
UCLA
UCLA Electronic Theses and Dissertations

Title
Real-Time Optimization for Control of a Multi-Modal Legged Robotic System

Permalink
https://escholarship.org/uc/item/7gp9z8sf

Author
Hooks, Joshua Rosenberg

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gp9z8sf
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Real-Time Optimization for Control of a Multi-Modal Legged Robotic System

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Joshua Rosenberg Hooks

2019



c© Copyright by

Joshua Rosenberg Hooks

2019



ABSTRACT OF THE DISSERTATION

Real-Time Optimization for Control of a Multi-Modal Legged Robotic System

by

Joshua Rosenberg Hooks

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2019

Professor Dennis Hong, Chair

For decades humans have been trying to create machines that can mimic the capabilities

of legged animals. Already humans have developed cars capable of traveling long distances

at high speeds, and automation robots able to perform incredibly accurate tasks at high

rates. However, the machines and robots that we have created so far only operate in specific

controlled environments. What is impressive about animals is their capability of navigating

a multitude of environments. Further still, humans and select animals are not only able to

navigate the world but they are also capable of manipulating the world around them. It is

these abilities that we wish to replicate in robots in order to create machines that can aid

humans in their everyday lives.

In recent years, there has been a large surge in the number of quadrupedal robots available

for commercial use. They have shown that they can navigate the world at speeds comparable

to human walking or jogging. However, as of now no quadrupedal robot has the capability

ii



to help with tasks other than search or surveillance type of applications. Humanoid robots

have also made large advancements in the past decade. Multiple full sized humanoids have

demonstrated stable walking and locomotion. However, the most important development

for humanoid robots is their ability to manipulate their environment. The DARPA Robotics

Challenge show cased humanoid robots driving cars, opening doors, and using power tools

to complete tasks. Unfortunately, right now there are no commercially available humanoid

robots due in most part to their lack of safety and reliability. Unlike quadrupedal robots,

humanoids are not statically stable and thus require active balancing at all times. This

added complexity makes humanoid robots dangerous to operate in human environments.

This dissertation presents a novel quadrupedal robot and control strategy that brings

legged robotics closer to one day aiding humans in their everyday life. The novel quadrupedal

robot, named ALPHRED, uses a non-traditional kinematic structure to provide multiple

modes of operation, giving the robot capabilities beyond that of traditional quadrupeds.

The online path planner was developed using a non-linear program to solve for viable center

of mass trajectories and footstep locations based off of the dynamics of the robot and height

map information from vision data. In addition, a model predictive controller was developed

to track the desired motion of the robot. This model predictive controller uses massless

leg dynamics to predict the dynamics of the body but also incorporates known swing leg

dynamics in a novel fashion that results in a 250 Hz motion tracking controller. Using the

developed control schemes the robot is capable of navigating uneven terrain and can achieve

a top speed of 1.5 m/s on flat terrain. ALPHRED is equipped with passive wheels on it’s

belly that allow it to push itself around on flat ground for an efficient and fast form of

iii



locomotion. Finally, ALPHRED is capable of balancing on two limbs freeing up the other

two limbs for manipulation tasks. Using all of the mode’s of operation ALPHRED is the

first quadrupedal robot that is capable of picking up varying size packages and completing

an end-to-end package delivery.

iv



The dissertation of Joshua Rosenberg Hooks is approved.

Robert M’Closkey

Veronica Santos

Tsu- Chin Tsao

Dennis Hong, Committee Chair

University of California, Los Angeles

2019

v



To my family and friends.

vi



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Ackowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Modeling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Special Orthogonal Group SO(3) . . . . . . . . . . . . . . . . . . . . 17

1.3 Organization and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 ALPHRED PLATFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 BEAR Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 TRAJECTORY PLANNING . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



3.1 Footstep Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Center of Mass Trajectory Planning through Convex Optimization using Ver-

tex Based ZMP Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Trajectory Optimization Problem . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Swing Leg Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.4 Center of Mass Height Trajectory . . . . . . . . . . . . . . . . . . . . 52

3.3 Discussion and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Uneven Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Affects of CoM Acceleration Cost . . . . . . . . . . . . . . . . . . . . 54

3.4 Center of Mass and Footstep Planning through a NLP and Vision Data . . . 55

3.4.1 FOOTSTEP PLANNER . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 VISION FOOTSTEP ADJUSTER . . . . . . . . . . . . . . . . . . . 58

3.4.3 Trajectory Planner: Nonlinear Program . . . . . . . . . . . . . . . . . 58

3.5 Discussion and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 MOTION CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Limb State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Stance (ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Swing (SW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



4.1.3 Touchdown (TO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.4 Early Touchdown (ETD) . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.5 Late Touchdown (LTO) . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.6 Liftoff (LO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.7 Early Liftoff (ELO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Position PD Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Tracking Controller for SO(3) . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Model Predictive Control Using Quadratic Programming . . . . . . . . . . . 74

4.3.1 Simplified Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Extended State Space . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Discrete Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.4 Quadratic Programming Formulation . . . . . . . . . . . . . . . . . . 84

4.3.5 Implementation Techniques . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.6 Discussion and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 MANIPULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 End-Effector Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Hybrid Force-Position Control . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Auto Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



5.2.2 Pseudo Force-Position Control . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Auto-Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.4 Online Learning of Parameters . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Full Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Discussion and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 FUTURE WORKS AND CONCLUSIONS . . . . . . . . . . . . . . . . . . 120

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x



List of Figures

1.1 a) Continuous time trajectory. b) Continuous time trajectory discretized into a

finite number of knot points with polynomial approximations between points. . . 9

1.2 Cart pole model, image taken from [43] . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 a) When the ZMP point is within the support polygon all angles have the same

sign. b) When the ZMP point is outside of the support polygon the resultant

angles will have different signs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Rotation of a rigid object. The Inertial frame is represented by the solid coordi-

nate frame while the Body frame is represented by the dotted coordinate frame.

This image was taken from [56] . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 a) Image of the full ALPHRED-1 platform. b) Bubble diagram of ALPHRED-1

joint layout, see Table 2.1 for range of motion . . . . . . . . . . . . . . . . . . . 26

2.2 a) Image of the full ALPHRED-2 platform. b) Kinematic range of motion of the

ALPHRED-2 platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Exploded view of a single ALPHRED-2 limb. . . . . . . . . . . . . . . . . . . . 29

2.4 a) Symmetric stable mode, b) Tripod single manipulation mode, c) Dynamic

mode, d) Caster/wheeled mode, e) Jumping/pronking mode, f) Biped dual ma-

nipulation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 BEAR module exploded view of mechanical design. . . . . . . . . . . . . . . . . 33

xi



2.6 Comparing stall torque curves for high gear reduction gearboxes vs low gear

reduction gearboxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Cross sectional view of the BEAR module showing the liquid cooling section. . . 34

2.8 Control system block diagram. Each block runs a separate process with all inter-

process communication being handled by a custom shared memory library. . . . 37

3.1 An overview of the trajectory optimization algorithm. . . . . . . . . . . . . . . . 46

3.2 An example of a swing trajectory going from 0 to 0.2 in the x direction and 0 to

0.1 in the z direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Solid blue line represents CoM trajectory and green X’s represent foot positions.

a) Top view of trajectory b) Side view of trajectory. . . . . . . . . . . . . . . . . 55

3.4 Solid blue line represents CoM trajectory, green X’s represent foot positions, and

colored dots represent CoP positon. a) Without CoM acceleration cost b) With

CoM acceleration cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 High-level system architecture flow chart. The footstep planner, vision adjuster,

and trajectory planner work sequentially. While all three work in parallel to the

FSM and motion controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 An overview of the non-linear program. . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 The blue dashed line represents the nominal trajectory created by the user input,

a) shows the side profile of the robot, b) shows the top view. . . . . . . . . . . . 62

xii



3.8 Footstep plan for flat terrain. Blue squares are nominal footsteps, green diamonds

are modified footsteps, and red crosses are optimized footsteps. . . . . . . . . . 64

3.9 Footstep plan stepping up onto an obstacle with the front two legs. Blue squares

are nominal footsteps, green diamonds are modified footsteps, and red crosses are

optimized footsteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Footstep plan for stepping up onto an obstacle with the back two legs. Blue

squares are nominal footsteps, green diamonds are modified footsteps, and red

crosses are optimized footsteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Visual representation of the limb FSM. . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Breakdown of the contribution that the feedforward force has compared to the

contribution from the PD controller during a swing leg trajectory. The solid

black line represents the contribution from the feedforward term, the dashed red

line represents the contribution from the PD controller, and the solid blue line

represents the summation of the two which is passed to the motor controller. . . 81

4.3 Comparison of time required to solve the QP problem for the direct method versus

indirect method over 10000 samples. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Comparison of time required to formulate the QP problem for the direct method

versus indirect method over 10000 samples. . . . . . . . . . . . . . . . . . . . . . 93

4.5 Comparison of total cycle time for the controllers using the direct method versus

indirect method over 10000 samples. . . . . . . . . . . . . . . . . . . . . . . . . 94

xiii



4.6 a) Pose of the robot that was used to approximate the inertia tensor assuming

the entire robot as a single rigid body. b) The solid part representing the actual

inertia that should be considered for the rotation about the Z axis. . . . . . . . 95

4.7 A simplified diagram of the foot showing the different components that allow for

contact sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 The desired foot trajectory is in the dashed red line and the actual trajectory is

in the solid black line. a) is the method in which the foot is commanded to stay

at the touchdown position. b) is the method in which the foot is commanded

1.5cm below the touchdown position. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Shows the linear positions and velocities of the robot during two lateral pushes

2.5 seconds apart in the opposite direction. The red dashed line is the desired

trajectory and the solid black line is the actual trajectory. . . . . . . . . . . . . 102

4.10 Shows the orientation and angular rates of the robot during two lateral pushes

2.5 seconds apart in the opposite direction. The red dashed line is the desired

trajectory and the solid black line is the actual trajectory. . . . . . . . . . . . . 103

4.11 These plots show the data gathered from a 0.4 m/s trot. . . . . . . . . . . . . . 104

4.12 Data from a flying trot in simulation. The stance time is 0.12 seconds and the

swing time is 0.16 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiv



4.13 Shows the error between the desired trajectory and the actual trajectory for an

amble gait with heavy feet in simulation. MPC that doesn’t include swing leg

dynamics is represented by the dashed red line and MPC that does include swing

leg dynamics is in the solid black line. . . . . . . . . . . . . . . . . . . . . . . . 106

4.14 Shows the error between the desired trajectory and the actual trajectory for a

trot gait with heavy feet in simulation. MPC that doesn’t include swing leg

dynamics is represented by the dashed red line and MPC that does include swing

leg dynamics is in the solid black line. . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 The radially symmetry of the limb layout combined with the hip yaw degree of

freedom provides the range of motion to allow two opposing limbs to become

parallel as shown in b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Rendering of the end-effector with all manipulation attachments. . . . . . . . . 111

5.3 Diagram of the package frame used to transfer the package from the ground to

the top of the robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 The position is controlled in the X and Z plane while the force is maintained in

the Y direction to ensure that the package does not slip during transfer. The

distance z0 from the ground to the pickup point is used to determine the distance

from the top of the robot to drop off the package. . . . . . . . . . . . . . . . . . 113

5.5 Transition from the leg tucked pose to the leg stretched out pose to ensure no

interference when the robot is placing the package on it’s back. . . . . . . . . . . 116

xv



Ackowledgments

Firstly, I would like to thank my advisor, Dr. Dennis Hong, for all of his support through out

the past five years. His excitement, positive outlook, and overall bigger than life personality

is a rarity in this world and was a major factor in getting me through the many highs and

lows of a PhD. His encouragement to get your hands dirty, to break the robots, and to

push the boundaries all in order to learn has forever changed the way I approach difficult

challenges, and for that I am eternally grateful. When I first walked into Dr. Hong’s office

he had just moved to UCLA and his lab, RoMeLa, was completely empty. I am proud to

say that now five years later the lab is overflowing with equipment and robots of all different

shapes and sizes. It is one of the greatest things that I have ever been apart of, and I am

very thankful to Dr. Hong for allowing me to be apart of the team to help him build his lab

at UCLA.

I am grateful to have a committee that I respect as researchers, teachers, and people. It

is not a coincidence that I chose professors that are not only renowned in their fields but who

also care about the students that they teach. Dr. Robert M’Closkey, Dr. Veronica Santos,

and Dr. Tsu-Chin Tsao thank you for always having time for my questions and guiding me

when the time arose.

During my studies at UCLA I was fortunate to be a part of one of the best robotics labs

in the world. Not only was I able to interact with some of the smartest people in the field

of robotics but they were also some of the nicest. I want to say thanks to everyone who was

a part of RoMeLa for helping me both with my academic career but also for being there

xvi



for me as a friend. Specifically, I would like to thank Jeffrey Yu, Alexie Pogue, Min Sung

Ahn, and Xiaoguang Zhang who were there from day one. I am sure that I could not have

made it through without all of your support. I would also like to give a special thanks to

Taoyuanmin Zhu. His knowledge of electro-mechanical systems might be unparalleled but

even more importantly his willingness to always help is what I am truly thankful for. I am

not sure I can count the amount of times Taoyuanmin helped fix a communication issue,

manufactured a quick fix for a broken chassis, or just pointed out a negative sign that should

not have been there.

I would also like to give a special thanks to Julian Zhou, Yi Zheng, and Martin Lee for

getting me through my first year of graduate school. For anyone who has gone through a

PhD program they know that passing the PhD preliminary exam is no small feet and I am

not sure I could have done it without the help of these three.

Finally and maybe most importantly I would like to thank my friends and family. There

has never been a moment in my life where I did not have the love and support of my family.

There are some very hard times in a PhD where it is often hard to see the light at the end

of the tunnel and I just want to say thanks to my family for always showing me the way. I

have a unique group of friends who are very successful in their own respective careers. They

inspired me to continue in my passion but beyond that they have always been there for me

whether through hardships related to my PhD career or just life hardships in general. I just

wanted to say thank you for getting me to the end.

xvii



Curriculum Vitae

2008 – 2012 B.S. in Mechanical Engineering, University of Washington

2012 – 2014 Controls engineer at Electroimpact, automatic fiber placement di-

vision

2014 – Present Ph.D. student in Mechanical and Aeronautical Engineering, Uni-

versity of California, Los Angeles (UCLA).

Publications

Dennis Hong, Joshua Hooks, Jeffrey Yu, and Min Sung Ahn. Encyclopedia of robotics. In Design

of Legged Robotics. Springer, 2019.

Joshua Hooks, , Min Sung Ahn, Jeffrey Yu, Xiaoguang Zhang, Taoyuanmin Zhu, and Dennis

Hong. Alphred: A multi-modal operations quadruped robot for package delivery applications. In

2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

Joshua Hooks, Min Sung Ahn, and Dennis Hong. Online trajectory optimization for legged robotics

incorporating vision for dynamically efficient and safe footstep locations. In 2019 ASME Intrna-

tional Design Engineering Technical Conference and Computers and Information in Engineering

Conference (IDETC-CIE), 2019.

Joshua Hooks and Dennis Hong. Implementation of a versatile 3d zmp trajectory optimization

algorithm on a multi-modal legged robotic platform. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 3777–3782. IEEE, 2018.

Jeffrey Yu, Joshua Hooks, Sepehr Ghassemi, and Dennis Hong. Exploration of turning strategies

for an unconventional non-anthropomorphic bipedal robot. In ASME 2017 International Design

xviii



Engineering Technical Conferences and Computers and Information in Engineering Conference,

pages V05BT08A021–V05BT08A021. American Society of Mechanical Engineers, 2017.

Jeffrey Yu, Joshua Hooks, Sepehr Ghassemi, Alexandra Pogue, and Dennis Hong. Investigation of

a non-anthropomorphic bipedal robot with stability, agility, and simplicity. In Ubiquitous Robots

and Ambient Intelligence (URAI), 2016 13th International Conference on, pages 11–15. IEEE,

2016.

Jeffrey Yu, Joshua Hooks, Xiaoguang Zhang, Min Sung Ahn, and Dennis Hong. A proprioceptive,

force-controlled, non-anthropomorphic biped for dynamic locomotion. In 2018 IEEE-RAS 18th

International Conference on Humanoid Robots (Humanoids), pages 1–9. IEEE, 2018.

Taoyuanmin Zhu, Joshua Hooks, and Dennis Hong. Design, modeling, and analysis of a liquid

cooled proprioceptive actuator for legged robots. In 2019 IEEE/ASME International Conference

on Advanced Intelligent Mechatronics (AIM), 2019.

xix



CHAPTER 1

INTRODUCTION

1.1 Motivation

Robotics have had a large impact on this planet. For decades we have seen robots manufac-

ture our cars, package our food, and build our electronics. But we have not seen what science

fiction has promised us, and that is robot’s aiding us in our day to day lives. We have seen

robots have incredible success in factories and automation but not in the real world. This is

due in large part to the fact that the approaches to effectively navigating the two different

environments is extremely different. In factories, the environment is controlled and the state

of the robot can be measured to a high degree of accuracy. Additionally, the robots are

typically fully actuated giving them full control authority at all times. With this framework,

brushless DC (BLDC) motors with large gear reductions are the preferred method of actu-

ation because they provide both strength and precision. These fully actuated systems can

use simple control strategies such as high gain PD joint level controllers or inverse dynamic

whole-body controllers [74], [47], [17].

Unfortunately, this is not the case with legged robots. By removing the fixed contact

to the ground the system becomes under-actuated, which limits the control authority of the

1



robot at a given point of time [73]. Techniques like inverse dynamics are no longer feasible

and instead trajectories must be planned over finite time horizons in order to account for

the complex dynamics required to complete high level goals. The state of the robot is now

no longer able to be directly measured, but instead an array of sensor measurements and

advanced filtering techniques are required. In addition, the control of the robot is now done

through controlling the ground reaction forces at changing contact points. This poses two

great challenges. First, the problem is now no longer continuous; as the robot travels different

feet are in contact with the ground at different times, each different combination of contacts

results in a different dynamical model [3], [33]. Second, when a foot makes contact with the

ground a collision occurs imparting an impulse onto the system. These collisions must be

effectively mitigated and controlled in order to provide stable locomotion. The actuators

used for robots in factories are not capable of handling impulses and this has required new

types of actuators that incorporate compliance [29].

In the past couple of decades the robotics community has come to the realization that

the mechanical designs and control techniques used for automation robots are not adequate

for legged robots. The traditional type of actuation used in automation robotics consists of

a BLDC motor with a large gear reduction transmission. This type of actuation provides

large torques with high precision but is not capable of handling large impulses. Large gear

reductions not only amplify the torque in the system but they also amplify the inertia and

friction of the system. The amplification of these two parameters causes the transmission to

lockup, when being back driven, changing the dynamics of the system, and can often lead

to the failure of the actuator. There have been three main types of actuators developed for

2



legged robotics to address the short comings of the traditional actuators used for automation

robots.

The first is hydraulic actuators, which function by controlling the pressure difference in

hydraulic fluid lines through a system of compressors and valves. These type of actuators

are extremely powerful and traditionally used on large construction equipment where weight

and precision are not a concern. However, Boston Dynamics [1] showed that these types

of actuators can be extremely effective for legged robotics with their implementation on

Atlas and Big Dog [66]. Second, are series elastic actuators (SEA) which insert an elastic

element in between the load and the actuator itself [64]. Accurate torque control is achieved

by measuring and controlling the deflection of the compliant element. There have been a

number of successful robotic platforms that use SEAs [39, 55, 69, 34, 51]. Lastly, are pro-

prioceptive actuators or quasi-direct drive (QDD) actuators that use a low gear reduction

transmission combined with a high-torque large air-gap radius BLDC. Sangbae Kim and

Daniel Koditschek were the first to discuss how the transmission transparency of proprio-

ceptive actuators are ideal for legged robotic applications [71, 50]. Since then there have

been a number of robotic platforms that have utilized this type of actuator [12, 48, 11, 62, 2]

The control of legged robotics has also seen large developments beyond the techniques

used for fully actuated systems. Some of the first successful control strategies were developed

by the MIT Leg Laboratory under Mark Raibert. The Raibert controllers used powerful

heuristics to control the velocity and orientation of the robot in task space rather than

control each joint individually in joint space [67]. Kajita et al. was one of the first to

model the dynamics of legged robots as an inverted pendulum [44]. Through this method he

3



developed the zero moment point (ZMP) stability criteria; this condition is satisfied when the

center of pressure (CoP) exists inside the support polygon of the robot. When this condition

is met the dynamics of the problem become fully actuated allowing for analytical solutions

to the problem. Using this criteria Kajita was able to control a bipedal robot through the

analytical solution of an LQR [43]. The success of the ZMP controller lead to many different

variations of ZMP control [76], and the development of the capture point (CP) method

[65], which used the linear inverted pendulum model to determine the footstep location that

would drive the pendulum model to the unstable equilibrium point. This method was first

used as a push recovery method but was then further expanded as a walking controller [22].

These analytical solutions proved to be tools for controlling legged robots however they do

not naturally extend to dynamic locomotion with periods of flight, nor are they capable of

handling additional constraints such as friction.

To produce richer solutions the robotics community turned to numerical solutions using

optimization techniques. Trajectory planners use simplified template models of the robot

dynamics, such as a linear inverted pendulum, while including additional constraints to

plan for viable CoM trajectories and footstep plans over finite horizons [87, 86, 88, 18, 57].

Whereas, motion controllers now use the full dynamics of the system to produce whole-body

control of the robots [83, 6, 70]. While these whole-body controllers produce impressive

whole-body solutions they only consider the current state of the robot and do not account for

future events. As noted before, legged locomotion consists of known discrete transitions from

footstep to footstep. To account for these predictable transitions model predictive control

(MPC) has been utilized to optimize for trajectories and ground reaction forces over a finite

4



horizon. With an MPC only the first solution is used before the problem is re-formulated

and re-planned. Due to the constant re-planning, MPC’s are quite computationally heavy

and haven’t been viable for real-time control on real-world robotic platforms until the past

couple of years [52, 19].

While the world has seen large advancements in the field of legged robotics we still have

yet to see legged robots be utilized to aid humans in any industry. This dissertation aims at

combining the advancements in both the mechanical design of legged robots and the control

of legged robots to produce a robot that is one step closer of achieving the ultimate goal

of robots helping humans. The robot presented in this work, uses propriocpetive actuators

integrated into a novel kinematic structure to produce a robot that is capable of multiple

modes of operation for various different tasks. By combining a cutting edge MPC controller

with the novel mechanical design of the robot, the robot was able to pickup a package and

place it on it’s back, walk to a delivery location, and finally grab the object from its back

and drop of the package at the desired location. To the best of this authors knowledge this

is the first quadrupedal robot that is capable of end-to-end package delivery.

1.2 Background

1.2.1 Trajectory Optimization

As the control of legged robotics has evolved the reliance on numerical solutions has steadily

increased, making optimization a vital tool for both trajectory planners and motion tracking

controllers. A general optimization problem is the numerical solution to a problem that

5



minimizes (or maximizes) some measure of performance while adhering to a multitude of

constraints. A trajectory optimization (TO) problem solves for a locally optimal trajectory

given a linear or non-linear dynamical system, ẋ(t) = f(t, x, u). The solution to a TO

problem will provide the state x(t) and control u(t) over the entire trajectory. To illustrate

a TO problem, imagine a bipedal robot walking across a room while avoiding a table in

the middle of the room. The path that the robot takes would be the trajectory that it

follows whereas the torques in the actuators of the robot to create that trajectory would be

the control. A trajectory is said to be feasible if it adheres to all of the constraints. The

constraints in this example would be the system dynamics, collision avoidance, boundary

conditions (i.e. reaching the final goal position), etc. The optimal trajectory is selected

by choosing the best of all the feasible trajectories. In this example best could mean the

trajectory that takes the shortest amount of time or the trajectory that uses the least amount

of energy. Trajectory optimization is used when the problem has no closed-form solution or

the solution is too hard or impractical to calculate analytically [49].

There are many ways to formulate a TO problem however, for the purposes of this paper

we will restrict our definition to a differentiable continuous-time dynamical system. The

typical TO problem tries to determine the ”best” trajectory by minimizing a cost function

(1.1) by adjusting the problems decision variables in order to find the optimal solution.

Common costs for trajectory optimization for legged robots are total torque, total time,

total acceleration, etc.

min
x(t),u(t)

J(t, x(t), u(t)) Cost function (1.1)

6



The minimization of the cost function is subject to a variety of different constraints (1.2)

- (1.5), the first being the dynamics of the system. This constraint describes how the system

evolves through time based off of the control effort. In many cases the system dynamics

will be drastically simplified (template model) in order to decrease the solve time of the TO

problem.

ẋ(t) = f(t, x(t), u(t)) system dynamics (1.2)

Next, are the path constraints. This type of constraint encompasses a wide variety of

constraints that restrict the trajectory. An example of this could be to prevent the robot

from colliding with an object or prevent the robot from taking a step that is beyond it’s

kinematic reachability.

h(t, x(t), u(t) ≤ 0 path constraints (1.3)

The boundary constraints are to ensure that the robot starts and ends in the right

conditions.

g(t0, tF , x(t0), x(tF )) boundary constraints (1.4)

Finally, both the state and the control effort can be bounded from above and below.

For example, the control effort could be bounded by the known torque limits of a robot’s

actuators.

7



xlower ≤ x(t) ≤ xupper state bounds (1.5)

ulower ≤ u(t) ≤ uupper control bounds (1.6)

1.2.1.1 Problem Formulations

There are a variety of ways to formulate a trajectory optimization problem [49, 8, 9]. The

first two major methods are the direct method and the indirect method [79]. The difference

between the two methods is the selection of decision variables and how the dynamics of the

problem are incorporated. The indirect method uses only control inputs as decision variables.

If both the initial state and the control inputs are known then a forward propagation of the

dynamics can be performed to calculate the entire trajectory of the problem. Whereas, with

a direct method the state and control are both decision variables. This method results in

a larger number of decision variables however the problem is now broken up into multiple

optimization problems. With the indirect method a small change to a state at the beginning

will have a large effect on the states at the end, this is not the case in the direct method.

The performance of the two methods is highly dependent on the type of problem that is

being solved.

Often times the optimization problem can be broken up into a set of smaller optimization

problems, this process is known as transcription. Transcription breaks up the continuous

time dynamics of the problem into a finite set of nodes or knot points. The dynamics can

be propagated forward explicitly using something like Runga-Kutta, this method is known

as the shooting method. Alternatively, the continuous time dynamics can be approximated

8



by polynomial splines in between the knot points, which is known as collocation (fig. 1.1).

Constraints are added to the problem formulation to ensure continuity between two adjacent

polynomials. For this formulation the decision variables consist of the coefficients of the

polynomials and the control to create these polynomials [60] [61]. Increasing the number

of knot points will increase the accuracy of the approximation, but it will also increase the

computation time. Accuracy can also be improved by using a higher order polynomial spline

in-between knot points, but again this increases the number of decision variables which

increases the computation time.

Figure 1.1: a) Continuous time trajectory. b) Continuous time trajectory discretized into a

finite number of knot points with polynomial approximations between points.

1.2.1.2 Non-Linear Programming

The tools and techniques to solve a TO problem depend on the formulation of the problem.

Depending on the structure of the cost function and constraints allows for different tech-

niques to be used. The most general formulation is a Non-Linear Program (NLP) which is

constructed as shown in (1.7) where the cost function, equality constraints, and inequalities

constraints can all be non-linear. NLP’s can be solved using commercial NLP solvers like

9



IPOPT [81] or SNOPT [30]. NLP’s often times do not find the global minimum but usually

result in a local minimia of the problem. Additionally, NLP’s are not guaranteed to converge

therefore it is imparative that the problem is conditioned appropriately to be used for TO

problems on robotic systems.

min
z

J(z)

s.t.

fi(z) ≤ 0 i = 1, ...,m

hi(z) = 0 i = 1, ..., p

(1.7)

Where z is the set of decision variables, J(z) is the cost function, fi(z) is the ith inequality

constraint, and hi(z) is the ith equality constraint.

1.2.1.3 Convex Optimization and Quadratic Programming

To decrease the computation time of a TO problem, mathematical simplifications can be

made to the system dynamics and constraints to turn the problem into a convex optimization

problem. A convex optimization problem requires that the cost function in (1.7) is a convex

function, the inequality constraints are convex functions, and the equality constraints are

affine functions. A convex problem can typically be solved much more efficiently than a

NLP with not only a gaurantee on convergence but a gaurantee to converge on the globally

optimal solution. Commercially available software like CVX [31] is readily available to solve

Convex problems.

Solve times can be further reduced if the problem can be simplified and formulated into

a Quadratic Program (QP). QP’s are a specific type of Convex program that takes the form

10



of (1.8) where the cost is quadratic and the inequalities are affine. If the problem can be

formulated into a QP there are a multitude of commercial solvers such as Gurobi [59], OSQP

[75], and qpOASES [27].

min
z

1/2zTMz + cT z

s.t.

Az ≤ b

(1.8)

Any additional structure to the optimization problem can help to reduce the time it takes

to solve the problem. If the cost or constraints consist of upper triangular, block diagonal,

or strictly diagonal matrices sparse matrix libraries can be used to solve the problem faster.

Using an initial guess that is close to the optimal solution will also help to reduce solve times.

This is typically applicable to TO problems in robotics where the solution to the previous

problem is used as the initial guess to the next problem, this method is called a warm start

to the problem [82].

1.2.2 Modeling Dynamics

A crucial element to the success of an optimization problem for legged robotics is the ability

to model the dynamics of the system. The system can be modeled as accurately as possible

taking into account all of the non-linearities such as friction in the joints and the compliance

of the links, however this is typically very challenging to do and results in optimization

problems that take minutes or even hours to solve. Often times simplifications are made to

the model to provide for tractable optimization problems, these simplified models are called

11



template models. The challenge for a controls engineer is to capture enough of the actual

dynamics in the template model to successfully control the robot.

1.2.2.1 Rigid Body Dynamics

The way in which a rigid body moves through space and interacts with other rigid bodies is

a well known field in the area of dynamics. Typically a legged robotic system uses a floating

base model meaning that the body of the robot is represented by a spatial position vector qB

consisting of six states, three rotational and three linear [23, 24]. Each one of the robots links

is treated as a separate rigid body connected to each other by a single joint with position

qi. The vector q = [qTB, q1, q2, ...qn−6]
T represents the current position of the robot base and

all of the joints. From this representation the dynamics of the system can be represented by

(1.9) [72].

H(q)q̈ + C(q, q̇)q̇ +G(q) = J(q)TF + Sτ (1.9)

Where H ∈ Rn×n is the mass matrix, C ∈ Rn×n is the Coriolis matrix, and G ∈ Rn

is the gravitational term. J ∈ R6N×n and F ∈ R6N is the combined support Jacobians

and the collected ground reaction forces respectively for N number of feet. The matrix

S = [0(n−6)×61(n−6)×(n−6)] is a selection matrix that only picks off the joints that are actuated.

For a complete discussion on rigid body dynamics and efficient algorithms for computing the

above matrices please see [25].

Although the full rigid body dynamics equations in (1.9) are quite effective at representing

the dynamics of a real-world system they can often times be too burdensome to use due

to their computational load. Many different simplifications can be made to improve the

12



efficiency of the dynamics but the most common in legged robotics is to assume that the legs

of the robot are massless. If the legs have no mass then they can not impart any moments

or forces onto the body of the robot and therefore they can be removed from the equations

of motion. After applying the massless leg assumption the equation of motion simplify down

to:

r̈ =

(
4∑

i=1

fi/m

)
− g (1.10)

d

dt
(Iω) =

4∑
i=1

di × fi (1.11)

where r ∈ R3 is the linear position of the body, fi ∈ R3 is the ground rection forces of foot

i, I ∈ R3×3 is the inertia tensor of the robot, ω ∈ R3 is the angular velocity of the body, and

di ∈ R3 is the vector from the CoM to foot i. While this is a very large simplification it has

been proven to be effective if the ratio of the mass of the body to the mass of a limb of the

robot is sufficiently large.

1.2.2.2 Zero Moment Point

Continuing with the massless leg assumption the dynamics of the robot can be simplified

further. By modeling the system as a linear inverted pendulum (LIP) the equations of motion

can be written in a linear equation. In [43] they showed that the equations of motion for

this model can be derived from either a 3D linear inverted pendulum or equivalently from a

cart pole model as shown in fig. 1.2. This model can be used to control the zero moment

point (ZMP) which has been shown to be able to model gaits of legged systems [80]. It was

found that if the ZMP is contained within the support polygon of the system, the convex

13



hull that is created from all points in contact with the ground, then the system is stable.

Figure 1.2: Cart pole model, image taken from [43]

Solving for the system dynamics of the simplified model in the x direction yields:

τzmp = mg(x− px)−mẍzc = 0 (1.12)

Where x is the x position of the cart, px is the ZMP, m is the mass of the cart, and zc is

the constant height of the cart. A similar equation can be derived for the the y direction.

τzmp = mg(y − py)−mÿzc = 0 (1.13)

Rearranging these equations we get the famous linear ZMP dynamics equations.

ẍ =
g

zc
(x− px) (1.14)

14



ÿ =
g

zc
(y − py) (1.15)

Due to their simplicity and linearity these equations have been the basis for a large

amount of walking algorithms for the past several decades. One of the earliest and most

successful algorithms was Kajita’s preview controller in [43]. They used an LQR to continu-

ously solve for bipedal trajectories and footstep locations over a finite time horizon. In [45]

Kalakrishnan et al. was able to embed the ZMP dynamics into a quadratic program that

allowed for solutions online of a quadruped going over uneven terrain.

If the Z height of the robot is not fixed to a plane then the z acceleration needs to be

accounted for, the resultant dynamics are shown in (1.16) and (1.17). These equations allow

for richer solutions but they are now no longer linear or convex.

ẍ =
g + z̈

z
(x− px) (1.16)

ÿ =
g + z̈

z
(y − py) (1.17)

Typically when ZMP dynamics are used in a TO problem a constraint must be added

that explicitly constrains the ZMP point to be within the support polygon. This constraint

boils down to determining whether a point is within a polygon. Although there are many

algorithms for determining if a point is within a polygon most do not easily form an inequality

constraint that is required for an optimization problem. For this reason one of the most

common ways of encoding this constraint is by using the angle summation test. The first

15



step of the test is to calculate the angle between the two vectors created by the vector going

from the test point pZ and one of the vertexes pi and the vector going from vertex pi to it’s

next adjacent vertex pi+1. Repeat this process for all vertex going from one vertex to the

next adjacent one. If the test point is within the support polygon than all resultant angles

will have the same sign, fig. 1.3.

Figure 1.3: a) When the ZMP point is within the support polygon all angles have the same

sign. b) When the ZMP point is outside of the support polygon the resultant angles will

have different signs.

This formulation is relatively easy to encode however it has many shortcomings. In order

to calculate the angle between the vectors trigonometric functions are required which make

all the constraints non-linear. If the feet cross the order in which the vectors are created

must be changed which adds a non-negligible amount of complexity to the formulation of

the problem. And finally this method does not work if the support polygon becomes a line

or a point which happens frequently if you assume the robot has point feet.

16



1.2.3 Special Orthogonal Group SO(3)

The following section provides a brief background on rigid body rotations. For a more

through discussion on rigid body rations please see [56], [17], [72]. In robotic systems there

are typically two coordinate frames that are of interest (and possibly more); the Inertial

frame and the Body frame. The Inertial frame is a fixed frame typically setup with the Z

axis inline with the gravity vector whereas the Body frame is attached to the robot. In this

work all frames will be described using a right-handed convection. It is useful to be able to

describe the relationship between these two frames because this will define how the robot is

moving through space. Figure 1.4 illustrates a rigid body described in both frames. Letting

Figure 1.4: Rotation of a rigid object. The Inertial frame is represented by the solid coordi-

nate frame while the Body frame is represented by the dotted coordinate frame. This image

was taken from [56]

xab,yab, zab,∈ R3 be the principal axes of the Body frame relative to the Inertial frame, it

17



follows that we can create a 3× 3 matrix by stacking the vectors as such:

RIB = [xab yab zab] (1.18)

The formulation (1.18) is a rotation matrix which belongs to the special orthogonal group in

R3 or SO(3) for short. Rotation matrices are a special group that rotate a vector in R3 but

preserve its magnitude. The following are mathematical properties associated with rotation

matrices:

detR = 1 (1.19)

RRT = RTR = I (1.20)

R1,R2 ∈ SO(3), then R1R2 ∈ SO(3) (1.21)

From (1.20) we see that the inverse of a rotation matrix is just the transpose of the original

rotation matrix, and from (1.21) we see that the product of two rotation matrices results

in a rotation matrix. Using these properties we can easily describe a vector in R3 in any

frame using a combination of rotation matrices. Consider a point pa with the coordinates

pa = [xa, yz, za]
T described in Frame A. Equation (1.22) describes how to represent point pa

relative to Frame B using the rotation matrix Rba which describes the rotation from the A

frame to the B frame. Going further (1.23) describes how to represent point pa relative to

Frame C, notice that the combination of the rotation matrices describing the mapping from

frame A to frame B and the mapping from frame B to frame C results in the rotation matrix

18



that directly describes the mapping from Frame A to Frame C.

pb = Rbapa (1.22)

pc = Rcbpb = RcbRbapa = Rcapa (1.23)

Going back to frame A from frame C we can use (1.20) to describe the inverse of the mapping

from Frame A to Frame C using the known rotation matrices.

pa = R−1ca pc = RT
capc = RT

baR
T
cbpc (1.24)

1.2.3.1 Euler angles

One way to represent the mapping from one frame to another is by perform a series of three

rotations with each rotation only being performed about a single axis. Equations 1.25-1.26

describe the three possible pure rotations about the Z, Y, and X axes respectively. Where

ψ represents the rotation angle about the Z axis, θ represents the rotation angle about the

Y axis, and φ represents the rotation angle about the X axis. These three angles are refered

to as the Euler angles as they are the three angles required to adequately describe a unique

rotation matrix.

Rz(ψ) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (1.25)

19



Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (1.26)

Rx(φ) =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 (1.27)

There are many different combinations of pure rotation matrices that can be used to

describe the same rotation matrix. For example a Z-Y-Z described by (1.28) represents a

rotation about the Z axis of frame B, then a rotation about the Y axis of the resultant frame,

and finally another rotation about the Z axis of the resultant frame.

Rwb = Rz(ψ)Ry(θ)Rz(φ) (1.28)

This combination of rotations will result in a unique set of Euler angles associated with

the Z-Y-Z convention. It is important to note that a different set of Euler angles would

be used with a different convention such as X-Y-Z. It is important to not mix conventions

while performing calculations. For the remainder of this work all Euler angles will use the

convention of Z-Y-X as described by (1.29).

Rwb = Rz(ψ)Ry(θ)Rx(φ) (1.29)

1.2.3.2 Exponential coordinates

Exponential coordinates breakdown a given rotation into two parts, ω ∈ R3 the unit vector

that describes the axis by which the rotation occurs and θ ∈ R the angle of rotation about

20



this axis. The derivation for the exponential coordinate representation of a rotation matrix

is provided in [17] and re-derived here for completeness.

Considering a point q attached to rigid body rotating at a constant unit angular rate of

ω. Then the velocity of that point can be described as follows,

q̇(t) = ω × q(t) = ω̂q(t) (1.30)

where, the notation ω̂ represents the mapping from R3 to a skew symmetric matrix in R3×3

as shown in (1.31).

ω = [ω1, ω2, ω3]
T

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


(1.31)

Equation (1.30) is a standard time-invariant linear differential equation which provides the

following solution:

q(t) = eω̂tq(0) (1.32)

If the rigid body is rotated about the axis ω at unit velocity for θ units the resultant rotation

matrix can be represented by (1.33).

R(ω, θ) = eω̂θ (1.33)

Expanding out the derived matrix exponential results in the following infinite series.

eω̂θ = I + θω̂ +
θ2

2!
ω̂2 +

θ3

3!
ω̂3 + ... (1.34)

21



Unfortunately, this infinite series is not in a form that is useful for practical calculations.

However, using a couple of linear algebra operations the original infinite series can be rear-

ranged into a sum of two infinite alternating series.

eω̂θ = I +

(
θ − θ3

3!
+
θ5

5!
− ...

)
ω̂ +

(
θ2

2!
− θ4

4!
+ ...

)
ω̂2 (1.35)

From this form we can finally write the matrix exponential into the Rodrigues’ formula,

eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ) (1.36)

1.3 Organization and Contributions

This work focuses on expanding the capabilities of quadrupedal robots from the current

state of the art through innovative mechanical design and real-time optimization tech-

niques. Chapter 2 introduces the autonomous personal helper robot with enhanced dynamics

(ALPHRED). The ALPHRED platform uses a unique kinematic design that places the limbs

in a radially symmetric configuration rather than an elongated configuration parallel to the

sagittal plane. In addition, the traditional quadrupedal robot has a hip roll actuator as the

first degree of freedom whereas ALPHRED uses a hip yaw degree of freedom. Chapter 2

discusses how these kinematic changes allow ALPHRED to be a multi-modal robot, mean-

ing that ALPHRED has many different configurations and modes of operations to handle a

variety of different tasks.

Chapter 3 explains the high level trajectory planner developed for the ALPHRED plat-

form. This chapter expands a 2D non-linear program that uses ZMP dynamics to plan for

a number of footsteps into a 3D planner that is now capable of handling elevation changes.

22



This algorithm was further advanced by developing a method to incorporate footstep in-

formation from a vision algorithm in order to plan both footsteps and CoM trajectories.

Traditional footstep planners use mixed-integer optimization to plan for discrete footstep

plans, whereas the method developed in this chapter was able to formulate the problem into

a continuous non-linear optimization problem.

Chapter 4 goes on to discus the low level control used to track the desired motion of the

robot. Due to the discrete changes that occur as a result of legged locomotion each limb is

controlled using a finite state machine. This methodology allowed for each leg to individually

monitor when the leg should be in either stance or swing phases and what the actual state

of the limb was. Utilizing this structure two different tracking controllers were developed.

The first was a simple position controller that would command the feet to match the desired

velocity of the CoM while adjusting the length of each limb to account for orientation errors.

The second method expands on a torque controlled model predictive controller (MPC) that

greatly simplifies the dynamics of the robot to plan for ground reaction forces over a finite

time horizon. This work was able to reformulate the problem in order to solve the problem

at +250Hz whereas the previous formulation solved at 50Hz. In addition, the dynamic

model used was expanded to account for known swing leg dynamics which was ignored in

the previous implementation.

Chapter 5 presents the manipulation techniques developed for the ALPHRED platform.

Due to the fact that there is no other robotic platform that uses ALPHRED’s unique kine-

matic design, all new techniques were required to allow ALPHRED to pick up packages of

all sizes. First, custom end-effectors were developed to provide ALPHRED with an addi-

23



tional degree of freedom to complement the degrees of freedom that ALPHRED already

posessed. Next, a pseudo-force controller was developed to ensure that the package was

securely clamped during the entire transition from the ground to the top of the robotic plat-

form. Finally, chapter 6 summarizes the work presented in this dissertation and discusses

the implications it may have on future works.

24



CHAPTER 2

ALPHRED PLATFORM

The ALPHRED robotic platform started from ALPHRED-1, a position controlled quadrupedal

robot. ALPHRED-1 has four radially symmetric 3 DoF limbs, with two dual MX-106 actu-

ators at the hip and one dual MX-106 at the knee. A Typical quadrupedal robot has 3 DoF

legs with the first joint controlling lateral ab/adduction (typically achieved with a hip roll),

followed by the second joint controlling the hip pitch, and the third joint controlling the

knee pitch. ALPHRED uses a unique kinematic design by switching the traditional lateral

ab/adduction for the control of the medial rotation by using a hip yaw actuator. In addition,

traditional quadrupeds typically have a rectangular limb configuration giving them a natural

front and back along the sagital plane. ALPHRED uses a radially symmetric configuration

removing the reliance on a front and back. These simple changes give ALPHRED a unique

and greater kinematic workspace compared to traditional quadrupeds. For example, each of

ALPHRED’s limbs are capable of reaching from the belly of the robot to the top of the body

in a single continuous motion at any hip yaw angle. Additionally, because of ALPHRED’s

radial symmetry, any two opposite limbs have the range of motion to become parallel so

that they can then perform dual limb manipulation tasks. To the authors knowledge there

is no other quadrupedal robotic platform with this type of kinematic range. ALPHRED-1

25



(a)

(b)

Figure 2.1: a) Image of the full ALPHRED-1 platform. b) Bubble diagram of ALPHRED-1

joint layout, see Table 2.1 for range of motion

is equipped with bar feet which increase the size of the support polygon providing the capa-

bility for the robot to balance on two opposite limbs allowing for the remaining two limbs

to be used for simple manipulation tasks.

Although, these kinematic changes improve the robot’s workspace they have negative im-

pacts on the robot’s dynamics. When a traditional quadrupedal robot is nominally traversing

forward the lateral ab/adduction actuation is not used and only the hip pitch and knee pitch

is required. The lateral ab/adduction is only used for disturbance mitigation and turning.

Legged robotic limbs are built to reduce inertia of the limbs by moving all of the actuators

to the hip and using a transmission system to control the hip knee joint. With this design

and nominal forward locomotion only the links of the leg will be moving resulting in small

26



Table 2.1: Range of motion for each joint.

Joints min max

hip yaw (1,4,7,10) -92◦ 92◦

hip pitch (2,5,8,11) -92◦ 92◦

knee pitch (3,6,9,12) -92◦ 92◦

forces and moments acting on the body due to leg swings. However, this is not the case

for ALPHRED because the limbs are no longer aligned with the direction of motion, for

this reason the hip yaw actuator must be used through out the swing leg motion causing a

much larger inertial impact compared to that of a traditional quadruped. In addition, it is

well understood that for high speed gaits such as galloping the feet should align along the

direction of travel. The main reason for this is that at high speeds it is desirable for all forces

to be used to keep the robot upright and to propel the robot forward. When the feet do not

align with the plane of the CoM then some of the forces are used to push the robot in the

direction perpendicular to the direction the robot is traveling, which can cause a swaying

motion and reducing the efficiency of the gait. ALPHRED is not capable of placing the feet

along the line of travel due to collisions between the two adjacent hip actuators. Although,

ALPHRED’s unique kinematic design results in decreased dynamic performance ALPHRED

was still able to achieve a trotting gait of 1.7m/s and perform other forms of locomotion and

manipulation that other quadrupeds are not capable of.

Following the success of ALPHRED-1, ALPHRED-2 was developed as a high perfor-

mance version (Fig. 2.2). ALPHRED-2 used the same novel kinematic design of the radially

27



(a)
(b)

Figure 2.2: a) Image of the full ALPHRED-2 platform. b) Kinematic range of motion of the

ALPHRED-2 platform.

symmetric limb layout combined with the non-traditional hip yaw actuator rather than a

hip roll actuator. However, the dual MX-106’s were switched out for Backdrivable Electro-

magnetic Actuator for Robotics (BEAR) [89]. The BEAR actuators are high performance

proprioceptive actuators described in more detail in Section 2.2. ALPHRED-1’s limbs were

constructed in a serial fashion with all actuators being colocated with the joint that was be-

ing controlled. To reduce the inertia of the limb ALPHRED-2 uses a parallel configuration

for the hip and knee joints with the knee joint being controlled in a non-colocated fashion

via a belt drive (Fig. 2.3). The torque at the knee is created by the difference in torque

between the knee actuator and the hip actuator. The parallel configuration was chosen to

further reduce the inertia of the leg; In a serial configuration the entire knee actuator would

rotate with the leg, whereas in the parallel configuration both the hip pitch and knee pitch

actuators are stationary during extension and retraction of the limb. The belt drive helped to

28



further increase the range of motion of the ALPHRED platform, whereas with ALPHRED-1

the knee joint’s range of motion is ±90◦ the belt allows for almost a full 360◦ of rotation (Fig.

2.2b). Additionally, the bar feet were replaced with point feet to allow for locomotion over

uneven terrain. However, bi-pedal operation is still achievable due to an additional degree

of freedom provided at the feet. Attached to the additional degree of freedom are structural

wings that can swing down to increase the support polygon during bi-pedal operation. Dif-

ferent end-effectors can also be attached to the feet to improve manipulation capabilities,

this is discussed further in Chapter 5.

Figure 2.3: Exploded view of a single ALPHRED-2 limb.

2.1 Modes of Operation

One of the most unique features of the ALPHRED platform is the robot’s ability to transform

into different modes in order to handle a multitude of different tasks. This is only achievable

29



due to ALPHRED’s unique kinematic design.

Omni-directional Mode is when the limbs are in a broad radially symmetric configu-

ration, Fig. 2.4a. In this mode the robot has a large support polygon providing stability in

all directions. This mode is the nominal configuration that is used to transition between all

other modes. The broad stance provides for slow and stable locomotion over rough terrain.

In addition, this mode allows for small adjustments in the robot’s position or pose to help

re-orient the robot for manipulation tasks.

Dynamic Mode is when the limbs are configured in a traditional quadrupedal stance

symmetrical about the sagittal plane and the coronal plane, with the stance elongated parallel

to the sagittal plane (Fig. 2.4c). This mode is used for fast and dynamic locomotion similar

to traditional quadrupeds. In this mode ALPHRED is capable of a 1.7m/s trot, as well as

an amble gait and pace gait.

Caster Mode is when the robot lowers itself onto four caster wheels attached to it’s

body (Fig. 2.4d). The robot is then able to use its feet to push itself along similar to how

a skate boarder propels themselves forward. Because of ALPHRED’s kinematic design the

feet are always able to stay perpendicular to the ground allowing for the robot to maintain

a sufficient normal force without slipping. This mode is extremely efficient and is used when

ALPHRED must travel long distances across flat terrian. The robot is able to travel at

2.1m/s with a Cost of Transport (CoT) of 0.55 (the CoT metric used is the same one defined

in [10]), compared to that of ALPHRED’s dynamic trot of 1.7m/s with a CoT of 2.6.

Tripod Mode is when ALPHRED positions three of it’s limbs into an equilateral triangle

formation while lifting the remaining limb off of the ground (Fig. 2.4b). The three supporting

30



limbs create a strong base with a large support polygon while the limb in the air can be

used for manipulation tasks that require large forces. To demonstrate the stability of tripod

mode ALPHRED has punched through a wooden board used in karate classes.

Bipedal Mode is when the structural wings on two opposing limbs are commanded into

the down position, creating a large enough support polygon for the robot to balance on the

two limbs. The remaining two limbs are then lifted off the ground and can be used for dual

manipulation tasks (Fig. 2.4f). In this mode ALPHRED can pick up boxes of various size

and weights from heights up to 1 meter off of the ground.

2.2 BEAR Actuators

The BEAR modules used on the ALPHRED-2 platform are proprioceptive actuators that

combine high torque brushless DC (BLDC) motors with a single phase planetary gearbox,

Fig. 2.5). The design philosophy of the BEAR modules is similar to the design concepts

found in [50], [71], [85]. The BEAR modules were designed to maximize the torque density of

the actuator (the ratio of the peak torque to the mass of the actuator) while still preserving

the transmission transparency. For this reason, a large air gap radius BLDC was chosen for

the motor of the actuator rather than a small radius motor as found in standard high gear

reduction servo motors. Additionally, only a single stage planetary gear box was used with a

10:1 reduction ratio to allow for proprioceptive force sensing by reducing the reflected inertia

and the friction of the system.

The benefits of preserving transmission transparency is most readily apparent from the

31



(a) (b)
(c)

(d)

(e)
(f)

Figure 2.4: a) Symmetric stable mode, b) Tripod single manipulation mode, c) Dynamic

mode, d) Caster/wheeled mode, e) Jumping/pronking mode, f) Biped dual manipulation

mode

Fig. 2.6 which summarizes a stall torque experiment between a MX-106 actuator with a

gear reduction of 225:1 and the BEAR module. During this experiment each actuator was

driven with a constant current and the resultant stall torque was measured and is shown with

the blue triangles as the ”Driven” torque curve. Next an external torque is applied to the

actuator until the position changes and the torque is recorded and is shown with the orange

dots as the ”Back-driven” torque curve. As can be seen from the comparison between Fig.

2.6a and Fig. 2.6b, the BEAR module maintains a constant torque whereas the MX-106

32



Figure 2.5: BEAR module exploded view of mechanical design.

has vastly different torque curves depending on whether it is being back-driven or not. A

curve can be fit to the data from Fig. 2.6b which can be used to approximate the torque by

measuring the current in the windings.

One of the main drawbacks of these types of actuators is the excessive Joule heating that

is produced during operation [38]. If the excess heat is not managed properly the actuator

can overheat causing damage to the windings and electronics. The continuous torque of the

actuator is determined by how much current can be applied continuously without causing

the motor to overheat. In order to increase the continuous torque of the BEAR modules the

motor housing was built as a heat sink with the option of using liquid cooling to improve the

heat transfer properties of the the module. As shown in Fig. 2.7 the stator of the motor is

connected to the motor housing via thermal paste analogous to the pastes used for CPU’s.

The opposite side of the housing connected to the stator is designed with fins to increase the

surface area to increase heat transfer either to air or water if used. Table 2.2 summarizes

the specifications including the improved continuous torque if liquid cooling is used.

1Varies depending on the cooling system

33



0 0.5 1 1.5 2 2.5 3 3.5 4

Current (A)

0

4

8

12

16

T
o
rq

u
e
 (

N
m

)

Driving

Back-driven

(a) Torque curve for high reduction MX-106 actuator

0 10 20 30 40 50 60

Current (A)

0

5

10

15

20

25

30

35

T
o

rq
u

e
 (

N
m

)

Driving

Back-driven

(b) Torque curve for BEAR

Figure 2.6: Comparing stall torque curves for high gear reduction gearboxes vs low gear

reduction gearboxes.

Figure 2.7: Cross sectional view of the BEAR module showing the liquid cooling section.

34



Table 2.2: BEAR Specs

Mass (g) 670

Gear Reduction 10:1

Voltage (V) 30

Max Current (A) 60

Peak Torque (Nm) 32

Cont. Torque (air cooled, Nm) 7.8

Cont. Torque (liquid cooled, Nm)1 ∼ 21

Max Velocity (rpm) 300

2.3 System Architecture

ALPHRED-2 uses an off-the-shelf Intel NUC equipped with an Intel Core i7-6670HQ @ 2.60

GHz with 32 GB of RAM. The control architecture is broken up into five separate processes,

as shown in Fig. 2.8, that run in parallel in order to allow for tele-operation of the robot. All

communication between threads is done with a custom shared memory library that allows

for sharing of floating point arrays. The user input process runs a C++ TCP server that

communicates with a GDP handheld computer at 40 Hz. The raw inputs from the GPD are

processed and then passed as a desired velocity vector (ẋ, ẏ) and angular yaw rate (ψ̇) to

the FSM/Trajectory Planning thread. The FSM/Trajectory Planning thread runs a Finite

State Machine (FSM) that is a high level controller that transitions the robot from task

to task. Once the robot has transitioned into a locomotion task the FSM transitions to

the Trajectory Planning state where the desired user inputs are used to create a reference

trajectory. The trajectory planner either propagates the desired velocities into a straight

35



line reference trajectory at 700Hz or uses a non-linear TO algorithm to solve for dynamically

feasible trajectories, both methods are written in Python 2.7. The operator is able to switch

between the two trajectory planning methods. The non-linear TO algorithms are discussed

in detail in Chapter 3. Next, the reference trajectory is then passed to the motion controller

thread which tries to track the given reference trajectory. This is done either via a 700 Hz

position PD controller that controls limb length to try to mitigate disturbances or from a

QP model predictive controller (MPC) that controls the ground reaction forces of the limbs

in contact and runs at 150 Hz. Both of these methods are written in C++ and are described

in greater detail in Chapter 4. The output of the motion controller is then passed to the

motor controller thread. This is a Python thread that runs at 1000Hz, which handles all the

communication between the BEAR modules and the on board computer. A state estimator

thread is continuously ran at 400Hz providing full state feedback to the Trajecory Planning

and Motion Controller threads. The following sub-section provides a brief summary of the

state estimator that is used on the ALPHRED-2 platform.

2.3.1 State Estimation

The state estimation algorithms used on ALPHRED-2 are an Extended Kalman Filter (EKF)

derived in [15] and and Unscented Kalman Filter (UKF) derived in [14]. Both filters blend

the measurements taken from the IMU and the joint encoders of the limbs. IMU’s provide

linear acceleration and angular rate measurements. By integrating the linear acceleration

and angular rate the velocity, position, and orientation of the robot can be estimated. By

exploiting the unique way in which legged robots traverse through their environment another

36



Figure 2.8: Control system block diagram. Each block runs a separate process with all

inter-process communication being handled by a custom shared memory library.

measurement of the robot’s position and velocity can be recovered using the kinematics of

the robot. Assuming that a foot does not slip we can back out what the position and velocity

of the robot by using the forward kinematics and the joint encoders for each limb in contact

with the ground. Noise in the sensors will cause small errors in the measurements even with

a high accuracy IMU’s and joint encoders. Integrating these small errors will result in large

errors of the estimated state, which is why a Kalmand filter is used to stabilize the state

37



estimation. Equations (2.1)-(2.6) show the prediction step of both Kalman filters.

r̂k+1 = r̂k + ∆tv̂k +
∆t2

2
[R̂T

k (ak − b̂a,k) + g] (2.1)

v̂k+1 = v̂k + ∆t[R̂T
k (ak − b̂a,k) + g] (2.2)

q̂k+1 = exp[∆t(ωk − b̂ω,k)]⊗ q̂k (2.3)

p̂i,k+1 = p̂i,k+1 ∀i ∈ {1, ..., N} (2.4)

b̂a,k+1 = b̂a,k (2.5)

b̂ω,k+1 = b̂ω,k (2.6)

Whereˆmeans the estimated state, r is the linear position, v is the linear velocity, a is the

linear acceleration, q is the quaternion, ω is the angular rate, pi is the position of foot i, ba

is the bias in the angular acceleration measurements, and bω is the bias in the angular rate

measurements. The rotation from the inertial frame to the body frame is represented by the

3 × 3 rotation matrix R. To integrate the quaternion the operators exp() and ⊗ are used

which are defined in [77]. The measurement is the error between the measured distance to

the foot of the robot from the joint encoders and the forward kinematics and the distance

to the foot measured by the prediction state, shown in (2.7).

yk =


s1,k − R̂k(p̂1,k − r̂k)

...

sN,k − R̂k(p̂N,k − r̂k)

 (2.7)

Where si represents the measurement from the forward kinematics of foot i. At this point

the update step is performed which updates the estimation of the states and propagates

the co-variance matrices. For the EKF this step is done using a local linear approximation

38



and for the UKF a non-linear propagation is done multiple times and then sampled to more

accurately approximate the non-linear effects.

39



CHAPTER 3

TRAJECTORY PLANNING

The following chapter discusses the algorithms that were developed and implemented on the

ALPHRED V2 platform. The developed algorithms produce CM trajectories and footsteps

that are implemented on the robot in an open-loop fashion. The ALPHRED V2 platform

[36] is a position controlled robot without force feedback of any kind which only allows

for open-loop control of the overall trajectory of the robot. Despite this limitation, these

algorithms were still able to create a trotting gait of 1.5 m/s and motion to step up and over

an 8 inch tall obstacle.

The following TO algorithms use a direct collocation based formulation to solve for

trajectories online with time horizons beyond that of one gait cycle. All methods were ran

on the ALPHRED V2 platform. The first method in Section 3.2 outlines a convex problem

that can solve for CM trajectories given a footstep plan. This method uses the vertex

based ZMP constraint first derived in [86] to allow for quick solution of trajectories even

when the support polygon become a line or point. This method expands on the previous

work by using the full 3D ZMP dynamics and adding a cost to the overall acceleration of

the trajectory. These additions expanded the algorithms capabilities to uneven terrain and

improved performance with gaits that have adjacent support polygons that do not intersect,

40



like bounding and pacing.

Method two, discussed in Section 3.4, builds off of the first method by replacing the

convex problem with a NLP that solves for both footsteps and CM trajectories using both

the dynamics of the robot and vision feedback to decide where to place the feet. A stitching

method was created in order to allow for tele-operation of the robot. Most trajectory op-

timization algorithms separate the planning of the CoM trajectory and the planning of the

the footsteps into two different optimization problems. A footstep plan is a descrete discon-

tinous list of positions that is tricky to incorporate into the overall optimization problem.

In [18] Deits et al. developed a mixed-integer quadratically-constrained quadratic program

(MIQCQP) to solve for an optimal footstep plan. In [54] Kuindersman et al. developed

a stabilizing QP controller for dynamic walking that would use the MIQCQP as the input

to the stabilizing controller. These two algorithms were used by the MIT VRC team at

the Darpa Robotics Challenge. Similarly, in [46], Schaal used a machine learning to learn

a footstep planner for extremely uneven terrain for a quadrupedal robot. The output of

this footstep planner was passed to a cascade of other planners and controllers that would

control the pose and CoM of the robot. Winkler expanded upon these works by combining

the optimization of the footsteps and the CoM trajectory into one NLP in [86] and [88]. In

both of these works Winkler showed that the footstep locations can be used in to enhance

the dynamics of the robot. However, both Winkler’s algorithms assumed that a complete

terrain map was known a-priori and all terrain was exactly the same. To the best of the

author’s knowledge this is the first algorithm that optimizes for both footstep locations and

CoM trajectory while being able to convey important terrain information to the algorithm

41



in real time.

3.1 Footstep Planning

For legged system (biological or robotic) the footstep timing sequence or gait, plays a large

role in how effectively a system is able to traverse various terrains. For quadrupedal systems

there are many different types of gaits with common ones being: A walk with 3 feet are on

the ground at a time, a pace with 2 feet are on the ground at a time switching across the

sagittal plane, a trot with 2 feet are on the ground switching along the diagonal, and a gallop

with one foot is on the ground at a time. Different gaits minimize energy consumption at

different velocities [37], making it ideal for a robotic system to be able to easily transition

between different gaits.

To define a gait for a given system the number of contacts at a given time must be

defined. For a multi-legged system the number of possible contacts becomes increasingly

large and difficult to plan. However, if we only look at a single limb only two elements are

required to define its contact schedule; Tstance the time that the leg will be in stance phase

and Tswing the time the leg will be in swing phase. By planning the contact schedule for each

foot individually the developer can quickly and easily come up with any gait desired [88].

The footstep planner will return a list of times and positions for each leg to be passed to

the optimization algorithm. Each plan starts at time zero and goes until time t2n−1.

T i = [t1, t2, ..., t2n−1]

P i = [p1, ..., pn]

(3.1)

42



Where i ∈ {1, 2, 3, 4} is the i-th leg, tj ∈ R is a time in seconds, and fj ∈ R3 is a position

vector. The entry f1 for each leg is the current position of the foot. Whereas, t1 is the time

when the foot lifts of the ground and starts its swing phase, t2 is when the foot touches

down on the ground and starts its support phase. This alternating pattern continues until

time t2n−1 where all odd valued times are liftoffs and even valued times are touchdowns. The

position fk corresponds to the position of the foot during the support time between t2(k−1)

and t2k−1. If foot i is initially in the swing phase than t1 will be zero. This formulation

makes it quite simple to change the gait of the robot by simply changing the time vectors for

each leg. An indicator function can be derived from the time vector that indicates whether

foot i is on the ground or not.

Ci(t) =


1 t2(k−1) < t < t2k−1

0 otherwise

(3.2)

Where Ci(t) = 0 when the i-th foot is off of the ground.

The position of each foot is determined by combining Raibert [67] and Capture Point

(CP) [65] heuristics similar to the technique used in [12]. All calculations for foot placement

are done in the body frame.

pj = R(ψ̇d
1

2
t2(j−1))p0 +

1

2
t2(j−1)υd︸ ︷︷ ︸

Raibert

+
1

2

√
pz
g

(υ − υd)︸ ︷︷ ︸
Capture Point

(3.3)

where p ∈ R2 is the desired X and Y position for the next footstep location, pz is the

nominal height of the robot, g is the scalar value for gravity, υ ∈ R2 is the current velocity

of the body, υd ∈ R2 is the desired velocity in the body frame given by the operator, ψ̇d

is the desired yaw rate given by the operator, p0 ∈ R2 is nominal position of the limb,

43



and R ∈ R3×3 is a rotation matrix. In practice, the CP contribution is only used when

|υ − υd| > 0.15 which helps correct major disturbances but does not come into play when

operating normally. Additionally, CP only contributes to the first step in P because it is

assumed that the controller will be able to follow the desired trajectory perfectly after the

first step.

3.2 Center of Mass Trajectory Planning through Convex Opti-

mization using Vertex Based ZMP Constraints

3.2.1 Problem Formulation

The problem is discretized into a discrete number of optimization parameters that fully

describe the continuous time trajectory. The set wc describes the x and y CM trajectory

and wu describes the loading condition of each foot.

wc = [a1,0, ..., a1,4, ..., an,0, ..., an,4]
T

wu = [λ1,1, ..., λ1,4, ..., λn,0, ..., λn,4]
T

(3.4)

Where n is the number of polynomials that describe the trajectory, ai,j ∈ R2 describes

the i-th polynomial’s j-th coefficient for both x and y, λi,j ∈ R describes the j-th foot’s

percentage of the total load at the time of the i-th polynomial. Using this parameterization

of the problem it becomes relatively simple to compute all required dynamics of the robot

at any given time. Given,

Ai = [ai,0, ai,1, ai,2, ai,3, ai,4] T = [t0, t1, t2, t3, t4]T (3.5)

44



the CM position, velocity, and acceleration can be computed by the following:

r(t) = AiT

ṙ(t) = AiṪ

r̈(t) = AiT̈

(3.6)

The center of pressure (CoP) can also be calculated with the following formulation.

u(t) =
4∑

f=1

λi,fpm,f (3.7)

For example, if λ1,1 = 1 then at time t1 foot 1 would support one hundred percent of the

robot’s weight which would result in the CoP being directly above foot 1. In Section 3.2.2

constraints are discussed that ensure that for any give time all of the λ’s sum to 1.

Where, pm,f ∈ R3 is the 3D position vector that describes foot f ’s position at a given

time.

3.2.2 Trajectory Optimization Problem

Figure 3.1 shows the overall structure of the convex program to produce CM trajectories for

a given footstep plan. The TO problem will solve for coefficients of the CM trajectory poly-

nomials (wc) and foot loading conditions (wu) that will minimize a cost on CM acceleration

and conservative ZMP locations, while adhering multiple constraints to ensure feasibility.

The subsequent sections give extensive details to the costs and constraints of the TO

program.

45



Figure 3.1: An overview of the trajectory optimization algorithm.

3.2.2.1 CM Acceleration Cost

The CM acceleration cost minimizes the total acceleration of the CM. Prioritizing this cost

creates smooth natural motion while minimizing the effort required by the actuators.

θa

∫
‖r̈(t)‖2dt (3.8)

In practice (3.9) was used to compute the CM acceleration cost by discritizing the con-

tinuous time integral along the CM trajectory.

θa

2N+1∑
t=0

‖r̈(t)‖2 (3.9)

Where, N is the number of polynomials and r̈(t) was calculated using (3.6). The cost

was calculated at the beginning and middle of each polynomial. Note that because of the

continuity constraints the beginning of polynomial k+1 is the same as the end of polynomial

46



k, thus the beginning, middle, and end of each polynomial was in essence used to determine

the acceleration cost. The gain θa is used to change the priority level of this cost compared

to the other costs of the TO problem. Currently θa is hand tuned.

3.2.2.2 Loading Cost

The optimal loading cost chooses conservative trajectories for the robot and was first intro-

duced in [86]. This cost compares each foot’s loading condition (λi,j) to the foot’s optimal

loading condition (λ∗(i, t)). The optimal loading condition balances the load between all feet

that are currently on the ground. This will create a CoP position directly in the middle of

the support polygon which can be thought of as the most stable position.

θl

∫ 4∑
j=1

(λi,j − λ∗(j, t))2dt

where, λ∗(j, t) =
Cj(t)∑4
i=1Ci(t)

(3.10)

The implementation of (3.10) is done by discritizing the continuous time integral as shown

in (3.11).

θl

N∑
i=0

4∑
j=1

[λi,j − λ∗(j, t(i))]2 (3.11)

Where, N is the total number of loading conditions the feet are broken up into over then

entire trajectory. The gain θl is used to change the priority level of this cost compared to

the other costs of the TO problem. Currently θl is hand tuned.

47



3.2.2.3 End Condition Constraints

The optimized values at time zero must be equal to the initial state r0 and the optimized

values at time T must be equal to the desired final state rf

r(0) = r0

ṙ(0) = ṙ0

r(T ) = rf

ṙ(T ) = ṙf

(3.12)

3.2.2.4 Continuity

The following is an equality constraint that ensures continuity between adjacent polynomials.

AiT f − ai+1,0 = 0

AiṪ f − ai+1,1 = 0

(3.13)

Where, Tf corresponds to the time vector described in (3.5) when using polynomial i’s

final time tf .

3.2.2.5 ZMP dynamics

The dynamic model used in this algorithm is the well known ZMP equation shown in (3.14).

The values c̈z and cz represent the Z acceleration and position of the robot respectively. These

values are pre-computed based off of known elevation changes. The method for computing

48



the z trajectories is discussed Section 3.2.4.

r̈(t) = f(wc, wu, t) =
g + c̈z
cz

(r(t)− u(t)) (3.14)

The equality constraint (3.15) ensures that the optimized trajectory satisfies the ZMP dy-

namics along the entire trajectory.∫
AT̈ − f(wc, wu, t)dt = 0 (3.15)

In order to implement the continuous integral in (3.15) the polynomial is checked at the two

end points and the middle as shown in (3.16).

AT̈ − f(wc, wu, t) = 0 ∀t ∈ tk,
tk+1 − tk

2
, tk+1 (3.16)

Simpson’s rule states that if two fourth order polynomials are equal at the two end points

and the middle than the error is ∝ (tk+1 − tk)5 over the interval tk+1 to tk. As long as the

interval tk to tk+1 is sufficiently small than the error will be small and the trajectory will

be close enough to the desired ZMP dynamics. In order to increase the accuracy of the

dynamics smaller intervals can be used, however the ZMP dynamics is a large simplification

of the overall dynamics of the robot which will incur it’s own errors. For this reason intervals

of 20ms - 10ms were found to be sufficiently small.

3.2.2.6 Kinematic

The inequality constraint described by (3.17) ensures that the relationship between the CM

position and the i-th foot position is bound by a box with dimensions rxy. The value rxy

must be set based off of prior knowledge of the robotics kinematics.

−rxy < vi − r(t) + pi(t) < rxy (3.17)

49



Where vi is the vector from the robot’s CM to the i-th foot in the robot’s nominal pose.

Equation (3.17) never explicitly computes the forward kinematics or checks the joint lim-

its. Instead, equation (3.17) decreases the complexity by implicitly ensuring joint limits by

comparing the nominal length of the i-th limb to its current pose. Please note that this

method does not guarantee that a joint limit is not violated but is still effective if rxy is set

conservatively.

3.2.2.7 ZMP constraint

This section describes the two constraints required to ensure that the ZMP is within the

support polygon along the entire optimized trajectory. Winkler first derived this method,

which he called the Vertex Based ZMP method, in [86]. This novel method improved upon

standard methods in two ways: It is much simpler to implement and it is able to handle

situations when the support polygon becomes a line or a point.

The inequality constraint described in (3.18) bounds all feet on the ground between 0

and 1 and all feet off of the ground are forced to be zero. This ensure that no leg in a

swing phase carries any load. The equality constraint (3.19) makes certain that all of the

leg’s loading conditions add up to 1, meaning that all load bearing legs are supporting 100

percent of the forces on the CM.

0 < λi,j < Ci(t) (3.18)

∑
λi,j = 1 (3.19)

If both (3.18) and (3.19) are satisfied than the ZMP is defined to lie within the support

50



polygon. Notice that this formulation does not explicitly check to see if the ZMP is within

the support polygon like the Angle Summation Method but it implicitly ensures that this is

always the case for any feasible set of decision variables.

3.2.3 Swing Leg Trajectory

Cycloidal functions were used to create the trajectories to move the foot from one position

to the other. Two common approaches for swing leg trajectories are linear triangular profiles

and Bezier curves: the first is discontinuous and creates jerky unstable motions whereas the

second requires a significant amount of tuning to get the right profiles. Cycloidal functions

are differentiable and easy to implement. In addition, they create motion profiles that travel

fast in the middle and slower at the end points. The low acceleration moves at the end of

the trajectory help to minimize the impact of the foot with the ground which can cause

unexpected disturbances.

Equation (3.20) describes the swing trajectory for the transition from position pxi,k−1 to

pxi,k in the x direction for the i-th foot. Where, s is varied from 0 to 2π over the duration of

the step. At the beginning of the step s = 0 and at the end of the step s = 2π. Equation

(3.20) is also used for the y direction.

pxi (t) = pxi,k−1 + (pxi,k − pxi,k−1)
s− sin(s)

2π
(3.20)

Equation (3.21) describes the swing trajectory for the z direction using a piece-wise function.

The first function starts at pzi,k−1 and ends at the apex height, h. While the second function

starts apex and ends at pzi,k. A piece-wise is required in order for the foot to be able to

51



change elevation.

pzi (t) =


pzi,k−1 + h1−cos(s)

2
s ≤ π

pzi,k + (h+ pzi,k−1 − pzi,k)
1−cos(s)

2
s > π

(3.21)

Figure 3.2 shows example trajectories for a swing leg that is going from 0m to 0.2m in the

x direction and 0 to 0.1m in the z direction.

Figure 3.2: An example of a swing trajectory going from 0 to 0.2 in the x direction and 0 to

0.1 in the z direction.

3.2.4 Center of Mass Height Trajectory

To ensure that the TO problem remained convex the height of the CoM was determined

apriori using cycloidal functions. If the height is added as a decision variable the ZMP

dynamics constraint becomes non-linear. However, height changes of the CoM are required

in order to traverse uneven terrain, therefore it was decided to pre-compute the z-trajectories

52



based off of the coming terrain. Cycloidal functions were used because of their nice properties

of continuous derivatives and small accelerations at the beginning and end. The changes of

height occurred at the end of every footstep. The height was determined by taking the

average position of all feet on the ground and the nominal CoM position, this is shown in

(3.22) for the i-th footstep.

ζi = rz,i +
C1(t)p

z
1(t) + C2(t)p

z
2(t) + C3(t)p

z
3(t) + C4(t)p

z
4(t)

C1(t) + C2(t) + C3(t) + C4(t)
(3.22)

Where, rz,i is the nominal height for the CoM at the end of the i-th footstep and Ci is the

indicator function from (3.2). The trajectory for the height of the CoM is shown in (3.23).

rz(t) = ζi−1 + (ζi − ζi−1)
s− sin(s)

2π
(3.23)

3.3 Discussion and Results

All trajectories discussed in this section were generated via PyIpopt (A python wrapper

connecting to Ipopt) using an Intel Core i5/1.8GHz processesor. The duration of the CoM

polynomials (Tk+1 − Tk) was set to 0.05 seconds for all generated trajectories, all decision

variables were initialized as 0.1, and the feet were assumed to be point feet. Position com-

mands were sent to the actuators at 100Hz. Table 3.1 shows solve times for a range of

different gaits.

3.3.1 Uneven Terrain

Fig. 3.3 shows the generated trajectory for stepping up and over a 0.14m tall cinder block

which also corresponds to the last column in Table 3.1. There are three elevation changes on

53



Table 3.1: Solution times for different motions

Trot Pace Creep Creep w/ 0.14m

obstacle

Distance 1.0 m 1.0 m 1.0 m 0.83 m

# of steps 8 12 20 20

Poly. δt 0.05 sec 0.05 sec 0.05 sec 0.05 sec

Solve time 0.399 sec 0.525 sec 0.833 sec 1.901 sec

the way up and three elevation changes on the way down. These represent the three different

feet configurations that occurred during this trajectory: no feet on the cinder block, one foot

on the cinder block, and two feet on the cinder block. The footsteps were hand tailored

based off of knowledge of the terrain and robot kinematics.

3.3.2 Affects of CoM Acceleration Cost

The cost on the CoM acceleration is helpful when the desired gait has large changes in the

adjacent support polygons. For example, a pacing gait with a small transition period in

the middle will start on the left two legs then have a period where all four legs are on the

ground followed by a stance phase of the right two legs. This will cause the support polygon

to go from the left two legs to the right two legs very quickly. If only the ZMP cost was

used the desired CoP would shift from the right legs then to the middle then to the left legs

very quickly causing large CoM accelerations. By adding the CoM cost it was found that we

could smooth out this transition from right to left by adding intermittent CoP points during

54



Figure 3.3: Solid blue line represents CoM trajectory and green X’s represent foot positions.

a) Top view of trajectory b) Side view of trajectory.

the phase where all four feet are on the ground. This phenomenon is shown in Fig. 3.4.

3.4 Center of Mass and Footstep Planning through a NLP and

Vision Data

The method developed in the previous section (3.2) provided a fast trajectory optimization

algorithm that can be ran online. The algorithm produced trajectories of varying time

horizons but only considered the dynamics of the robot and did not consider the environment.

This section builds off of that method, creating an architecture that allows for teleoperation

of the robot while perceiving and reacting to the environment. An overview of the system

framework for teleoperation on the ALPHRED V2 platform is shown in Fig. 3.5. User inputs

(velocity magnitude, heading, and gait type) are passed to three motion planning threads,

the first being the footstep planner. Based off of these user inputs the footstep planner

generates footstep times and locations that will result in the desired velocity and direction

55



Figure 3.4: Solid blue line represents CoM trajectory, green X’s represent foot positions,

and colored dots represent CoP positon. a) Without CoM acceleration cost b) With CoM

acceleration cost.

of the robot. The nominal footsteps are passed to the vision algorithm which potentially

modifies these footsteps to the closest, viable, and safe locations. Each of these locations

is given a score based off of how safe these locations are. These modified footsteps and

scores are then passed to the NLP. The NLP will produce the final footstep locations and

an optimal CM trajectory for the robot to execute. The optimized trajectory and footstep

plan is passed to a Finite State Machine (FSM) which uses position control to execute the

given trajectory. The FSM is ran at 200 Hz and is ran in parallel to the the footstep planner,

vision footstep adjuster, and trajectory optimization. While the FSM is executing the given

trajectory the other three threads are working on the next trajectory based off the most

current user input. The three motion planning threads must be ran sequentially due to their

reliance on the previous threads outcome.

56



3.4.1 FOOTSTEP PLANNER

The footstep planner is similar to the one discussed in Section 3.2 however it plans for the

next 8 steps (2 for each foot) whereas the previous footstep planner was for an arbitrary

number of steps.

T i = [t1, t2, t3, t4]

F i = [f1, f2, f3]

(3.24)

Where i ∈ {1, 2, 3, 4} is the i-th leg, tn ∈ R is a time, and fm ∈ R3 is a 3 dimensional position

vector. The entry f1 for each leg is the current position vector of that leg. The final two

position vectors are the new footstep locations that will produce the desired direction and

speed of the robot. The time vector consists of a lift off time and touchdown time for each

of the new footsteps respectively (no times are need for the first location).

Figure 3.5: High-level system architecture flow chart. The footstep planner, vision adjuster,

and trajectory planner work sequentially. While all three work in parallel to the FSM and

motion controller.

57



Only the kinematics of the robot were considered when deciding the footstep locations

of the robot. The dynamics of the robot were not a concern because these locations will be

optimized later. For this reason it was relatively easy and fast to develop footstep planners

for different gaits and situations.

fi = fi,nom +
ti+1 − ti

2
ṙd (3.25)

3.4.2 VISION FOOTSTEP ADJUSTER

Need do a little write up.

3.4.3 Trajectory Planner: Nonlinear Program

The problem formulation is similar to that of Section 3.2 however this method also optimizes

for footstep locations. The addition of footstep locations makes the problem go from a convex

problem to a general NLP. The notation of the NLP is the same as Section 3.2 except for

the addition of the decision variables for the footstep locations. The problem is discretized

into a discrete number of optimization parameters that fully describe the continuous time

trajectory. The set wc describes the CM trajectory, wu describes the ZMP, and wp describes

the x and y location of each foot.

wc = [a1,0, ..., a1,4, ..., an,0, ..., an,4]
T

wu = [λ1,1, ..., λ1,4, ..., λn,0, ..., λn,4]
T

wp = [p1,1, ..., p1,4, ..., pm,0, ..., pm,4]
T

(3.26)

58



Where n is the number of polynomials that describe the trajectory and m is the number of

footsteps to be optimized. ai,j ∈ R2 describes the i-th polynomial’s j-th coefficient for both

x and y, λi,j ∈ R describes the j-th foot’s percentage of the total load at the time of the i-th

polynomial, and pi,j ∈ R2 describes the j-th foot’s x and y position for the i-th step. Using

this parameterization of the problem it becomes relatively simple to compute all required

dynamics of the robot at any given time. Given,

Ai = [ai,0, ai,1, ai,2, ai,3, ai,4] T = [t0, t1, t2, t3, t4]T (3.27)

the CM position, velocity, and acceleration can be computed by the following:

r(t) = AiT

ṙ(t) = AiṪ

r̈(t) = AiT̈

(3.28)

The ZMP can also be calculated with the following formulation.

u(t) =
4∑

f=1

λi,fpm,f (3.29)

Given that the duration of the polynomials and the step times are known it can be

assumed for the remainder of this paper that the correct decision variables are chosen from

the sets wc, wu, and wp given a time t. Fig. 3.6 provides a broad overview of the structure

of this optimization problem. Many of the costs and constraints are identical to those in

Section 3.2 and for brevity are not repeated. All new costs and structuring are discussed in

the subsequent sections.

59



Figure 3.6: An overview of the non-linear program.

3.4.3.1 Foot Placement Cost

The foot placement cost tries to minimize the distance between the location of the optimized

foot location pi,j and the desired foot location p∗i,j chosen by the vision algorithm. The gain

α also comes from the vision algorithm and is bound between 0 and 1. Notice that when α

is 0 this cost will have no effect and the foot placement will only be chosen based off of the

previously mentioned costs.

θp
10(e1.5α − 1)

(e− 1)
‖pi,j − p∗i,j‖2 (3.30)

The cost was determined by trial and error in order to get the desired balance between all

the other cost. Originally the foot placement cost was linear in α but this was found to

either be not aggressive enough or too aggressive, it was found that an exponential function

preformed much more desirably. The gain θp is used to change the amount of effect this cost

will have on the overall optimization.

60



3.4.3.2 Trajectory Stitching

User inputs are checked at the beginning of every new trajectory, from the velocity commands

provided by the user a nominal straight line trajectory is produced. The nominal trajectory

is created simply by moving along the velocity vector given by the user input until time tf

(the final time of the optimization problem). There are two points of interest along this

trajectory: the point at ts1 , where ts1 is the time right after all feet have finished their first

step and the point at tf . Each trajectory solves for the next 8 steps, two steps for each foot,

with the desired footsteps being provided by the vision algorithm. The final CM position is

set to the location of the nominal trajectory at time tf and the velocity is set to zero. Only

the first step of each foot is allowed to be a decision variable whereas the last step for each

foot is set to the location provided by the vision algorithm. The final solution will create a

trajectory that brings the robot to a complete stop in a nominal pose after taking two steps

with each leg.

If a user input is provided, another optimization problem will be created for another

8 steps. A new inertial coordinate system is created with it’s origin corresponding to the

location at ts1 along the previous optimization problem’s nominal trajectory, as shown in

Fig. 3.7. The initial conditions for the new optimization problem are the CM position, CM

velocity, and footstep locations at ts1 . All of these values are transformed into this new

coordinate system. The previous trajectory will only execute until ts1 upon which the FSM

will start executing the new trajectory. This pattern will occur until no more user inputs

are detected and the robot will come to a complete stop. Using a local inertial frame rather

than a global inertial frame helped reduce solve times by warm starting the optimization

61



problem with the solution from the previous optimization problem.

Figure 3.7: The blue dashed line represents the nominal trajectory created by the user input,

a) shows the side profile of the robot, b) shows the top view.

This stitching method only uses half of the solution from each optimization problem.

There are methods such as path regularization [7] that use the entire or nearly entire solution

of the computed optimization problem, making these methods more efficient. We decided

to use a less efficient method in order to guarantee the safety of the robot. Every trajectory

that is created during our algorithm is assured to have a safe and viable stopping point

meaning that if a solution to the next optimization problem fails or takes to long to solve,

the robot will still be able to safely stop. Other stitching methods has no contingencies for

the situation in which the optimization problem is not solved before the next trajectory is

required to be executed, if this occurs the robot will freeze and most likely crash. Since

non-linear programs have no guarantees on solve times we opted to use a structure that

always has a safe trajectory to execute.

62



3.5 Discussion and Results

This section discusses the results from simulation of the ALPHRED V2 system in V-REP

[21]. Unfortunately the Intel Realsense D435 was less accurate and noisier than we used for

simulation. This has prevented us from implementing the algorithm in the real world. All

code was written in Python 2.6 and implemented on an Intel NUC Quad-Core i7-6770HQ

with 8 GB of DDR4 RAM at 2400 MHz. Interior Point Optimizer (Ipopt) [81] was used as

the non-linear solver for the TO thread with PyIpopt as the Python wrapper. The simulation

camera mimics the Intel Realsense D435.

In the simulation the robot trots 1.0m and then steps onto and over a 0.04m obstacle. The

step length was set to 0.25m with a step time of 0.6 seconds giving the algorithm 1.2 seconds

to solve before the next trajectory. During the duration of this task the algorithm stitched

together eight trajectories with an average solve time of 400ms (100ms for the vision and

300ms for the TO) per trajectory. Fig. 3.8 - 3.10 are three snapshots of different moments

during the simulation that best highlight the novelty of this algorithm. The figures show the

nominal footsteps provided by the footstep planner (blue squares), the modified footsteps

provided by the vision planner (green diamonds), and the optimized footsteps provided by

the TO problem (red crosses). Fig. 3.8 is a footstep plan during the first 1.0m of travel.

During this time the terrain is completely flat with no dangerous footstep locations, this is

indicative of the fact that the vision algorithm did not modify the nominal footsteps and

provided a low cost on all footstep. This allowed the footsteps to be highly optimized shown

from the optimized footsteps deviating dramatically from the modified footsteps. In Fig.

3.9 the robot is planning on stepping onto the obstacle (dashed purple box) with the front

63



Figure 3.8: Footstep plan for flat terrain. Blue squares are nominal footsteps, green diamonds

are modified footsteps, and red crosses are optimized footsteps.

two legs. The back two legs are in safe locations and are thus treated as they were in Fig.

3.8. However, the front two legs must now be modified from the nominal positions in order

to provide the robot with secure footing. Due to their precarious position both the front

legs have a high cost forcing the optimization algorithm to choose the position selected by

the vision algorithm. An interesting result from this is that the back feet locations are now

changed to try to counter act the dynamics created from modifying the front feet. This is

most clearly seen by the back left’s optimized footstep. The change in the back left foot’s

position mirrors that of the constrained front foot’s location. This is a very powerful result

where the optimization algorithm naturally tries to account for the adverse dynamics created

by traversing safely over the obstacle. Similar phenomenon are seen in Fig. 3.10 where now

the back feet are modified due to the obstacle and the front feet are free to be optimized.

64



Figure 3.9: Footstep plan stepping up onto an obstacle with the front two legs. Blue squares

are nominal footsteps, green diamonds are modified footsteps, and red crosses are optimized

footsteps.

Figure 3.10: Footstep plan for stepping up onto an obstacle with the back two legs. Blue

squares are nominal footsteps, green diamonds are modified footsteps, and red crosses are

optimized footsteps.

65



CHAPTER 4

MOTION CONTROL

4.1 Limb State Machine

One of the most challenging aspects of walking robotics is the change in continuous dynamics

from one state to the next. These changes occur every time a foot comes into contact with

the ground or leaves the ground. Not only is it difficult to design controllers to operate in

each dynamical state it can also be difficult to detect the transitions from state to state. For

this reason, a Finite State Machine was developed to organize the control and detection of

the changing states of each limb as shown in Fig. 4.1, similar event based strategies have

been used in [13]. The transitions for the states are determined by the desired state of the

limb and the actual state of the limb determined by a foot contact switch: s1 desired to be

in contact and foot switch is high, s2 desired to not be in contact and foot switch is high, s3

desired to be in contact and foot switch is low, and s4 desired to not be in contact and foot

switch is low. There is one more transition that fires when the end-effector velocity is too

high. This transition is unique to the stance state and is described in more detail below.

66



ST SW

TD

LO

ELO

ETD LTD

s2
s1

s4

s2
s1, s2

s4

s3

s3

s1, s2s2

s1

s2

s3, ν

s3, s1

s4

s2

s1

s4

s3

Figure 4.1: Visual representation of the limb FSM.

4.1.1 Stance (ST)

The stance phase occurs when the foot is desired to be in contact and the contact switch

indicates that the foot is in contact. This state controls the dynamics of the robot to follow

a desired trajectories via the ground reaction forces created by the contact. The stance state

is controlled via the output of one of the locomotion controllers detailed in Section 4.2 and

Section 4.3. If the controller is directly controlling the ground reaction forces at the foot

via torque control as down in the controller in Section 4.3, then slipping can be a major

problem. The torque controllers assume that the foot is securely on the ground and that a

sufficient ground reaction force can be created however this is not the case when a foot is

slipping. If a large ground reaction force is required this can cause the leg to go unstable

causing damage to the robot. For this reason the stance state can transition early to the

67



early liftoff state if the foot’s velocity is calculated to be 2.5x the desired body velocity.

4.1.2 Swing (SW)

The swing state is used to transition the foot’s position from one location to the next when

both desired state is no contact and the foot switch is low. Cycloidal functions are used to

create the trajectory of the swing legs [36], (4.3) describes the trajectory of the foot for the

x and y body coordinates while (4.4) describes the trajectory for the z coordinate.

s = 2π
Tswing − T
Tswing

(4.1)

∆p = pfinal − pinitial (4.2)

pxyi = pxyinitial + (∆pxy)
s− sin(s)

2π
(4.3)

where, pxyi ∈ R2 is the x and y position for the ith foot, Tswing is total duration of the swing

phase, T is the remaining time in the phase which starts at Tswing and goes to 0 (the timing

is explained in more detail in Section 3.1), pinitial is the initial position of the foot at the

beginning of the swing phase, and pfinal is the desired final position of the foot at the end

of the swing phase.

pzi (s) =


pzinitial +max(∆pz + hstep, hstep)

1−cos(s)
2

s < π

pzfinal + (pzi (π)− pzfinal)
1−cos(s)

2
s ≥ π

(4.4)

During the first half of the swing phase the foot lifts to a height of hstep above either the

initial height if the foot is stepping down or above the final height if the foot is gaining

68



elevation. If the foot is stepping down the foot clearance is of concern, which is why the foot

is commanded to lift to hstep above the initial height rather than the final height.

If using force control, the following control law is used to control the limb in the air:

τ = JT (KpM (xref − x) +Kd(ẋref − ẋ)) + τ ff (4.5)

where J ∈ R3×3 is the Jacobian matrix, Kp ∈ R3×3 is the proportional gain matrix, Kd ∈

R3×3 is the derivative gain matrix, and M ∈ R3×3 is a diagonal matrix with the diagonal

being equal to the diagonal of the H matrix in (4.6) and is used to scale Kp to ensure that

the stiffness is the same in any configuration. The feedforward torque τ ff can be computed

using the rigid body equations of motion discussed in Section 1.2.2.1:

τ ff = H(q)q̈ref + C(q, q̇)q̇ +G(q) (4.6)

where H ∈ R3×3 is the mass matrix, C ∈ R3×3 is the Coriolis matrix, and G ∈ R3 is the

gravitational term. Unfortunately, q̈ref is not known, requiring the following substitution to

be made.

d

dt
ẋ =

d

dt
Jq̇ (4.7)

ẍ = Jq̈ + J̇ q̇ (4.8)

q̈ = J−1(ẍ− J̇ q̇) (4.9)

Plugging (4.9) into (4.6) results in:

τ ff = H(q)J−1(ẍref − J̇ q̇) + C(q, q̇)q̇ +G(q) (4.10)

69



4.1.3 Touchdown (TO)

The touchdown state is used to determine if the foot is securely on the ground. If the

limb is in the swing state and a rising edge is detected from a contact sensor the limb will

immediately transition into the touchdown state. Once in the touchdown state the limb will

go into a low impedance mode and wait until the contact sensor reads consistently for 5ms.

If the consistent reading is high then the limb will transition into one of the contact states

(ST or ETD) or if the reading is low then the state will go back into the swing state until

another touchdown is detected.

4.1.4 Early Touchdown (ETD)

This state performs the same function as the stance state but additionally ensures that the

limb does not transition immediately to the lift-off state. This state stops the foot if it

touches down before the swing state has finished and allows for an extended stance period.

4.1.5 Late Touchdown (LTO)

When this state occurs the stance controller is lacking control authority over at least one

contact point, which can have a severe impact on performance. To mitigate this problem,

the limb is commanded to hold it’s X and Y position and move downwards in the Z direction,

thus trying to shorten the time that the robot is in this state, similar methods to this were

used in [32].

70



4.1.6 Liftoff (LO)

This state performs the same function of the swing state but additionally prevents the

transition into the early touchdown until 60% of the swing time has passed. At 60% the foot

is now on its downward trajectory and is capable of establishing a stable foothold, whereas

this is not the case for the upward trajectory. Even if the foot runs into an obstacle on

its upwards trajectory it is better to try to push through and get the foot up and over the

obstacle rather than trying to establish a foothold on the side of the obstacle.

4.1.7 Early Liftoff (ELO)

Early liftoff occurs when a foot unexpectedly loses contact with the ground. When this

occurs the foot stops using the output of the stance controllers and is commanded to match

the inverse of the desired velocity of the robot in X and Y and to remain fixed in the Z axis.

Once the limb has entered this state the it will remain in this state until the limb is desired

to be in the swing phase, even if a touchdown event is detected. The motivation for this

strategy is to continue to safely provide stability to the robot while an unexpected event has

occurred while maintaining the desired gait. During nominal operation, a foot’s velocity in

the body frame should be close to the desired velocity of the body, therefore once the foot

has slipped or lifted off this state will command the inverse of the desired velocity using the

(4.5).

71



4.2 Position PD Control

During the stance and early touchdown states the X and Y Cartesian positions of the limb

are commanded to match the inverse of the desired velocity however the Z position of the

limb is controlled by a simple PD controller. The PD controller, described by Eq. 4.11,

changes the length of the limb to correct height and rotation errors of the robot, enabling

the robot to traverse uneven terrain and mitigate disturbances. In position mode the output

of the PD controller is a Z velocity and in torque mode the output is a Z force; both result

in changing the length of the given limb. If in torque mode, Eq. 4.5 is used to determine

the desired torques.

∆z = kp,h(p0,z − pz) + kd,hṗz + s(Kp,r log(RdR
T )−Kd,rω) (4.11)

where p0,z is the nominal z position of the limb, Rd,R ∈ R3×3 are the desired rotation matrix

and current rotation matrix representing the transform from the body frame to the world

frame (desired pitch and roll angles are always zero), ω ∈ R3 is the angular rates of the robot

in the body frame, and s = [1, 1, 0] is a selection matrix that selects the roll and pitch errors

(this controller does not adjust for yaw errors). The orientation errors are derived using the

matrix log mapping described in [16] [56], for completeness the matrix log is derived in the

following subsection. kp,h and kd,h are the scalar proportional and derivative gains for the

height component. Kp,r and Kd,r are the diagonal R3×3 proportional and derivative gain

matrices for the orientation error component. For all four limbs the magnitude of the gains

are the same but the orientation gain matrices will differ in signs between elements in order

for the limbs to appropriately respond to errors.

72



4.2.1 Tracking Controller for SO(3)

One of the most widely used and effective tools for tracking a trajectory is a PD controller

of the form,

u = Kp(x− xd) +Kd(ẋ− ẋd) (4.12)

It would be natural for one to try and use Euler angles combined with a PD controller to

track a desired orientation trajectory. Unfortunately, this method does not work due to the

inter-connection between the three Euler angles. Each Euler angle rotates the coordinate

frame created by the Euler angle that proceeded it. A PD controller will try to fix all of the

Euler angles at once however, by changing the first Euler angle this will then have effects on

all proceeding Euler angles resulting in an unstable controller.

In order to overcome this deficiency Bullo et al. [16] derived a PD formulation that would

work on the SO(3) group. First, we will represent the error state as the desired frame as

seen by the current frame.

Re = RT
dR (4.13)

Using the matrix exponential form of a rotation matrix we can derive the matrix logarithm

from (1.36):

logR(ω̂, θ) = ω̂θ = ψ

θ = cos−1
(

1

2
(trace(R)− 1)

)
ω̂ =

1

2 sin θ
(R−RT )

(4.14)

Notice that there is no hat symbol on ψ, this implies that ψ is the R3 representation of ψ̂.

Using the (4.14) on our chosen error state (4.13) we can back out the error between the axis

73



of rotation of our current system and the axis of rotation of our desired system.

ψe = log(Re) = log(RT
dR) (4.15)

This R3 representation of the orientation error is now suitable for the following stable PD

controller.

u = Kp(ψe) +Kd(ω − ωd) (4.16)

4.2.2 Results

The primary gait used by ALPHRED is a trotting gait with swing and stance times ranging

from 0.18-0.3 seconds. Using a 0.2 second swing and stance time ALPHRED can reliably

walk at 1.0 m/s and achieve a turning rate of 0.5 rad/s. From this experiment the cost

of transport (CoT) was calculated to be 2.6, the CoT formula used is the same as the one

presented in [10]. After lowering both the swing and stance time times to 0.18 seconds

ALPHRED achieved a max velocity of 1.5 m/s. Using the same trot gait, ALPHRED was

able to successfully walk over an artificial obstacle course comprised of scattered blocks as

obstacles ranging in height from 2-4 cm. In addition, the robot has also successfully walked

around in the real world walking on side walks, streets, and dirt paths which also included

terrain with slopes > 15◦.

4.3 Model Predictive Control Using Quadratic Programming

This section presents a Model Predictive Controller (MPC) that formulates the problem into

a QP to solve for the desired ground reaction forces to control the robot while in the stance

74



and early touchdown phase. As noted through out this work one of the most challenging

aspects of controlling legged systems is their discrete changes in dynamics as the points

of contact change. In recent years, there have been many successful controllers that use

different optimization strategies to solve for control inputs based off of the current state

of the robot. For the DRC, the MIT group controlled an Atlas robot through the use of

several optimization algorithms, in particular they used a NLP to simultaneously consider

dynamics and kinematics as there main motion controller [54], [53]. Whereas, the IHMC

DRC team used high a series of high level planners with differing time horizons to pass

information to inverse dynamics QP solver [26]. They expanded this work in [32] to use a

QP formulation that favors specific joint angles in the null space of the quadratic program

to produce straight leg walking. Wensing et al. showed in simulation that a hierarchical QP

whole-body controller could be quite powerful at producing impressive motions to control a

humanoid robot [84] [83]. ETH Zurich demonstrated the use of a hierarchical whole-body

controller on the ANYmal platform to produce dynamic gaits [5], [6], [7].

Though these controllers have been successful and have even created impressive forms

of locomotion they all suffer from the fact that they provide an instantaneous solution that

only includes the current state of the robot and does not consider the future dynamics.

This results in the controller having know knowledge of predictable state changes such as

a foot switching from stance to swing or periods of flight where all the feet are off the

ground. In order to overcome the limitations of the previous controllers the community has

started to shift their focus to MPC’s as the main motion and stability controllers rather

than just the high level planner. There have been a number of impressive demonstration in

75



simulation showing the potential for MPC’s as the main controller [4], [20]. One of the first

successful implementations of an MPC on a real-world robot was done in [52] on the HRP-2

humanoid robot. Although, the algorithm was a success the authors acknowledged the need

for improvement in computational efficiencies in order to make the controller practical for

unknown environments. ETH Zurich was able to get a real-time nonlinear MPC working on

the ANYmal platform through the use of a custom optimization solver [58]. This controller

was able to produce a slow trot but would need to improve computational efficiency to be

capable of more dynamic forms of motion. Recently, DiCarlo et al. from the Biomimetics

Robotics Lab out of MIT was able to use a real-time MPC controller [19] on both Cheetah3

[12] and mini-cheetah [48] to produce a wide range of dynamic gaits. The MPC developed by

DiCarlo made large simplifications of the dynamics to improve the computational efficiency.

However, the simplified model was still able to retain enough of the actual dynamics to

produce stable control of the robot. The work presented here is based off the MPC controller

developed in [19] but is expanded to incorporate approximated swing leg dynamics and the

QP is reformulated to run at +300Hz while the original ran at 50Hz.

4.3.1 Simplified Dynamics Model

The robot is modeled as a single rigid body subject to forces at the feet. These dynamics are

equivalent to the floating base of whole body dynamics with massless legs. The assumption

of massless legs can have drastic effects if the ratio of the mass of the body to the mass of

the legs is not sufficiently high, this assumption is addressed later. Equations 4.17 and 4.18

76



describe the linear and rotational dynamics of the model respectively

r̈ =

(
4∑

i=1

fi/m

)
− g (4.17)

d

dt
(Iω) =

4∑
i=1

di × fi (4.18)

where, r̈ ∈ R3 is the linear acceleration of the CM, fi ∈ R3 is the ground reaction force

at the ith foot, g ∈ R3 is the gravity vector, I ∈ R3 is the robot’s inertia tensor about the

CM, ω ∈ R3 is the angular rate, and di ∈ R3 is the vector from the CM to the ith foot. All

of the above variables are in the world coordinate frame.

The above equations need to be further simplified in order for the system to be written

as a linear system of equations. Equation (4.18) can be further approximated by the method

done in both [19] and [28]:

d

dt
(Iω) = Iω̇ + ω × (Iω) ≈ Iω̇ (4.19)

This approximation is only valid for systems with relatively small angular velocities where

the term ω× (Iω) ≈ Iω̇ does not contribute much. Due to the fact that this controller tries

to have small angular velocities the above approximation holds.

Finally, to express how the robot’s orientation is progresses over time the model uses

Euler angles, Θ = [φ θ ψ]T , to represent the robot’s orientation. The Euler angles use a

Z-Y-X convention to construct a rotation matrix that represents the transform from the

77



body frame to the world frame.

Rwb = Rz(ψ)Ry(θ)Rx(φ) (4.20)

Using the convention in Eq. 4.20 the robot’s angular rate can be calculated from exam-

ining how the time rate of change each Euler angle effects the system. Notice that because

a Z-Y-X convention is used φ̇ is rotated twice, ˙theta is rotated once, and ψ̇ directly effects

the angular rotation:

ω = Rz(ψ)Ry(θ)


φ̇

0

0

+Rz(ψ)


0

θ̇

0

+


0

0

ψ̇

 (4.21)

ω =


cos(θ) cos(ψ) sin(ψ) 0

− cos(θ) sin(ψ) cos(ψ) 0

sin θ 0 1




φ̇

θ̇

ψ̇

 (4.22)

Taking the inverse of Eq. (4.22) leads to:


φ̇

θ̇

ψ̇

 =


cos(ψ)/ cos(θ) − sin(ψ)/ cos θ 0

sin(ψ) cos(ψ) 0

cosψ tan θ sinψ tan θ 1

ω (4.23)

This inverse is only exists when θ 6= ±π/2, which is when the robot is pointed straight

up and down. Fortunately, this orientation is well outside of the nominal operating point of

78



the robot. Since the controller tries to keep the roll and pitch (φ and θ) at zero we can use

the small angle approximation to derive the following approximation:


φ̇

θ̇

ψ̇

 ≈


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

ω = Rz(ψ)Tω (4.24)

Combining Eq. (4.17), (4.19), and (4.24) the approximated dynamical model of the robot

can be written in the following continuous time linear state space format. Notice that both

Rz(ψ) and di are functions of the states making this a invalid representation. This issue

will be addressed in the subsequent sections.

d/dt



Θ

r

ω

ṙ

1


=



03×3 03×3 Rz(ψ)T 03×3 03×1

03×3 03×3 03×3 13×3 03×1

03×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 g

01×3 01×3 01×3 01×3 0





Θ

r

ω

ṙ

1


+



03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

Î−1 [d1]× Î−1 [d2]× Î−1 [d3]× Î−1 [d4]×

13/m 13/m 13/m 13/m

01×3 01×3 01×3 01×3





f1

f2

f3

f4



= Ax+Bu

(4.25)

79



4.3.2 Extended State Space

The representation from (4.25) assumes that the robot has massless legs, thus applying zero

forces and moments to the body during the transition from one foothold to another. This is

a very common assumption in legged robotics as it greatly simplifies the dynamics allowing

for simple and efficient methods to be used to create controllers [43], [42]. Using these types

of controllers and the formulation above the swing leg dynamics are treated as disturbances

to the model and the controller must be robust enough to counter-act those disturbances.

However, if the trajectory of the swing leg is known we can predict the resultant moments

and forces imposed by the swing legs from the following equations:

F ext =
N∑
i=1

−J−Tτ iff (4.26)

M ext =
N∑
i=1

−τ iff (4.27)

where τ iff is the feed forward torque calculated by (4.10) for foot i. There are discrepancies

between the real world leg and (4.10) which is why a PD loop is also used to control the swing

leg. However, these approximations predict the general effect that the swing leg dynamics

have on the body of the robot, as shown in Fig. 4.2.

Notice that in the Z direction the feedforward term dominates the overall command to

the leg. In the X and Y directions the forces are relatively smaller and thus the PD and

feedforward terms are sometimes of the same order of magnitude, especially at the beginning

of the trajectory. The main cause of this is due to the fact that the foot has not left the ground

at the beginning of the trajectory, thus the X and Y trajectories will be greatly impeded by

80



Figure 4.2: Breakdown of the contribution that the feedforward force has compared to the

contribution from the PD controller during a swing leg trajectory. The solid black line

represents the contribution from the feedforward term, the dashed red line represents the

contribution from the PD controller, and the solid blue line represents the summation of the

two which is passed to the motor controller.

81



a large friction force with the ground. However, for the most part the feedforward term is a

good approximation of the forces that will be imparted onto the body of the robot. Equation

(4.28) shows the extended version of the continuous time state space representation with the

approximated swing leg dynamics.

d/dt



Θ

r

ω

ṙ

1


=



03×3 03×3 Rz(ψ)T 03×3 03×1

03×3 03×3 03×3 13×3 03×1

03×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 g

01×3 01×3 01×3 01×3 0





Θ

r

ω

ṙ

1


+



03×3 03×3 03×3 03×3 03×1

03×3 03×3 03×3 03×3 03×1

Î−1 [d1]× Î−1 [d2]× Î−1 [d3]× Î−1 [d4]× Î−1Mext

13/m 13/m 13/m 13/m Fext/m

01×3 01×3 01×3 01×3 0





f1

f2

f3

f4

1


= Ax+Bextu

(4.28)

4.3.3 Discrete Time Model

The continuous time linear model can be represented as the following extended continuous

time model, (4.29).

d/dt

 x
u

 =

 A Bext

0 0


︸ ︷︷ ︸

M

 x
u

 (4.29)

82



Using the state transition matrix the discritized extended state space model can be

computed using the following matrix exponential.

M̂ = eMT (4.30)

Where T is the time step for the discrete time model. The matrix exponential can be

expressed as an infinite series.

eMT = I +MT +
1

2!
M 2T 2 + · · · =

∞∑
i=0

1

i!
M iT i (4.31)

Upon further inspection of M we see that M is upper triangular resulting in M 3 = 0

thus,

eMT = I +MT +
1

2!
M 2T 2 (4.32)

which can be efficiently computed. Unpacking M̂ we recover the discretized version of

our original state space model.

M̂ =

 Â B̂ext

0 0

 (4.33)

Finally we can express the dynamics of our system as the following discrete time state

space model.

x̂[k + 1] = Âx[k] + B̂ext[k]u[k] (4.34)

83



Notice that Â is a constant however in (4.28) A is a function of the state ψ. To write

Â as a constant, ψ is approximated as the average yaw angle across the entire trajectory.

In addition, B̂ext[k] are all functions of di the distance from the CM to the foot location at

timestep k. This is also a function of the state, however if B̂ext[0] uses the current state of

the robot and all future CM and foot locations are assumed to follow the desired trajectory

perfectly then all di’s can be known apriori allowing for the calculation of all B̂ext[k] across

the entire time horizon.

Both of these assumptions are large approximations and only accurate if the robot is

able to follow the desired trajectory. Unfortunately large disturbances can cause the robot

to deviate substantially from the desired trajectory making the approximation of B̂ext[k]

inaccurate. However, the model is exact for the first time step because the initial state

of the robot is used to create the discrete time model. And due to the fact that this is

being constructed as an MPC only the solution for the first timestep will be used before the

problem is reconstructed and solved again using the current state of the robot.

4.3.4 Quadratic Programming Formulation

The MPC is formulated as a quadratic program in the following form (see Section 1.2.1.3

for more details on quadratic programming).

min
z

1/2zTMz + cT z

s.t.

Az ≤ b

(4.35)

84



The problem is discretized over a finite horizon using the dynamics derived in the previous

section to propagate the state of the robot into the future. There are different ways of

formulating the problem as a quadratic program, the following sections talk about a direct

transcription method and an indirect transcription method. The optimization variables z

will change depending on which method is used. However, in both cases z will include

the ground reaction forces for each leg at each discretized point in time. In addition, each

formulation will contain a set of constraints that ensures the ground reaction forces remain

inside the friction cone.

f ix,k − µf iz,k ≤ 0

−f ix,k − µf iz,k ≤ 0

f iy,k − µf iz,k ≤ 0

−f iy,k − µf iz,k ≤ 0

(4.36)

Where f ix,k is the ground reaction force in the x direction for the ith at time step k. This

constraint creates a friction pyramid that is contained inside of the friction cone ensuring that

the foot does not slip. The friction coefficient µ must be decided upon based on knowledge

of the ground that the robot will be operating on.

4.3.4.1 Indirect Method

The indirect method only optimizes over the ground reaction forces at each foot.

z = [u0,u1, · · · ,uN ]T = [f 1
0,f

2
0,f

3
0,f

4
0,f

1
1,f

2
2,f

3
3,f

4
4, · · · ,f 1

N ,f
2
N ,f

3
N ,f

4
N ]T (4.37)

85



Where uk is the vector of all the ground reaction forces for all of the feet at time step k, and

f ik is the ground reaction forces for the ith foot at time step k. If all of the ground reaction

forces are known and the initial state of the robot is known then the future states of the robot

can be calculated. Starting from the initial state x0 and using the dynamics from (4.34) the

state of the robot at k = 1 can be calculated, (4.38). Once again using the dynamics from

(4.34) the state of the robot at k = 2 can be calculated, (4.39). However, if we plug in the

solution for the state of the robot at (4.38) for x1 then the state x2 can be written as a

function of the initial state and the known control inputs as shown in (4.41). This method

can be repeated for each time step, recursively solving for each state as a function of the

initial state and the control inputs.

x1 =Âx0 + B̂0u0 (4.38)

x2 =Âx1 + B̂1u1 (4.39)

=Â(Âx0 + B̂0u0) + B̂1u1 (4.40)

=Â
2
x0 + ÂB̂0u0 + B̂1u1 (4.41)

x3 =Âx2 + B̂2u2 (4.42)

=Â(Â
2
x0 + ÂB̂0u0 + B̂1u1) + B̂2u2 (4.43)

=Â
3
x0 + Â

2
B̂0u0 + ÂB̂1u1 + B̂2u2 (4.44)

... (4.45)

xN =Â
N
x0 + Â

N−1
B̂0u0 + · · ·+ ÂB̂N−1uN−1 + B̂NuN (4.46)

Collecting all the the terms multiplied by the initial state x0 into a matrix Aqp ∈ R13N×13

and all the terms multiplied by the control inputs into a matrix Bqp ∈ R13N×12N the entire

86



system can be written into a single system of equations (4.47) with X ∈ R13N representing

the state of the robot at each point in time across the entire time horizon. This representation

is similar to the condensed formulation discussed in [40].

X = Aqpx0 +Bqpz (4.47)

Aqp =



Â

Â
2

...

Â
N−1

Â
N



Bqp =



B̂0 0 · · · 0

ÂB̂0 B̂1 0

...
. . .

...

0

Â
N−1

B̂0 Â
N−2

B̂1 Â
N−3

B̂2 · · · B̂N



(4.48)

A cost function was chosen that is common in reference tracking problems, which mini-

mizes the weighted least-squares error from the reference trajectory and the overall control

effort:

J = ||X −Xref ||Q + ||z||R (4.49)

= ||Aqpx0 +Bqpz −Xref ||Q + ||z||R (4.50)

Where Q ∈ R13N×13N is the weighting matrix for the states of the robot and R ∈ R12N×12N

87



is the weighting matrix for the control effort. Multiplying out the cost function results in:

J = zT (BT
qpQBqp +R)z+ (4.51)

zT2BT
qpR(Aqpx0 −Xref )+ (4.52)

xT0A
T
qpRAqpx0 +XT

refRXref − xT0AT
qpRXref︸ ︷︷ ︸

Constant with respect to decision variables

(4.53)

Finally we can construct the problem into the standard quadratic programming form

(4.35), note that the terms that are constant with respect to the optimization variables can

be ignored.

M = 2(BT
qpQBqp +R) (4.54)

c = 2BT
qpR(Aqpx0 −Xref ) (4.55)

The quadratic cost M results in a dense matrix of the size 12N × 12N , and the linear cost

c results in a vector of the size 12Nx1. The condensed formulation used to construct the

problem ensures that the dyanmics are always satisfied. For this reason the only constraints

for the problem are the friction cone constraints discussed above. Typically the problem is

discretized into 10-15 time steps resulting in a relatively small quadratic program that can

be solved in milliseconds.

4.3.4.2 Direct Method

The direct method optimizes over the state of the robot and the ground reaction forces at

each foot.

z = [x0,u0,x1,u1, · · · ,xN ,uN ]T (4.56)

88



The same cost function as the indirect method is used but now with the state vectors being

added to the decision variables the representation of the cost function becomes trivial.

J =
N∑
k=0

||xk − xk,ref ||L + ||uk||P (4.57)

Where L ∈ R13×13 is the weighting matrix for the states of the robot and P ∈ R12×12 is the

weighting matrix for the control effort. Multiplying out the cost function results in:

J =
N∑
k=0

xTkLxk − 2xTkLxk,ref + uTkPuk + xTrefLxref (4.58)

=
N∑
k=0

[
xTk uTk

] L 0

0 P


 xk
uk

+

[
xTk uTk

] −2Lxk,ref

0

+ xTrefLxref

(4.59)

=
N∑
k=0

zTk

 L 0

0 P

 zk + zTk

 −2Lxk,ref

0

+ xTrefLxref (4.60)

Once again we can formulate the problem into the standard QP form (4.35) by using the

following matrices as the quadratic cost and linear cost.

M = 2



L 0 · · · 0

0 P

...
. . .

...

L

0 · · · P


c =



−2Lx0,ref

0

...

−2LxN,ref

0


(4.61)

In this case the quadratic cost matrix M is now of size 25N ×25N and the linear cost vector

is of size 25N × 1. In addition, the dynamics are not naturally encoded into the problem,

therefore constraints need to be added to the problem in addition to the friction constraints

89



from equation (4.36). An equality constraint can be used to ensure that the dynamics of the

system are satisfied:

xk+1 − Âxk − B̂kuk = 0 (4.62)

4.3.4.3 Comparison of the Direct Versus Indirect Method

Running real time optimization algorithms on a robot is challenging and requires fast so-

lutions that are guaranteed to converge. Both the direct and indirect methods formulate

the problem into a QP which guarantees convergence. The speed at which the problem is

solved is another important aspect, if the solution isn’t found at a fast enough rate the robot

will become unstable and the controller will fail. Most researchers focus on how fast the

optimization takes once the problem has been formulated and passed to a given QP solver,

however another aspect of the optimization problem is how long does it take to formulate

the problem before passing it to the solver.

Looking first at the solve times of the QP solvers we see that both formulations are

O(N2), with N being the number of decision variables. This means that the problem sizes

increase equally in complexity as the number of decision variables increases. However, the

direct method has twice as many decision variables per time step compared to that of the

indirect method. This would suggest that the indirect method would calculate solutions

significantly faster than the direct method. However, if we look closer at how the direct

method is formulated we see that the Hessian matrix is a diagonal matrix and that the

constraint Jacobian is a block diagonal matrix. The structure of these matrices help to

greatly reduce the time required to solve the problem. Whereas, with the indirect method

90



the Hessian might be significantly smaller but it is a dense matrix which can not be exploited

to reduce the solution times of the problem. For this reason we see that the solution times

for the direct method are less than 1ms slower than the indirect method, Fig. 4.3.

Figure 4.3: Comparison of time required to solve the QP problem for the direct method

versus indirect method over 10000 samples.

The indirect method has a slight advantage in solution times over the direct method but

this is not the case for the time it takes to formulate the QP problem. Looking first at

the indirect method, for every solution the Aeq dense N × 13 and the Beq lower triangular

N ×N matrices must be formulated. From these matrices the dense N ×N Hessian matrix

and the dense N × 1 linear cost vector need to be constructed for every time step. The

constraint Jacobian only needs to be created for the first solution as the only constraints are

91



the friction constraints and these do not change based off of the state of the robot. Looking

at the number of calculations required for the direct method we see that the same N × 1

linear cost matrix created in the indirect method also has to be created for the direct method.

However, the N × N Hessian matrix for direct method is not only diagonal but it is also

constant, which means this matrix only has to be created once. The constraint Jacobian

is block diagonal with the same constant friction constraint but with time varying dynamic

constraints. Therefore, np constraints must be updated at every time step (which is approx.

10-15) in the constraint Jacobian. As a result the indirect method is O(N2) in the number

of computations required to formulate the problem whereas the direct method is only O(N),

which is most readily seen in Fig. 4.4 comparing the time required to formulate the problem

for the two methods.

Combining the results from the solution times and the formulation times Fig. 4.5 shows

the time required to run the MPC controller using the indirect method and the direct method.

Considering that the direct method was only slightly slower for solution times but far superior

in formulation times we see that the direct method on average takes 3.2ms to run whereas

the indirect method takes 7.1ms to run resulting in a > 2× improvement from the indirect

method used in [19].

All time tests were run on Razer Blade laptop with an Intel Core i7-7700HQ 2.80 GHz

CPU and 16.0 GB of RAM. All code was written in C++ using the Eigen3 matrix library

[35]. Gurobi 8.1.1 [59] was used as the QP solver. The code was compiled using the -0fast

option for gcc compilers which gave a large efficiency boost to the overall computation times

for both methods. The exact same series of robot states were used for both methods to

92



Figure 4.4: Comparison of time required to formulate the QP problem for the direct method

versus indirect method over 10000 samples.

compile the 10000 data points recorded during testing.

4.3.5 Implementation Techniques

The process of transferring a controller from simulation to the real-world system is often

difficult due to the non-linearities of the real world. These challenges often require solutions

that require unique insight into the problem and can by system dependent. This section

outlines some of the challenges and solutions of implementing the MPC controller on the

ALPHRED 2 platform.

The first challenge came from the method with which the MPC similifies the inertia of

93



Figure 4.5: Comparison of total cycle time for the controllers using the direct method versus

indirect method over 10000 samples.

the entire robotic platform. In order to write down the dynamics of the robot into a discete

time linear state space model the inertia of the robot was approximated to be the inertia

of the entire robot in it’s nominal pose. The inertia tensor that resulted from this is the

following:

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 =


0.85 0 0

0 1.30 0

0 0 1.13

 (4.63)

The above inertia tensor is in accordance with how the approximation was derived. Consid-

ering that the nominal pose is elongated parallel to the sagittal plane it would be expected

that the Iyy and Izz components of the inertia tensor are larger than the Ixx component, and

94



(a) (b)

Figure 4.6: a) Pose of the robot that was used to approximate the inertia tensor assuming

the entire robot as a single rigid body. b) The solid part representing the actual inertia that

should be considered for the rotation about the Z axis.

this would be correct if the entire system was one rigid body. However, the system is not a

single rigid body thus additional care must be used to analyze the system. Analyzing how

the robotic system would have to move to perform a pure rotation about a given axis we can

analyze how accurate the Inertia tensor approximation really is. Focusing on the rotation

about the X and Y axes we see that for both of these rotations complex multi-axis solutions

are required to perform a pure rotation about these axes. This means that the entire robot

must move to produce this type of movement and thus the approximations used for these

axes is valid. However, the rotation about the Z axis does not require multi-axis coordinated

moves, this rotation only requires actuation from the hip yaw actuators. To perform a pure

yaw only the light weight body moves, which is much less inertia then the original approx-

imation (Fig. 4.6). Using the original Izz in (4.63) resulted in excesses overshooting in the

yaw create undesirable oscillations and instability.

95



In order to mitigate the problem a combination of solutions were implemented. The first

being reducing the Izz term to the average of the inertia of the entire rigid body system and

the inertia of just the body. The inertia of just the body is the actual inertia when all four

limbs are on the ground however as limbs leave the ground the yaw inertia increases until the

limit is reached and no limbs are on the ground and the yaw inertia is equal to the original

Izz. For this reason the average between the two inertia’s is used as the approximated yaw

inertia in the controller. Unfortunately, because the discrepancy between the yaw inertia

when all the feet are on the ground and when no feet are on the ground is so large the

average between the two still results in a controller that is too aggressive in the yaw axis.

In a traditional PD controller the solution would be to increase the derivative gain resulting

in a damping effect. Unfortunately, with this whole body controller there is no one knob to

turn to provide a damping effect. Increasing or decreasing the gains on the yaw states of

the MPC changed the range of instability of the controller but it did not result in a fully

stable controller. To provide a dampening effect the desired trajectory was changed to be

less aggressive of a trajectory. The desired trajectory of the robot is created purely from the

desired linear velocities and yaw rate provided by the user. This method tells the controller

that it is desired for the controller to match the desired trajectory in a single time step if

possible. To simulate a dampening effect the desired yaw rate was calculated by blending

the current yaw rate and the desired yaw rate (4.64) which now tells the controller to fix the

yaw error over a number of time steps rather than a single time step.

ψ̇desired = (1− βk)ψ̇user + βkψ̇actual (4.64)

Where β is a parameter between 0 and 1 used to control how gradual the transition from the

96



actual state to the user desired state is in the trajectory passed to the MPC. The smaller the

value of β the more aggressive the desired trajectory will be. In practice a value of ∼ 0.7 was

used for β. The combination of lowering the yaw inertia value and smoothing the desired

trajectory stabilized the control of the yaw axis.

The next major challenge was due to the difficult dynamics of touchdown sensing and

control. In the ideal situation the controller would immediately detect when a foot touches

the ground enabling the controller to instantaneously stop the foot and switch to the stance

phase creating a perfect inelastic collision. However, in practice there are time delays in

sensing when the foot hits the ground and there are imperfections of the control of the swing

leg causing the foot to slam into the ground resulting in a bounce.

The timing delays come from the analog to digital conversion of the foot switch and

the non-negligible actuation force required to trigger the foot switch. The foot consists of

a rubber half-sphere with a hardened epoxy core. There is no rigid coupling between the

foot and the tibia of the robot, but instead the foot is floating on a thin rubber case as

indicated in Fig. 4.7. The rubber allows the foot to move a small amount in all directions

until the rubber has been compressed enough for the foot to make a rigid contact with the

tibia. Ground contact is detected by using analog on/off switches to determine if the rubber

has been compressed and the foot has moved. The activation force required to compress the

rubber can change based off of the amount of rubber used or the type of rubber used. Ideally,

the foot would have a low activation force so that touchdown could be detected immediately.

Unfortunately if too low of an activation force is used then the foot will trigger during the

swing phase of walking. The foot itself has a non-negligible mass and as the swing phase

97



duration decreases the acceleration profile of the foot increases resulting in a force applied to

the rubber which prematurely triggers the activation of the ground detection switches. For

this reason, the activation force is ∼ 10 N to prevent false positives during the swing phase.

Figure 4.7: A simplified diagram of the foot showing the different components that allow for

contact sensing.

In addition to the problems created by contact detection the control of the foot is also an

issue due to the flexibility in the belt transmission. The belt transmission, discussed in Chap-

ter 2, uses a fiberglass reinforced timing (toothed) belt that has almost no stretch. Although,

the belt loop itself is reinforced with fiberglass the teeth themselves are not reinforced which

result in a non-linear backlash effect. During the decent portion of the swing phase the foot

will first accelerate towards the ground causing the teeth to stretch in the direction of torque

application. Mid-way through the decent portion the controller will decelerate the foot in

preparation for ground contact by switching the direction of torque, causing the belt teeth

98



to stretch in the opposite direction. This deceleration and stretching of the teeth will cause

the foot to elongate beyond that of the commanded limb length causing the foot to hit the

ground prematurely.

Originally, the controller commanded the foot to hold position at the point of contact.

However, this caused instability because on impact the limb is in an elongated pose causing

detection of the ground early, meaning that the commanded holding position was actually

above the ground once the limb returned to its compressed position under the weight of the

robot. The solution to this problem was to command a holding position 1.5 cm into the

ground after contact was detected, a comparison of the two methods is shown in Fig. 4.8.

This is believed to have two effects, the first being that this position is closer to the actual

position that the limb will be in once the belt has stretched under the weight of the robot.

Second, this applies a virtual pulling force into the ground helping to force the foot to remain

in contact with the ground. Changing the desired holding position upon contact reduced the

amount of bounce significantly and increased the stability of the controller.

4.3.6 Discussion and Results

All of the test performed on hardware were done using the hardware described in Chapter

2. The tests performed in simulation were done on a Razer Blade laptop with an Intel

i7-7700HQ CPU at 2.80 GHz with 16.0 GB of RAM. All tests were done using Gurobi 8.1

[59] as the QP solver with the same MPC parameters shown in Table 4.1. The MPC used

the direct method for the QP formulation and the extended state space that included swing

leg dynamics. The simulations were performed in a Gazebo environment using an accurate

99



(a)

(b)

Figure 4.8: The desired foot trajectory is in the dashed red line and the actual trajectory

is in the solid black line. a) is the method in which the foot is commanded to stay at the

touchdown position. b) is the method in which the foot is commanded 1.5cm below the

touchdown position.

100



model of the robot from SolidWorks.

m 17.55 kg Θ weight 1.0

Ixx 0.845 kgm2 x position weight 3.0

Iyy 1.296 kgm2 y position weight 3.0

Izz 0.75 kgm2 z position weight 50.0

g 9.81 m/s2 ω weight 0.0

µ 0.4 x velocity weight 0.27

fmin 10 N y velocity weight 0.27

fmax 200 N z velocity weight 0.0

β yaw blending 0.7 α force weight 1× 10−6

Table 4.1: Parameters used for the MPC

4.3.6.1 Hardware Testing

The first test that was performed was a lateral push test showing the recovery ability of the

MPC. In this test a push in the +Y direction of the robot frame was applied to the robot.

The robot was then given time to recover and then a second lateral push in the -Y direction

was applied. The results of the test are shown in Fig. 4.9-4.10, please note that the data

was recorded in the inertial frame which had a yaw offset from the robot frame which is why

the disturbances do not line up with the Y direction. The lateral pushes caused a 0.7 m/s

lateral velocity that the controller needed to mitigate. The desired linear positions change

when the error between the desired position and actual position exceeds 0.1 m but, all of

101



the other desired trajectories remain at zero. The controller responds in a very intuitive

way which is to lean against the push; in the inertial frame the first push was in the +Y

and -X directions and the controller responded by commanding a positive roll and pitch. In

addition to changing the robot’s posture, the robot takes recovery steps once the velocity

error is above 0.15 m/s. The footstep are planned using the method discussed in Section

3.1, which uses capture point heuristics to help counter act the applied disturbance. In

both cases the robot was able to fully recover through the use of the MPC and recovery

footstep planning. The next test that was performed was a walking test using a trotting

Figure 4.9: Shows the linear positions and velocities of the robot during two lateral pushes

2.5 seconds apart in the opposite direction. The red dashed line is the desired trajectory

and the solid black line is the actual trajectory.

gait with 0.25 second swing and stance phases. The results of the test are shown in Fig.

4.11. From these results it is clear that the robot was able to successfully follow the desired

trajectory. The test was performed on a padded surface in order to provide the feet with

102



Figure 4.10: Shows the orientation and angular rates of the robot during two lateral pushes

2.5 seconds apart in the opposite direction. The red dashed line is the desired trajectory

and the solid black line is the actual trajectory.

more damping. As discussed in the previous section foot bouncing on impact was an issue

and a foot redesign is required, however for this testing pads were used to mitigate this issue.

Tests at higher velocities were attempted but foot contact detection became an issue. There

are two different ways of achieving higher velocities, the first is to increase the stride length

and keep the stance time the same. The second, is to decrease the stance and swing time

and keep the stride length the same. Due to the kinematic configuration of ALPHRED the

ability to increase stride length is severely limited. With a traditional quadruped the leg is

capable of going under the robot without complications, as ALPHRED’s foot gets closer to

the body the hip yaw has to make large movements to produce small changes in the foot

position. For this reason ALPHRED’s strides do not go under the body which limits the

length. As a consequence decreasing the stance and swing times are the most effective way

103



Figure 4.11: These plots show the data gathered from a 0.4 m/s trot.

of achieving higher velocities for the ALPHRED platform. Unfortunately, decreasing the

swing times requires much higher acceleration profiles causing the foot contact sensors to

trigger prematurely. In addition, a larger acceleration profile results in larger touchdown

velocities which increases the likelihood of a foot bouncing on impact. Due to these factors

it was difficult perform trotting with swing times lower than 0.25 seconds.

4.3.6.2 Simulation Results

In simulation the robot was able to perform a flying trot with 0.12 seconds stance time and

a 0.16 seconds swing time. The flying trot was able to achieve a maximum velocity of 1 m/s

as shown in Fig. 4.12. The robot was able to track the desired trajectory quite well even

the extremely large deceleration at the end. The MPC naturally pitched the body forward

slightly in the direction of motion. When velocities of greater than 1 m/s were commanded

104



the robot would reach kinematic limits. From the position control PD in Section 4.2 we know

that the robot is capable of speeds of +1.5 m/s, however with this controller it was easier

to directly control the position of the body relative to the feet. I believe that by adding a

kinematic constraint larger velocities are achievable.

Figure 4.12: Data from a flying trot in simulation. The stance time is 0.12 seconds and the

swing time is 0.16 seconds.

4.3.6.3 Contribution of Swing Leg Dynamics

ALPHRED is built with low leg inertia to body inertia and for this reason the contributions

made by the swing leg are relatively small. To highlight the contributions made by including

the swing leg dynamics a simulation was ran with heavy feet by increasing the mass of the

tibia from 0.495 Kg to 2.02 Kg and their inertia tensor accordingly. Two gaits were tested

105



using the heavy feet, an amble gait (one foot off the ground at a time) Fig. 4.13 and a trot

gait Fig. 4.14. For both gaits the major effect that including the swing leg dynamics had

was it helped to stabilize the yaw position. Considering that the yaw axis was difficult to

stabilize due to they dynamics of the robot it is not surprising to see that the yaw position

was effected the most by the heavy feet. In the amble gait the controller that did not account

for the swing leg dynamics actually went unstable whereas the one that did account for the

swing leg dynamics did not. In both cases there was also a reduction in the variance of the Z

height of the robot. It should be noted that the computation of the swing leg dynamics are

non-negligible and add approximately 1 ms to the formulation time. The direct formulation

without the swing leg dynamics runs at about 250-350 Hz whereas if the swing leg dynamics

are accounted for the frequency drops to 100-250 Hz.

Figure 4.13: Shows the error between the desired trajectory and the actual trajectory for an

amble gait with heavy feet in simulation. MPC that doesn’t include swing leg dynamics is

represented by the dashed red line and MPC that does include swing leg dynamics is in the

solid black line.

106



Figure 4.14: Shows the error between the desired trajectory and the actual trajectory for

a trot gait with heavy feet in simulation. MPC that doesn’t include swing leg dynamics is

represented by the dashed red line and MPC that does include swing leg dynamics is in the

solid black line.

The results from simulation are encouraging and lead me to believe that this method will

work one robots that are not optimized with low inertia legs and even be used to extend

this type of controller to humanoid robots. In addition, I believe accounting for swing leg

dynamics will also allow for preplanned dynamic tasks such as a large leap or kicking a ball.

The act of kicking a ball requires a humanoid robot to balance on one leg while swinging the

kicking leg at a high angular rate. If the original controller is used then the large dynamics

created by the swing leg is ignored whereas if the kicking motion is preplanned then the

entire kicking motion could possibly be stabilized using the MPC developed in this work.

107



CHAPTER 5

MANIPULATION

The previous chapters described the control required to achieve locomotion comparable to

the most advanced quadrupeds in the world, even with ALPHRED’s non-conventional kine-

matic configuration. However, what makes ALPHRED truly unique is the robots ability

to use it’s limbs as manipulators. Currently there are multiple quadrupedal platforms in

the world that are capable of dynamic and robust locomotion, getting closer and closer to

being able to traverse any type of terrain. However, none of these platforms are capable

of any other task besides surveillance and inspection. With ALPHRED we have preserved

the locomotion capabilities of a traditional quadruped but we have also provide ALPHRED

the capability of picking up packages by using it’s limbs as manipulators. This capability

is due to ALPHRED’s kinematic configuration and the use of proprioceptive actuators. As

discussed earlier ALPHRED’s kinematic chain has two major differences from the traditional

quadrupedal design: The first is the change from a hip roll degree of freedom to a hip yaw

degree of freedom, and the second being the radially symmetric layout of the body, Fig.

5.1. These two changes allow opposite limbs to become parallel, providing the capability

of duel limb manipulation. Accurate force control is required for two limbs to successfully

manipulate the same object simultaneously, which is why the proprioceptive actuators are

108



(a) (b)

Figure 5.1: The radially symmetry of the limb layout combined with the hip yaw degree

of freedom provides the range of motion to allow two opposing limbs to become parallel as

shown in b).

essential for ALPHRED’s manipulation capabilities. The subsequent sections describe the

methods used to allow for package pick-up and drop-off capabilities.

5.1 End-Effector Design

Each limb’s end-effector has an additional actuated degree of freedom that different tools

can be added to. For the limbs that are used in the stance phase of the bi-pedal mode the

attachments consist of aluminum wings. When the wings are in the up position the limb is

a point contact that can be used for dynamic locomotion. However, when the wings are in

the down position the foot acts like a 24.5 cm bar increasing the support polygon so that

the robot can easily balance on two feet.

There are three unique attachments that are added to the limbs that are used for ma-

109



nipulation shown in Fig. 5.2. The first is a circular pad connected to a passive rotational

joint. This tool is used to clamp onto the flat surface of a box. The passive joint is aligned

perpendicular to the actuated degree of freedom so that the torque from the actuated joint

acts on the box but the passive joint will keep the pad parallel to the box surface as the

box is transferred to the back of the robot. This allows the robot to control the pitch of the

box keeping it upright for the entire process. The attachment opposite the circular pad is

a smooth hook like tool. This tool can be inserted into the loop of a handle on an object

like a bag. Once inserted the hook is rotated upwards so that the handle is not resting in

the pocket that is made between the tool and the rest of the end-effector. As the bag is

transferred to the back of the robot the hook will be commanded to remain vertical keep the

handle of the bag securely in the pocket. Once the bag is on the bag the tool will be rotated

downward so that the handle will naturally slip off of the smooth surface. The final tool

added to the end-effector is a Sharp GP2Y0A21YK infrared proximity sensor. This sensor is

used to provide the robot with distance information so that the robot can determine where

the package is and how large it is.

5.2 Hybrid Force-Position Control

This section details the controllers and methods developed to enable ALPHRED 2 to be able

to handle packages of different sizes, weights, and materials. All controllers are done in the

package coordinate frame which is depicted in Fig. 5.3.

110



Figure 5.2: Rendering of the end-effector with all manipulation attachments.

Figure 5.3: Diagram of the package frame used to transfer the package from the ground to

the top of the robot.

111



5.2.1 Auto Clamping

Boxes not only come in different shapes and sizes but also different stiffnesses. For this reason,

an auto clamping routine was developed to appropriately calculate the required clamping

force for a given box. First, ALPHRED 2 is commanded to close the gap between its two

manipulators with a max yaw torque of 3 Nm. The robot detects a successful clamping

once a significant position error is detected. At this point the max yaw torque is slowly

increased until the position error begins to decrease. A decreasing position error means that

the package is beginning to flex and the appropriate clamping force can be calculated from

(5.1).

F =
cos(α)τ

L
(5.1)

Where F is the clamping force, L is the horizontal distance from the yaw actuator to the

manipulator, τ is the torque from the yaw actuator, and α is the angle between the force

created by the moment arm and the normal vector of the box surface as shown in Fig. 5.3

5.2.2 Pseudo Force-Position Control

A constant clamping force is crucial to the success of ALPHRED 2 transferring the package

from the ground or table to its back. This requires that the X and Z position be controlled

while simultaneously controlling the Y force, Fig. 5.4. For this reason, a pseudo hybrid

force and position controller was developed similar to those discussed in [68]. Once the

manipulators are clamped onto the box the Y distance d from the yaw actuator to the

manipulator and the Z distance Z0 from the ground to the end effectors are calculated. A

X and Z trajectory, in the package frame, is then determined that will move the package

112



from the ground to a height of Z0 above the top of the robot. Along the entire trajectory

the Y value is commanded to be d − 0.01 which will cause the end-effector to move 1 cm

into the package. At every time step the max torque of the actuator is be calculated and

set via (5.1). Since the manipulator is always being commanded into the box the actuator’s

low level controller will register a large position error ensuring that the maximum torque is

applied resulting in the appropriate clamping force.

Figure 5.4: The position is controlled in the X and Z plane while the force is maintained in

the Y direction to ensure that the package does not slip during transfer. The distance z0

from the ground to the pickup point is used to determine the distance from the top of the

robot to drop off the package.

Most of the current hybrid control schemes are done in torque mode whereas the one

just described is done in position mode. The main reason for choosing position control over

force control is for safety reasons. If ALPHRED attempts to pick up a package that is too

heavy or the surface is slippery than a slip will occur and the package will fall out of the

robot’s hands. With the position controlled scheme the end-effectors will move 1 cm inwards

and the robot will know the package slipped. With a force control scheme if the slip is not

113



detected the end-effectors will slam together potentially causing damage to the robot.

5.2.3 Auto-Scan

In order to pick up a package successfully the end-effectors must be close to the packages

CoM. One way of achieving this is via tele-operation by the user, however ALPHRED can

also automatically determine where the center of the box is by scanning the package using

the IR sensors equipped at the end-effectors. First, the end-effectors are moved close to the

package to ensure the IR sensors have consistent readings ( 5 cm from package). From these

measurements, the robot can approximate the width of the package. Next, the end-effectors

are moved lineally in the +Z direction until the package is no longer detected. From this

point, the package height can be approximated using the forward kinematics of the end-

effectors. Finally, the X direction is scanned and the length of the package is determined.

From these approximations the CoM is assumed to be in the geometric center of the package

and ALPHRED will position its end-effectors accordingly.

There are many times that the length or height of the package is out of reach of ALPHRED

however the package is perfectly adequate for the robot to transport. In this case if ALPHRED

knows a-priori information about the package then from the two sides that it could success-

fully scan the robot can deduce the dimension of the third side and determine the correct

geometric center of the box.

114



5.2.4 Online Learning of Parameters

As ALPHRED is going through the automated routine of picking up a package the robot

can also estimate information about the package as it goes. In the auto scanning process

ALPHRED determines the dimensions of the package. From the auto-clamping routine the

robot ascertains the stiffness of the package. In addition, the robot also approximates the

mass of the package. This is done by having the robot lift the package off of the ground and

pausing for a moment, from this static position the mass of the package can be estimated from

the geometry of the pose and the commanded torque at the hip pitch actuator. Assuming

that the package has uniform density we can approximate the inertia tensor of the box using

(5.2), which can be passed to the locomotion controller in Chapter 4.

Ibox =


1
12
m(y2 + z2) 0.0 0.0

0.0 1
12
m(x2 + z2) 0.0

0.0 0.0 1
12
m(x2 + y2)

 (5.2)

5.3 Full Procedure

The full procedure of autonomously picking up a parcel is as follows:

1. ALPHRED positions itself relative to the box with one directly aimed at the box.

2. If the box is on the ground ALPHRED will lower himself onto his belly or if the box is

off of the ground ALPHRED will transition into bipedal mode balancing on the limb

directly infront of the box and the opposite limb.

3. The two adjacent limbs to the one in front of the box will perform the auto-scanning

115



routine (Section 5.2.3).

4. Those same two limbs will then grasp the box at the box’s estimated CoM using the

auto-clamping routine to securely grasp the box and determine it’s stiffness (Section

5.2.1).

5. If the robot is on the ground then interference with the front leg is of concern. For this

reason, the robot will lift the parcel, using the pseudo force-position control (Section

5.2.2), away from the body to allow the front leg to straighten out allowing the parcel

to be placed onto the robots back without interference (Fig. 5.5). If the robot is in

biped mode the front leg interference is not of concern.

6. ALPHRED then walks to the desired location and repeats those actions in reverse while

using the parameters estimated from the first lift to place the box in a new location.

(a) Front leg tucked pose. (b) Front leg stretched out pose.

Figure 5.5: Transition from the leg tucked pose to the leg stretched out pose to ensure no

interference when the robot is placing the package on it’s back.

116



5.4 Discussion and Results

To test ALPHRED’s manipulation capabilities the robot used the procedure described in the

previous section to attempt to pick up boxes of varying size. Table 5.1 is a list of all boxes

that ALPHRED was able to successfully pick up. The smallest box by volume was box 9

at 2, 323cm3 and the largest was box 1 at 28, 980cm3. If the limbs go past 90◦, meaning

that d is smaller than the distance from the CoM to the hip yaw axis is Fig. 5.3, when the

package is grasped then the robot will be unable to transfer the package to the top of the

robot. This is due to the geometry of the package pickup problem, which when the angle

is greater than 90◦ will cause the yaw angle to grow more in order to keep contact with

the box during the transition. Whereas, if the angle starts below 90◦ then the angle will

shrink during transportation. For this reason the smallest width that ALPHRED can grasp

is 10 cm. The largest length and height dimensions are dependent on each other and are

determined by the front leg interference issue shown in Fig. 5.5. During the experiment

box 1 grazed the top of the robot’s knee thus the largest diagonal created by the length and

height plane is 19.3 cm.

In addition to size testing weight testing was also performed. The 4th box down the list

of Table 5.1, 31 cm x 21.5 cm x 14 cm, was considered to be the nominal box size. The

weight in this box was increased until the box slipped out of ALPHRED’s grip. ALPHRED

successfully lifted boxes ranging from completely empty all the way up to 3 Kg. All of these

tests were performed with ALPHRED on the ground. In bipedal mode ALPHRED was able

to successfully pickup/dropoff box 4 with a 1.5 Kg payload from a height of 1.02 m down

to a hieght of 0.0145 m. All failures were due to insufficient grasping force rather than the

117



Table 5.1: Box Sizes Successfully Lifted

No. Size (cm3)

1. 48 x 34.5 x 17.5

2. 41.5 x 33 x 14

3. 39 x 32 x 27

4. 31 x 21.5 x 14

5. 26 x 19.5 x 14

6. 25.4 x 17.8 x 13.3

7. 23 x 23 x 10

8. 22 x 21 x 13.5

9. 16 x 13.2 x 11

118



robot not being able to support the loads.

119



CHAPTER 6

FUTURE WORKS AND CONCLUSIONS

6.1 Future Work

The advancements made in this work has lead to many areas that future work could be

made to further advance the capabilities of legged robotics. A number of potential areas are

described below.

• As noted in Section 4.3.5 the stretch in the belt caused a number of non-linearities

that made the transition from the swing phase to the stance phase difficult to control.

Additionally, any flexibility in the system causes inaccuracies in both the position and

torque control of the limb which results in decreased control authority of the entire

robot. I believe that the leg should be redesigned with a linkage system rather than

a belt or chains transmission. ALPHRED requires +180◦ of rotation at the knee,

therefore a traditional linkage system will not be adequate. However, if two four-bar

linkages are used at the knee forming an antagonistic pair then the desired range of

motion can be achieved.

• Currently ALPHRED is only able to pickup packages that don’t require the hip yaw

actuators to go past pm90circ which limits the minimum width of the package to be 10

120



cm. To overcome this limitation the manipulation end-effector should be redesigned to

incorporate a small pitch lead screw attached to the gripping pads. With this design

the distance of the gripping pad could be extend to grip packages smaller than 10 cm

in width. However, by using a small pitch the orientation of the package could still be

controlled without disengaging from the package.

• During the standard trot gait ALPHRED’s hip pitch actuator uses 70% of the actuators

peak torque. The reason for this is due to the parallel configuration of ALPHRED’s

limbs. In the parallel configuration the hip pitch actuator needs to provide the opposite

torque of the knee actuator plus the torque required at the hip, resulting in the hip pitch

working much harder than all other actuators. In nature most legged creatures use

20%-30% over there total actuation torque during nominal locomotion. The additional

torque is used to recover from large unexpected disturbances. To correct for this issue

the hip actuator should be upgraded to an actuator with double the peack torque.

This can easily be done by upgrading the motor in the BEAR actuator from a U8 to

a U10.

• This work focused on the difficult task of developing the techniques to successfully

pick up and drop off packages. Magnets inside of the package and on the top of the

robot were used to secure the package during the transportation period. However, to

implement end-to-end package delivery in the real world a method to secure the package

to the top of the robot must be developed. I believe that a lightweight single degree

of freedom grasper can be developed to clamp onto the package during transportation.

In addition, this method could be used to position the package closer to the CoM to

121



improve the dynamics of the robot while transporting the package.

• One of the biggest contributions to this work was the reformulation of the MPC from

an indirect method to a direct method to achieve cycle times of +250 Hz. However, the

current formulation still have inefficiencies that could be improved. If a foot is in swing

phase the upper and lower bounds are commanded to be zero telling the QP that this

foot is not allowed to support weight. However, if the foot is not supporting weight

it can be removed from the optimization problem completely potentially reducing the

number of decision variables. This method would however decrease the performance of

the warm start because the size of the problem would change from time step to time

step. Additionally, the current implementation used Gurobi to solve the QP problem.

Gurobi is one of the best QP solvers in the world and does extremely well at solving

some of the most difficult benchmarks. However, the QP problem being solved is

relatively easy to solve and therefore a QP solver with less overhead could be used to

reduce some of the time to solve the problem.

• This work expanded on trajectory planning algorithms that used ZMP dynamics to

solve for viable CoM trajectories and footstep locations. Whereas, the MPC used a

linearized floating base model to solve for desired ground reaction forces. I believe that

the trajectory optimization algorithms could use a non-linear floating base model that

better compliments the MPC to solve for CoM trajectories, footstep locations, and

ground reaction forces that could then be passed to the MPC. A similar TO algorithm

is discussed in [88].

122



• One of the biggest difficulties for highly dynamic locomotion was accurately detecting

contact with the ground. Due to the mechanical design of the foot contact switch

false positives would be detected during high acceleration foot swings. One way to

improve this is by reducing the mass of the foot contact sensor which will result in

larger accelerations need for the same actuation force. Additionally contact estimators

using a Kalman filter [13] or machine learning [63] could also be added to improve the

accuracy of touchdown detection.

• Currently the incorporating the swing leg dynamics was only found to be effective

in simulation. In the future I would like to verify this by adding weight to the feet

of ALPHRED or performing very dynamic motions that would otherwise be unstable

without compensating for the swing leg dynamics.

6.2 Conclusions

Robots have benefited mankind in countless ways from the manufacturing floor to assembly

lines. As technology progresses roboticists and industry leaders have been pushing for robots

to step out from the factory floors and into the human world. One of the most immediate

uses is delivery systems to solve the last mile problem. The United States Postal Service

(USPS) shipping services covered over 6.2 billion packages in 2018 [78]. For many of these

parcels the last mile of the delivery process is a large portion of the cost reaching and even

exceeding 50% of the total cost, making it a crucial component to delivery[41]. This work

presented a quadrupedal robot that used a novel kinematic design and an innovative control

123



strategy to show that legged robotics can be part of the solution to this problem.

ALPHRED is one of the first robots that uses a multi-modal approach to handle a variety

of tasks. Using it’s quadrupedal locomotion mode and a simple position control framework,

ALPHRED is able to traverse uneven terrain and trot at 1.5 m/s. The developed MPC

showed exciting robustness when the foot contact sensing was working as expected. In

addition, extending the MPC to account for swing leg dynamics showed promising results

in simulations, and leads me to believe that the developed MPC could be extended to the

control of humanoid robots. Beyond quadrupedal locomotion ALPHRED is capable of using

it’s unique kinematic configuration to operate in bipedal mode to pickup a package. Looking

ahead to real world situations where the robot may need to traverse long flat terrains such

as sidewalks or hallways, ALPHRED can use its caster mode to push itself along using a

highly energy efficient form of locomotion. Finally, ALPHRED can transform back into it’s

bipedal mode to successfully realize the task of end-to-end package delivery. I believe that

this work shows the potential for legged robotics to someday step out of the factories and

into the real world.

124



Bibliography

[1] BostonDynamics. https://www.bostondynamics.com/. Accessed: 2019-11-24.

[2] Evan Ackerman. Agility robotics introduces cassie, a dynamic and talented robot de-

livery ostrich, 2017.

[3] Aaron D Ames. Human-inspired control of bipedal walking robots. IEEE Transactions

on Automatic Control, 59(5):1115–1130, 2014.

[4] Taylor Apgar, Patrick Clary, Kevin Green, Alan Fern, and Jonathan W Hurst. Fast

online trajectory optimization for the bipedal robot cassie. In Robotics: Science and

Systems, 2018.

[5] C Dario Bellicoso, Christian Gehring, Jemin Hwangbo, Péter Fankhauser, and Marco

Hutter. Perception-less terrain adaptation through whole body control and hierarchical

optimization. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots

(Humanoids), pages 558–564. IEEE, 2016.

[6] C Dario Bellicoso, Fabian Jenelten, Péter Fankhauser, Christian Gehring, Jemin

Hwangbo, and Marco Hutter. Dynamic locomotion and whole-body control for

quadrupedal robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 3359–3365. IEEE, 2017.

[7] C Dario Bellicoso, Fabian Jenelten, Christian Gehring, and Marco Hutter. Dynamic

locomotion through online nonlinear motion optimization for quadrupedal robots. IEEE

Robotics and Automation Letters, 3(3):2261–2268, 2018.

125

https://www.bostondynamics.com/


[8] John T. Betts. Survey of numerical methods for trajectory optimization. Journal of

Guidance, Control, and Dynamics, 21(2):193–207, March 1998.

[9] John T Betts. Practical methods for optimal control and estimation using nonlinear

programming, volume 19. Siam, 2010.

[10] Pranav A Bhounsule, Jason Cortell, and Andy Ruina. Design and control of ranger: an

energy-efficient, dynamic walking robot. In Adaptive Mobile Robotics, pages 441–448.

World Scientific, 2012.

[11] Daniel J Blackman, John V Nicholson, Camilo Ordonez, Bruce D Miller, and Jonathan E

Clark. Gait development on minitaur, a direct drive quadrupedal robot. In Unmanned

Systems Technology XVIII, volume 9837, page 98370I. International Society for Optics

and Photonics, 2016.

[12] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M Wensing,

and Sangbae Kim. Mit cheetah 3: Design and control of a robust, dynamic quadruped

robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 2245–2252. IEEE, 2018.

[13] Gerardo Bledt, Patrick M Wensing, Sam Ingersoll, and Sangbae Kim. Contact model

fusion for event-based locomotion in unstructured terrains. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[14] Michael Bloesch, Christian Gehring, Péter Fankhauser, Marco Hutter, Mark A

Hoepflinger, and Roland Siegwart. State estimation for legged robots on unstable and

126



slippery terrain. In 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 6058–6064. IEEE, 2013.

[15] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger, Christian

Gehring, C David Remy, and Roland Siegwart. State estimation for legged robots-

consistent fusion of leg kinematics and imu. Robotics, 17:17–24, 2013.

[16] Francesco Bullo and Richard M Murray. Proportional derivative (pd) control on the

euclidean group. In European Control Conference, volume 2, pages 1091–1097, 1995.

[17] John J Craig. Introduction to robotics: mechanics and control, 3/E. Pearson Education

India, 2009.

[18] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-integer

convex optimization. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS Inter-

national Conference on, pages 279–286. IEEE, 2014.

[19] Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim.

Dynamic locomotion in the mit cheetah 3 through convex model-predictive control. In

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 1–9. IEEE, 2018.

[20] Dimitar Dimitrov, Alexander Sherikov, and Pierre-Brice Wieber. A sparse model predic-

tive control formulation for walking motion generation. In 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2292–2299. IEEE, 2011.

[21] M. Freese E. Rohmer, S. P. N. Singh. V-rep: a versatile and scalable robot simulation

127



framework. In Proc. of The International Conference on Intelligent Robots and Systems

(IROS), 2013.

[22] Johannes Englsberger, Christian Ott, Máximo A Roa, Alin Albu-Schäffer, and Gerhard

Hirzinger. Bipedal walking control based on capture point dynamics. In 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 4420–4427. IEEE,

2011.

[23] Roy Featherstone. A beginner’s guide to 6-d vectors (part 1). IEEE robotics & automa-

tion magazine, 17(3):83–94, 2010.

[24] Roy Featherstone. A beginner’s guide to 6-d vectors (part 2)[tutorial]. IEEE robotics

& automation magazine, 17(4):88–99, 2010.

[25] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[26] Siyuan Feng. Online hierarchical optimization for humanoid control. 2016.

[27] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and

Moritz Diehl. qpoases: A parametric active-set algorithm for quadratic programming.

Mathematical Programming Computation, 6(4):327–363, 2014.

[28] Michele Focchi, Andrea Del Prete, Ioannis Havoutis, Roy Featherstone, Darwin G

Caldwell, and Claudio Semini. High-slope terrain locomotion for torque-controlled

quadruped robots. Autonomous Robots, 41(1):259–272, 2017.

[29] Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant leg behaviour

128



explains basic dynamics of walking and running. Proceedings of the Royal Society B:

Biological Sciences, 273(1603):2861–2867, 2006.

[30] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for

large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[31] Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined

convex programming, 2008.

[32] Robert J Griffin, Georg Wiedebach, Sylvain Bertrand, Alexander Leonessa, and Jerry

Pratt. Straight-leg walking through underconstrained whole-body control. In 2018

IEEE International Conference on Robotics and Automation (ICRA), pages 1–5. IEEE,

2018.

[33] Jessy W Grizzle, Christine Chevallereau, Aaron D Ames, and Ryan W Sinnet. 3d

bipedal robotic walking: models, feedback control, and open problems. IFAC Proceed-

ings Volumes, 43(14):505–532, 2010.

[34] Jessy W Grizzle, Jonathan Hurst, Benjamin Morris, Hae-Won Park, and Koushil

Sreenath. Mabel, a new robotic bipedal walker and runner. In 2009 American Control

Conference, pages 2030–2036. IEEE, 2009.

[35] Gael Guennebaud, Benoit Jacob, et al. Eigen: a c++ linear algebra library. URL

http://eigen. tuxfamily. org, Accessed, 22, 2014.

[36] Joshua Hooks and Dennis Hong. Implementation of a versatile 3d zmp trajectory op-

timization algorithm on a multi-modal legged robotic platform. In 2018 IEEE/RSJ

129



International Conference on Intelligent Robots and Systems (IROS), pages 3777–3782.

IEEE, 2018.

[37] Donald F Hoyt and C Richard Taylor. Gait and the energetics of locomotion in horses.

Nature, 292(5820):239–240, 1981.

[38] Ian W Hunter, John M Hollerbach, and John Ballantyne. A comparative analysis of

actuator technologies for robotics. Robotics Review, 2:299–342, 1991.

[39] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario Bellicoso,

Vassilios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser, Michael Bloesch,

et al. Anymal-a highly mobile and dynamic quadrupedal robot. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 38–44. IEEE,

2016.

[40] Juan L Jerez, Eric C Kerrigan, and George A Constantinides. A condensed and sparse

qp formulation for predictive control. In 2011 50th IEEE Conference on Decision and

Control and European Control Conference, pages 5217–5222. IEEE, 2011.

[41] Martin Joerss, Jürgen Schröder, Florian Neuhaus, Christoph Klink, and Florian Mann.

Parcel delivery the future of last mile. McKinsey & Company, 2016.

[42] Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, and Kazuhito Yokoi. Introduction

to humanoid robotics, volume 101. Springer, 2014.

[43] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke Harada,

130



Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern generation by using

preview control of zero-moment point. In ICRA, volume 3, pages 1620–1626, 2003.

[44] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa Hirukawa.

The 3d linear inverted pendulum mode: A simple modeling for a biped walking pattern

generation. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent

Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium

(Cat. No. 01CH37180), volume 1, pages 239–246. IEEE, 2001.

[45] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal.

Fast, robust quadruped locomotion over challenging terrain. In Robotics and Automation

(ICRA), 2010 IEEE International Conference on, pages 2665–2670. IEEE, 2010.

[46] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal.

Learning, planning, and control for quadruped locomotion over challenging terrain. The

International Journal of Robotics Research, 30(2):236–258, 2011.

[47] Takeo Kanade, Pradeep K Khosia, and Nobuhiko Tanaka. Real-time control of cmu

direct-drive arm ii using customized inverse dynamics. In The 23rd IEEE Conference

on Decision and Control, pages 1345–1352. IEEE, 1984.

[48] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini cheetah: A platform for

pushing the limits of dynamic quadruped control. In 2019 International Conference on

Robotics and Automation (ICRA), pages 6295–6301. IEEE, 2019.

[49] M. Kelly. An introduction to trajectory optimization: How to do your own direct

collocation. SIAM Review, 59(4):849–904, 2017.

131



[50] Gavin Kenneally, Avik De, and Daniel E Koditschek. Design principles for a family of

direct-drive legged robots. IEEE Robotics and Automation Letters, 1(2):900–907, 2016.

[51] Donghyun Kim, Ye Zhao, Gray Thomas, Benito R Fernandez, and Luis Sentis. Stabi-

lizing series-elastic point-foot bipeds using whole-body operational space control. IEEE

Transactions on Robotics, 32(6):1362–1379, 2016.

[52] Jonas Koenemann, Andrea Del Prete, Yuval Tassa, Emanuel Todorov, Olivier Stasse,

Maren Bennewitz, and Nicolas Mansard. Whole-body model-predictive control applied

to the hrp-2 humanoid. In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3346–3351. IEEE, 2015.

[53] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai Dai, Frank

Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. Optimization-based locomo-

tion planning, estimation, and control design for the atlas humanoid robot. Autonomous

Robots, 40(3):429–455, 2016.

[54] Scott Kuindersma, Frank Permenter, and Russ Tedrake. An efficiently solvable

quadratic program for stabilizing dynamic locomotion. In Robotics and Automation

(ICRA), 2014 IEEE International Conference on, pages 2589–2594. IEEE, 2014.

[55] Derek Lahr, Viktor Orekhov, Bryce Lee, and Dennis Hong. Early developments of a

parallelly actuated humanoid, saffir. In ASME 2013 international design engineering

technical conferences and computers and information in engineering conference, pages

V06BT07A054–V06BT07A054. American Society of Mechanical Engineers, 2013.

132



[56] Richard M Murray. A mathematical introduction to robotic manipulation. CRC press,

2017.

[57] Michael Neunert, Farbod Farshidian, Alexander W Winkler, and Jonas Buchli. Trajec-

tory optimization through contacts and automatic gait discovery for quadrupeds. IEEE

Robotics and Automation Letters, 2(3):1502–1509, 2017.

[58] Michael Neunert, Markus Stäuble, Markus Giftthaler, Carmine D Bellicoso, Jan Carius,

Christian Gehring, Marco Hutter, and Jonas Buchli. Whole-body nonlinear model

predictive control through contacts for quadrupeds. IEEE Robotics and Automation

Letters, 3(3):1458–1465, 2018.

[59] Gurobi Optimization. Gurobi optimizer 8.0. Gurobi: http://www. gurobi. com, 2019.

[60] Matthew P. Kelly. Transcription methods for trajectory optimization: a beginners

tutorial. 07 2017.

[61] Diego Pardo, Lukas Möller, Michael Neunert, Alexander W Winkler, and Jonas Buchli.

Evaluating direct transcription and nonlinear optimization methods for robot motion

planning. IEEE Robotics and Automation Letters, 1(2):946–953, 2016.

[62] Hae-Won Park, Patrick M Wensing, and Sangbae Kim. High-speed bounding with the

mit cheetah 2: Control design and experiments. The International Journal of Robotics

Research, 36(2):167–192, 2017.

[63] Stylianos Piperakis, Stavros Timotheatos, and Panos Trahanias. Unsupervised gait

133



phase estimation for humanoid robot walking. In IEEE Intl. Conf. on Robotics and

Automation, 2019.

[64] Gill A Pratt and Matthew M Williamson. Series elastic actuators. In Proceedings 1995

IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot

Interaction and Cooperative Robots, volume 1, pages 399–406. IEEE, 1995.

[65] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture point: A

step toward humanoid push recovery. In 2006 6th IEEE-RAS international conference

on humanoid robots, pages 200–207. IEEE, 2006.

[66] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter. Bigdog, the rough-

terrain quadruped robot. IFAC Proceedings Volumes, 41(2):10822–10825, 2008.

[67] Marc H Raibert. Legged robots that balance. MIT press, 1986.

[68] Marc H Raibert and John J Craig. Hybrid position/force control of manipulators.

Journal of dynamic systems, measurement, and control, 103(2):126–133, 1981.

[69] Alireza Ramezani, Jonathan W Hurst, Kaveh Akbari Hamed, and Jessy W Grizzle.

Performance analysis and feedback control of atrias, a three-dimensional bipedal robot.

Journal of Dynamic Systems, Measurement, and Control, 136(2), 2014.

[70] Luis Sentis and Oussama Khatib. A whole-body control framework for humanoids

operating in human environments. In Proceedings 2006 IEEE International Conference

on Robotics and Automation, 2006. ICRA 2006., pages 2641–2648. IEEE, 2006.

134



[71] Sangok Seok, Albert Wang, David Otten, and Sangbae Kim. Actuator design for high

force proprioceptive control in fast legged locomotion. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1970–1975. IEEE, 2012.

[72] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.

[73] Mark W Spong. Underactuated mechanical systems. In Control problems in robotics

and automation, pages 135–150. Springer, 1998.

[74] Mark W Spong and Romeo Ortega. On adaptive inverse dynamics control of rigid

robots. IEEE Transactions on Automatic Control, 35(1):92–95, 1990.

[75] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen

Boyd. Osqp: An operator splitting solver for quadratic programs. In 2018 UKACC

12th International Conference on Control (CONTROL), pages 339–339. IEEE, 2018.

[76] Tomohito Takubo, Yoshinori Imada, Kenichi Ohara, Yasushi Mae, and Tatsuo Arai.

Rough terrain walking for bipedal robot by using zmp criteria map. In 2009 IEEE

International Conference on Robotics and Automation, pages 788–793. IEEE, 2009.

[77] Nikolas Trawny and Stergios I Roumeliotis. Indirect kalman filter for 3d attitude es-

timation. University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, 2:2005,

2005.

[78] USPS. 2019 postal facts companion, 2019.

[79] Oskar Von Stryk and Roland Bulirsch. Direct and indirect methods for trajectory

optimization. Annals of operations research, 37(1):357–373, 1992.

135



[80] Miomir Vukobratović and J Stepanenko. On the stability of anthropomorphic systems.

Mathematical biosciences, 15(1-2):1–37, 1972.

[81] Andreas Wächter and L Biegler. Ipopt-an interior point optimizer, 2009.

[82] Yang Wang and Stephen Boyd. Fast model predictive control using online optimization.

IFAC Proceedings Volumes, 41(2):6974–6979, 2008.

[83] P. M. Wensing and D. E. Orin. High-speed humanoid running through control with a

3d-slip model. In 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 5134–5140, Nov 2013.

[84] Patrick M Wensing and David E Orin. Generation of dynamic humanoid behaviors

through task-space control with conic optimization. In 2013 IEEE International Con-

ference on Robotics and Automation, pages 3103–3109. IEEE, 2013.

[85] Patrick M Wensing, Albert Wang, Sangok Seok, David Otten, Jeffrey Lang, and Sang-

bae Kim. Proprioceptive actuator design in the mit cheetah: Impact mitigation and

high-bandwidth physical interaction for dynamic legged robots. IEEE Transactions on

Robotics, 33(3):509–522, 2017.

[86] A. W. Winkler, F. Farshidian, M. Neunert, D. Pardo, and J. Buchli. Online walking mo-

tion and foothold optimization for quadruped locomotion. In 2017 IEEE International

Conference on Robotics and Automation (ICRA), pages 5308–5313, May 2017.

[87] A. W. Winkler, F. Farshidian, D. Pardo, M. Neunert, and J. Buchli. Fast trajectory

136



optimization for legged robots using vertex-based zmp constraints. IEEE Robotics and

Automation Letters, 2(4):2201–2208, Oct 2017.

[88] Alexander W Winkler, C Dario Bellicoso, Marco Hutter, and Jonas Buchli. Gait and

trajectory optimization for legged systems through phase-based end-effector parameter-

ization. IEEE Robotics and Automation Letters, 3(3):1560–1567, 2018.

[89] Taoyuanmin Zhu, Joshua Hooks, and Dennis Hong. Design, modeling, and analysis

of a liquid cooled proprioceptive actuator for legged robots. In 2019 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), 2019.

137


	Title Page
	Abstract
	Committee
	Dedication
	Table of Contents
	List of Figures
	Ackowledgments
	Curriculum Vitae
	1 INTRODUCTION
	1.1 Motivation
	1.2 Background
	1.2.1 Trajectory Optimization
	1.2.2 Modeling Dynamics
	1.2.3 Special Orthogonal Group SO(3)

	1.3 Organization and Contributions

	2 ALPHRED PLATFORM
	2.1 Modes of Operation
	2.2 BEAR Actuators
	2.3 System Architecture
	2.3.1 State Estimation


	3 TRAJECTORY PLANNING
	3.1 Footstep Planning
	3.2 Center of Mass Trajectory Planning through Convex Optimization using Vertex Based ZMP Constraints
	3.2.1 Problem Formulation
	3.2.2 Trajectory Optimization Problem
	3.2.3 Swing Leg Trajectory
	3.2.4 Center of Mass Height Trajectory

	3.3 Discussion and Results
	3.3.1 Uneven Terrain
	3.3.2 Affects of CoM Acceleration Cost

	3.4 Center of Mass and Footstep Planning through a NLP and Vision Data
	3.4.1 FOOTSTEP PLANNER
	3.4.2 VISION FOOTSTEP ADJUSTER
	3.4.3 Trajectory Planner: Nonlinear Program

	3.5 Discussion and Results

	4 MOTION CONTROL
	4.1 Limb State Machine
	4.1.1 Stance (ST)
	4.1.2 Swing (SW)
	4.1.3 Touchdown (TO)
	4.1.4 Early Touchdown (ETD)
	4.1.5 Late Touchdown (LTO)
	4.1.6 Liftoff (LO)
	4.1.7 Early Liftoff (ELO)

	4.2 Position PD Control
	4.2.1 Tracking Controller for SO(3)
	4.2.2 Results

	4.3 Model Predictive Control Using Quadratic Programming
	4.3.1 Simplified Dynamics Model
	4.3.2 Extended State Space
	4.3.3 Discrete Time Model
	4.3.4 Quadratic Programming Formulation
	4.3.5 Implementation Techniques
	4.3.6 Discussion and Results


	5 MANIPULATION
	5.1 End-Effector Design
	5.2 Hybrid Force-Position Control
	5.2.1 Auto Clamping
	5.2.2 Pseudo Force-Position Control
	5.2.3 Auto-Scan
	5.2.4 Online Learning of Parameters

	5.3 Full Procedure
	5.4 Discussion and Results

	6 FUTURE WORKS AND CONCLUSIONS
	6.1 Future Work
	6.2 Conclusions




