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Single-cell DNA methylome and 3D 
multi-omic atlas of the adult mouse brain


Hanqing Liu1,14, Qiurui Zeng1,2,14, Jingtian Zhou1,3, Anna Bartlett1, Bang-An Wang1, Peter Berube1,2, 
Wei Tian1, Mia Kenworthy1, Jordan Altshul1, Joseph R. Nery1, Huaming Chen1, Rosa G. Castanon1, 
Songpeng Zu4, Yang Eric Li4, Jacinta Lucero5, Julia K. Osteen5, Antonio Pinto-Duarte5, 
Jasper Lee5, Jon Rink5, Silvia Cho5, Nora Emerson5, Michael Nunn1, Carolyn O’Connor6, 
Zhanghao Wu7, Ion Stoica7, Zizhen Yao8, Kimberly A. Smith8, Bosiljka Tasic8, Chongyuan Luo9, 
Jesse R. Dixon10, Hongkui Zeng8, Bing Ren4,11,12, M. Margarita Behrens5 & Joseph R. Ecker1,13 ✉

Cytosine DNA methylation is essential in brain development and is implicated in 
various neurological disorders. Understanding DNA methylation diversity across  
the entire brain in a spatial context is fundamental for a complete molecular atlas of 
brain cell types and their gene regulatory landscapes. Here we used single-nucleus 
methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 
technologies to generate 301,626 methylomes and 176,003 chromatin conformation–
methylome joint profiles from 117 dissected regions throughout the adult mouse 
brain. Using iterative clustering and integrating with companion whole-brain 
transcriptome and chromatin accessibility datasets, we constructed a methylation- 
based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated 
subclasses. We identified 2.6 million differentially methylated regions across the 
genome that represent potential gene regulation elements. Notably, we observed 
spatial cytosine methylation patterns on both genes and regulatory elements in cell 
types within and across brain regions. Brain-wide spatial transcriptomics data 
validated the association of spatial epigenetic diversity with transcription and 
improved the anatomical mapping of our epigenetic datasets. Furthermore, 
chromatin conformation diversities occurred in important neuronal genes and were 
highly associated with DNA methylation and transcription changes. Brain-wide cell-type 
comparisons enabled the construction of regulatory networks that incorporate 
transcription factors, regulatory elements and their potential downstream gene 
targets. Finally, intragenic DNA methylation and chromatin conformation patterns 
predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 
dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D 
multi-omic atlas and provides a valuable resource for comprehending the cellular–
spatial and regulatory genome diversity of the mouse brain.

The mouse brain is a complex organ comprising millions of cells that 
form diverse anatomical structures and cell types3–8. Advances in 
single-cell transcriptome and epigenome technologies are revealing 
the intricate molecular diversity of the mammalian brain, which in turn 
are offering insights into epigenetic mechanisms central to orchestrat-
ing this biological diversity9–13.

Cytosine DNA methylation (5mC), a covalent genome modification 
in post-mitotic cells throughout their lifespan14, is associated with 

neuronal function, behaviour and various diseases15. Although 5mC 
predominantly occurs at CpG sites (mCG) in mammalian genomes, 
non-CpG cytosine methylation (mCH, where H can be A, C or T) is also 
prevalent in neurons14,16. CpG and CpH methylation modulate tran-
scription factor (TF) binding and gene transcription through dynamic 
occurrence at regulatory elements and gene bodies17. Both types of 
methylation directly influence the DNA binding of methyl-CpG bind-
ing protein 2 (MeCP2)18–21, a crucial 5mC reader and the cause of Rett 
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syndrome22. Genome-wide differential methylation analyses have pre-
dicted millions of regulatory elements and have produced a cellular 
taxonomy and a base-resolution genome atlas9,23.

Furthermore, cis-regulatory elements in complex mammalian 
genomes can operate over long distances to regulate target genes24. 
Understanding the relationships between the physical contact fre-
quency of enhancers and promoters and their collective impact on 
gene body epigenetics and transcriptomic status is crucial for decoding 
the molecular diversity of the mammalian brain. Our previous work 
used single-nucleus methylome (snm) and chromatin conformation 
capture (3C) sequencing (snm3C-seq) to concurrently examine these 
aspects1. However, a detailed brain-wide map of chromatin conforma-
tion remains to be charted.

In this study, we used enhanced single-nucleus methylation 
sequencing (snmC-seq3) and snm3C-seq technologies to analyse DNA 
methylomes and the 3D genome in detail25,26. We collected 301,626 
methylomes and 176,003 m3C joint profiles from the entire mouse 
brain to produce a dataset comprising 786 billion methylation reads 
(snmC-seq3 plus snm3C-seq) and 33 billion cis-long-range chromatin 
contacts (snm3C-seq). This rich dataset identifies 4,673 cell groups, 
which aligned well with other BRAIN Initiative Cell Census Network 
(BICCN) data6,11. The methylome clusters were annotated using the 
nomenclature from companion transcriptomic studies6, thereby offer-
ing a comprehensive multi-omic resource.

Our analysis underscore the spatial information in the epigenome, 
which was validated using a multiplexed error-robust fluorescence 
in situ hybridization (MERFISH)27 dataset created using genes that 
showed distinct gene-body methylation patterns across brain regions. 
We also explore the regulatory landscapes of individual genes by exam-
ining thousands of aggregated epigenetic profiles. Notable connections 

emerge between chromatin conformation diversity and gene-body 
methylation profiles across multiple genome scales. Intersecting this 
epigenetic dataset with a correlation-based analysis, we construct gene 
regulatory networks (GRNs) that connect TFs, differentially methylated 
regions (DMRs) and potential target genes. Finally, integration with a 
whole-brain full-length SMART-seq dataset6 illuminates the interplay 
between epigenetic profiles and transcriptional dynamics within long 
neuronal genes.

To facilitate access to this resource, we introduce the mouse brain 
cellular and genomic browser (mousebrain.salk.edu), a user-friendly 
platform for data query and visualization. By unveiling the multifac-
eted complexities of the molecular architecture of the mouse brain, 
our study deepens insights into the epigenetic and transcriptomic 
intricacies that underpin brain function and diseases.

The methylome and 3D genome atlas
We developed snmC-seq3, an optimized single-nucleus methylome 
sequencing method (Supplementary Methods), to profile genome-wide 
5mC at base resolution (Fig. 1a) across 117 dissected regions in the whole 
brain from adult male C57BL/6 mice (Fig. 1b, Extended Data Fig. 1a 
and Supplementary Table 1). We also used snm3C-seq, a multi-omic 
technology1, to jointly profile the DNA methylome and chromatin con-
formation from 33 dissected regions (Extended Data Fig. 1b), which 
added the 3D genome context across all brain cell types (Fig. 1a). Each 
dissected region is represented by two to three replicates, which were 
obtained from pooling the same region from at least six animals.  
Single nuclei were captured using fluorescence-activated nuclei sort-
ing (FANS), which enriched for neurons that were positively labelled 
with a NeuN antibody (NeuN+ neurons constituted 92% of snmC and 
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Fig. 1 | Single-cell DNA methylome and multi-omic atlas chart the cellular 
and genomic diversity of the whole mouse brain. a, The workflow of 
dissection, nuclei and library preparation for snmC-seq3 and snm3C-seq. P56, 
postnatal day 56. b, The 117 dissected regions from 18 coronal slices (600-μm 
thick) were grouped into 10 major brain regions (see Supplementary Table 10 
for abbreviations). Each dissection region is registered to the 3D CCF3. c, The 
cell atlas: methylome-based iterative clustering of snmC and snm3C datasets. 
Left, t-distributed stochastic neighbour embedding (t-SNE) plot coloured by 
modality. Middle, plot aggregated into 4,673 cell group centroids and coloured 

by 274 cell subclasses. Right, cross-modality integration of brain-wide datasets 
from BICCN, details in Fig. 2. RNA data from ref. 6. ATAC data from ref. 11. Acc., 
accessibility. d, The genome atlas: the Tle4 gene exemplifies pseudo-bulk 
profiles of five modalities across the whole brain, with genome browser view  
of the ‘L6 CT CTX Glut’ and ‘Pvalb GABA’ subclasses in the bottom. Interactive 
browser available at tinyurl.com/fig1d. Schematic in a created using BioRender 
(www.biorender.com). Brain atlas images in b were created based on ref. 3 and 
the Allen Brain Reference Atlas (atlas.brain-map.org), © 2017 Allen Institute for 
Brain Science.

https://mousebrain.salk.edu
https://tinyurl.com/fig1d
https://www.biorender.com
https://atlas.brain-map.org/


368  |  Nature  |  Vol 624  |  14 December 2023

Article
78% of snm3C data, with the remaining data being NeuN– neurons or 
non-neurons; Methods). Collectively, we obtained 324,687 (301,626 
passed quality control (QC)) DNA methylome profiles, including 
102,783 nuclei from previous research9. On average, the snmC-seq 
dataset had 1.44 ± 0.50 million (mean ± s.d.) final reads that covered 
72 ± 24 million (6.5% ± 2.2%) cytosine bases in the mouse genome. 
We also obtained 196,172 (176,003 passed QC) joint methylome 
and 3C profiles, with each cell having 1.99 ± 0.57 million final reads 
that covered 72 ± 20 million (6.5% ± 1.8%) cytosine bases. The 3C 
modality of each cell had 188,000 ± 81,000 (18.3% ± 5.7% of the total  
fragments) cis-long-range contacts and 108,000 ± 41,000 (10.4% ± 2.3%) 
trans-contacts (Extended Data Fig. 2, Methods and Supplementary 
Tables 2 and 3).

After QC and preprocessing, we analysed the data in cellular and 
genomic contexts (Fig. 1c,d). During the cellular analysis, we con-
ducted iterative clustering of the mCH and mCG profiles in 100-kb bins 
throughout the genome to establish a methylome-based whole-brain 
cell-type taxonomy. At the highest level of granularity, we obtained 
a total of 4,673 cell groups. To validate and annotate the dataset, we 
integrated the methylome data with other brain-wide chromatin acces-
sibility11 and transcriptome datasets6, which resulted in cluster-level 
mapping across modalities and annotations of these clusters into 30 
class labels and 274 subclass labels shared with a companion transcrip-
tome study6 (Supplementary Table 4 and see below).

On the basis of the clustering and integrative annotations, we pro-
duced pseudo-bulk profiles of five modalities (mCH/mCG fraction, 
chromatin conformation, accessibility and gene expression) for each 
cell group, thereby providing a cell-type-specific, multi-omic atlas for 
the mouse genome (Fig. 1d). With more details covered in subsequent 
sections, we use the TLE family member 4 (Tle4) gene, a marker for the 
‘L6 CT CTX Glut’ subclass, as an example to illustrate the power of this 
comprehensive dataset (details in Supplementary Note 1).

Overall, our study utilizes brain-wide single-cell mC and m3C datasets 
to achieve the following aims: (1) define cellular taxonomy based on 
the DNA methylome; (2) integrate with other atlas-level datasets from 
the BICCN; and (3) generate a multi-omic cell-type-specific genome 
atlas for the mouse brain. This resource enabled us to conduct several 
detailed analyses and make various discoveries, as we described below.

Methylome-based cell-type taxonomy
Following QC and preprocessing (Methods), we used iterative cluster-
ing to classify methylome-based cell populations in the snmC-seq and 
snm3C-seq datasets, utilizing mCH and mCG profiles in 100-kb bins 
across the genome9,25. In the final iteration, we identified 2,573 clusters 
and further separated them on the basis of brain dissection regions into 
4,673 cluster-by-spatial groups, which served as the finest granularity 
level for subsequent analyses (Fig. 2a and Extended Data Fig. 3). To 
establish a hierarchical structure for whole-brain cell types and to sup-
port multi-omic data analyses, we iteratively integrated the methylome 
datasets with a companion brain-wide single-cell transcriptome dataset 
(see next section). Following integration, we annotated the mC-based 
cell groups in agreement with 30 transcriptome-based classes and 274 
subclasses6 (Supplementary Table 4). The subsequent analyses relied 
on the cell-group and subclass levels of cell classifications (Fig. 2a and 
Extended Data Fig. 3a,d).

We organized our dissections into ten major brain regions (Fig. 2b,c 
and Extended Data Fig. 4) according to their specific cell-type composi-
tion and neuronal functionality (Fig. 2d) as follows: the isocortex (CTX); 
olfactory areas (OLF; including the olfactory bulb and piriform cortex); 
amygdala areas (AMY; including the cortical subplate (CTXsp) and the 
striatum-like amygdala nuclei (sAMY)); cerebral nuclei (CNU; including 
the striatum and pallidum, but excluding the sAMY); the hippocampal 
formation (HPF; including the hippocampus and parahippocampal 
cortex); the thalamus (TH); the hypothalamus (HY); the midbrain (MB); 

the hindbrain (HB; including the pons and the medulla); and the cer-
ebellum (CB). Most neuronal subclasses (218) were each derived from a 
single major region. Eighteen neuronal subclasses were situated across 
two adjacent regions, which could be due to imprecise dissections 
but may also represent neuronal types shared between neighbouring 
brain regions (Supplementary Table 5). In addition, marked cellular 
diversity was observed in non-telencephalic regions (the TH, the HY, 
the MB and the HB; Fig 2d,e and Extended Data Fig. 4), which is a com-
mon feature observed in other single-cell brain atlases that investigate 
various molecular modalities6–8,11. Notably, the global methylation level 
substantially changed across cells and dissection regions (Extended 
Data Fig. 3g,h), with subcortical neuronal subclasses exhibiting mark-
edly increased mCH levels compared with cortical excitatory neurons 
(Extended Data Fig. 3i,j and Supplementary Note 2).

Last, our dataset extensively profiled non-neuronal cells and adult 
immature neurons (IMNs) throughout the brain (Extended Data Fig. 4 
and Supplementary Tables 4 and 5). Consistent with other modalities6,11, 
we detected spatial differences in astrocyte methylomes, particularly 
between telencephalic and non-telencephalic regions. Initially, IMNs 
clustered with astrocytes, but later iterations resolved one population 
in the subgranular zone of the dentate gyrus and another population 
in areas overlapping the rostral migratory stream28. Furthermore, the 
oligodendrocyte lineage demonstrated spatial distinctions between  
telencephalic and non-telencephalic regions at the cluster level 
(Extended Data Fig. 4). Our dataset also encompasses other immune 
and vascular cell types, including microglia, pericytes, endothelial cells, 
arachnoid barrier cells and vascular leptomeningeal cells.

Consensus cell-type taxonomy
Developing a brain cell-type taxonomy requires integrating various 
molecular modalities, verifying cell clusters on the basis of multiple 
molecular information and applying a uniform nomenclature29. We 
began this endeavour by performing an integrative analysis with a 
brain-wide transcriptome dataset from the BICCN consortium6. After 
strict QC, this single-cell RNA sequencing (scRNA-seq) dataset estab-
lished a cell taxonomy that categorized 4.3 million cells into 5,200 cell 
clusters, 1,045 supertypes, 306 subclasses, 32 classes and 7 divisions. 
Various aspects were incorporated into the cluster annotation, includ-
ing spatial distribution6,7, neurotransmitter identity, marker genes and 
existing cell-type knowledge29.

We used an efficient framework (adapted from the Seurat package30; 
Methods) for iterative cross-modality integration to leverage this sub-
stantial effort. The initial integration effectively matched neuronal 
spatial distribution and high-level annotations (Fig. 2e), whereas subse-
quent iterations refined cluster matching within subclasses to greater 
detail (Fig. 2f). We utilized integration overlap scores (Methods) to 
map methylome cell groups to transcriptome clusters and to annotate 
methylome datasets into subclasses using consistent nomenclature 
(Supplementary Table 4). In summary, we matched all methylome cell 
groups with 4,669 (90%) transcriptomic clusters, which encompassed 
4.19 million (97.4%) cells corresponding to 274 subclasses (Fig. 2f). 
The 531 unassigned transcriptomic clusters represented only 2.6% of 
cells, which were primarily rare populations (<0.03% of the total RNA 
dataset) that were insufficiently represented in the methylome dataset. 
We calculated the transcriptome profile for each cell group on the basis 
of these integration results (Methods).

The overlap score for the final iteration within each subclass revealed 
a high-granularity correspondence between methylome and tran-
scriptome clusters (Fig. 2f, boxes). We further examined vital neural 
functional genes to demonstrate this accurate match between mC 
and RNA levels (Extended Data Fig. 5). Overall, this high-resolution 
cross-modality integration offers multi-omic evidence for identify-
ing thousands of cell clusters in the adult mouse brain, and lays the 
groundwork for subsequent genomic and epigenomic analyses.
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Cell-type-specific regulatory elements
Having established a consensus cell taxonomy across the entire mouse 
brain, we further identified 2.56 million non-overlapping CpG DMRs 
between the subclasses of the whole brain or the clusters of each major 
brain region (Methods). These DMRs involved 44% of the total CpG sites 
in the genome, with an average length of 189 ± 356 bp (mean ± s.d.) 
and containing 3.9 ± 6.0 CpG pairs (each containing 2 bases). The CpG 
DMRs provide predictions about cell-type-specific cis-regulatory  
elements, and hypomethylation in the DMR region usually indicates the 
active regulatory status in adult brain tissue9,23 (Fig. 2g). To annotate the 
accessibility status of the DMRs in a systematic manner, we performed 
iterative integration between the methylome and chromatin accessibil-
ity dataset from the BICCN11, using non-overlapping chromosome 5-kb 
bins (Methods). This dataset, generated using single-nucleus assay for 

transposase-accessible chromatin with sequencing (snATAC–seq) with-
out NeuN enrichment by FANS, contains 1,372,646 neurons and 939,760 
non-neuronal cells. As this dataset shares the same dissection samples 
with the snmC-seq dataset, we used this metadata information to assess 
the integration alignment score30 between neurons analysed using mC 
and ATAC. Notably, the dissected regions were precisely aligned (score 
of 0.89 ± 0.11), which indicated extensive concordance in the cellular 
diversity of both epigenomic modalities (Extended Data Fig. 6a,b). After 
integration, we also calculated the chromatin accessibility profile for 
each cell group using their matched ATAC-analysed cells. The result-
ing mCG fractions and chromatin accessibility levels at DMR regions 
showed similar cell-type-specificity across brain cell subclasses. This 
result confirmed the correct match of cell-type identities (Fig. 2g and 
Extended Data Fig. 6c, d). By integrating the mC and ATAC datasets, we 
achieved high concordance in cellular diversity across both epigenomic 
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mC–ATAC integration details.



370  |  Nature  |  Vol 624  |  14 December 2023

Article
modalities, which further validates the accuracy of our approach in 
determining cell-type-specific regulatory elements and their activities.

Spatial epigenomic diversity
Tens of millions of cells in the mouse brain accurately form complex 
anatomical structures that are controlled by their diverse gene expres-
sion and epigenetic regulation. Our clustering analysis demonstrated 
cell-type composition differences across brain regions (Fig. 2). To 
further explore the spatial information in the DNA methylome, we 
performed differentially methylated gene (DMG) and DMR analyses 
across anterior-to-posterior, dorsal-to-ventral and medial-to-lateral 
axes in the brain using representative dissection regions (Extended 
Data Fig. 7a–c). In all three axes, we identified hundreds of thousands 
of DMGs related to various neuronal functions and DMRs associated 
with these genes. This result highlights the marked spatial diversity 
encoded in the methylome.

To increase the spatial resolution of the analysis and to investigate 
whether the observed methylation spatial pattern corresponds to 
actual transcriptomic diversity, we used MERFISH technology, which 
enables in situ profiling of the expression level of hundreds of genes 
in brain sections7,27,31. We designed a 500-gene panel (Supplemen-
tary Table 6) selected on the basis of cell type and spatial diversity in 
gene-body hypomethylation across the brain (Methods). We then pro-
filed six coronal sections corresponding to our mC and m3C brain slices 
(Extended Data Fig. 7d). After QC, we obtained 266,903 MERFISH cells 
and annotated their cell subclasses by integrating with the scRNA-seq 
dataset6 (Extended Data Fig. 7e,f and Supplementary Table 7). We then 
performed cross-modality integration between the neurons in the 
methylome and MERFISH datasets, imputing the spatial location of 
each methylation nucleus (Fig. 3a and Supplementary Table 8). Notably, 
the predicted spatial coordinates of the methylation nuclei closely 
matched the dissected regions (Fig. 3b). For example, glutamatergic 
cells showed arealization32 among cortical areas within each slice and 
dorsal–ventral separation was observed among medium spiny neurons 
dissected from the caudoputamen (CP) and nucleus accumbens (ACB) 
regions. Moreover, many subcortical dissection borders were faithfully 
preserved in the imputed spatial embedding. The spatial location impu-
tation also assigned many cell subclasses to fine anatomical structures, 
which were considerably smaller than our dissection regions (Fig. 3c 
and Extended Data Fig. 7g). For instance, laminar layer information 
was mapped among cortical excitatory cells (for example, ‘L2/3 IT 
CTX Glut’, ‘L5 ET CTX Glut’ and ‘L2/3 IT ENTI-PIR Glut’). In addition, 
many subcortical neurons were allocated to specific brain nuclei (for 
example, ‘STN-PSTN Pitx2 Glut’ and ‘ZI Pax6 GABA’), which highlights 
the correspondence between the cell-subclass identity and anatomical 
structure in these areas.

The high spatial resolution in the imputation was attributed to the 
strong association between cell location and DNA methylation of crucial 
genes and regulatory elements. For example, the Elavl2 gene, which 
encodes a RNA-binding protein involved in post-transcriptional regula-
tion functions in neurons33, exhibited a dorsal–ventral increased expres-
sion pattern in subcortical neurons in slice 10, which was also observed 
as a decrease in gene-body mCH methylation of Elavl2 and a nearby 
mCG methylation of a DMR (Fig. 3d). Notably, the chromatin interac-
tions between the DMR and Elavl2 showed stronger contacts in regions 
where Elavl2 was highly expressed. Likewise, Rasgrf2, which encodes 
a guanosine nucleotide exchange factor for Ras GTPases, displayed 
differential expression and methylation across cortical layers. DMRs 
near Rasgrf2 were highly correlated, with chromatin conformation 
data supporting physical proximity when both the DMR and Rasgrf2 
were active (Fig. 3e). Negr1 also showed similar correspondence among 
modalities in cortical dissected regions (Extended Data Fig. 7h). These 
findings demonstrate a clear spatial pattern in DNA methylation that 
aligns with the spatial transcriptome, which implies that epigenetic 

regulation exerts precise control over the cellular spatial location. To 
extend this spatial annotation to the entire brain, we comprehensively 
integrated the MERFISH dataset from a companion study6 that con-
tained 51 coronal slices and 3.9 million cells. The integration helped 
us to position each nucleus from the methylome dataset into a spe-
cific spatial location, which facilitated the interpretation of epigenetic 
profiles in brain-wide anatomical structures (Extended Data Fig. 8 and 
Supplementary Table 9).

Chromosomal conformation dynamics
The annotated multi-omic datasets enabled us to leverage the cell-type 
diversity across the entire brain to understand the chromatin conforma-
tion landscape of individual genes. Here we systematically evaluated the 
variability of different 3D genome features (chromatin compartment, 
topologically associated domain (TAD) and highly variable interac-
tions) across cell subclasses. We associated them with gene activity by 
correlating chromatin contact strengths with methylation fractions.

We initiated this effort by examining the chromatin compartment, 
a genome topology feature that brings together genomic regions tens 
to hundreds of megabases away34. The genomes are organized into two 
major compartments, A and B, corresponding to active chromatin and 
silent chromatin, respectively34. After calculating the compartment 
score of cell subclasses at the 100-kb resolution, we observed numer-
ous A/B compartment switches in megabase-long regions (Fig. 4a). 
For instance, the chromosome 2 region spanning 3.5 million bases to 
10.6 million bases exhibited a strong negative compartment score 
(B compartment) in mature oligodendrocytes (‘Oligo NN’), but positive 
scores (A compartment) in cortical excitatory neurons such as ‘L2/3 
IT CTX Glut’ (Fig. 4b). Notably, this compartment-switching region 
overlapped with Celf2, a gene that encodes a vital RNA-binding protein 
that modulates alternative splicing in neurons35.

Given these observations, we sought to determine whether compart-
ment switching correlated with DNA methylation changes within the 
same regions. After calculating the Pearson correlation coefficient 
(PCC) values across cell subclasses, we found a negative correlation 
between the compartment score and mCG or mCH fraction of 100-kb 
chromatin bins, with mCG exhibiting a stronger correlation than mCH 
(Extended Data Fig. 9a). We also observed that the compartment score 
of negatively correlated bins demonstrated greater variability across 
cell subclasses than the positively correlated bins (Fig. 4c and Extended 
Data Fig. 9b,c), which suggested that these negatively correlated bins 
exhibit wide activity change across a wide range of cell subclasses.

We then discovered that genes overlapping with the negatively cor-
related bins were enriched36 in numerous neuronal functions, including 
nervous system development (Fig. 4d). To explore this aspect further, 
we examined another scRNA-seq atlas of mouse brain development37 
and found that the negatively correlated bins overlapped with genes 
that display a substantial increase in expression during prenatal brain 
development. By contrast, uncorrelated or positively correlated bins 
demonstrated no such trend (Extended Data Fig. 9d). These results 
suggest that large chromosomal conformation changes might be estab-
lished during early development and subsequently maintain cellular 
specificity in adult brain nuclei38.

TAD and long gene boundary association
We also investigated TADs39 and their boundaries at a 25-kb resolution 
(Methods). By first identifying boundaries in individual cells and sub-
sequently using the domain boundary probability at the cell-subclass 
level, we were able to represent the strength of domain boundaries at 
each 25-kb bin (Extended Data Fig. 9e). To evaluate the variability of 
boundary probabilities across the genome, we performed a Chi-square 
test on each bin and identified 83,518 bins with significant variability 
across subclasses (false discovery rate (FDR) < 1 × 10–3; Methods). For 
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example, we observed that at the Lingo2 locus—a ‘L2/3 IT CTX Glut’ 
hypomethylated gene linked to essential tremor and Parkinson’s 
disease40—the TAD boundaries aligned with the transcription start 
site (TSS) and the transcription termination site (TTS) of the gene 
(Fig. 4e). Across all the neuronal subclasses, the boundary probabil-
ity of the 25-kb bin at the Lingo2 TSS exhibited a negative correlation 
with the transcript body mCH fraction (PCC = −0.65, FDR < 0.001, 
permutation-based test; Methods and Fig. 4f).

To generalize this observation, we calculated the average bound-
ary probability at all gene TSSs and TTSs in the genome, separating 
them by transcript length (<100 kb as short, >100 kb as long19). Long 
genes displayed increased levels of boundary probability at the TSSs 
and TTSs (Fig. 4g), which suggested that TADs are more likely to form 

around the gene body (that is, gene body domains). Our analysis then 
focused on the relationship between variable domain boundaries and 
gene bodies, particularly long genes (>100 kb) implicated in neuronal 
pathogenicity and potentially regulated by mCH and MeCP2 (ref. 19). 
We next calculated the PCC of gene transcript body mCH or mCG frac-
tions with the boundary probabilities of all 25-kb bins within transcript 
±2 Mb distances (Extended Data Fig. 9f). The top negatively correlated 
boundaries were predominantly located at the TSSs and TTSs of the 
corresponding gene transcripts (Fig. 4h and Extended Data Fig. 9f,g). 
We also observed a few significantly positively correlated boundaries 
to the transcript body mCH or mCG, although they lacked clear TSS–
TTS colocalization (Extended Data Fig. 9f,g). Functional enrichment  
analysis36 revealed that genes with strongly negatively correlated 
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displays CCF-registered brain dissection regions. The second and third rows 
show imputed spatial locations for glutamatergic and other neurons coloured 
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neurons and other neurons on slice 10. d, Spatial epigenetic pattern of neuronal 

genes and their associated DMRs. The Elval2 gene represents the spatial 
pattern among subcortical regions. The left column shows the gene-body  
mCH fraction, the DMR (chromosome 13: 91164342–91165792) mCG fraction 
and RNA expression. The right column displays a heatmap of normalized 
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gene-body domains were significantly enriched for crucial neuronal 
and synaptic functions. By contrast, positively correlated TAD bounda-
ries were not associated with genes enriched for specific functions 
(Extended Data Fig. 9h). Together, these results indicate that TAD 
boundaries are closely associated with the TSS and TTS of long genes 
implicated in neuronal pathogenicity and pivotal functions.

Diverse chromatin interaction landscapes
To thoroughly profile the chromatin conformation diversity at high 
resolution and to link genes to their potential regulatory elements, we 
analysed chromatin interactions at 10-kb resolution (Extended Data 
Fig. 10a). We first performed a one-way analysis of variance (ANOVA) 
across cell subclasses, using F statistics to summarize the variability 
of all interactions. Highly variable interactions corresponded to dot 
or strip-like patterns around genes (Fig. 4i).

Subsequently, we calculated the PCC values between transcript 
body mCH fraction and the contact strength of highly variable inter-
actions within ±5 Mb of the transcript body (Fig. 4j). Highly variable and 

gene-correlated interactions were assigned to a gene if any anchors of 
the interaction overlapped with the gene body. Through this assign-
ment, the majority (95%) of gene-associated interactions were located 
within 1.2 Mb of the TSS of the gene (Extended Data Fig. 10b). Genes 
with numerous correlated interactions exhibited crucial neuronal 
and synaptic functions, overlapping with those genes that displayed 
a negatively correlated gene-body domain boundary as described 
in the previous section (Extended Data Fig. 10c,d). For instance, in 
the Lingo2 locus, highly variable interactions were identified within 
the gene body, at gene body domain boundaries or corresponding to 
distal loop structures41 (Fig. 4j, circles). The correlation analysis fur-
ther stratified interactions as positively or negatively correlated with 
the methylation change of the gene. Notably, the correlated interac-
tion anchors can be up to 1.6 Mb downstream (interaction 1) or 3.2 Mb 
upstream of the Lingo2 TSS (interaction 2) while associating with strips 
along the entire gene body (Fig. 4j,k).

We then summarized the distribution of significantly correlated 
interactions surrounding all long genes by categorizing them into six 
groups on the basis of their relative location to the gene: intragenic, 
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upstream, downstream, upstream–intragenic, downstream–intragenic 
and upstream–downstream (Fig. 4l). Our results revealed that the con-
tact strength of intragenic, upstream and downstream interactions 
were mostly negatively correlated with gene body methylation (per cent 
negative PCC, intragenic = 88%, upstream = 71%, downstream = 67%), 
a result consistent with the observation that the gene-body domain 
forms between the TSS and TTS, insulating the interactions between 
intragenic, upstream and downstream while increasing their inter-
action within each group. Moreover, the upstream–intragenic and  
downstream–intragenic interactions were primarily positively corre-
lated with gene-body methylation (per cent positive PCC, upstream–
intragenic = 63%, downstream–intragenic = 77%). However, the 
negatively correlated interactions probably remain crucial as they 
potentially link distal regulatory elements to intragenic regions (Fig. 4j). 
Upstream–downstream interactions exhibited the least negative cor-
relations (per cent negative PCC, upstream–downstream = 15%) and 
did not directly interact with the gene body, which potentially relates 
to their higher-level chromatin conformation regulation.

Despite these general trends, the specific chromatin conforma-
tion landscapes of individual genes were highly diverse (Fig. 4m). 

In addition to the notable upstream–intragenic and downstream–
intragenic interactions observed in Lingo2, many megabase-long 
genes displayed complex intragenic subdomain patterns (for exam-
ple, Ptprd, Nrxn3 and Lsamp; Fig. 4m and Extended Data Fig. 10e–j). 
These patterns may correspond to more subtle gene activity regula-
tion, including alternative TSS and exon usage, which will be explored  
below.

The multi-omic GRNs
Numerous important TFs orchestrate the intricate spatial and 
cell-type-specific gene expression patterns within GRNs, which can 
be elucidated using multi-omic information42,43. Here we present a 
framework that connects TFs with DMRs and their potential down-
stream target genes, leveraging DNA methylome and chromatin con-
formation signals to construct GRNs for whole-brain neurons (Fig. 5a, 
left, and Methods). Our approach uses mCH fractions as proxies for 
gene status and mCG fractions as indicators of regulatory element 
activity. To further support our findings, we incorporated integrated 
transcriptome and accessibility profiles as complementary evidence 
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permutation test and FDR correction (Methods).
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because of their strong negative correlation with gene mCH and DMR 
mCG fractions, respectively (Fig. 5a, right).

We built connections between the following elements: (1) DMRs 
and their potential target genes (DMR–target edge); (2) TFs and their 
potential target genes (TF–target edge); and (3) TFs and their potential 
binding DMRs (TF–DMR edge). We established DMR–target edges 
by accounting for the correlation of methylation fractions between 
the DMR and surrounding genes and the chromatin conformation 
landscape of the gene as discussed above (Fig. 5b and Methods). This 
approach intersected the diversity of both modalities measured in 
our snm3C-seq assay by limiting correlation-based edges to genome 
regions displaying distinct chromatin conformation changes. This 
step generated 1.2 × 106 edges between 5.7 × 105 DMRs and 2.1 × 104 
genes, with 27% of edges connecting intragenic DMRs to genes and 
73% linking distal DMRs (Fig. 5c). For instance, the edges of Psd2 and 
Celf2 demonstrated highly concordant cell-type-specificity of DNA 
methylation and chromatin interaction between gene bodies and their 
associated DMRs (Extended Data Fig. 11a). Next, we proceeded to con-
nect TF–target edges on the basis of their correlated methylation frac-
tions (Fig. 5d). We identified a total of 4.6 × 106 edges between 1,705 
TFs and 2.6 × 104 genes.

As the TF–target edge alone is insufficient to discern gene regulation 
relationships43, we also quantified the TF–DMR edges by considering 
the correlation of methylation fractions between the DMR and TF gene 
body and the enrichment of TF binding motifs in the correlated DMR 
sets (Extended Data Fig. 11b and Methods). In the motif enrichment 
analysis, we discovered that many TFs have their motifs solely enriched 
in the DMRs that positively correlated with TF gene-body methylation, 
such as Nfia, Onecut2 and Rfx1 (Fig. 5e and Extended Data Fig. 11c). 
This finding implies that the binding of these TFs potentially activates 
the underlying regulatory elements of these genes. We also observed 
some TFs with motifs enriched in negatively correlated DMRs, such as 
for FOXP2 (Extended Data Fig. 11d), which has been reported to have 
transcription repression functions44, which is potentially achieved by 
repressing active enhancers. We identified 1.2 × 107 edges between 843 
TFs and 4.6 × 105 DMRs (Extended Data Fig. 11e).

We combined all three types of edges (DMR–target, TF–target and 
TF–DMR) to construct the final GRN with TF–DMR–target triples. Each 
triple was assigned a final score that represented the overall correla-
tion of cell-type specificity between the three components (Fig. 5f and 
Methods). The resulting network comprises 1.04 × 107 triples, involving 
830 TFs, 20,101 genes and 291,752 non-overlapping DMRs (Fig. 5g). The 
different combination of correlations in a triple provides insights into 
regulatory relationships among the TF, DMR and target gene (Extended 
Data Fig. 11f,g and Supplementary Note 3).

In addition, the individual TF–DMR–gene triples predicted numerous 
TF and gene relationships, pinpointing their intermediate regulatory 
elements. These relationships were supported by the DNA methylome 
and chromatin conformation data, as well as the integrated transcrip-
tome and chromatin accessibility data. For example, one high-scoring 
triple (0.74) linked the crucial neuronal TF EGR1 to its downstream 
target gene Nab2 through a distal DMR (Fig. 5h). Expression of Nab2 is 
known to be induced by EGR1, and the NAB2 protein in turn represses 
EGR1 activation function, thereby forming a negative feedback loop45. 
Two additional triples (Egr1–Erf and Egr1–Synpo) are illustrated in Sup-
plementary Note 4 (Extended Data Fig. 12a–d). These examples dem-
onstrate the power of our approach to identify new and biologically 
relevant gene regulatory relationships by leveraging multi-omic data.

Key TFs in the GRN
TFs play a crucial part in regulating cell identity46. To demonstrate the 
importance and specificity of TFs within each cell subclass, we utilized 
our comprehensive GRN with the Taiji framework47. Using the PageRank 
algorithm, this framework identifies key TFs by propagating gene and 

regulatory element information on the GRN with node and edge weights 
specific to each cell subclass.

Focusing on the hindbrain (Fig. 5i) and midbrain (Extended Data 
Fig. 12g) as examples, we discovered key TFs that exhibited highly spe-
cific PageRank scores among cell subclasses within these complex brain 
regions. The combination of TF PageRank scores uniquely identified 
each cell subclass in these regions, aligning with their respective tran-
scription specificities. Notably, the PageRank score was able to capture 
the specificity of TFs that were expressed at extremely low levels (Fig. 5i 
and Extended Data Fig. 12h), which is probably due to the gene-body 
methylation measurements.

Furthermore, we noted multiple instances of TFs within the same 
family, such as the RFX family, that displayed distinct cell-type-specific 
PageRank scores despite having nearly identical DNA-binding motifs 
(Extended Data Fig. 12i and Supplementary Note 5).

The comprehensive GRN and the PageRank algorithm effectively 
identified key TFs with high cell-type specificity in diverse brain regions. 
This approach generated numerous predictions about TF functions in 
determining cell identity and paves the way for future perturbation 
experiments48.

Epigenetic and RNA isoform heterogeneity
Alternative splicing leads to the production of different isoforms from 
the same gene, and dysfunction of this process in the brain has been 
associated with various neurodevelopmental disorders49. It is regulated 
by various RNA-binding proteins and has recently been associated 
with DNA methylation50. The diversity of isoform expression has been 
reported in several cortical cell types51. However, their diversity in a 
considerably wider range of cell types across the entire mouse brain 
and their relationship with the epigenome remains to be elucidated. 
To investigate these questions, we integrated the snmC and snm3C-seq 
datasets with a companion full-length scRNA-seq (SMART-seq) dataset 
from the BICCN, which contains 195,680 cells covering the entire adult 
mouse brain6 (Methods). This integration enabled us to explore the 
intragenic diversity of DNA modification and topology in conjunction 
with RNA transcript and exon level measurement at cell-group resolu-
tion (Fig. 6a and Methods).

To exemplify this framework, we first examined the methylation 
pattern of the gene encoding neurexin 3 (Nrxn3), a crucial presynaptic 
gene that regulates synapse recognition through alternative isoforms52. 
We observed that Nrxn3 is broadly expressed across neurons, with its 
isoforms (α-Nrxn3 and β-Nrxn3) showing diverse patterns among cell 
subclasses (Fig. 6b). Notably, the expression patterns of these isoforms 
also matched with the methylation fraction of single CpGs located 
around the Nrxn3 gene body (Extended Data Fig. 13a), with two par-
ticularly highly correlated regions positioned downstream of the first 
exon on α-Nrxn3 and β-Nrxn3 (Fig. 6c, regions 1 and 2, respectively). 
Similarly, the neuron-specific antioxidant gene Oxr1 also exhibited 
intragenic methylation heterogeneity that matched the diversity of 
several transcripts and exons (Extended Data Fig. 13b).

To systematically analyse this phenomenon, we conducted a 
machine-learning-based analysis to quantify the predictability of 
alternative splicing using intragenic DNA methylome or chromatin 
conformation features in each cell group (Methods). Specifically, we 
assessed the level of improvement that can be obtained by incorpo-
rating high-resolution intragenic features to predict isoform expres-
sion levels compared with using whole gene-body measurements as 
a proximate averaged activity of isoforms. To that end, we trained 
two models for each gene (Fig. 6d): one with the true intragenic fea-
tures and another using within-sample shuffled features that dis-
rupted intragenic correspondence but preserved the sample-level 
information for each gene. We calculated PCC scores between 
the predicted and true values across cell groups for both models.  
The ΔPCC value between the true and shuffled models represented 
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the gain in predictability through adding intragenic features (Fig. 6e 
and Extended Data Fig. 13c). Many crucial neuronal and synaptic 
genes known to express functional alternative isoforms exhibited a 
large ΔPCC in their highly variable transcripts and exons (for exam-
ple, Nrxn1, Nrxn2 and Nrxn3 (ref. 52), Ntrk2 (ref. 53) and Oxr1 (ref. 54); 
Fig. 6f and Extended Data Fig. 13d). Notably, chromatin conformation 
features demonstrated better overall prediction accuracy than DNA 
methylation in these alternatively spliced genes (Fig. 6f and Extended 
Data Fig. 13c), which is possibly because these features account for 
genome 3D interaction, whereas methylation features only consider 
1D. This observation aligns with the understanding that many alter-
native splicing events involve nuclear compartmentalization and 
long-range genome interactions55.

Finally, the prediction models prioritized specific transcripts and 
exons for which alternative usage is more likely under epigenetic regu-
lation. We evaluated several representative examples in the genome 
browser, such as the promoters for α-Nrxn3 and β-Nrxn3 or the first exon 
of Orx1 (Supplementary Note 6 and Extended Data Fig. 13e,f). Together, 
these results highlight the complex interplay between epigenetic regu-
lation and alternative splicing, unveiling potential cell-type-specific 
regulatory mechanisms contributing to the post-transcriptional diver-
sity of neuronal and synaptic genes in the brain.

Discussion
This study presented a single-cell DNA methylation and 3D multi-omic 
atlas of the entire mouse brain. By utilizing methylome-based cluster-
ing and cross-modality integration with additional BICCN companion 
datasets6,11, we established a cell-type taxonomy consisting of 4,673 
cell groups and 274 subclasses. Our integrative approach combined 
five molecular modalities—gene mCH, DMR mCG, chromatin con-
formation, accessibility and gene expression—to create a multi-omic 
genome atlas featuring thousands of cell-type-specific profiles. Fur-
thermore, we identified 2.6 million DMRs at two clustering granulari-
ties, which offers a large pool of candidate regulatory elements for 
various analyses. Notably, the intricate cellular diversity within the 
mouse brain exhibited extensive concordance across all molecular 
modalities, as evidenced by the aligned cell-type-specific patterns 
observed in numerous essential neuronal genes (Extended Data Fig. 5) 
and groups of regulatory elements (Extended Data Fig. 6). These find-
ings underscore the fundamental interplay between epigenetics and 
transcriptomics in shaping the cellular diversity of the brain and serve 
as a foundation for incorporating additional complementary molecu-
lar modalities, such as histone modification, 5hmC, translatome and 
proteome, in future analyses. However, the comprehensive scope of 
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this study presented challenges in addressing additional biological 
aspects such as intrahemispheric differences, individual variability 
and sex differences. Future research endeavours are anticipated to 
explore these areas to contribute to a more comprehensive molecular 
atlas of the brain.

We also observed extensive spatial diversity encoded within the 
DNA methylome across the entire mouse brain. This epigenetic spatial 
pattern demonstrated high concordance with spatial transcriptional 
diversity, as evidenced through integration with a MERFISH dataset 
generated from spatially diverse methylated genes. By leveraging 
whole-brain MERIFSH datasets from a companion study6, we achieved 
a detailed spatial map of DNA methylation and chromatin conforma-
tion profiles within delicate brain structures. The results offer a valu-
able anatomical context for methylation and 3D multi-omic cell data 
and emphasize the considerable influence of epigenetic regulation on 
spatial cell organization within the brain.

Building on the foundation of our high-resolution, spatially anno-
tated multi-omic brain cell atlas, we expanded our investigation to the 
mouse genome to explore the underlying gene regulatory diversity 
across multiple scales. At the whole-chromosome level, the chromatin 
compartment identity of megabase-long regions can undergo signifi-
cant alterations among different brain cell types. These changes were 
negatively correlated with DNA methylation, particularly at mCG sites. 
Genes within these regions play important parts in neuronal functions, 
especially in neurodevelopment. We also observed that TAD boundaries 
tended to form around neuronal long genes, with a negative correlation 
identified between boundary probability and the transcript body mCH 
fraction. A recent discovery of a similar gene boundary feature termed 
the transcription elongation loop offers a potential explanation for the 
higher gene domain boundary probability observed56. However, the 
mechanism by which the diversity of this feature arises across various 
brain cell types remains to be elucidated.

We also conducted an unbiased investigation of the chromatin 
conformation context surrounding individual genes by performing 
ANOVA and correlation analyses using whole-brain populations. This 
approach produced gene-specific chromatin conformation landscapes 
that offer predictions about the importance of individual chromatin 
interaction pixels at 10-kb resolution. These results offer numerous 
candidate loci that can potentially elucidate the causal relationships 
between DNA methylation statuses and chromatin structures. It paves 
the way for using advanced technologies such as epigenetic editing57 
in future investigations.

Integrating the extensive gene, DMR and chromatin conformation 
data enabled us to construct a comprehensive GRN for gene regulation 
in the mouse brain. This network predicted regulatory relationships 
between TFs and their target genes through the precise DMRs contain-
ing TF-binding motifs. Furthermore, numerous TF motifs were strongly 
enriched in DMRs, at which mCG fractions correlated positively or 
negatively with the TF mCH fraction. This result indicated dominant 
activation or repression roles for the corresponding TFs. Personalized 
PageRank analysis of the GRN identified the most influential TFs for 
each cell subclass in subcortical regions characterized by vast cellular 
diversity. The GRN also revealed diverse cell-type-specific patterns 
among members of the same TF family. Finally, the high-resolution 
methylome and chromatin conformation data enabled us to exam-
ine the relationship between epigenetic modalities and alternative 
isoforms. Our findings suggest that extensive intragenic epigenetic 
heterogeneity may contribute to the regulation of alternative promoter 
and exon splicing in these genes. The predictive model identified top 
candidates for further investigation into their causal relationships.

In summary, our analyses underscored the potential of this 
whole-brain dataset to characterize cellular, spatial and epigenomic 
diversity at high resolution. Furthermore, this resource, as demon-
strated in our web application (mousebrain.salk.edu/), offers valuable 
insights into the fundamental gene regulation principles that shape 

the complexity of the mammalian brain and lay the groundwork for a 
deeper understanding of the molecular underpinnings of the human 
brain.
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Methods

Mouse brain tissues
All experimental procedures using live animals were approved by the 
Salk Institute Animal Care and Use Committee under protocol number 
18-00006. Adult (P56) C57BL/6J male mice were purchased from the 
Jackson Laboratory at 7 weeks of age and maintained in the Salk animal 
barrier facility on 12-h dark–light cycles with food ad libitum for up to 
10 days (housing conditions: temperature of 21–23 °C, relative humid-
ity of 61–63%). Brains were extracted (between P56 and P63), sliced and 
dissected in an ice-cold dissection buffer as previously described9. For 
snmC-seq3 samples, brains were sliced coronally at 600-μm intervals 
from the frontal pole across the whole brain, producing 18 slices, and 
dissected brain regions were obtained according to the Allen Brain Refer-
ence Atlas CCF (version 3)59 (CCFv3) (Extended Data Fig. 1a) For all the 
snm3C-seq samples, brains were sliced coronally at 1,200 μm, which 
resulted in a total of 9 slices and dissected 2–6 combined brain regions 
according to the CCFv3 (Extended Data Fig. 1b). For nuclei isolation, 
each dissected region was pooled from 3–30 animals, and 2–3 biological 
replicas were processed per region. Comprehensive brain dissection 
metadata are provided in Supplementary Table 1. No statistical methods 
were used to predetermine sample sizes. We empirically determined the 
use of two to three biological experiments for all single-cell epigenomic 
experiments to achieve minimum reproducibility for this large-scale pro-
ject. Blinding and randomization was not performed during handling of 
the tissue samples. Additionally, all dissected regions were digitally reg-
istered into CCFv3 using ITK-SNAP60 (v.4.0.0) at 25 μm resolution (details 
of the annotated voxel file available in the Data availability section).

Isolation of nuclei and FANS
For snmC-seq3 samples, the nuclei were isolated and sorted into 
384-well plates using previous methods9 with modifications described 
in Supplementary Methods (sections I and III). In brief, single nuclei 
were stained with AlexaFluor488-conjugated anti-NeuN antibody (A60, 
monoclonal, MAB377X, Millipore, 1:500 dilution) and Hoechst 33342 
(62249, ThermoFisher) followed by FANS using a BD Influx sorter in 
single-cell (one drop single) mode. For each 384-well plate, NeuN+ 
(488+) nuclei were sorted into columns 1–22, whereas NeuN– (488–) 
nuclei were sorted into columns 23 and 24, achieving an 11:1 ratio of 
NeuN+ to NeuN– nuclei (Supplementary Note 7). The snm3C-seq proto-
col included additional in situ 3C treatment steps during preparation 
of the nuclei, which allowed the chromatin conformation modality to 
be captured. These steps were performed using an Arima-3C BETA kit 
(Arima Genomics), with a detailed protocol provided in Supplementary 
Methods (section II).

Library preparation and Illumina sequencing
Both snmC-seq3 and snm3C-seq samples followed the same library 
preparation protocol (detailed in Supplementary Methods). This pro-
tocol was automated using a Beckman Biomek i7 and Tecan Freedom 
Evo instrument to facilitate large-scale applications. The snmC-seq3 
and snm3C-seq libraries were sequenced on an Illumina NovaSeq 6000 
instrument, using one S4 flow cell per 16 384-well plates and using 
150 bp paired-end mode. The following software were used during this 
process: BD Influx (v.1.2.0.142; for flow cytometry), Freedom EVOware 
(v.2.7; for library preparation), Illumina MiSeq control (v.3.1.0.13) and 
NovaSeq 6000 control (v.1.6.0/RTA, v.3.4.4; for sequencing), and Olym-
pus cellSens Dimension 1.8 (for image acquisition).

Mapping and primary QC
The snmC-seq3 and snm3C-seq mapping was conducted using the 
YAP pipeline (cemba-data package, v.1.6.8) as previously described9. 
Specifically, the main mapping protocol included the following steps: 
(1) demultiplexing FASTQ files into single cells (cutadapt61, v.2.10);  
(2) read-level QC; (3) mapping (one-pass mapping for snmC, two-pass 

mapping for snm3C) (bismark62, v.0.20; bowtie2 (ref. 63), v.2.3); (4) BAM 
file processing and QC (samtools64, v.1.9; Picard, v.3.0.0); (5) methyl-
ome profile generation (allcools, v.1.0.8); and (6) chromatin contact 
calling (snm3C-seq only). Snakemake65 pipeline files with detailed 
mapping steps are provided in the Code availability section. All reads 
were mapped to the mouse mm10 genome. The gene and transcript 
annotation used in this study was based on a modified version of the 
GENCODE vm23 GTF file generated by the BICCN consortium in accord-
ance with a previous study6.

Primary QC for DNA methylome cells included the following criteria: 
(1) overall mCCC level of <0.05; (2) overall mCH level of <0.2; (3) overall 
mCG level of >0.5; (4) total final reads of >500,000 and <10,000,000; 
and (5) bismark mapping rate of >0.5. Note that the mCCC level esti-
mates the upper bound of the cell-level bisulfite non-conversion rate. 
Additionally, we calculated lambda DNA spike-in methylation levels to 
estimate the non-conversion rate for each sample. All samples dem-
onstrated a low non-conversion rate (<0.01; Extended Data Fig. 2i). 
We chose loose cut-off values for the primary filtering step to prevent 
potential cell or cluster loss. The clustering-based QC described below 
accessed potential doublets and low-quality cells. For the 3C modal-
ity in snm3C-seq cells, we also required cis-long-range contacts (two 
anchors >2,500 bp apart) >50,000.

Analysis infrastructures
The whole-brain dataset comprised nearly 0.5 million single-cell or 
5,000 pseudo-bulk mC profiles and 0.2 million single-cell or 2,500 
pseudo-bulk 3C profiles. The dataset size was much larger than pre-
vious bulk and single-cell studies of mC or 3C1,9. To enable efficient 
whole-brain data analysis, we formatted the entire multidimensional 
epigenomic data into three primary tensor datasets and used them as 
inputs for analysis at two different stages.

The first stage was cellular analysis. We used a cell-by-feature tensor 
called methylome cell dataset (MCDS) to carry out methylome-based 
clustering and cross-modality integration, as illustrated in Figs. 2  
and 3. Here we focused on individual cells with aggregated genomic 
features, such as kilobase chromosome bins and gene bodies. This 
analysis enabled us to aggregate single-cell profiles into pseudo-bulk 
levels by clustering and annotation. The pseudo-bulk merge increased 
genome coverage while eliminating the need to frequently access hun-
dreds of terabytes of single-cell files in the subsequent analysis stage.

The second stage was genomic analysis, for which we used a 
pseudo-bulk-by-base tensor for mC, called base-resolution dataset 
(BaseDS), and a pseudo-bulk-by-2D-genome tensor for 3C, termed 
cooler dataset (CoolDS), to perform methylome and chromatin confor-
mation analysis at flexible genomic resolutions, as depicted in Figs. 4–6. 
These pseudo-bulk tensors were generated at cell-group (thousands of 
profiles) and subclass (hundreds of profiles) levels to support multiple 
cellular granularities required by different analyses.

The large tensor datasets were stored using the chunked and com-
pressed Zarr format66, hosted within the object storage of the Google 
Cloud Platform. Data analysis was conducted using ALLCools9, Xarray67 
and dask68 packages. To facilitate large-scale computation, the Snake-
make package65 was used to construct pipelines, whereas the SkyPilot 
package69 was utilized to set up cloud environments. Additionally, the 
ALLCools package (v.1.0.8) was updated to perform methylation-based 
cellular and genomic analyses, and the scHiCluster70 package (v.1.3.2) 
was updated for chromatin conformation analyses. In the Data and 
Code availability sections, we provide information for these tensor 
storage and reproducibility-related details (package version, analysis 
notebook and pipeline files). For simplicity, the description below 
focused mainly on key analysis steps and parameters.

Methylome clustering analysis
After mapping, single-cell DNA methylome profiles of the snmC-seq 
and snm3C-seq datasets were stored in the ‘all cytosine’ (ALLC) format, 



a tab-separated table compressed and indexed by bgzip/tabix71. The 
‘generate-dataset’ command in the ALLCools package helped gen-
erate a methylome cell-by-feature tensor dataset (MCDS). We used 
non-overlapping chromosome 100-kb (chrom100k) bins of the mm10 
genome to perform clustering analysis; gene body regions ±2 kb for 
clustering annotation and integration with the companion transcrip-
tome dataset; and non-overlapping chromosome 5-kb (chrom5k) bins 
for integration with the chromatin accessibility dataset. Details about 
the integration analysis are described below.

Pre-clustering. We performed two iterative clustering analyses 
for both the snmC and snm3C datasets. The first was a four-round 
pre-clustering step for QC purposes. The pre-clusters defined in this 
round contained potential doublets or low-quality cells (corresponding 
to debris or debris clumps in sorting). We started with all cells passing 
the primary QC filters and used the plate-normalized cell coverage 
(PNCC) metric to mark problematic pre-clusters. This metric was cal-
culated using the final mC reads of each cell divided by the average final 
reads of cells from the same 384-well plate. We reasoned that cells at 
the same plate underwent all the library preparation steps inside the 
same PCR machine, thereby sharing the closest batch conditions. We 
observed some pre-cluster aggregating cells mostly showing extreme 
PNCC values (<0.5-fold or >2-fold) compared with most other clusters, 
which is a hallmark of problematic cells (Extended Data Fig. 2i). For 
each pre-cluster, we performed a permutation-based statistical test to 
call this abnormality. First, we randomly sampled null-population cells 
with the cluster size, stratified on sample composition 10,000 times. 
We then calculated P values for the observed PNCC mean (two-tailed 
test, larger or smaller) and standard deviation (s.d., one-tailed test, 
larger) compared with the null PNCC mean and s.d. distribution. After 
calculating the FDR using the Benjamini–Hochberg procedure72, we 
marked pre-clusters as low-quality with absolute(log2(PNCC)) > 0.8 
and FDR < 0.01 (for mean or s.d.). In total, 8,979 (2.77%) snmC and 737 
(0.38%) snm3C cells were removed from further analyses.

Methylome clustering. We then performed iterative clustering using 
the DNA methylome to determine whole-brain cell clusters. For both 
the snmC and snm3C datasets, we performed four rounds of iteration 
with the mCH and mCG fractions of chrom100k matrices. The clustering 
analysis within each iteration has been described in a previous study9. 
We also provide information about annotated Jupyter notebooks in the 
Code availability section, detailing the functions and parameters used 
in each step. Most functions were derived from the allcools9, scanpy73 
and scikit-learn74 packages. In summary, a single iteration consisted of 
the following main steps:
1)	 Basic feature filtering based on coverage and the ENCODE blacklist75.
2)	 Highly variable feature (HVF) selection.
3)	 Generation of posterior chrom100k mCH and mCG fraction matri-

ces, as used in the previous study9 and initially introduced in ref. 76.
4)	 Clustering with HVF and calculating cluster enriched features 

(CEFs) of the HVF clusters. This framework was adapted from 
the cytograph2 (ref. 37) package. We first performed clustering 
based on variable features and then used these clusters to select 
CEFs with stronger marker gene signatures of potential clusters. 
The concept of CEF was introduced in ref. 77. The CEF calling and 
permutation-based statistical tests were implemented in ALLCools.
clustering.cluster_enriched_features, for which we selected for 
hypomethylated genes (corresponding to highly expressed genes) 
in methylome clustering.

5)	 Calculate principal components (PCs) in the selected cell-by-CEF 
matrices and generate the t-SNE78 and UMAP79 embeddings for visu-
alization. t-SNE was performed using the openTSNE80 package using 
previously described procedures81.

6)	 Consensus clustering. We first performed Leiden clustering82 200 
times, using different random seeds. We then combined these result 

labels to establish preliminary cluster labels, which were typically 
larger than those derived from a single Leiden clustering owing to 
its inherent randomness82. Following this, we trained predictive 
models in the PC space to predict labels and compute the confusion 
matrix. Finally, we merged clusters with high similarity to mini-
mize confusion. The cluster selection was guided by the R1 and R2 
normalization applied to the confusion matrix, as outlined in the 
SCCAF package83.

The iterative process of training and merging continued until the 
performance of the model on withheld test data achieved a specified 
accuracy (0.95 for the first round, >0.9 for all subsequent rounds). 
The resolution parameter of the Leiden algorithm significantly influ-
enced cluster number and randomness (that is, variation in cluster 
membership as random seeds changed). Therefore we used relatively 
small resolution values during each clustering stage (0.25 for the first 
iteration, 0.2–0.5 for the remaining iterations; the Scanpy default is 1). 
This approach substantially reduced randomness while also underes-
timating cluster numbers. However, during the four rounds of itera-
tion, any under-split clusters were further delineated in subsequent 
rounds. This framework was incorporated in ALLCools.clustering.
ConsensusClustering.

For each clustering round, we assessed whether a cluster required 
additional clustering in the next iteration based on two criteria: (1) the 
final prediction model accuracy exceeded 0.9, and (2) the cluster size 
surpassed 20. In total, we executed four iterative clustering rounds, 
which produced the following cluster numbers: 61 (L1), 411 (L2), 1,346 
(L3) and 2,573 (L4). We further separated cells within L4 clusters in the 
final round by considering their brain dissection region metadata. We 
first divided all dissection regions with more than 20 cells in an L4 clus-
ter while combining other regions with fewer than 20 cells with their 
nearest regions based on the average Euclidean distance in the PC space 
of L4 clustering. The final 4,673 cell groups combined L4 clusters and 
dissection regions. Incorporating dissection region data, which offered 
insights into the physical location of a cell, enhanced the flexibility of 
the analysis, such as enabling spatial region comparisons. Furthermore, 
we acknowledged that generating pseudo-bulk profiles from cell-level 
data demanded substantial computational resources. Aggregating 
cells at a higher granularity initially facilitated more straightforward 
merging later, such as combining them at the subclass level during 
subsequent analyses.

Cluster-level DNA methylome analysis
After clustering analysis, we merged the single-cell ALLC files into 
pseudo-bulk level using the allcools merge-allc command. Next, we 
used allcools generate-base-ds to generate the BaseDS from multiple 
ALLC files. The BaseDS was a Zarr dataset storing sample-by-base ten-
sors for the entire dataset and allowed querying cytosines by genome 
position and methylation context (CpG and CpH). Next, we performed 
DMR calling as previously described9,23,84 using the ALLCools.dmr.call_
dms_from_base_ds and ALLCools.dmr.DMSAggregate functions that 
were reimplemented for BaseDS. In brief, we first calculated CpG dif-
ferential methylated sites using a permutation-based root mean square 
test84. The base calls of each pair of CpG sites were combined before 
analysis. We then merged the differential methylated site into a DMR if 
they were within 250 bp and had PCC > 0.3 across samples. Because the 
genome coverage was unbalanced between samples, we proportionally 
downsampled the coverage at each base in each sample to base call 
coverage of 50 and a total base call coverage across samples of 3,000.

We applied the DMR calling framework across subclasses of the whole 
mouse brain and cell clusters within each major region. The two sources 
of DMRs were combined to capture the CpG fraction diversity in dif-
ferent cell-type granularities. There were around 10 million unique 
yet overlapping DMRs after the combination. We then merged the 
DMRs to obtain a final non-overlapping DMR list (bedtools merge -d 0),  
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which included 2.56 million DMRs. We report all the overlapping DMRs 
and non-overlapping DMRs in the Data availability section. In the sub-
sequent analysis, when DMR was used to calculate correlation or scan 
motif occurrence, we started with the 10 million overlapping DMRs. 
We selected the DMR with the strongest value (that is, most significant 
PCC or highest motif score) among the overlapping ones. The DMRs 
in the final results were non-overlapping.

Atlas-level data integration and cluster annotation
We established a highly efficient framework based on the Seurat R 
package30 integration algorithm to perform atlas-level data integra-
tion with millions of cells. The integration framework consisted of 
three major steps to align two datasets onto the same space: (1) using 
dimension reduction to derive embedding of the two datasets in the 
same space; (2) using canonical correlation analysis (CCA) to capture 
the shared variance across cells between datasets and find anchors as 
five mutual nearest neighbours between the two datasets; (3) aligning 
the low-dimensional representation of the two datasets together with 
the anchors. We used genes to integrate methylome and transcriptome 
profiles, and chrom5k bins to integrate methylome and chromatin 
accessibility profiles.

Integration of methylome and transcriptome profiles. To integrate 
our snmC-seq dataset with scRNA-seq data6, the gene expression levels 
of RNA cells were normalized by dividing the total unique molecular 
identifier count of the cell and multiplying the average total unique 
molecular identifier count of all cells and then log-transformed. For mC 
cells, the posterior gene-body mC level was used. The cluster-enriched 
genes (CEGs, similar to CEFs described above) were identified in each 
cell subclass and cluster using mC data. We checked the variance of the 
mC CEGs among the mC cells and RNA cells and only used the CEGs with 
mC variance values of >0.05 and expression variation values of >0.005 
for the analyses. We reversed the sign of mC levels before integration 
owing to the negative correlation between gene-body DNA methylation 
and gene expression (Fig. 1d). We fit a principal component analysis 
(PCA) model with the mC cells and transformed the RNA cells with the 
model. The PCs were normalized by the singular value of each dimen-
sion to avoid the embedding being driven by the first few PCs.

To find anchors between mC and RNA cells, we first Z-score-scaled 
the mC matrix and expression matrix of CEGs across cells, and the 
resulting matrices were represented as X (mC: cell-by-CEG) and Y (RNA: 
cell-by-CEG), respectively. CCA was used to find the shared low- 
dimensional embedding of the two datasets, which was solved using 
singular value decomposition of their dot product USV XY=T T . U and 
V were normalized by dividing the L2-norm of each row, and were used 
to find five mutual nearest neighbours as anchors and to score anchors 
using the same method as Seurat30.

The original CCA framework of Seurat (v.3) is difficult to scale up to 
millions of cells owing to the memory bottleneck, whereby the mC 
cell-by-RNA matrix was used as the input to CCA. To handle this limita-
tion, we randomly selected 100,000 cells from each dataset (Xref   
and Yref) as a reference to fit the CCA and transformed the other cells  
(Xqry and Yqry) onto the same CC space. Specifically, the canonical  
correlation vectors (CCVs) of Xref  and Yref  (denoted as Uref  and Vref , 
respectively) were computed using U SV X Y=T T

ref ref ref ref, where U U I=T
ref ref  

and V V I=T
ref ref . Then the CCV of Xqry  and Yqry (denoted as Uqry  and  

Vqry, respectively) were computed using U X Y V S= ( )/T
qry qry ref ref  and 

V Y X U S= ( )/T
qry qry ref ref , respectively. The embeddings from the reference 

and query cells were concatenated for anchor identification.
The PCs derived from the first step were then integrated using the 

same method as Seurat30 through these anchors. Rather than working 
on the raw feature space in Seurat, our integration step projected the 
PCs of scRNA-seq (query, denoted as Ur) to the PCs of the snmC-seq 
(reference, denoted as Um) while keeping the PCs of the reference  
dataset unchanged. This approximation considerably reduced the 

time and memory consumption for computing the corrected 
high-dimensional matrix and redoing the dimension reduction. For 
anchor k pairing mC cell km and RNA cell kr, B U U= −k k rmr km

m r
 was consid-

ered the bias vector between mC and RNA. Then for each RNA cell as a 
query, we used its 100 nearest anchors to compute a weighted average 
bias vector representing the distance to move a RNA cell into the mC 
space. The distance between the query RNA cell and an anchor was 
defined as the Euclidean distance on the RNA dimension reduction 
space between the query RNA cell and the RNA cell of the anchor. The 
weights for the average bias vector depended on the distances between 
the query RNA cell and the anchors, for which close anchors received 
high weights.

Integration of methylome and chromatin accessibility profiles. 
PCA on gene-body signals was insufficient to capture the open chro-
matin heterogeneity in snATAC-seq data10,30. Latent semantic indexing 
(LSI) applied to binarized cell-by-5-kb bin matrices had demonstrated 
promising results for snATAC-seq data embedding and clustering30. 
Therefore, to align snATAC-seq data with snmC-seq data at a high reso-
lution, we developed an extended framework based on the previously 
described approach30 to utilize binary sparse cell-by-5-kb bin matrices 
as input.

We first derived a cell-by-5-kb bin matrix to represent the snmC-seq 
data. In a single cell i, we modelled its mCG base call Mij for a 5-kb bin j 
using a binomial distribution M Bi p~ (cov , )ij ij i , where p represented the 
global mCG level of the cell (and ‘~’ indicates ‘distributed as’). We then 
computed P M mc( > )ij ij  as the hypomethylation score of cell i at bin j. 
The less likely to observe smaller or equal methylated base calls, the 
more hypomethylated the bin was. We next binarized the hypometh-
ylation score matrix by setting the values greater than 0.95 as 1, other-
wise 0, to generate a sparse binary matrix A. We selected the columns 
with more than five non-zero values, then computed the column sum of  
the matrix A(colsum = ∑ )j i ij=1

No. cells  and kept only the bins with Z-scored 
log2(colsum) values between −2 and 2. The snATAC-seq data were also 
represented in a binary cell-by-5-kb bin matrix, where 1 represented at 
least one read detected in a 5 kb bin in a cell. The features were filtered 
in the same way as the mC matrix, and the bins remaining in both data-
sets were used for further analysis.

LSI with log term frequency was used to compute the embedding. 
Term frequency–inverse document frequency (TF–IDF) transforma-
tion was applied to convert the filtered matrix B to X. Specifically, B 
was normalized by dividing the row sum of the matrix to generate the 
term frequency matrix TFreq, and further converted to X by multiply-
ing the inverse document frequency vector IDF.

X = log(TFreq × 100,000 + 1) × IDFij ij j, where B BTFreq = /∑ ′ij ij j ij=1
No. bins

′ 
and  BIDF = log(1 + no. cells/ ∑ )j i i j′=1

No. cells
′ . The embedding of single cells 

U was then computed using singular value decomposition of X, where 
X USV= T. We fit the LSI model with mCG data Bm to derive Um. The inter-
mediate matrices S and V and vector IDF were used to transform the 
ATAC data Ba to Ua, by

B

B
TFreq =

∑ij

ij

j ij
a

a

′=1
No. bins

a ′

X = log(TFreq × 100,000 + 1) × IDFij ij ja a

U X V S= /a a

CCA was also performed with the downsampling framework using 
100,000 cells from each dataset as a reference and the others as query, 
but taking the TF–IDF transformed matrices as input. The query cells 
were projected to the same space using the IDF and CCV of the refer-
ence cells. Specifically, Bmref

 and Baref
 were converted to Xmref

 and Xaref
, 

respectively, with TF–IDF, and the CCVs (denoted as Uref and  Vref) were 



computed using U SV X X=T T
ref ref mref aref

. Then Bmqry
 and Baqry

 were con-
verted to Xmqry

 and Xaqry
, respectively, with TF–IDF using the IDF of 

reference cells, and the CCVs (denoted as Uqry and Vqry) were compu
ted using U X X V S= ( )/T

qry m a refqry ref
 and V X X U S= ( )/T

qry a m refqry ref
. The sub

sequent steps to find anchors and align Um and Ua were the same as 
integrating the mC and RNA data.

Iterative integration group design. Similar to the clustering analysis, 
we integrated two datasets iteratively to match cell or cell clusters 
at the highest granularity. We first separated the pass-QC datasets 
into integration groups based on independent cell-type annotation 
(described above or provided by data generators) and dissection infor-
mation. For instance, non-neuronal cells, IMNs and granule cells (‘DG 
Glut’ and ‘CB Granule Glut’) were separated from neurons because they 
were showing large global methylation differences from other neurons 
and unbalanced in cell numbers across datasets owing to different 
sampling and sorting strategies. Within each integration group, we 
performed the integration iteratively. We used the co-clustering from 
the integrated low-dimensional space to match cells or clusters between 
the two datasets (see below). We then performed the next round of 
integration until the matched cells or clusters fulfilled the stopping 
criteria. We list details about each pair of iterative integrations below. 
The resulting cluster map between datasets and mC and m3C cluster 
annotation is provided in Supplementary Table 4. Information about 
a set of Jupyter Notebooks for a single integration process between 
each pair is provided in the Code availability section.

Integration between snmC-seq and scRNA-seq or SMART-seq 
datasets. We used the gene body ±2 kb as features to integrate mC 
and RNA datasets6, mapping the RNA clusters to mC cell groups. We 
used the mCG fraction of the gene bodies for non-neuronal cells, IMNs 
and granule cells and the mCH fraction of the gene bodies for other 
neurons. In each iteration, we calculated a confusion matrix between 
4,673 mC cell groups and 5,200 RNA clusters (provided by data genera-
tors) using the overlap score as previously described9,85. We then built 
a weighted graph using the confusion matrix as the adjacency matrix 
and performed a Leiden clustering (resolution = 1) to bicluster mC and 
RNA clusters. This step puts similar mC and RNA clusters into integra-
tion groups based on their overlap score. The RNA and mC clusters in 
the same integration group were further integrated to match at finer 
granularity in the next iteration unless any of the following stop criteria 
were met: (1) there was only one integration group from this round;  
(2) there was only one mC or RNA cluster in the integration group; (3) the  
mC cell number was <30; or (4) the RNA cell number was <100 for the 
scRNA-seq dataset or <30 for the SMART-seq dataset. After integration, 
we obtained a mC to RNA cluster map for each mC cell group, which 
we used as the reference to annotate cell subclasses and remaining 
hierarchies in the transcriptomic taxonomy. We also evaluated the 
spatial location and marker genes (neurotransmitter-related genes or 
other markers provided in the transcriptome annotation). We manually 
resolved conflicts when the RNA clusters corresponded to more than 
one subclass by checking the dissection metadata and marker genes. 
We combined all RNA cells assigned to each mC cell group to generate 
the matched transcriptome profile.

Integration between snmC-seq and snATAC-seq datasets. The 
snmC-seq dataset and snATAC dataset11 shared the same dissection 
tissues. We utilized this experimental design to integrate cells from 
the mC and ATAC datasets within each major region. Of note, the 
snmC-seq data were enriched for NeuN+ by FANS, whereas the snATAC  
data unbiasedly profiled all cells. Therefore, we also separated neurons 
from non-neuronal cells and IMNs to balance the integration, espe-
cially in the first round. We used the mCG hypomethylation score of 
chromosome non-overlapping 5-kb bins to perform the integration. 
The cluster assignment and stop criteria were similar to the mC–RNA 

integration method. The alignment score (Extended Data Fig. 6a) was 
calculated as previously described86, using k = 1% cells of the dissec-
tion region or k = 20, whichever is larger. We combined all ATAC cells 
assigned to each mC cell group to generate the matched chromatin 
accessibility profile.

Integration between snmC-seq and snm3C-seq datasets. We used 
the non-overlapping chromosome 100-kb bin as features to integrate 
snmC-seq and snm3C-seq datasets. The cluster assignment and stop 
criteria were similar to the mC–RNA integration method. After integra-
tion, we also annotated the snm3C cell groups with the transcriptomic 
taxonomy.

MERFISH experiment
MERFISH gene panel design. The genes in the GTF file were first fil-
tered on the basis of lengths of >1 kb. We then selected genes using  
methods from a previous study31 but used the snmC-seq dataset 
and gene-body mCH fraction to perform the calculation. In brief, we 
used two approaches to prioritize genes. The first approach was to 
use mutual information between gene-body mCH fraction and neu-
ron subclass labels, which aims to select genes that are differentially 
methylated between groups of cell subclasses. The second approach 
was to perform pairwise differentially methylated gene analysis (ALL-
Cools.clustering.PairwiseDMG) among clusters within the same major  
region and select genes being identified as DMGs in most cluster pairs. 
For the first approach, we selected the top 100 genes. We selected the 
top 50 genes from each major region for the second approach. Owing 
to the overlaps, there were 325 genes after this selection. In addition 
to the cell-type markers, we selected spatial markers by calculating 
the mutual information between the major region label of a cell and 
the mCH fraction across the brain, or between the dissection region 
label and mCH fraction within each major region. We added another 
175 non-overlapping genes to obtain a total of 550 genes. We then per-
formed the same analysis using a previously published scRNA-seq 
dataset6 to obtain the RNA-based prioritization lists. We selected 500 
final genes as the gene panel based on rank in the RNA list to ensure that 
these genes are also expressed and highly diverse in the transcriptome. 
Encoding probes for these genes were designed and synthesized by 
Vizgen (Supplementary Table 6).

MERFISH tissue preparation and imaging. Fresh P56–P63 whole 
mouse brains were sliced coronally at 1,200-μm intervals, and each 
slice was then embedded in OCT, rapidly frozen in isopentane and 
dry ice, and stored at −80 °C until ready for slicing. Coronal section 
(12-μm thick) were obtained from each OCT-blocked tissue using a Leica 
CM1950 cryostat, immediately fixed in 4% formalin (warmed to 37 °C) 
for 30 min, and permeabilized in 70% ethanol following the manufac-
turer’s procedures. Sample preparation, including probe hybridization 
and gel embedding, was performed using a sample preparation kit 
from Vizgen (10400012) following the manufacturer’s protocol. Each 
section was imaged using a MERSCOPE 500 Gene Imaging kit (Vizgen, 
10400006) on a MERSCOPE (Vizgen).

MERFISH data preprocessing and annotation. MERFISH data analysis, 
including imaging, spot detection, cell segmentation and cell-by-gene 
matrix generation, was conducted using MERSCOPE instrument soft-
ware (v.2023-01). We removed abnormal cells (artificial segmentation 
and doublets) from the cell-by-gene matrix in each experiment based on 
the following criteria: (1) cell volume <30 μm3 or > 2,000 μm3; (2) total  
RNA count <10 or >4,000; (3) total RNA counts normalized by cell vol-
ume <0.05 or >5; (6) total gene detected <3; and (5) cells with >5 blank 
probes detected (negative control probe included in the gene panel). 
We then integrated the pass-QC MERFISH cells with the scRNA-seq data-
sets6 to annotate the MERFISH cells with transcriptome nomenclature 
using the ALLCools integration functions described above.
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Integration between MERFISH and snmC and snm3C datasets. We 
integrated the snmC and snm3C datasets with the MERFISH dataset to 
evaluate whether the spatial pattern observed in the DNA methylome 
matched the spatial diversity observed in the gene expression data. 
Integration was similar to the mC–RNA integration described above. 
To utilize the dissection region metadata, we grouped the snmC-seq 
and snm3C-seq data by the slice and integrated them with a matched 
MERFISH slice. We also separated neurons and other cells, similar to the 
mC–RNA integration method described above. We used the 500 genes 
in the MERFISH gene panel to perform the integration. After integra-
tion, we imputed the spatial location of each methylation nucleus on 
the integrated low-dimensional space. We calculated the ten nearest 
MERFISH neighbours for each mC nucleus in each integration group. 
We assigned the coordinate of centroids of these MERFISH cells as the 
mC spatial location of the nucleus.

Cell and cluster-level chromatin conformation analysis
Generation of the chromatin contact matrix and imputation. After 
snm3C-seq mapping, we used the cis-long range contacts (contact  
anchors distance of >2,500 bp) and trans contacts to generate 
single-cell raw chromatin contact matrices at three genome resolu-
tions: chromosome 100-kb resolution for the chromatin compartment 
analysis; 25-kb bin resolution for the chromatin domain boundary 
analysis; and 10-kb resolution for the chromatin interaction analysis. 
The raw cell-level contact matrices were saved in the scool format87. 
We then used the scHiCluster package (v.1.3.2) to perform contact 
matrix imputation as previously described70. In brief, the scHiCluster 
imputed the sparse single-cell matrix by first performing a Gaussian 
convolution (pad = 1) followed by using a random walk with restart 
algorithm on the convoluted matrix. For 100-kb matrices, the whole 
chromosome was imputed, whereas for 25-kb matrices, we imputed 
contacts within 10.05 Mb. For 10-kb matrices, we imputed contacts 
with 5.05 Mb. The imputed matrices for each cell were stored in cool 
format87. The cell matrices were aggregated into cell groups or subclass 
levels identified in the previous section. These pseudo-bulk matrices 
were concatenated into a tensor called CoolDS and stored in Zarr for-
mat for brain-wide analysis.

Compartment analysis. We used the imputed subclass-level contact 
matrices at the 100-kb resolution to analyse the compartment. We first 
filtered out the 100-kb bins that overlapped with ENCODE blacklist 
(v.2)75 or showed abnormal coverage. Specifically, the coverage of bin 
i on chromosome c (denoted as Rc,i) was defined as the sum of the i-th 
row of the contact matrix of chromosome c. We only kept the bins with 
coverage between the 99th percentile of Rc and twice the median of Rc 
minus the 99th percentile of Rc. Contact matrices were normalized by 
distance, and the PCC of the normalized matrices was used to perform 
the PCA34. The IncrementalPCA class from the sklearn package74, which 
allows fitting the model incrementally, was used to fit a single PCA 
model incrementally for each chromosome using all the cell subclass 
matrices. We then transformed all the cell subclasses with the fitted 
model so that the PCs for each subclass were transformed from the 
same loading and eased the cross-sample correlation analysis. We also 
calculated the correlation between PC1 or PC2 and 100-kb bin CpG or 
gene density. We use the component with higher absolute correlation 
as the compartment score and assigned the compartment with higher 
CpG density with positive scores (A compartment).

Compartment score and mC fraction correlation. We first performed 
quantile normalization along subclasses using the Python package 
qnorm (v.0.8.0)88 to normalize the mC fractions and compartment 
scores. We then calculated the PCC between the compartment scores 
of non-overlapping chromosome 100-kb bins, with the correspond-
ing mCH or mCG fraction of the bin across cell subclasses. Because 
the negatively correlated compartment score of the bins had a much 

higher standard deviation among cell types (Fig. 4c), we selected the 
300 most negatively correlated chrom100k bins and used their over-
lapped genes to perform gene ontology (GO) enrichment analysis 
(Fig. 4d) using Enrichr36. We randomly selected gene-length-matched 
background genes to adjust the long-gene bias in all the GO enrichment 
analyses36. To investigate the developmental relevance indicated by 
the GO enrichment result, we used the developmental mouse brain 
scRNA-seq atlas37 at the subtype level (approximate granularity of 
subclass in this study). Genes overlapping 300 of the most negatively 
correlated bins, 300 of the mostly positively correlated bins and 300 
of the low-correlation bins were used to construct the plot in Extended 
Data Fig. 9d.

Domain boundary analysis. We used the imputed cell-level contact 
matrices at 25-kb resolution to identify domain boundaries within each 
cell using the TopDom algorithm89. We first filtered out the bounda-
ries that overlapped with ENCODE blacklist (v.2)75. The boundary 
probability of a bin was defined as the proportion of cells having the 
bin called a domain boundary among the total number of cells from 
the group or subclass. To identify differential domain boundaries  
between n cell subclasses, we derived an n × 2 contingency table for 
each 25-kb bin. The values in each row represent the number of cells 
from the group that has the bin called a boundary or not as a bound-
ary. We computed the Chi-square statistic and P value for each bin and 
used FDR < 1 × 10–3 as the cut-off for calling 25-kb bins with differential 
boundary probability.

Domain boundary probability and transcript body mC fraction  
correlation. We first performed quantile normalization along sub-
classes using the Python package qnorm (v.0.8.0)88 to normalize the 
transcript body mC fractions and chromosome 25-kb bin boundary 
probabilities. We then calculated the PCC between the differential 
boundary probabilities of 25-kb bins with the transcript body mCH 
and mCG fractions. We grouped transcripts with >90% overlap within 
a gene and used their longest range. We calculated the transcript-body 
mCH and mCG fraction at the subclass level for each transcript. We 
then calculated the PCC between the mC fractions and boundary 
probabilities of bins overlapping the transcript body ±2 Mb. We used a 
permutation-based test to estimate the significance of the correlation90. 
Specifically, we shuffled the boundary probability and mC fraction val-
ues within each sample (subclass), disrupting the genome relationship 
between the bins while preserving the sample-level global difference. 
We calculated the PCC using the shuffled matrices 100,000 times and 
used a normal distribution to approximate the null distribution for more 
precise P value estimation in FDR correction. We then used FDR < 1 × 10–3 
as the significance cut-off value for each PCC between a transcript and 
a 25-kb bin. In Fig. 2g, we used deeptools91 (v.3.5.1) to profile the bound-
ary probability at transcript ±2 Mb 25-kb bins. In Fig. 2h and Extended 
Data Fig. 2f–h, we selected the top positively correlated bin and top 
negatively correlated bin for each long gene (transcript body length of 
>100 kb) and performed the GO analysis using length-matched back-
ground genes, as described above (Extended Data Fig. 2h).

Highly variable interaction analysis. We used the imputed cell-level 
contact at the 10-kb resolution to perform the highly variable interac-
tion analysis, for which the interaction represented one 10 kb-by-10 kb 
pixel in the conformation matrix. We filtered out any interactions that 
had one of the anchors overlapping with ENCODE blacklist (v.2)75. 
We then performed ANOVA for each interaction to test whether the 
single-cell contact strength of that interaction displayed significant 
variance across subclasses. The F statistics of ANOVA represented 
an overall variability of the interaction across the brain. To select 
highly variable contacts, we used F > 3 as the cut-off value, which was 
decided by visually inspecting the contact maps as well as fulfilling 
the FDR < 0.001 criteria. ANOVA was only performed on interactions 



for which anchor distance was between 50 kb and 5 Mb, given that 
increasing the distance only led to a limited increase in the number 
of significantly variable and gene-correlated interactions (Extended 
Data Fig. 10b).

Interaction strength and mC fraction correlation. To investigate the 
relationship between gene status and the surrounding chromatin con-
formation diversity, we first performed quantile normalization along 
subclasses using the Python package qnorm (v.0.8.0)88 to normalize the 
transcript body mCH fractions and contact strengths of highly variable 
interactions. We then calculated the PCC between the transcript body 
mCH fraction and the highly variable interactions if any anchor of the 
interactions had overlapped with the gene body. Similar to the domain 
boundary correlation analysis, we shuffled the contact strengths and 
mCH fractions within each sample and used the shuffled matrix to 
calculate null distribution and estimate FDR. We select FDR < 0.001 
as a significant correlation.

GRN analysis
We presented a framework for building a GRN based on the DNA methy-
lome and chromatin conformation profiles at the cell subclass level. 
We used 212 neuronal cell subclasses requiring them to have >100 cells 
in both snmC and snm3C datasets. Notably, the same framework can 
be applied to other brain cell types or a subset of cells (such as certain 
brain regions or cell classes based on specific questions). The GRN was 
composed of relationships between TFs, their potential binding ele-
ments (represented by DMRs) and downstream target genes. Pairwise 
edges were constructed between DMRs and target genes (DMR–target), 
TFs and target genes (TF–target) and TFs and DMRs (TF–DMR). The 
basis of each pairwise edge was the correlation between the methyla-
tion fractions of the two genome elements across cell subclasses. We 
performed quantile normalization along subclasses using the Python 
package qnorm (v.0.8.0)88 to normalize the two matrices involved in 
calculating the correlation. Gene-body mCH fraction was used as a 
proxy for TF and target gene activity, and mCG fractions were used to 
represent DMR status. Variable genes and TFs were selected if they were 
identified as CEFs (described in the clustering steps) in any subclass.

For the DMR–target edges, we selected the highly variable and posi-
tively correlated chromatin contact interactions of the gene based 
on the results in the previous section, and included DMRs situated in 
any anchor regions of the interactions. We then calculated the PCC 
between DMR mCG and gene mCH fraction. For a group of overlap-
ping DMRs, we selected the one with the highest absolute PCC value to 
represent that group, making the edges of the DMRs non-overlapping. 
Similar to the domain boundary and interaction correlation analysis, 
we shuffled the DMRs and genes within each sample to calculate the 
null PCC and to estimate the FDR. We filtered DMR–target edges with 
FDR < 0.001. For the TF–target and TF–DMR edges, we calculated the 
PCC between TF and all CEF genes or between TF and all DMRs, respec-
tively, and applied the same FDR < 0.001 cut-off value to filter edges. 
For the TF–DMR edge, we further performed motif enrichment analysis 
on the significantly correlated DMRs (explained in the next section). 
We only kept TF–DMR edges when the TF had any motif significantly 
enriched in the correlated DMR set, and the particular DMR had that 
motif occurrence.

After obtaining the three pairwise edges, we intersected the edges 
together into triples based on shared genes (including TFs and targets) 
and DMR identifiers. We calculated a final edge score ∣ ∣S S S S S=all a b c d4  
for each triple by taking the geometric mean of the absolute values of 
four correlations, where Sa was the correlation of the DMR–target edge, 
Sb was the correlation of the TF–DMR edge, Sc was the TF–target edge 
and Sd was the correlation between target gene mCH fraction and gene–
DMR contact strength. If multiple gene-correlated interactions had 
anchors overlapping with DMR and gene body, we selected the one 
with the lowest negative correlation.

DMR motif scan and TF motif enrichment analysis. We used an  
ensemble motif database from SCENIC+ (ref. 43), which contained 
49,504 motif position weight matrices (PWMs) collected from 29 sourc-
es. Redundant motifs (highly similar PWMs) were combined into 8,045 
motif clusters through clustering based on PWM distances calculated 
using TOMTOM92 by the authors of SCENIC+ (ref. 43). Each motif cluster 
was annotated with one or more mouse TF genes. To calculate motif 
occurrence on DMRs, we used the Cluster-Buster93 implementation 
in SCENIC+, which scanned motifs in the same cluster together with 
hidden Markov models.

To perform motif enrichment analysis in the TF–DMR edge analysis, 
we used the recovery-curve-based cisTarget algorithm43,58. In brief, the 
cisTarget algorithm performed motif enrichment on a set of DMRs 
by calculating a normalized enrichment score for each motif based 
on all other motifs in the collection. For each TF gene, we applied the  
cisTarget algorithm to positively correlated or negatively correlated 
DMRs separately. We used the package default cut-off (normalized 
enrichment score > 3) to select enriched motifs for a DMR set. A leading- 
edge analysis was performed using cisTarget to assign motif occur-
rence in DMRs with Cluster-Buster scores passing a cut-off value in 
enriched cases43.

PageRank analysis on weighted networks. We adopted the Taiji 
framework94 to perform TF analysis on a weighted GRN for each cell 
subclass. This framework uses the personalized PageRank algorithm 
to propagate node and edge weight information across the network, 
calculating the importance of each TF. To add subclass information as 
network weights, we simplified the network by including only TF and 
target gene nodes and weighting the gene node by inverted gene-body 
mCH value in the subclass. Specifically, we first performed quantile 
normalization across all subclasses. We then performed a robust scale 
of the matrix using sklearn.preprocessing.RobustScaler with quan-
tile_range = (0.1, 0.9). We then inverted the scaled mCH fraction by

W = (max(CH ) − CH )/(max(CH ) − min(CH )),i i i i i

where CHi and Wi  denoted the scaled gene mCH fractions and inverted 
values, respectively, for subclass i.

We also added DMR mCG fraction into the edge weights. Specifically, 
we performed the same quantile normalization and robust scale on all 
the mCG fractions of DMRs involved in the network and calculated the 
inverted DMR mCG value by

V = (max(CG ) − CG )/(max(CG ) − min(CG )),i i i i i

where CGi and Vi denote the scaled DMR mCG fractions and inverted 
values, respectively, for subclass i. The edge weight between a TF and 
a target gene in subclass i was calculated as e S V= ∑ ×n t

n
i t i t

1
=0 , , , where 

n denotes the number of DMRs that connect the TF to target gene, Si t,  
is the final score of one TF–DMR–target triple, and Vi t,  is the inverted 
DMR mCG value.

Intragenic epigenetic and transcriptomic isoform analysis
Integration and isoform quantification of the SMART-seq dataset. 
Preprocessing and gene-level quantification using STAR95 (v.2.7.10) was 
performed with AIBS data generators as previously described5. We used 
gene-level counts to perform cross-modality integration iteratively as 
described in previous sections. We used kallisto96 with steps described 
in a previous study51 to quantify the SMART-seq at the isoform level 
with the same GTF file used in transcriptome and methylome analysis 
above. We calculated cell-group-level transcript per million (TPM) 
values based on the integration result. We also calculated the exon 
PSI from the transcript counts in each gene. The SMART-seq browser 
tracks (Extended Data Fig. 13a,b) were constructed using STAR-aligned 
BAM files.
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Prediction model training. First, we quantified mC and m3C intra-
genic features for predicting the alternative isoform and exon usage. 
We used the exon, exon-flanking region and intragenic DMRs as the 
mC features of each gene. The exon-flanking region was defined as 
upstream or downstream 300 bp of each exon. We removed features 
with variance <0.01 and combined features with >90% overlap in 
their genome coordinates. For 3C features, we used all the intragenic 
highly variable interactions (F statistics > 3) from the above section 
as features.

After collecting all the features, we selected genes with highly vari-
able transcripts and exons among cell groups for model training. Highly 
variable transcripts were selected on the basis of the following criteria: 
(1) mean TPM across cell groups of >0.2; (2) TPM standard deviation 
of >0.3; and (3) transcript body (TSS to TTS) length of >30 kb. Highly 
variable exons were selected based on PSI standard deviation of >0.02 
and PSI 90% quantile and 10% quantile difference of >0.05. We trained 
four models for each gene, including predicting transcript TPMs using 
mC or 3C features and predicting exon PSIs using mC or 3C features. 
The training contains two steps. First, we used sklearn.feature_selec-
tion.SelectKBest with the score function f_regression to select the top 
100 features for each transcript or exon. We then used all features that 
had been selected at least once. We performed fivefold cross-validation 
to train random forest models using selected features and sklearn.
ensemble.RandomForestRegressor. In each cross-validation run, we 
calculated the PCC between predicted values and true values as the 
model performance. We also shuffled the selected features within each 
sample (Fig. 6c) to train the model and calculate PCC values again as 
the shuffled model performance.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The snmC-seq2 and snmC-seq3 data and MERFISH dataset are acces-
sible through the Neuroscience Multi-omic Data (NeMO) Archive 
(assets.nemoarchive.org/dat-sig83t9). The snm3C-seq data are 
accessible through NeMO (assets.nemoarchive.org/dat-sig83t9) 
and the NCBI’s Gene Expression Omnibus (GEO) database (identi-
fier GSE213262). The whole-brain snATAC-seq dataset is from ref. 11.  
The whole-brain scRNA-seq MERFISH and SMART-seq datasets are 
from ref. 6. All the processed data related to results and method 
sections are available from the GitHub repository at github.com/
lhqing/wmb2023. The Allen Brain Reference Atlas and CCF is from  
ref. 3. A detailed description of the data availability is provided at 
mousebrain.salk.edu/download.

Code availability
The mapping pipeline for snmC-seq3 and snm3C-seq is available at 
hq-1.gitbook.io/mc/. Single-cell DNA methylome data analysis tools are 
available at ALLCools (v.1.0.8) Python package (lhqing.github.io/ALL-
Cools/intro.html). Single-cell chromatin conformation data analysis 
tools are available at the scHiCluster (v.1.3.2) Python package (github.
com/zhoujt1994/scHiCluster). Other codes and Jupyter Notebooks 
related to results and method sections are available from the GitHub 
repository at github.com/lhqing/wmb2023.
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Extended Data Fig. 1 | Brain dissection regions. Schematic of brain dissection 
steps. Each male C57BL/6 mouse brain (age P56) was dissected into 600-μm 
slices for snmC-seq3 (a) and 1,200-μm slices for snm3C-seq3 (b). We then 

dissected brain regions from both hemispheres within a specific slice. Brain 
atlas images were created based on Wang et al.3 and © 2017 Allen Institute for 
Brain Science. Allen Brain Reference Atlas. Available from: atlas.brain-map.org.



Extended Data Fig. 2 | Quality Control for snmC and snm3C dataset. a-b, The 
number of input reads and final pass QC reads in snmC-seq3 and snm3C-seq 
shown by t-SNE (a) and violin plot (b) c, The percentage of non-overlapping 
chromosome 100-kb bins or genes detected per cell in snmC-seq3 and snm3C- 
seq. Gray lines from top to bottom indicate the 75%, 50%, and 25% quantiles. 
d-e, The number and ratio of cis-long and trans contacts in snm3C-seq, depicted 
by t-SNE (d) and violin plot (e). f, Heatmap of PCC between the average methylome 
profiles (mean mCH and mCG fraction of all chromosome 100-kb bins across all 
cells belonging to a replicate sample). The violin plot below summarizes the 

values between replicates within the same brain region or between different 
brain regions. g-h, Pairwise overlap score (measuring co-clustering of two 
replicates) of neuronal subtypes and (g) non-neuronal subtypes (h). The violin 
plots summarize the subtype overlap score between replicates within the same 
brain region or between different brain regions. i, Distribution of the mCG, 
mCH, mCCC, and Lambda DNA fraction (non-conversion rate) at sample level in 
snmC-seq3 and snm3C-seq. j, Pre-clustering t-SNE of snmC and snm3C dataset 
colored by final mC reads and plate-normalized cell coverage. Arrows indicate 
typical low-quality clusters filtered out from the further analysis.
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Extended Data Fig. 3 | Metadata of snmC-seq and snm3C-seq dataset.  
a-c, t-SNE of snmC-seq color by cell subclass (a), major regions (b), and dissection 
regions (c). d-f, t-SNE of snm3C-seq color by cell subclass (d), major regions (e), 
and dissection regions (f). g,h, Cell-level t-SNE of snmC-seq and snm3C-seq color 
by global mCG (g) and global mCH (h) fraction. i, The average global mCG and 

mCH fractions for neurons in different dissection regions. Regions are ordered 
by the global mCH fractions, and only the top and bottom 20 regions are shown. 
j, The average global mCG and mCH fractions for all cell subclasses. Subclasses 
are ordered by the global mCH level, and only the top and bottom 20 subclasses 
are shown.



Extended Data Fig. 4 | t-SNE embedding by major regions. This figure groups 
cells by major regions (first five rows), including isocortex (CTX), olfactory 
bulb (OLF), amygdala (AMY), cerebral nuclei (CNU), hippocampus (HPF), 
thalamus (TH), hypothalamus (HY), midbrain (MB), hindbrain (HB), and 
cerebellum (CB). Each section comprises three columns. The left column 
displays the CCF-registered 3D brain dissection regions and the corresponding 

cell on the whole brain t-SNE. The middle and right columns show the t-SNE 
embedded by cells from this major region, colored by cell subclasses and 
dissection regions, respectively. The numbers on the t-SNE plot indicate  
the cell subclass ID, which refers to in Supplementary Table 4. The final row 
groups non-neuron cells into two sections based on telencephalon and 
non-telencephalon dissection regions.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Example genes illustrating high-granularity 
correspondence between methylome and transcriptome. All t-SNE 
embeddings in this figure are based on the methylome clustering shown in 
Fig. 2a. Gene expression of non-neuronal cell subclasses is not plotted here.  
a. Schematic representation of the normalized gene body mCH fraction (left 
panel) and RNA CPM value (right panel) at the cell-group-centroids t-SNE plot 
for each gene. b. Pairwise plots of neurotransmitter-related genes. These genes 
provide crucial information about cell type identities and display a highly similar 
specificity between gene body mCH fractions and mRNA expression. Genes 

include Slc17a7 and Slc17a6 for glutamatergic, Gad1 for GABAergic, Slc6a5 for 
glycinergic, Slc6a2 for noradrenergic, Th for dopaminergic, Chat for cholinergic, 
Slc6a4 for serotonergic, and Hdc for histaminergic. c. Pairwise plots of immediate 
early genes (Fos, Egr1, Arc, Bdnf, Nr4a2) are also expressed in many adult brain 
cell types6,8. Their expression levels are also anti-correlated with mCH fractions. 
d. Another gene category includes neuropeptides (Npy, Vip, Sst, Penk, Pdyn, 
Grp, Tac2, Cck, Crh), many of which are canonical cell type markers with vital 
signaling functions97. Their specificity is detectable in the gene body mCH that 
aligns with transcription.
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Extended Data Fig. 6 | Integration of snATAC-seq and snmC-seq3 data.  
a, Barplot displays the alignment scores of each dissection region calculated in 
the low dimensional space of snATAC-seq and snmC-seq integration. b, t-SNE 
shows the co-embedding of snmC-seq and snATAC-seq data, grouped by major 
regions and colored by dissection regions. c-d, Heatmap visualization of 15 ×15 
small heatmaps. Each small heatmap represents the mCG fractions (green) and 

the corresponding accessibility level of 1,000 cell-type-specific CG-DMRs. 
Columns display hypo-DMRs of that cell subclass while rows show their mCG 
fraction/ATAC CPM values. Take the top-right mini heatmap as an example, 
rows represent VLMC_NN hypo-DMRs, with color indicating mCG fraction in 
ABC_NN. Cell subclasses from isocortex (c) and midbrain (d) are shown as 
examples.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | MERFISH data processing and annotation. a-c, Spatial 
methylation patterns of DMGs (genes with differential mCH levels on gene 
body ± 2 kb among different brain regions) and DMRs across three brain axes 
(anterior to posterior (a), dorsal to ventral (b), medial to lateral (c). d, Workflow 
illustrating the generation of MERFISH data, including sample preparation, 
imaging, and data analysis steps. e, Quality control assessment for each 
MERFISH sample, where the red lines represent the filtering cutoff for various 
quality metrics, including RNA total counts, RNA feature counts, blank gene 
number, cell volume (μm3), and RNA counts per volume. f, Integration t-SNE 
plot of MERFISH and scRNA dataset6 color by cell subclasses. g, MERFISH cells 

colored by cell subclasses, with labels obtained from the integration with  
the RNA dataset. From top to bottom, the cells are displayed by glutamatergic 
neurons, other neurons, and non-neurons. h, Spatial epigenetic patterns  
of Negr1 and its associated DMRs. Brain slices in the left column are color- 
coded by normalized gene body mCH fraction, mCG fraction of the DMR 
(chr3:154,927,600-154,929,099), and RNA expression. The right column 
displays the normalized contacts heatmap between the DMR and gene. 
Microscope objective and slide in d were created using BioRender (www.
biorender.com).

https://www.biorender.com
https://www.biorender.com


Extended Data Fig. 8 | Integration of snmC-seq and AIBS whole-mouse-brain 
MERFISH datasets. a, Imputed spatial locations of glutamatergic neurons 
colored by dissection regions. 12 coronal slices were selected to represent 51 

total MERFISH slices. Additional data for the remaining slices can be accessed 
through our interactive browser: https://mousebrain.salk.edu/dynamic_
browser. b, AIBS MERFISH Slice 67 color by individual cell subclasses.

https://mousebrain.salk.edu/dynamic_browser
https://mousebrain.salk.edu/dynamic_browser
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Chromatin conformation analysis at compartment 
and domain level. a, PCC between compartment score and mCG (orange)/
mCH (blue) fractions of all 100 kb bins on each chromosome (left panel) or 
whole genome (right panel). The dot lines inside each violin plot are 75%, 50%, 
and 25% quantiles from top to bottom. b-c, chromosome 1-D heatmaps show 
PCC between compartment score and mCG fraction (b) and the compartment 
score STD across cell subclasses (c) for each chromosome at a 100-Kb resolution. 
Arrows indicate the location of the Celf2 gene used as an example in Fig. 4a,b.  
d, The line plot (mean±s.d.) shows the developmental gene expression level 
among subtypes defined in La Manno et al.37 across embryonic days. The genes 
in each subpanel are selected by overlapping with top negatively correlated 
(left), positively correlated (right), or uncorrelated (middle) chrom100k bins  

in (a). e, Workflow for gene body domain boundary analysis. f, The scatter plots 
of the most negatively (top) or positively (bottom) correlated boundary to 
each long gene transcript. Both the x and y axis is the PCC between 25 Kb bin 
boundary probability and transcript body mCH (x-axis) or mCG (y-axis) 
fractions. g, The scatterplot shows the location of each long gene transcript’s 
most negatively (top) or positively (bottom) correlated boundary. The y-axis  
is the PCC between the 25 Kb bin boundary probabilities and transcript body 
mCH fractions; the x-axis is the relative genome location to the transcripts.  
h, Functional enrichment for genes associated with negatively correlated 
domain boundaries (upper) or positively correlated boundaries (lower). 
Adjusted p-values obtained from one-side Fisher’s exact test after FDR 
correction.
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Extended Data Fig. 10 | Correlation between gene expression and chromatin 
contacts. a, Workflow for highly variable and gene correlated interaction 
analysis. b, The distribution of the distance between the furthest correlated 
interaction and gene TSS. Q95 and Q99 stand for the quantile of all interactions 
ordered by the distance to TSS.c, Distribution of the number of highly variable 
and correlated interactions per gene; top 30 gene names are listed. d, Scatterplot 
shows each gene’s number of correlated interactions (y-axis) and TSS boundary 
probability correlation (x-axis, PCC between mCH and TSS boundary probability, 

from Extended Data Fig. 9e). e-j, Compound heatmaps display the chromatin 
conformation landscape of megabase-long genes, including Ptprd (e), Nrxn3 
(f), Lsamp (g), Dlg2 (h), Celf2 (i), and Sox5 ( j). For each panel, green rectangles 
indicate the location of the gene body, the lower triangle shows the F statistics 
from ANOVA analysis analyzing the variance of contact strength across all cell 
subclasses (similar to Fig. 4i), and the upper triangle shows the PCC between 
contact strength and mCH fraction (similar to Fig. 4j).



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Construction of TF-DMRs-Target regulatory 
networks. a, Schematic of the DMR-Target edge for Psd2 (top row) and Celf2 
(bottom row). From left to right, the t-SNE plot is colored by gene mCH fraction, 
gene-DMR contacts, and DMR mCG fraction. b, Scatterplot shows the motif 
enrichment scores in negatively correlated DMRs (x-axis) and positively 
correlated DMRs (y-axis) for each TF. The top TFs with the highest motif 
enrichment scores are listed. Blue contours are the kernel density of the dots. 
c-d, Example TFs with motifs enriched in positively correlated DMRs or 
negatively correlated DMRs are shown in more detail (similar to Fig. 5f). The 
Onecut2 and Rfx1 gene (c) are examples of having motifs enriched in positively 
correlated DMRs, the Foxp2 and Foxa1 gene (d) are examples of having motifs 
enriched in negatively correlated DMRs. Adjusted p-values obtained from the 

z-test of the motif enrichment score from pycistarget43 (Method) after FDR 
correction. e, The top histogram shows the distribution of the number of DMRs 
each motif is enriched in. The bottom histogram shows the distribution of the 
number of motif occurrences each DMR has. f, The TF-DMR-Target triples are 
separated into eight categories (columns) based on their PCC sign between 
Gene-DMR, TF-DMR, and TF-Gene. The top bar plot is the triple distribution in 
each category. The middle violin plot is the triple final score distribution within 
each category. Lines inside the violin plot are 25%, 50%, and 75% quantiles, 
respectively. The bottom dots show the correlation sign combination of each 
category. Column colors match the schematic in (f). g, The schematic displays 
the potential regulatory model for the four most common (based on e) TF-DMR- 
Target triple categories.



Extended Data Fig. 12 | See next page for caption.
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Extended Data Fig. 12 | TF-DMR-Gene triple predict TF and gene 
relationships. a-f, Example TF-DMR-Target triple, including 1: Erf (TF), Nab2 
(target) and DMR (Chr10:127,595,357-127,595,787) (a-b); 2: Egr1 (TF), Synpo 
(target) and DMR (Chr18:60,762,310-60,763,534) (c-d); 3: Cacna2d2 (TF), Stat5b 
(target) and DMR (Chr9:107,462,798- 107,463,968) (e-f); For each example, left 
are t-SNE plot colored by the mCH fraction (blue) or RNA level (purple) for 
target and TF; mCG fraction (green) and chromatin accessibility (orange) for 
DMR; and gene-DMR contact score (red) (a,c,e). The compound heatmaps on 
the right show the chromatin landscape of target genes, including Nab2 (b), 
Synpo (d), and Cacna2d2 (f); the layout is similar to Extended Data Fig. 10e–j.  

g, The dot plots represent TF’s normalized PageRank Score and RNA expression 
for cell subclasses in the hindbrain (MB). Red dots are colored and sized by 
PageRank Score. Purple dots are colored by RNA CPM, sized by the percentage 
of cells in that subclass expressing this gene. Right, the t-SNE plot of snmC-seq 
cells from MB colored by dissection region and the CCF-registered 3D brain 
dissection regions. h, From top to bottom, t-SNE plot colored by HB cell 
subclasses, Tfeb PageRank Score and Tfeb RNA expression. Arrows point to two 
cell subclasses with high PageRank score but low RNA level. i, Left, schematic of 
RFX family sub-networks. Right, t-SNE plot color by normalized PageRank Score 
of RFX family genes.



Extended Data Fig. 13 | See next page for caption.
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Extended Data Fig. 13 | Epigenetic heterogeneity and gene exon usage.  
a, Compound heatmaps illustrate the similarity between the Nrxn3 intragenic 
methylation heterogeneity and alternative isoform expression patterns. Rows 
are neuron cell subclasses. I, mCG fraction of all 6,138 CpG sites of Nrxn3 gene 
with columns ordered by original genome coordinates (bottom colors are CpG 
clusters from heatmap ll). ll, mCG fraction of CpG sites re-ordered by their CpG 
clusters (bottom colors) based on subclasses methylation pattern. Heatmap lll 
and Heatmap lV show the TPM of 14 highly variable transcripts and PSI of 38 
highly variable exons of Nrxn3, quantified with the SMART-seq dataset. All values 
are z-score normalized across cell subclasses. The Nrxn3 transcript structures 
and exon locations are indicated at the bottom plots. Red arrows point to beta-
Nrxn3 transcripts and one associated CpG cluster. Heatmap V shows the Nrxn3 
gene log(CPM) in scRNA-seq (10X) data. b, Compound heatmaps illustrate the 
similarity between the Oxr1 intragenic methylation heterogeneity and alternative 
isoform expression patterns. Rows are neuron cell subclasses. I, mCG fraction 
of all 1,797 CpG sites of Oxr1 gene with columns ordered by original genome 
coordinates (bottom colors are CpG clusters from heatmap ll). ll, mCG fraction 
of CpG sites re-ordered by their CpG clusters (bottom colors) based on 

subclasses methylation pattern. Heatmap lll and Heatmap lV show the TPM  
of 11 highly variable transcripts and PSI of 24 highly variable exons of Oxr1, 
quantified with the SMART-seq dataset. All values are z-score normalized 
across cell subclasses. The Oxr1 transcript structures and exon locations are 
indicated at the bottom plots. Heatmap V shows the Oxr1 gene log(CPM) in 
scRNA-seq (10X) data. c, Scatterplot shows the PCC between predicted PSI and 
true PSI for each highly variable exon (dot), using methylation features (left) 
and chromatin contact interactions (right) to predict. d, Scatterplot shows the 
delta PCC in mC models (x-axis) and m3C models (y-axis) for highly variable 
exons (dot). Top exons with large delta PCC are listed by their corresponding 
gene names. e. Genome browser view of intragenic epigenetic and isoform 
diversity of the Nrxn3 gene in five cell subclasses (rows). The middle heatmaps 
are normalized contact strengths of the Nrxn3 gene locus, with arrows pointing 
to strips over the beta-Nrxn3 transcript body. The zoom-in panels show alpha-
Nrxn3’s (left) and beta-Nrxn3’s (right) TSS region, with mCG fraction (green), 
mCH fraction (blue), and SMART RNA (bottom) expression tracks. f, Similar to 
e, showing the corresponding intragenic epigenetic and isoform diversity in 
the Oxr1 gene.
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