture the open chro-
matin heterogeneity in snATAC-seq data'®*, Latent semanticindexing
(LSI) applied to binarized cell-by-5-kb bin matrices had demonstrated
promising results for snATAC-seq data embedding and clustering®.
Therefore, to align snATAC-seq datawithsnmC-seq dataatahighreso-
lution, we developed an extended framework based on the previously
described approach® to utilize binary sparse cell-by-5-kb bin matrices
asinput.

Wefirst derived a cell-by-5-kb bin matrix to represent the snmC-seq
data. Inasingle celli, we modelled its mCG base call M; for a 5-kb bin
using abinomial distribution M; - Bi(cov,-j, ) whereprepresented the
globalmCG level of the cell (and ‘~’ indicates ‘distributed as’). We then
computed P(M; > mc) as the hypomethylation score of cell i at binjj.
The less likely to observe smaller or equal methylated base calls, the
more hypomethylated the bin was. We next binarized the hypometh-
ylation score matrix by setting the values greater than 0.95as 1, other-
wise 0, to generate a sparse binary matrix A. We selected the columns
withmorethanfive non-zero values, then computed the columnsum of
the matrix(colsum; = PR cells A;)and keptonly the bins with Z-scored
log,(colsum) values between -2 and 2. The snATAC-seq data were also
represented inabinary cell-by-5-kb bin matrix, where 1represented at
least oneread detectedina5 kbbininacell. The features werefiltered
inthe same way as the mC matrix, and the bins remainingin both data-
sets were used for further analysis.

LSIwithlog term frequency was used to compute the embedding.
Term frequency-inverse document frequency (TF-IDF) transforma-
tion was applied to convert the filtered matrix B to X. Specifically, B
was normalized by dividing the row sum of the matrix to generate the
term frequency matrix TFreq, and further converted to X by multiply-
ing the inverse document frequency vector IDF. )

X; = log(TFreq,;x100,000 +1) x IDF, where TFreq; = B;/3 3" B,
and IDF; = log(1+ no. cells/ y oy cells B;;). Theembedding of single cells
Uwasthen computed using singular value decomposition of X, where
X=USVT. Wefitthe LSImodel with mCG data B,, to derive U,. Theinter-
mediate matrices S and Vand vector IDF were used to transform the
ATAC data B, to U,, by
By
TFreq, . =

ajj v No.bins
i yNe g,

X, = Iog(TFreqa[_j x100,000 +1) x IDF;

a

U,=X,V/S

CCA was also performed with the downsampling framework using
100,000 cells from each dataset as areference and the others as query,
but taking the TF-IDF transformed matrices as input. The query cells
were projected to the same space using the IDF and CCV of the refer-
ence cells. Specifically, B,, .and B, .wereconvertedto X, .andX, .

respectively, with TF-IDF, and the CCVs (denoted as U,.; and V) were



computed using Uy SV fer = X, . Xaroe- ThEN Bpn, and B, were con-
verted to Xingry and Xagry” respectively, with TF-IDF using the IDF of
reference cells, and the CCVs (denoted as U,,, and V) were compu-

qry qry
tedusing Uy, =X;, (X Vie)/S and Vg, =X, (X], Usp)/S. The sub-

ry ry
sequent steps to find anchors and align U,, and U, were the same as

integrating the mC and RNA data.

Iterative integration group design. Similar to the clustering analysis,
we integrated two datasets iteratively to match cell or cell clusters
at the highest granularity. We first separated the pass-QC datasets
into integration groups based on independent cell-type annotation
(described above or provided by data generators) and dissection infor-
mation. For instance, non-neuronal cells, IMNs and granule cells (‘DG
Glut’and ‘CB Granule Glut’) were separated from neurons because they
were showing large global methylation differences from other neurons
and unbalanced in cell numbers across datasets owing to different
sampling and sorting strategies. Within each integration group, we
performed theintegrationiteratively. We used the co-clustering from
theintegrated low-dimensional space tomatch cells or clusters between
the two datasets (see below). We then performed the next round of
integration until the matched cells or clusters fulfilled the stopping
criteria. We list details about each pair of iterative integrations below.
The resulting cluster map between datasets and mC and m3C cluster
annotation is provided in Supplementary Table 4. Information about
aset of Jupyter Notebooks for a single integration process between
each pairis provided in the Code availability section.

Integration between snmC-seq and scRNA-seq or SMART-seq
datasets. We used the gene body +2 kb as features to integrate mC
and RNA datasets®, mapping the RNA clusters to mC cell groups. We
used the mCG fraction of the gene bodies for non-neuronal cells, IMNs
and granule cells and the mCH fraction of the gene bodies for other
neurons. In each iteration, we calculated a confusion matrix between
4,673 mC cellgroups and 5,200 RNA clusters (provided by datagenera-
tors) using the overlap score as previously described®®. We then built
aweighted graph using the confusion matrix as the adjacency matrix
and performed aLeiden clustering (resolution =1) tobicluster mC and
RNA clusters. This step puts similar mC and RNA clustersinto integra-
tion groups based on their overlap score. The RNA and mC clustersin
the same integration group were further integrated to match at finer
granularity inthe next iteration unless any of the following stop criteria
were met: (1) there was only one integration group from this round;
(2) there wasonly onemC or RNA cluster inthe integration group; (3) the
mC cell number was <30; or (4) the RNA cell number was <100 for the
scRNA-seqdataset or <30 for the SMART-seq dataset. After integration,
we obtained amC to RNA cluster map for each mC cell group, which
we used as the reference to annotate cell subclasses and remaining
hierarchies in the transcriptomic taxonomy. We also evaluated the
spatial location and marker genes (neurotransmitter-related genes or
other markers provided in the transcriptome annotation). We manually
resolved conflicts when the RNA clusters corresponded to more than
one subclass by checking the dissection metadata and marker genes.
We combined all RNA cells assigned to eachmC cell group to generate
the matched transcriptome profile.

Integration between snmC-seq and snATAC-seq datasets. The
snmC-seq dataset and snATAC dataset" shared the same dissection
tissues. We utilized this experimental design to integrate cells from
the mC and ATAC datasets within each major region. Of note, the
snmC-seqdatawere enriched for NeuN* by FANS, whereas the snATAC
dataunbiasedly profiled all cells. Therefore, we also separated neurons
from non-neuronal cells and IMNs to balance the integration, espe-
cially in the first round. We used the mCG hypomethylation score of
chromosome non-overlapping 5-kb bins to perform the integration.
The cluster assignment and stop criteriawere similar tothe mC-RNA

integration method. The alignment score (Extended Data Fig. 6a) was
calculated as previously described®®, using k =1% cells of the dissec-
tionregion or k=20, whichever is larger. We combined all ATAC cells
assigned to each mC cell group to generate the matched chromatin
accessibility profile.

Integration between snmC-seq and snm3C-seq datasets. We used
the non-overlapping chromosome 100-kb bin as features to integrate
snmC-seq and snm3C-seq datasets. The cluster assignment and stop
criteriawere similar to the mC-RNA integration method. After integra-
tion, we also annotated the snm3C cell groups with the transcriptomic
taxonomy.

MERFISH experiment

MERFISH gene panel design. The genes in the GTF file were first fil-
tered on the basis of lengths of >1 kb. We then selected genes using
methods from a previous study? but used the snmC-seq dataset
and gene-body mCH fraction to perform the calculation. In brief, we
used two approaches to prioritize genes. The first approach was to
use mutual information between gene-body mCH fraction and neu-
ron subclass labels, which aims to select genes that are differentially
methylated between groups of cell subclasses. The second approach
was to perform pairwise differentially methylated gene analysis (ALL-
Cools.clustering.PairwiseDMG) among clusters within the same major
regionand select genes being identified as DMGs in most cluster pairs.
For the first approach, we selected the top 100 genes. We selected the
top 50 genes from each major region for the second approach. Owing
to the overlaps, there were 325 genes after this selection. In addition
to the cell-type markers, we selected spatial markers by calculating
the mutual information between the major region label of a cell and
the mCH fraction across the brain, or between the dissection region
label and mCH fraction within each major region. We added another
175 non-overlapping genes to obtain a total of 550 genes. We then per-
formed the same analysis using a previously published scRNA-seq
dataset®to obtain the RNA-based prioritization lists. We selected 500
final genes asthe gene panel based onrankin the RNAlist to ensure that
these genesarealso expressed and highly diverse in the transcriptome.
Encoding probes for these genes were designed and synthesized by
Vizgen (Supplementary Table 6).

MERFISH tissue preparation and imaging. Fresh P56-P63 whole
mouse brains were sliced coronally at 1,200-pm intervals, and each
slice was then embedded in OCT, rapidly frozen in isopentane and
dryice, and stored at —80 °C until ready for slicing. Coronal section
(12-pmthick) were obtained from each OCT-blocked tissue using a Leica
CM1950 cryostat, immediately fixed in 4% formalin (warmed to 37 °C)
for 30 min, and permeabilized in 70% ethanol following the manufac-
turer’s procedures. Sample preparation, including probe hybridization
and gel embedding, was performed using a sample preparation kit
from Vizgen (10400012) following the manufacturer’s protocol. Each
section wasimaged usinga MERSCOPE 500 Gene Imaging kit (Vizgen,
10400006) on a MERSCOPE (Vizgen).

MERFISH data preprocessing and annotation. MERFISH data analysis,
includingimaging, spot detection, cell segmentation and cell-by-gene
matrix generation, was conducted using MERSCOPE instrument soft-
ware (v.2023-01). Weremoved abnormal cells (artificial segmentation
and doublets) fromthe cell-by-gene matrix ineach experimentbased on
the following criteria: (1) cell volume <30 pm® or>2,000 pm?; (2) total
RNA count <10 or>4,000; (3) total RNA counts normalized by cell vol-
ume <0.05 or >5; (6) total gene detected <3; and (5) cells with >5 blank
probes detected (negative control probe included in the gene panel).
Wethenintegrated the pass-QC MERFISH cells with the scRNA-seq data-
sets® to annotate the MERFISH cells with transcriptome nomenclature
using the ALLCools integration functions described above.
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Integration between MERFISH and snmC and snm3C datasets. We
integrated the snmC and snm3C datasets with the MERFISH dataset to
evaluate whether the spatial pattern observed inthe DNA methylome
matched the spatial diversity observed in the gene expression data.
Integration was similar to the mC-RNA integration described above.
To utilize the dissection region metadata, we grouped the snmC-seq
and snm3C-seq data by the slice and integrated them with a matched
MERFISH slice. We also separated neurons and other cells, similar to the
mC-RNA integration method described above. We used the 500 genes
in the MERFISH gene panel to perform the integration. After integra-
tion, we imputed the spatial location of each methylation nucleus on
the integrated low-dimensional space. We calculated the ten nearest
MERFISH neighbours for each mC nucleus in each integration group.
We assigned the coordinate of centroids of these MERFISH cells as the
mC spatial location of the nucleus.

Cell and cluster-level chromatin conformation analysis
Generation of the chromatin contact matrix and imputation. After
snm3C-seq mapping, we used the cis-long range contacts (contact
anchors distance of >2,500 bp) and trans contacts to generate
single-cell raw chromatin contact matrices at three genome resolu-
tions: chromosome 100-kb resolution for the chromatin compartment
analysis; 25-kb bin resolution for the chromatin domain boundary
analysis; and 10-kb resolution for the chromatin interaction analysis.
The raw cell-level contact matrices were saved in the scool format®.
We then used the scHiCluster package (v.1.3.2) to perform contact
matrix imputation as previously described. In brief, the scHiCluster
imputed the sparse single-cell matrix by first performing a Gaussian
convolution (pad =1) followed by using a random walk with restart
algorithm on the convoluted matrix. For 100-kb matrices, the whole
chromosome was imputed, whereas for 25-kb matrices, we imputed
contacts within 10.05 Mb. For 10-kb matrices, we imputed contacts
with 5.05 Mb. The imputed matrices for each cell were stored in cool
format®. The cell matrices were aggregated into cell groups or subclass
levels identified in the previous section. These pseudo-bulk matrices
were concatenated into a tensor called CoolDS and stored in Zarr for-
mat for brain-wide analysis.

Compartment analysis. We used the imputed subclass-level contact
matrices at the 100-kb resolution to analyse the compartment. We first
filtered out the 100-kb bins that overlapped with ENCODE blacklist
(v.2)” or showed abnormal coverage. Specifically, the coverage of bin
ion chromosome c (denoted as R.;) was defined as the sum of the i-th
row of the contact matrix of chromosome c. We only kept the bins with
coverage between the 99th percentile of R.and twice the median of R,
minus the 99th percentile of R.. Contact matrices were normalized by
distance, and the PCC of the normalized matrices was used to perform
the PCA*. The IncrementalPCA class from the sklearn package™, which
allows fitting the model incrementally, was used to fit a single PCA
model incrementally for each chromosome using all the cell subclass
matrices. We then transformed all the cell subclasses with the fitted
model so that the PCs for each subclass were transformed from the
same loading and eased the cross-sample correlation analysis. We also
calculated the correlation between PC1 or PC2 and 100-kb bin CpG or
gene density. We use the component with higher absolute correlation
asthe compartment score and assigned the compartment with higher
CpG density with positive scores (A compartment).

Compartment score and mC fraction correlation. We first performed
quantile normalization along subclasses using the Python package
gnorm (v.0.8.0)% to normalize the mC fractions and compartment
scores. We then calculated the PCCbetween the compartment scores
of non-overlapping chromosome 100-kb bins, with the correspond-
ing mCH or mCG fraction of the bin across cell subclasses. Because
the negatively correlated compartment score of the bins had amuch

higher standard deviation among cell types (Fig. 4c), we selected the
300 most negatively correlated chrom100k bins and used their over-
lapped genes to perform gene ontology (GO) enrichment analysis
(Fig. 4d) using Enrichr’®. We randomly selected gene-length-matched
background genestoadjust the long-gene biasinall the GO enrichment
analyses®. To investigate the developmental relevance indicated by
the GO enrichment result, we used the developmental mouse brain
scRNA-seq atlas® at the subtype level (approximate granularity of
subclassin this study). Genes overlapping 300 of the most negatively
correlated bins, 300 of the mostly positively correlated binsand 300
ofthelow-correlation bins were used to construct the plotin Extended
DataFig. 9d.

Domain boundary analysis. We used the imputed cell-level contact
matrices at25-kb resolution to identify domain boundaries within each
cell using the TopDom algorithm®. We first filtered out the bounda-
ries that overlapped with ENCODE blacklist (v.2)”. The boundary
probability of a bin was defined as the proportion of cells having the
bin called a domain boundary among the total number of cells from
the group or subclass. To identify differential domain boundaries
between n cell subclasses, we derived an n x 2 contingency table for
each 25-kb bin. The values in each row represent the number of cells
from the group that has the bin called aboundary or not as abound-
ary. We computed the Chi-square statisticand P value for each bin and
used FDR <1x 10 as the cut-off for calling 25-kb bins with differential
boundary probability.

Domain boundary probability and transcript body mC fraction
correlation. We first performed quantile normalization along sub-
classes using the Python package qnorm (v.0.8.0)% to normalize the
transcript body mC fractions and chromosome 25-kb bin boundary
probabilities. We then calculated the PCC between the differential
boundary probabilities of 25-kb bins with the transcript body mCH
and mCG fractions. We grouped transcripts with >90% overlap within
ageneand used theirlongest range. We calculated the transcript-body
mCH and mCG fraction at the subclass level for each transcript. We
then calculated the PCC between the mC fractions and boundary
probabilities of bins overlapping the transcript body +2 Mb. We used a
permutation-based test to estimate the significance of the correlation®.
Specifically, we shuffled the boundary probability and mC fraction val-
ueswithineachsample (subclass), disrupting the genome relationship
between the bins while preserving the sample-level global difference.
We calculated the PCC using the shuffled matrices 100,000 times and
used anormal distribution to approximate the null distribution for more
precise Pvalue estimationin FDR correction. We thenused FDR <1x 1073
asthe significance cut-offvalue for each PCCbetween atranscriptand
a25-kbbin. InFig. 2g, we used deeptools® (v.3.5.1) to profile the bound-
ary probability at transcript £2 Mb 25-kb bins. In Fig. 2h and Extended
Data Fig. 2f-h, we selected the top positively correlated bin and top
negatively correlated bin for eachlong gene (transcript body length of
>100 kb) and performed the GO analysis using length-matched back-
ground genes, as described above (Extended Data Fig. 2h).

Highly variable interaction analysis. We used the imputed cell-level
contactat the 10-kb resolution to perform the highly variable interac-
tionanalysis, for which the interaction represented one 10 kb-by-10 kb
pixelin the conformation matrix. We filtered out any interactions that
had one of the anchors overlapping with ENCODE blacklist (v.2)”.
We then performed ANOVA for each interaction to test whether the
single-cell contact strength of that interaction displayed significant
variance across subclasses. The F statistics of ANOVA represented
an overall variability of the interaction across the brain. To select
highly variable contacts, we used F > 3 as the cut-off value, which was
decided by visually inspecting the contact maps as well as fulfilling
the FDR < 0.001 criteria. ANOVA was only performed on interactions



for which anchor distance was between 50 kb and 5 Mb, given that
increasing the distance only led to a limited increase in the number
of significantly variable and gene-correlated interactions (Extended
DataFig.10b).

Interaction strength and mC fraction correlation. To investigate the
relationship between gene status and the surrounding chromatin con-
formation diversity, we first performed quantile normalization along
subclasses using the Python package qnorm (v.0.8.0)% to normalize the
transcriptbody mCH fractions and contact strengths of highly variable
interactions. We then calculated the PCC between the transcript body
mCH fraction and the highly variable interactionsif any anchor of the
interactions had overlapped with the gene body. Similar to the domain
boundary correlation analysis, we shuffled the contact strengths and
mCH fractions within each sample and used the shuffled matrix to
calculate null distribution and estimate FDR. We select FDR < 0.001
as asignificant correlation.

GRN analysis

We presented aframework for building a GRN based on the DNA methy-
lome and chromatin conformation profiles at the cell subclass level.
We used 212 neuronal cell subclasses requiring themto have >100 cells
inboth snmC and snm3C datasets. Notably, the same framework can
beapplied to other brain cell types or asubset of cells (such as certain
brainregions or cell classes based on specific questions). The GRN was
composed of relationships between TFs, their potential binding ele-
ments (represented by DMRs) and downstream target genes. Pairwise
edges were constructed between DMRs and target genes (DMR-target),
TFs and target genes (TF-target) and TFs and DMRs (TF-DMR). The
basis of each pairwise edge was the correlation between the methyla-
tion fractions of the two genome elements across cell subclasses. We
performed quantile normalization along subclasses using the Python
package qnorm (v.0.8.0)% to normalize the two matrices involved in
calculating the correlation. Gene-body mCH fraction was used as a
proxy for TF and target gene activity, and mCG fractions were used to
represent DMR status. Variable genes and TFs were selected if they were
identified as CEFs (described in the clustering steps) in any subclass.

Forthe DMR-target edges, we selected the highly variable and posi-
tively correlated chromatin contact interactions of the gene based
ontheresultsin the previous section, and included DMRs situated in
any anchor regions of the interactions. We then calculated the PCC
between DMR mCG and gene mCH fraction. For a group of overlap-
ping DMRs, we selected the one with the highest absolute PCC value to
represent that group, making the edges of the DMRs non-overlapping.
Similar to the domain boundary and interaction correlation analysis,
we shuffled the DMRs and genes within each sample to calculate the
null PCC and to estimate the FDR. We filtered DMR~-target edges with
FDR < 0.001. For the TF-target and TF-DMR edges, we calculated the
PCCbetween TF and all CEF genes or between TF and all DMRs, respec-
tively, and applied the same FDR < 0.001 cut-off value to filter edges.
Forthe TF-DMR edge, we further performed motif enrichment analysis
on the significantly correlated DMRs (explained in the next section).
We only kept TF-DMR edges when the TF had any motif significantly
enriched in the correlated DMR set, and the particular DMR had that
motif occurrence.

After obtaining the three pairwise edges, we intersected the edges
togetherintotriplesbased onshared genes (including TFs and targets)
and DMRidentifiers. We calculated a final edge score S, = 4/|S,5pS:S4l
for each triple by taking the geometric mean of the absolute values of
four correlations, where S, was the correlation of the DMR-target edge,
S, was the correlation of the TF-DMR edge, S. was the TF-target edge
and S wasthe correlation between target gene mCH fraction and gene-
DMR contact strength. If multiple gene-correlated interactions had
anchors overlapping with DMR and gene body, we selected the one
with the lowest negative correlation.

DMR motif scan and TF motif enrichment analysis. We used an
ensemble motif database from SCENIC+ (ref. 43), which contained
49,504 motif position weight matrices (PWMs) collected from 29 sourc-
es. Redundant motifs (highly similar PWMs) were combined into 8,045
motif clusters through clustering based on PWM distances calculated
using TOMTOM??by the authors of SCENIC+ (ref. 43). Each motif cluster
was annotated with one or more mouse TF genes. To calculate motif
occurrence on DMRs, we used the Cluster-Buster® implementation
in SCENIC+, which scanned motifs in the same cluster together with
hidden Markov models.

To perform motifenrichment analysisin the TF-DMR edge analysis,
we used the recovery-curve-based cisTarget algorithm***, Inbrief, the
cisTarget algorithm performed motif enrichment on a set of DMRs
by calculating a normalized enrichment score for each motif based
on all other motifs in the collection. For each TF gene, we applied the
cisTarget algorithm to positively correlated or negatively correlated
DMRs separately. We used the package default cut-off (normalized
enrichmentscore > 3) toselect enriched motifs foraDMR set. A leading-
edge analysis was performed using cisTarget to assign motif occur-
rence in DMRs with Cluster-Buster scores passing a cut-off value in
enriched cases®.

PageRank analysis on weighted networks. We adopted the Taiji
framework® to perform TF analysis on a weighted GRN for each cell
subclass. This framework uses the personalized PageRank algorithm
to propagate node and edge weight information across the network,
calculatingtheimportance of each TF. To add subclass information as
network weights, we simplified the network by including only TF and
target gene nodes and weighting the gene node by inverted gene-body
mCH value in the subclass. Specifically, we first performed quantile
normalization across all subclasses. We then performed arobust scale
of the matrix using sklearn.preprocessing.RobustScaler with quan-
tile_range = (0.1, 0.9). We then inverted the scaled mCH fraction by

W; = (max(CH;) - CH;)/(max(CH;) - min(CH;)),

where CH;and W, denoted the scaled gene mCH fractions and inverted
values, respectively, for subclass i.

We alsoadded DMR mCG fractioninto the edge weights. Specifically,
we performed the same quantile normalization and robust scale onall
the mCG fractions of DMRs involved in the network and calculated the
inverted DMR mCG value by

V;=(max(CG;) - CG;)/(max(CG;) - min(CG,)),

where CG; and V; denote the scaled DMR mCG fractions and inverted
values, respectively, for subclass i. The edge weight between a TF and
atarget gene in subclass i was calculated ase= % Y05 x V.. where
ndenotes the number of DMRs that connect the TF to target gene, S ,
is the final score of one TF-DMR-target triple, andV; , is the inverted
DMR mCQG value.

Intragenic epigenetic and transcriptomic isoform analysis
Integration and isoform quantification of the SMART-seq dataset.
Preprocessing and gene-level quantification using STAR* (v.2.7.10) was
performed with AIBS data generators as previously described®. We used
gene-level counts to perform cross-modality integrationiteratively as
described in previous sections. We used kallisto® with steps described
in a previous study® to quantify the SMART-seq at the isoform level
with the same GTF file used in transcriptome and methylome analysis
above. We calculated cell-group-level transcript per million (TPM)
values based on the integration result. We also calculated the exon
PSI from the transcript counts in each gene. The SMART-seq browser
tracks (Extended Data Fig.13a,b) were constructed using STAR-aligned
BAMfiles.
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Prediction model training. First, we quantified mC and m3C intra-
genicfeatures for predicting the alternative isoform and exon usage.
We used the exon, exon-flanking region and intragenic DMRs as the
mC features of each gene. The exon-flanking region was defined as
upstream or downstream 300 bp of each exon. We removed features
with variance <0.01 and combined features with >90% overlap in
their genome coordinates. For 3C features, we used all the intragenic
highly variable interactions (F statistics > 3) from the above section
as features.

After collecting all the features, we selected genes with highly vari-
able transcripts and exons among cell groups for model training. Highly
variable transcripts were selected on the basis of the following criteria:
(1) mean TPM across cell groups of >0.2; (2) TPM standard deviation
of >0.3; and (3) transcript body (TSS to TTS) length of >30 kb. Highly
variable exons were selected based on PSl standard deviation of >0.02
and PS190% quantile and 10% quantile difference of >0.05. We trained
four models for each gene, including predicting transcript TPMs using
mC or 3C features and predicting exon PSls using mC or 3C features.
The training contains two steps. First, we used sklearn.feature_selec-
tion.SelectKBest with the score function f regressionto select the top
100 features for each transcript or exon. We then used all features that
hadbeenselected atleast once. We performed fivefold cross-validation
to train random forest models using selected features and sklearn.
ensemble.RandomForestRegressor. In each cross-validation run, we
calculated the PCC between predicted values and true values as the
model performance. We also shuffled the selected features within each
sample (Fig. 6¢) to train the model and calculate PCC values again as
the shuffled model performance.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The snmC-seq2 and snmC-seq3 dataand MERFISH dataset are acces-
sible through the Neuroscience Multi-omic Data (NeMO) Archive
(assets.nemoarchive.org/dat-sig83t9). The snm3C-seq data are
accessible through NeMO (assets.nemoarchive.org/dat-sig83t9)
and the NCBI's Gene Expression Omnibus (GEO) database (identi-
fier GSE213262). The whole-brain snATAC-seq dataset is from ref. 11.
The whole-brain scRNA-seq MERFISH and SMART-seq datasets are
from ref. 6. All the processed data related to results and method
sections are available from the GitHub repository at github.com/
lhqing/wmb2023. The Allen Brain Reference Atlas and CCF is from
ref. 3. A detailed description of the data availability is provided at
mousebrain.salk.edu/download.

Code availability

The mapping pipeline for snmC-seq3 and snm3C-seq is available at
hg-1.gitbook.io/mc/. Single-cell DNA methylome data analysis tools are
availableat ALLCools (v.1.0.8) Python package (lhqing.github.io/ALL-
Cools/intro.html). Single-cell chromatin conformation data analysis
toolsare available at the scHiCluster (v.1.3.2) Python package (github.
com/zhoujt1994/scHiCluster). Other codes and Jupyter Notebooks
related to results and method sections are available from the GitHub
repository at github.com/lhqing/wmb2023.
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Extended DataFig. 2| Quality Control for snmCand snm3Cdataset.a-b, The
number of input reads and final pass QC reads in snmC-seq3 and snm3C-seq
shown by t-SNE (a) and violin plot (b) ¢, The percentage of non-overlapping
chromosome 100-kb bins or genes detected per cellinsnmC-seq3 and snm3C-
seq. Gray lines from top to bottomindicate the 75%, 50%, and 25% quantiles.
d-e, The number and ratio of cis-long and trans contactsin snm3C-seq, depicted
by t-SNE (d) and violin plot (e). f, Heatmap of PCC between the average methylome
profiles (mean mCH and mCG fraction of all chromosome 100-kb bins across all
cellsbelonging to areplicate sample). The violin plot below summarizes the

Final mC Reads and Plate-Normalized Cell Coverage(PNCC)

1

L.

Log(PNCC)

values betweenreplicates withinthe samebrainregion or between different
brainregions. g-h, Pairwise overlap score (measuring co-clustering of two
replicates) of neuronal subtypes and (g) non-neuronal subtypes (h). The violin
plots summarize the subtype overlap score betweenreplicates within the same
brainregion or between different brainregions. i, Distribution of the mCG,
mCH, mCCC, and Lambda DNA fraction (non-conversion rate) at sample levelin
snmC-seq3 and snm3C-seq.j, Pre-clustering t-SNE of snmC and snm3C dataset
colored by finalmCreads and plate-normalized cell coverage. Arrows indicate
typical low-quality clusters filtered out from the further analysis.
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Jj, Theaverage global mCG and mCH fractions for all cell subclasses. Subclasses

areordered by the globalmCH level, and only the top and bottom 20 subclasses
areshown.



Dissection Regions OLF Cell Subclasses Dissection Regions
oA .

102,548

5 26,'%76
nuclei nucler

Dissection Regions
19748 %
*% S WERF
s R ra

%

#F

~, Tol wg

Dissection Regions

33,016

€ 18,844
nuclei

nuclei

32,424
nuclei

Dissection Regions
3

EE:
12,291
nuclei

Telencephalon Cell Subclasses Dissection Regions Non-Telencephalon Cell Subclasses Dissection Regions

- Non-neuron Cells &
% Immature Neurons %

Non-neuron Cells &

224
A
e B

Extended DataFig. 4 |t-SNEembedding by majorregions. Thisfiguregroups  cellonthe whole brain t-SNE. The middle and right columns show the t-SNE
cells by major regions (first five rows), including isocortex (CTX), olfactory embedded by cells from this major region, colored by cell subclasses and
bulb (OLF), amygdala (AMY), cerebral nuclei (CNU), hippocampus (HPF), dissectionregions, respectively. The numbers on the t-SNE plot indicate
thalamus (TH), hypothalamus (HY), midbrain (MB), hindbrain (HB), and the cell subclass ID, which refers toin Supplementary Table 4. The final row
cerebellum (CB). Eachsection comprises three columns. The left column groups non-neuron cellsinto two sections based on telencephalon and

displays the CCF-registered 3D brain dissectionregionsand thecorresponding  non-telencephalon dissectionregions.



Article

a Integrated Methylome and Transcriptome

Normalized Integration-based
Gene Body Gene RNA CPM
mCH Frac. (sn/scRNA-seq)
(snmC-seq)
4,673
Cell Groups [ Hyper-mG
Hypo-mC

Gad1

Th

aS R .
[Fallie s Pl
i S e
A, A
12
[0.6
Hde

L 7 .
[ 03

d Neuropeptide Genes

Penk
& i
TS B |
NI R
11 ) 11 ¢
[o.e
Tac2
.
x'd P ) PAL25
- * ,'{' 4
3 % .
& [‘5 &
A 08 A

Extended DataFig. 5|See next page for caption.

b Neurotransmitter Related Genes

5 Slc17a7 (Vglut1)
H (Glutamatergic)
: )
. .8 »
'
] - &
E LR G < LA o (‘
' . .
5 % Y ‘% :
High 1 > o8
[ o | o R [ .,
' 03
______ '
Slc6a5
(Glycinergic)
.
.x \ .‘
MR bt d
& -

. .1.'. [1.5

Chat
(Cholinergic)
3 .‘
HOZ A
A e A .
6 , 12 , 6

M. Lo ”

¢ Immediate Early Genes

Vip %
& - .
CRRE R 2 Y . ¢
3 \ X .
"8 g
5 - & 15 N & 5.0
[2 b [o.s A [15

@e°

=
&) [|2 '\

Slc17a6 (Vglut2)
(Glutamatergic) @

-.- &'ga.s

L

0-

-‘

Slc6a2
(Noradrenergic)

.
M-
0.7 5
[ 0.6 [ 1
Slc6a4

(Serotonergic)

Sst
L™ % ,,f_.w'._
ﬂ.t y By ; \
. 7L
@, Grp a,
{ 2% %;‘gt
¢ g [ -,

Py
12 o 4
[o_s [1
Crh
3 L% 4
L. M
o LS S L3
b A
@ b, -y »
[ 15 c 4 [6
0.6 , 1



Extended DataFig. 5| Example genesillustrating high-granularity
correspondence between methylome and transcriptome. All t-SNE
embeddingsin this figure are based on the methylome clustering shownin
Fig.2a.Gene expression of non-neuronal cell subclasses is not plotted here.
a.Schematic representation of the normalized gene body mCH fraction (left
panel) and RNA CPM value (right panel) at the cell-group-centroids t-SNE plot
foreachgene.b.Pairwise plots of neurotransmitter-related genes. These genes
provide crucialinformation about cell typeidentities and display a highly similar
specificity between gene body mCH fractions and mRNA expression. Genes

include Slc17a7 and Sic17aé6 for glutamatergic, Gadl for GABAergic, Slc6as for
glycinergic, Slc6a2for noradrenergic, Thfor dopaminergic, Chatfor cholinergic,
Slc6a4forserotonergic, and Hdc for histaminergic. c. Pairwise plots ofimmediate
early genes (Fos, Egrl, Arc, Bdnf, Nr4a2) are also expressed in many adult brain
celltypes®®. Their expression levels are also anti-correlated with mCH fractions.
d. Another gene category includes neuropeptides (Npy, Vip, Sst, Penk, Pdyn,
Grp, Tac2, Cck, Crh), many of which are canonical cell type markers with vital
signaling functions. Their specificity is detectable in the gene body mCH that
aligns with transcription.
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Extended DataFig. 6 |Integration of snATAC-seq and snmC-seq3 data.
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thelow dimensional space of snATAC-seq and snmC-seq integration. b, t-SNE
shows the co-embedding of snmC-seq and snATAC-seq data, grouped by major
regions and colored by dissectionregions. c-d, Heatmap visualization of 15x15
small heatmaps. Each small heatmap represents the mCG fractions (green) and
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the corresponding accessibility level of 1,000 cell-type-specific CG-DMRs.
Columns display hypo-DMRs of that cell subclass while rows show theirmCG
fraction/ATAC CPM values. Take the top-right mini heatmap as an example,
rows represent VLMC_NN hypo-DMRs, with color indicating mCG fractionin
ABC_NN. Cell subclasses fromisocortex (c) and midbrain (d) are shown as
examples.
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Extended DataFig.7 | MERFISH data processing and annotation. a-c, Spatial
methylation patterns of DMGs (genes with differential mCH levels on gene
body +2 kbamong different brain regions) and DMRs across three brain axes
(anterior to posterior (a), dorsal to ventral (b), medial to lateral (c). d, Workflow
illustrating the generation of MERFISH data, including sample preparation,
imaging, and data analysis steps. e, Quality control assessment for each
MERFISHsample, where the red lines represent the filtering cutoff for various
quality metrics, including RNA total counts, RNA feature counts, blank gene
number, cellvolume (um?), and RNA counts per volume. f, Integration t-SNE
plot of MERFISH and scRNA dataset® color by cell subclasses. g, MERFISH cells

colored by cell subclasses, with labels obtained from the integration with
the RNA dataset. From top to bottom, the cells are displayed by glutamatergic
neurons, other neurons, and non-neurons. h, Spatial epigenetic patterns

of Negrl and its associated DMRs. Brainslices in the left column are color-
coded by normalized gene body mCH fraction, mCG fraction of the DMR
(chr3:154,927,600-154,929,099), and RNA expression. The right column
displays the normalized contacts heatmap between the DMR and gene.
Microscope objective and slide ind were created using BioRender (www.
biorender.com).
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Extended DataFig. 8 |Integration of snmC-seq and AIBS whole-mouse-brain
MERFISH datasets. a, Imputed spatial locations of glutamatergic neurons
colored by dissectionregions. 12 coronal slices were selected to represent 51

total MERFISH slices. Additional data for the remaining slices canbe accessed
through ourinteractive browser: https://mousebrain.salk.edu/dynamic_
browser. b, AIBS MERFISH Slice 67 color by individual cell subclasses.
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Extended DataFig. 9|See next page for caption.



Extended DataFig. 9 | Chromatin conformation analysis at compartment
and domainlevel. a,PCC between compartmentscore and mCG (orange)/
mCH (blue) fractions of all100 kb bins on each chromosome (left panel) or
whole genome (right panel). The dotlines inside each violin plot are 75%, 50%,
and 25% quantiles from top to bottom. b-¢, chromosome 1-D heatmaps show
PCCbetween compartment score and mCG fraction (b) and the compartment

score STD across cell subclasses (c) for each chromosome ata100-Kb resolution.

Arrowsindicate thelocation of the Celf2gene used as anexamplein Fig. 4a,b.
d, Theline plot (meanzs.d.) shows the developmental gene expression level
among subtypes defined inLaManno etal.*” across embryonic days. The genes
ineachsubpanel areselected by overlapping with top negatively correlated
(left), positively correlated (right), or uncorrelated (middle) chrom100k bins

in (a). e, Workflow for gene body domainboundary analysis. f, The scatter plots
ofthe most negatively (top) or positively (bottom) correlated boundary to
eachlonggenetranscript.Boththe xandyaxisisthe PCCbetween25Kbbin
boundary probability and transcript body mCH (x-axis) or mCG (y-axis)
fractions.g, The scatterplot shows the location of eachlong gene transcript’s
most negatively (top) or positively (bottom) correlated boundary. The y-axis
isthe PCCbetween the 25Kb binboundary probabilities and transcript body
mCH fractions; the x-axisis therelative genome location to the transcripts.

h, Functional enrichment for genes associated with negatively correlated
domainboundaries (upper) or positively correlated boundaries (lower).
Adjusted p-values obtained from one-side Fisher’s exact test after FDR
correction.
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Extended DataFig.10| Correlationbetween gene expression and chromatin
contacts.a, Workflow for highly variable and gene correlated interaction
analysis. b, The distribution of the distance between the furthest correlated
interactionand gene TSS. Q95and Q99 stand for the quantile of allinteractions
ordered by the distance to TSS.c, Distribution of the number of highly variable
and correlatedinteractions per gene; top 30 gene names are listed. d, Scatterplot
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from Extended DataFig. 9e). e-j, Compound heatmaps display the chromatin
conformation landscape of megabase-long genes, including Ptprd (e), Nrxn3
(f), Lsamp (g), DIg2 (h), Celf2 (i), and Sox5 (j). For each panel, green rectangles
indicate thelocation of the gene body, the lower triangle shows the F statistics
from ANOVA analysis analyzing the variance of contact strength across all cell
subclasses (similar to Fig. 4i), and the upper triangle shows the PCC between
contactstrengthand mCH fraction (similar to Fig. 4j).
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Extended DataFig.11|Construction of TF-DMRs-Target regulatory
networks. a, Schematic of the DMR-Target edge for Psd2 (top row) and Celf2
(bottomrow). Fromleft toright, the t-SNE plot is colored by gene mCH fraction,
gene-DMR contacts,and DMR mCG fraction. b, Scatterplot shows the motif
enrichmentscoresinnegatively correlated DMRs (x-axis) and positively
correlated DMRs (y-axis) foreach TF. The top TFs with the highest motif
enrichmentscoresarelisted. Blue contours are the kernel density of the dots.
c-d, Example TFs with motifs enriched in positively correlated DMRs or
negatively correlated DMRs are shown in more detail (similar to Fig. 5f). The
Onecut2 and RfxI gene (c) are examples of having motifs enriched in positively
correlated DMRs, the Foxp2 and Foxal gene (d) are examples of having motifs
enrichedinnegatively correlated DMRs. Adjusted p-values obtained from the

z-test of the motif enrichment score from pycistarget** (Method) after FDR
correction. e, The top histogram shows the distribution of the number of DMRs
eachmotifisenrichedin. The bottom histogram shows the distribution of the
number of motif occurrences each DMR has. f, The TF-DMR-Target triples are
separated into eight categories (columns) based on their PCC signbetween
Gene-DMR, TF-DMR, and TF-Gene. The top bar plotis the triple distributionin
each category. The middle violin plotis the triple final score distribution within
each category. Linesinside the violin plotare 25%,50%, and 75% quantiles,
respectively. Thebottom dots show the correlation sign combination of each
category. Column colors match the schematicin (f). g, The schematic displays
the potential regulatory model for the four most common (based on e) TF-DMR-
Targettriple categories.
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Extended DataFig.12| TF-DMR-Gene triple predict TF and gene
relationships. a-f, Example TF-DMR-Target triple, including 1: Erf (TF), Nab2
(target) and DMR (Chr10:127,595,357-127,595,787) (a-b); 2: Egr1 (TF), Synpo
(target) and DMR (Chr18:60,762,310-60,763,534) (c-d); 3: Cacna2d2 (TF), Stat5b
(target) and DMR (Chr9:107,462,798-107,463,968) (e-f); For each example, left
aret-SNE plot colored by the mCH fraction (blue) or RNA level (purple) for
targetand TF; mCG fraction (green) and chromatin accessibility (orange) for
DMR; and gene-DMR contactscore (red) (a,c,e). The compound heatmaps on
therightshow the chromatinlandscape of target genes, including Nab2 (b),
Synpo (d), and Cacna2d2 (f); the layout is similar to Extended Data Fig.10e-j.

g, Thedotplots represent TF’'s normalized PageRank Score and RNA expression
for cell subclasses in the hindbrain (MB). Red dots are colored and sized by
PageRank Score. Purple dots are colored by RNA CPM, sized by the percentage
of cellsin that subclass expressing this gene. Right, the t-SNE plot of snmC-seq
cells from MB colored by dissectionregion and the CCF-registered 3D brain
dissectionregions. h, From top to bottom, t-SNE plot colored by HB cell
subclasses, Tfeb PageRank Score and Tfeb RNA expression. Arrows point to two
cell subclasses with high PageRank score but low RNA level. i, Left, schematic of
RFX family sub-networks. Right, t-SNE plot color by normalized PageRank Score
of RFX family genes.
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Extended DataFig.13|Epigenetic heterogeneity and gene exon usage.

a, Compound heatmapsillustrate the similarity between the Nrxn3intragenic
methylation heterogeneity and alternative isoform expression patterns. Rows
areneuron cell subclasses.1, mCG fraction of all 6,138 CpG sites of Nrxn3gene
with columns ordered by original genome coordinates (bottom colors are CpG
clusters from heatmapI1).1l, mCG fraction of CpGsites re-ordered by their CpG
clusters (bottom colors) based onsubclasses methylation pattern. Heatmap 11
and Heatmap IV show the TPM of 14 highly variable transcripts and PSI of 38
highly variable exons of Nrxn3, quantified with the SMART-seq dataset. All values
arez-score normalized across cell subclasses. The Nrxn3transcript structures
and exonlocations areindicated at the bottom plots. Red arrows point to beta-
Nrxn3transcripts and one associated CpG cluster. Heatmap V shows the Nrxn3
genelog(CPM)inscRNA-seq (10X) data.b, Compound heatmapsillustrate the
similarity between the OxrI intragenic methylation heterogeneity and alternative
isoform expression patterns. Rows are neuron cell subclasses. 1, mCG fraction
of all1,797 CpGsites of Oxrl gene with columns ordered by original genome
coordinates (bottom colors are CpG clusters from heatmap ). I, mCG fraction
of CpGsitesre-ordered by their CpG clusters (bottom colors) based on

subclasses methylation pattern. Heatmap llland Heatmap IV show the TPM
of11highly variable transcripts and PSI of 24 highly variable exons of Oxr1,
quantified with the SMART-seq dataset. All values are z-score normalized
across cell subclasses. The OxrI transcript structures and exon locations are
indicated at the bottom plots. Heatmap V shows the OxrI gene log(CPM) in
scRNA-seq (10X) data. ¢, Scatterplot shows the PCC between predicted PSland
true PSIfor each highly variable exon (dot), using methylation features (left)
and chromatin contactinteractions (right) to predict. d, Scatterplot shows the
delta PCCin mC models (x-axis) and m3C models (y-axis) for highly variable
exons (dot). Top exons with large delta PCC are listed by their corresponding
gene names. e. Genome browser view of intragenic epigenetic and isoform
diversity of the Nrxn3genein five cell subclasses (rows). The middle heatmaps
arenormalized contactstrengths of the Nrxn3genelocus, with arrows pointing
tostrips over the beta-Nrxn3transcript body. The zoom-in panels show alpha-
Nrxn3’s (left) and beta-Nrxn3’s (right) TSS region, with mCG fraction (green),
mCH fraction (blue),and SMART RNA (bottom) expression tracks. f, Similar to
e, showing the correspondingintragenic epigenetic and isoform diversity in
the Oxrl gene.
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Data collection  BD Influx Sortware v1.2.0.142 (flow cytometry), Freedom EVOware v2.7 (library preparation), lllumina MiSeq control software v3.1.0.13 and
NovaSeq 6000 control software v1.6.0/RTA v3.4.4 (sequencing), Olympus cellSens Dimension 1.8 (image acquisition)

Data analysis cemba-data, v1.6.8; cutadapt, v2.10; bismark, v0.20; bowtie2, v2.3; samtools, v1.9; Picard, v3.0.0;

Mapping pipeline for snmC-seq3 and snm3C-seq is available at https://hg-1.gitbook.io/mc/. Single-cell DNA methylome data analysis tools are
available at ALLCools (v1.0.8) python package, https://Ihging.github.io/ALLCools/intro.html; Single-cell chromatin conformation data analysis
tools are available at the scHiCluster (v1.3.2) python package, https://github.com/zhoujt1994/scHiCluster. Other codes and Jupyter
Notebooks related to results and method sections are shared in this GitHub repository: https://github.com/Ihging/wmb2023.

Brain dissection 3D image created by ITK-SNAP (v4.0.0)

MERSCOPE data analysis were performed with MERSCOPE Instrument Software (v2023-01)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The snmC-seq2/3 single-cell sequencing data and MERFISH dataset are accessible through the Neuroscience Multi-omic Data (NeMO) Archive (https://
assets.nemoarchive.org/dat-sig83t9). The snm3C-seq single-cell sequencing data are accessible through NeMO (https://assets.nemoarchive.org/dat-sig83t9) and
GEO (GSE213262). The MERFISH dataset will be accessible through GEO. The whole-brain snATAC-seq dataset is shared by Zu et al11. The whole-brain scRNA-seq
MERFISH, and SMART-seq dataset is shared by Yao et al6. All the processed data related to results and method sections are shared in this GitHub repository:
https://github.com/Ihging/wmb2023. Allen Brain Reference Atlas and Common Coordinate Framework is accessed through Wang et al3. A detailed description of
the data availability is provided at https://mousebrain.salk.edu/download.
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Reporting on sex and gender This study did not involve human research participants.

Population characteristics This study did not involve human research participants.
Recruitment This study did not involve human research participants.
Ethics oversight This study did not involve human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. We empirically determined to use two to three biological experiments for all
single-cell epigenomic experiments to achieve minimum reproducibility for this large-scale project. For snmC-seq, at least 3,072 nuclei (eight
384-well plates) from each dissected region (1,536 nuclei from each replicate). For snm3C-seq, at least 6,144 nuclei (eight 384-well plates)
from each dissected region (3,072 nuclei from each replicate). The sample size allowed us to obtain high coverage methylome and 3D genome
for thousands of brain cell clusters, and perform confident downstream analyses.

Data exclusions  Primary quality control for DNA methylome cells was (1) overall mCCC level < 0.05; (2) overall mCH level < 0.2; (3) overall mCG level > 0.5; (4)
total final reads > 500,000 and < 10,000,000; and (5) Bismarck mapping rate > 0.5. Additionally, we calculated lambda DNA spike-in
methylation levels to estimate each sample's non-conversion rate. All samples demonstrated a low non-conversion rate (< 0.01). For the 3C

modality in snm3C-seq cells, we also required cis-long-range contacts (two anchors > 2500 bp apart) > 50,000.

Replication Each dissected region is represented by 2-3 replicates, obtained from pooling the same region from at least six animals. All replications were
successful.

Randomization  Randomization is not applicable, since the cells collected are random by nature.

Blinding Blinding is not applicable, since all data are collected from male C57BL/6J mice at the age of P56 when generating this reference brain atlas.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Animals and other organisms

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

] Antibodies [] chip-seq

D Eukaryotic cell lines ] Flow cytometry

|Z Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Clinical data
X Dual use research of concern
Antibodies
Antibodies used AlexaFluor488-conjugated anti-NeuN antibody (MAB377X, Millipore, A60, monoclonal, 1:500 dilution)
Validation All antibodies have been previously published for use in immunohistochemistry and flow cytometry experiments. See vendor's page

here: https://www.emdmillipore.com/US/en/product/Anti-NeuN-Antibody-clone-A60-Alexa-Fluor488-conjugated, MM_NF-MAB377X

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Adult (P56) C57BL/6J male mice were purchased from Jackson Laboratories at seven weeks of age and maintained in the Salk animal
barrier facility on 12-hour dark-light cycles with food ad-libitum for up to 10 days (Housing condition: Temperature: 21-23 C, relative
humidity: 61-63%)

Wild animals the study did not involve wild animals
Reporting on sex We only used male mice, directly purchased from Jackson Laboratories. Sex difference was not considered in this study.
Field-collected samples  the study did not involve samples collected from the field

Ethics oversight All experimental procedures using live animals were approved by the Salk Institute Animal Care and Use Committee under protocol
number 18-00006.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
g All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Isolated nuclei were labeled by incubation with 1:1000 dilution of AlexaFluor488-conjugated anti-NeuN antibody (MAB377X,
Millipore) and a 1:1000 dilution of Hoechst 33342 at 4°C for 1 hour with continuous shaking. Fluorescence-Activated Nuclei
Sorting (FANS) of single nuclei was performed using a BD Influx sorter with an 85um nozzle at 22.5 PSI sheath pressure. Single
nuclei were sorted into each well of a 384-well plate preloaded with 2 pl of Proteinase K digestion buffer (1ul M-Digestion
Buffer, 0.1ul 20 ug/ul Proteinase K and 0.9ul H20). The alignment of the receiving 384-well plate was performed by sorting
sheath flow into wells of an empty plate and making adjustments based on the liquid drop position. Single-cell (1 drop single)
mode was selected to ensure the stringency of sorting. For each 384-well plate, columns 1-22 were sorted with NeuN+ (488
+) gate, and column 23-24 with NeuN- (488-) gate, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei.

Detail experiment protocol for snmC/snm3C-seq is provided in Supplementary Information 1
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Software BD Influx Sortware v1.2.0.142
Cell population abundance We sort NeuN+ (488+) gate and NeuN- (488-) gate with an 11:1 ratio into each 384-well plate.

Gating strategy Intact nuclei were first discriminated from debris by virtue of their bright DNA labeling (Hoechst Height signal) followed by
light scattering profiles (Forward Scatter (FSC) Height vs Side Scatter (SSC) Height). Events with high Pulse Width
measurements for FSC and SSC were then excluded as aggregates. Next, NeuN-AlexaFluor 488 positive or negative nuclei
were selected, reaching an 11:1 ratio of NeuN+ to NeuN- nuclei.

g Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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