
UC San Diego
UC San Diego Previously Published Works

Title

Exponential history integration with diverse temporal scales in retrosplenial cortex 
supports hyperbolic behavior.

Permalink

https://escholarship.org/uc/item/7gq1067d

Journal

Science Advances, 9(48)

Authors

Danskin, Bethanny
Hattori, Ryoma
Zhang, Yu
et al.

Publication Date

2023-12-01

DOI

10.1126/sciadv.adj4897
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gq1067d
https://escholarship.org/uc/item/7gq1067d#author
https://escholarship.org
http://www.cdlib.org/


NEUROSC I ENCE

Exponential history integration with diverse temporal
scales in retrosplenial cortex supports hyperbolic
behavior
Bethanny P. Danskin1,2,3,4†, Ryoma Hattori1,2,3,4, Yu E. Zhang1,2,3,4, Zeljana Babic1,2,3,4,
Mikio Aoi1,4*, Takaki Komiyama1,2,3,4*

Animals use past experience to guide future choices. The integration of experiences typically follows a hyper-
bolic, rather than exponential, decay pattern with a heavy tail for distant history. Hyperbolic integration affords
sensitivity to both recent environmental dynamics and long-term trends. However, it is unknown how the brain
implements hyperbolic integration. We found that mouse behavior in a foraging task showed hyperbolic decay
of past experience, but the activity of cortical neurons showed exponential decay. We resolved this apparent
mismatch by observing that cortical neurons encode history information with heterogeneous exponential time
constants that vary across neurons. A model combining these diverse timescales recreated the heavy-tailed,
hyperbolic history integration observed in behavior. In particular, the time constants of retrosplenial cortex
(RSC) neurons best matched the behavior, and optogenetic inactivation of RSC uniquely reduced behavioral
history dependence. These results indicate that behavior-relevant history information is maintained across mul-
tiple timescales in parallel and that RSC is a critical reservoir of information guiding decision-making.
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INTRODUCTION
Integrating information from the past to make a decision is a uni-
versal and critical component of animal behavior. For instance, in
value-based decision-making, animals establish a subjective value
for each available action, based on the reward outcomes of actions
taken in the recent past. Reinforcement learning (RL) models
provide a simple but powerful framework for how to integrate his-
torical information to guide future decisions (1). RL models such as
the Rescorla-Wagner model (2) use the difference between expected
rewards and observed rewards, known as reward prediction error
(RPE), to update the subjective estimate of value. In typical formu-
lations, the value associated with the action is updated by combin-
ing the new information from the most recent trial (reward
prediction error, RPE) with the previous value estimates with a
fixed learning rate. This update rule weighs the influence of
recent outcomes more than outcomes in the distant past. Specifi-
cally, a fixed learning rate results in exponential decay in the influ-
ence of past outcomes, such that the influence decays with a fixed
ratio for every unit of time. Exponential integration of the past is
attractive because of its mechanistic simplicity: The brain would,
in theory, only need to update its subjective value by combining,
with a fixed rate, the ongoing value representation with RPE.
However, behavior studies across humans (3), nonhuman pri-

mates (4–6), and other animal models (7, 8) engaged in value-
based decision-making have observed that animal behavior deviates
from exponential integration. Specifically, the integration of past ex-
perience generally exhibits a sharp initial drop on recent experience
with a heavy tail on more distant experience, which is better fit by a

hyperbolic than an exponential function. The adaptive advantage of
such hyperbolic integration seems intuitive, as the difference in the
environment between 1 and 2 min ago is likely more informative
about the current environment than the difference between 1
month and 1 month plus a minute ago. Thus, it is beneficial to
weigh the experience from 1 min ago more than 2 min ago but
the weighting for a month ago and 1 month plus a minute ago
should be nearly equivalent, which is achieved by heavy-tailed hy-
perbolic decay. Scaling the decay of information differentially across
time imparts sensitivity to both recent changes and tendencies that
are stable long term. However, the mechanism by which the brain
performs hyperbolic-like integration of history is unknown.
To address this issue, we analyzed the history integration of cor-

tical neurons in mice engaged in value-based decision-making. We
find that behavioral integration of history in these mice is more hy-
perbolic than exponential, similar to previous behavioral studies.
However, the history integration of individual cortical neurons is
more exponential than hyperbolic. We provide a potential explana-
tion for this apparent discrepancy between behavior and neurons by
demonstrating that the time constants of exponential history inte-
gration are heterogeneous across neurons. Weighted averaging of
these diverse exponential kernels, especially in the retrosplenial
cortex (RSC) that overrepresents distant history information com-
pared to other areas, can approximate hyperbolic-like behavioral in-
tegration. Inactivation of RSC, but not of the posterior parietal
cortex (PPC) or posterior premotor cortex (pM2), impairs the use
of history information. We propose that RSC neurons function as a
pool of heterogeneous exponential history integrators, and appro-
priate weighting of these neural populations results in adaptive be-
havior with hyperbolic history integration.1Department of Neurobiology, University of California San Diego, La Jolla, CA, USA.

2Center for Neural Circuits and Behavior, University of California San Diego, La Jolla,
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RESULTS
History integration of mouse behavior is more hyperbolic
than exponential
To investigate the neural basis of history integration, we first ana-
lyzed the behavioral choice patterns of head-fixed mice trained on a
dynamic foraging task. The behavioral data were originally present-
ed in (9). In each trial, the mice were presented with the ready cue
(light), followed 2 to 2.5 s later by the answer cue (tone), after which
they chose one of two options: lick left or lick right. There was no
cue that instructed mice to choose one over the other, but the two
lickports had different probabilities of delivering a water reward
(schematized in Fig. 1A). These probabilities were stable for
periods of time but changed every 60 to 80 trials, without any cue
to the mouse. Mice trained in this task dynamically adjusted their
choice pattern according to their choice-outcome history (example
session; Fig. 1B).
We quantified their use of the choice and outcome information

from past trials with a logistic regression model. The model was fit
using two types of history information: rewarded-choice history
(the interaction between reward and choice: 1 for rewarded left
choice, −1 for rewarded right choice, and 0 otherwise) and unre-
warded-choice history (1 for unrewarded left choice, −1 for unre-
warded right choice, and 0 otherwise) for recent trials. The
regression weights for rewarded-choice history indicate that mice
used the most recent history information more than distant
history information, but with nonzero weights for trials as far as
10 trials back (Fig. 1, C and D). The shape of this decay exhibits a
sharp initial drop on recent experience and a heavy tail on more
distant experience, which is better described by a hyperbolic than
exponential function [exponential Akaike information criterion
(AIC): −21.52, hyperbolic AIC: −36.26; lower AIC indicates
better fit]. That is, distant history is weighted more than expected
from a consistent decay across all time steps. This is notable
because a hyperbolic-like decay is a feature of the behavior that stan-
dard RL models are unable to capture. The unrewarded-choice
history does not follow a smooth, monotonic decay, instead
showing a negative weight on the most recent experience and pos-
itive weights on more distant history. In the rest of this study, we
focus on the rewarded-choice history.
To confirm that the behavior described by the RLmodel exhibits

exponential decay, we generated an artificial choice pattern in an
emulation of our task using a modified form of the RL model de-
veloped previously for this behavior (9). The parameters of the RL
model were taken from fitting the mouse behavior for each session.
The sets of fitted parameters were then used with the generative
model to produce simulated behavior, and the simulated choice pat-
terns were fit with the same logistic regression model as above. By
analyzing the history weights from the regression, we find that the
simulated behavior is better fit by exponential than hyperbolic
decay (Fig. 1E, exponential AIC: −45.33, hyperbolic AIC:
−30.77), in contrast to the mouse behavior in Fig. 1D. Exponential
behavior by the RL model is expected; the RL agent of the simula-
tion uses a recursive style of integration that is time-invariant and
therefore by definition exponential in nature. This result confirms
that our analysis can accurately detect this feature.
The results so far, based on the history weights from regression

fits, suggest that the mice use a hyperbolic-like integration rather
than exponential integration to make their decision on a trial-by-

trial basis. We tested this more directly by comparing the fits of
two models where decay functions were convolved directly with
the rewarded-choice pattern, rather than fit the regression weights
post hoc (Fig. 1F). We constructed this model with the explicit con-
straint that past weights decay with either an exponential or hyper-
bolic decay function. We then assessed whether the model with an
exponential or hyperbolic constraint better fit the observed behav-
ior. Model fit was evaluated by the session-by-session difference in
cross-validated (CV) log-likelihood of hyperbolic and exponential
models, normalized by the number of trials. In this nomenclature,
a log-likelihood difference larger than zero indicates that a hyper-
bolic constraint better fits the behavior, and less than zero that an
exponential fits better. We observe that mouse behavior is better fit
by the hyperbolic model (median = 4.69 × 10−3, P = 2.71 × 10−5,
linear mixed model; see Materials and Methods and Fig. 1G). In
contrast, the simulated behavior generated with the RL was better
fit with exponential integration (median = −3.57 × 10−3, P = 4.96
× 10−5, linear mixed model; Fig. 1G), as expected. This difference
was consistent across individual animals and was not sensitive to the
range of past trials included in the exponential and hyperbolic
models (fig. S1). These results establish that the mice are using a
behavioral strategy that deviates from the standard RL model, inte-
grating history information with a hyperbolic-like decay function.

Cortical neurons encode rewarded-choice history with
exponential integration
To explore the neural basis of hyperbolic history integration, we an-
alyzed neural activity recorded from task-performing mice. These
data, originally described in (9), were acquired with in vivo two-
photon calcium imaging in CaMKIIa-tTA::tetO-GCaMP6s double
transgenic mice expressing GCaMP6s in cortical excitatory neurons
(Fig. 2A). Fluorescence traces from each neuron were deconvolved
(10, 11) to give an approximation of underlying spiking activity. We
focused our analysis on five cortical areas; RSC, PPC, pM2, anterior
lateral motor cortex (ALM), and primary somatosensory
cortex (S1).
The activity of a subset of cortical neurons was modulated by re-

warded-choice history. As seen in three example cells imaged in the
same session in RSC, shown in Fig. 2B, these cells exhibited different
levels of activity depending on whether the left or right choice was
rewarded in recent trials. The clearest separation in activity was
when the most recent trial was rewarded on either the left side
(darkest blue) or the right side (darkest red). Some of these cells
showed stronger activity following left rewarded choice (e.g., cell
2) while others following right rewarded choice (e.g., cells 1 and
3). We focused the following analysis on the activity during the
pre-choice, ready period (2 s after the ready cue onset), during
which mice were withholding licking. We quantified the fraction
of neurons modulated by rewarded choice on at least the most
recent trial (t − 1; Fig. 2C), using linear regression (see Materials
and Methods and Eq. 9). The fraction of significantly modulated
neurons varied across sessions and across cortical areas but was
always well above chance, as calculated by shuffling the neural ac-
tivity across trials. Contra- and ipsi-preferring cells were mixed in
both hemispheres and only pM2 showed a mild contralateral pref-
erence (fig. S2).
To investigate how these history-modulated neurons integrate

history information, we applied the analogous model as for the be-
havior. Specifically, to each cell, we fit a pair of models in which past
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Fig. 1. Mice rely on hyperbolic rather than exponential weighting of rewarded-choice history during history-dependent value-based decision-making. (A)
Schematic of behavior task. Mouse was presented with two lick spouts with different probabilities of reward on the left or right side. The mouse was cued with an
amber light-emitting diode towithhold licking during the ready period, and then cued with a tone to choose in the answer period. The reward contingency was inverted
in a block structure of variable block lengths, and the pattern was repeated until the end of the session. The first block was randomly selected to be right or left high for
any session. (B) Example session, probability of left reward assignment (black line), 10-trial smoothed choice pattern (purple line), left and right licks (blue, red) that were
rewarded or unrewarded. (C) Logistic regression weights on rewarded-choice and unrewarded-choice history for the example session in (B). (D) Rewarded-choice and
unrewarded-choice weights from logistic regression in black, grand mean across 74 sessions and 14 animals (means ± SEM). Exponential (green) and hyperbolic
(magenta) curves fit to the mean rewarded-choice weights; exponential Akaike information criterion (AIC): −21.52, hyperbolic AIC: −36.26; lower AIC indicates better
fit. (E) As in (D), but for 74 RL-simulated sessions, each with unique input parameters taken from mouse sessions; means + SEM. Exponential AIC: −45.33, hyperbolic AIC:
−30.77; lower AIC indicates better fit. (F) Analysis workflow of the exponential and hyperbolic behavioral integration models. (G) Comparison of model performance,
using 10-fold cross-validated log-likelihood, normalized by the number of trials, compared between exponential and hyperbolic models across identical train and test
sets. Red indicates a median above zero, and black indicates a median below 0. Mice: P = 2.71 × 10−5, simulated: P = 4.96 × 10−5, linear mixed model, ****P < 0.0001.
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choice history was constrained to display either an exponential or
hyperbolic decay and quantified the model’s prediction of cell activ-
ity with CV log-likelihood, normalized by the number of trials. In
contrast to the mouse behavior, we found that the cell activity was
generally better fit by the exponential integration model (Fig. 2D;
see also Fig. 1G). The cells were more exponential than hyperbolic
across all cortical areas we investigated (RSC: median = −1.82 ×
10−3, P = 5.88 × 10−7; PPC: median = −1.70 × 10−3, P = 6.33 ×
10−8; pM2: median = −1.95 × 10−3, P = 1.53 × 10−8; ALM:
median = −1.73 × 10−3, P = 9.56 × 10−6; S1: median = −1.57 ×
10−3, P = 6.25 × 10−4; behavior: median = 4.28 × 10−3, P = 2.71 ×
10−5; linear mixed model; see also fig. S2).

Cortical neurons encode temporal information with a wide
variety of time constants
How can the brain generate behavior with hyperbolic integration
when cortical neurons demonstrate exponential decay of past infor-
mation? We consider the possibility that a hyperbolic discounting
function with a sharp initial decay and a heavy tail can be approx-
imated by a combination of exponentials with a variety of time con-
stants. Therefore, if cortical neurons perform exponential
integration with the decay time constants that are heterogeneous
across neurons, then their combination could lead to a hyperbol-
ic-like function to guide behavior. This mechanism for the

generation of hyperbolic behavior from exponential neurons re-
quires that there be a sufficiently diverse pool of neural decay
rates to provide a basis for hyperbolic behavior. To test this idea,
we examined the exponential decay time constants of history-mod-
ulated cells. We observed that even within one field of view for one
cortical area, there are a wide variety of decay rates across cells
(example cells from an RSC session; Fig. 3A). Take, for example,
cell 1, which shows the sharpest convergence between the cell activ-
ity traces (Fig. 2B, top), corresponding to a short integration time
(Fig. 3A, top). In contrast, example cell 3 still showed a clear sepa-
ration of activity traces dependent on a rewarded choice as many as
five trials back (Fig. 2B, bottom), leading to the more slowly decay-
ing exponential fit in Fig. 3A (bottom). The mean activity difference
(Figs. 2B and 3A) can be confounded by the autocorrelation of the
behavior, such that adjacent trials tend to have similar choices and
outcomes. Thus, to estimate the temporal decay of history informa-
tion, we convolved the exponential decay function directly with the
rewarded-choice history (see Materials and Methods, Eq. 10, and
Fig. 3A, green line) rather than fitting a decay function on the
mean activity difference.
To investigate the distribution of decay time constants across

neuronal populations, we focused our analysis on cells that were sig-
nificantly exponentially modulated by rewarded-choice history in
both the first and second halves of the session. These stable,

Fig. 2. Cortical neurons encode history information with exponential decay. (A) Schematic of two-photon imaging from five cortical areas, showing one example
field of view from RSC. One cortical area in one hemispherewas imaged in each session. (B) Trial-averaged activity of three example RSC neurons, aligned to the ready-cue
onset (R), or the choice (C ). The black line is the average across all trials. Blue lines are the mean of the subset of trials where the past trial (−5:−1 trials, indicated by
darkening shade) was left choice and rewarded. Red lines are the same, but for the right choice and rewarded. (C) Fraction of cells significantly modulated by rewarded
choice on the most recent trial (t − 1); means ± SEM. Gray shading indicates a fraction of significant cells in trial-shuffled data. n sessions: RSC = 15; PPC = 16; pM2 = 17;
ALM = 12; S1 = 14. (D) Comparison of model performance, using 10-fold cross-validated log-likelihood normalized by the number of trials, between exponential and
hyperbolic models across identical train- and test-sets. Left: Log-likelihood difference from the regression model fit to the cell activity; right: log-likelihood of the gen-
eralized linear model fit to the behavior. Behavior replicated from Fig. 1G for comparison. Note that the absolute values of log-likelihood for the cell model and behavior
model cannot be directly compared because the magnitudes of the signals in the data are different. Linear mixed model, ***P < 0.001 and ****P < 0.0001.
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exponentially modulated cells represent a smaller fraction than the
cells which are modulated at least by the most previously rewarded
choice for some part of the session, but these fractions were well
above chance from the shuffled distribution in all five areas (Fig.
3B). RSC and PPC exhibited the highest fraction of modulated
cells, while pM2, ALM, and S2 all showed less prevalent encoding
of rewarded-choice history information (compared to RSC by linear

mixed model: PPC: P = 0.57; pM2: P = 0.03; ALM: P = 1.32 × 10−3;
S1: P = 2.31 × 10−4).
We observed that these exponential cells show a wide variety in

their decay time constants (Fig. 3C). The distributions of time con-
stants differed across areas. RSC was particularly enriched in
neurons that encode history information with longer time con-
stants: There was a right shift in the distribution of tau in RSC

Fig. 3. Neurons exponentially integrate with heterogeneous time constants,
and the time constants in RSC cells best match the behavior. (A) Mean activity
difference (left-right) from the 2-s “ready” period of Fig. 2B. Black dots are the diff-
erence between left rewarded activity and right rewarded activity (means ± SEM).
Exponential filter (green line) estimated by the model for each cell. Cell 1: tau = 0.81;
cell 2: tau = 1.45; cell 3: tau = 4.35. (B) Fraction of cells significantly modulated by
rewarded-choice history with exponential decay in both halves of the session (filled
bars, means ± SEM). Open bars are the fraction of cells modulated by at least the
most recent trial (t − 1) reproduced from Fig. 2C. Gray shading is a fraction of cells
significantly modulated in trial-shuffled data. Linear mixed model; n sessions: same
as Fig. 2. (C) Distribution of exponential time constant τ across the significantly
modulated cells in five cortical areas. Top: Histograms on a log axis. Bottom: Boxplots
on a linear axis. All sessions for a given area are pooled. Bootstrapped test of
medians compared to RSC, FDR-corrected for multiple comparisons. (D) τ Estimated
separately in two halves of one example RSC session. Spearman’s r = 0.55, P = 9.30 ×
10−9. (E) Distribution of the Spearman’s correlation across all session splits. All areas
combined. Mean r = 0.42 (red line), geometric mean P = 2.39 × 10−3; shuffled data:
mean r = −0.01 (dashed red line), geometric mean P = 0.3. (F) The quasi-hyperbolic
model is the weighted sum of multiple exponential processes, yielding a heavy-
tailed function approximating a hyperbolic. (G) Quantification of model perfor-
mance by cross-validated log-likelihood. (H) Performance of the quasi-hyperbolic
behavioral model based on a random sampling of time constants from each area,
compared to the exponential behavioral model. Means ± SEM across 1000 random
draws. The gray line and shading are means ± SEM of the hyperbolic model, re-
produced from Fig. 1G. n.s., P > 0.05; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P <
0.0001. n.s., not significant.
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compared to the other cortical areas (medians, RSC: 2.70; PPC: 1.71;
pM2: 1.77; ALM: 1.30; S1: 1.72; compared to RSC, PPC: P < 1.0 ×
10−5; pM2: P = 1.3 × 10−5; ALM: P < 1.0 × 10−5; S1: P = 2.0 × 10−5;
bootstrapped test of medians, P values FDR-corrected for multiple
comparisons; see also fig. S3).
To confirm that these distributions are not simply due to estima-

tion noise, we partitioned each session into two nonoverlapping
blocks of trials and evaluated the exponential time constants sepa-
rately in each block for each neuron. As shown in the example RSC
session in Fig. 3D, the time constants estimated in two halves of the
session for the same neuron were consistent (Spearman’s r = 0.55, P
= 9.30 × 10−9). Across cortical areas, we routinely found that cell-
specific tau was consistent, with correlations substantially higher
than trial-shuffled data (real data: mean r = 0.42, geometric-mean
P = 2.39 × 10−3; shuffled data: mean r = −0.01, geometric-mean P =
0.39; Fig. 3E). This consistency indicates that each neuron integrates
history with a time constant that is specific to the cell and consistent
throughout a session and that this time constant can be reliably
estimated.
Having established that multiple temporal scales are encoded si-

multaneously across neural populations in the cortex, next, we con-
sidered how the observed distributions of time constants, which
differed across areas, could relate to the behavioral strategy. Specif-
ically, we asked whether aweighted sum of these diverse exponential
functions could approximate the hyperbolic-like integration ob-
served in behavior. To answer this, we designed a linear regression
model in which behavioral choice patterns of mice were fit by the
weighted sum of multiple exponential integrators with different
time constants. The time constants were randomly sampled from
those observed in cortical neurons, and the weights associated
with each of the time constants were fit to the behavior (schematized
in Fig. 3F). We quantified the fit of this model with weighted sum of
exponentials, which we call the “quasi-hyperbolic”model, as the dif-
ference in the CV log-likelihood from the performance of themodel
with a single exponential function with the best-fit time constant
from the behavior (analysis outlined in Fig. 3G). We varied the
number of time constants for the quasi-hyperbolic model, and for
each number of time constants, the random sampling of time con-
stants was repeated 1000 times and the results were averaged for
each session. As we increased the number of sampled time con-
stants, the performance of the quasi-hyperbolic model improved,
surpassing that of the best-fit single exponential model and con-
verging to the performance of the hyperbolic model (Fig. 3H,
gray line being the average improvement of the hyperbolic model
from Fig. 1G). The performance of the quasi-hyperbolic drawn
from the RSC neurons improved most quickly with an increasing
number of sampled time constants, indicating that RSC temporal
encoding best matches the temporal characteristics of the behavior.
Put another way, a downstream readout of information from RSC
can reproduce the observed timescale of the behavior more parsi-
moniously than any other area. We note that, although a small
number (<10) of time constants are sufficient for saturated perfor-
mance in this analysis that assumes noiseless exponential integra-
tors, the real neurons are noisy and thus would require a larger
number of neurons. This suggests that RSC holds a unique position
among these cortical areas as having a representation of temporal
history information that best matches the temporal component of
the behavior.

Inactivating RSC, but not PPC or pM2, reduces the mouse’s
use of rewarded-choice history in hyperbolic-like
integration
In the above results, we laid out evidence that history integration
occurs at multiple timescales simultaneously across different
neurons in the cortex, and RSC is enriched in the timescales that
best match the behavior. From this, we hypothesize that RSC is
uniquely required for the history integration to guide the behavior.
To test this, we selectively and reversibly inactivated cortical

areas via optogenetic activation of parvalbumin-positive (PV) in-
hibitory neurons in PV-Cre::LSL-ChR2 double transgenic animals
that expressed channelrhodopsin-2 in PV neurons. We focused on
RSC, PPC, and pM2.We used a projector system (9, 12, 13) to apply
blue light over each cortical area. This flexible light delivery system,
combined with a large cranial window preparation (14), allowed us
to investigate the role of multiple cortical areas separately within the
same animal (schematic in Fig. 4A). Inactivation was performed
only for one area per session. In each session, inactivation occurred
on a subset of trials (15% randomly selected, with the constraint to
not be within three trials of each other), starting from the beginning
of the ready cue until the choice was made. In all other trials, the
light was directed over the headbar, away from the brain, in the
same task period to control for light distraction. The total area of
light coverage and intensity was consistent for each condition.
Three of the 12 RSC inactivation animals have been previously de-
scribed (9).
To quantify the effects of inactivation, we fit a modified version

of the logistic regression analysis (see Materials and Methods and
Eqs. 3 and 4) in which the inactivation trials had a separate set of
weights from the control trials (see Materials and Methods). We
found that inactivating RSC during the pre-choice, “ready” period
reduced the dependence on rewarded-choice history (Fig 4, B and
C). This effect was not seen with inactivation of PPC or pM2 (effect
of inactivation condition: RSC: P = 1.31 × 10−3; PPC: P = 0.27; pM2:
P = 0.38, linear mixed model on the sum of the absolute rewarded-
choice weights; Fig. 4, B and C). Thus, of these three areas with a
strong representation of history information, we found that RSC
is uniquely necessary for the behavioral use of rewarded-
choice history.
Next, we investigated whether inactivation affected the hyper-

bolic nature of behavioral history integration. The behavioral
decay models, hyperbolic and exponential, were fit separately for
the inactivation trials or control trials, and model performance
was compared as the difference in CV log-likelihood between hy-
perbolic and exponential models. We found that RSC inactivation
caused the behavioral strategy to become less hyperbolic than in the
control condition. This reduction was not seen with inactivation of
PPC or pM2 (RSC: P = 3.92 × 10−4; PPC: P = 0.31; pM2: P = 0.43,
RSC-PPC: P = 5.65 × 10−3; RSC-M2: P = 0.02, linear mixed model;
Fig. 4D). These results indicate that RSC is uniquely necessary for
implementing the hyperbolic-like integration we observe in the
choice patterns.
We additionally performed a separate analysis, quantifying the

probability that the mouse would repeat the same action after a re-
warded trial (“win-stay”) or switch after an unrewarded trial (“lose-
switch”), normalized by its overall probability to either “stay” or
“switch” (Fig. 4E). RSC inactivation was unique in reducing the
probabilities of win-stay and lose-switch, which was not observed
in inactivation of PPC and pM2 (win-stay, RSC-PPC: P = 7.38 ×
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10−5; RSC-pM2: P = 1.08 × 10−3; lose-switch, RSC-PPC: P = 5.23 ×
10−4; RSC-pM2: P = 2.45 × 10−3, linear mixedmodel). This analysis,
which does not rely on regression, confirms that RSC is critical for
history-dependent adaptive decision-making.

DISCUSSION
Here, we showed that the behavior of mice engaged in value-based
decision-making is driven by trial history integrated according to a
hyperbolic-like decay, similar to what has been shown in analogous
behavioral tasks in multiple species (3–8). In an apparent contradic-
tion, we found that cortical neurons encode history in a manner

more consistent with an exponential decay than hyperbolic.
However, cortical neurons do not represent history homogeneously.
Rather, history is encoded simultaneously across many neurons
with heterogeneous time constants of integration. This activity
pattern is consistent with a series of exponential processes acting
in parallel over widely distributed temporal horizons, which can
sum together to yield the heavy-tailed, hyperbolic-like integration
observed in the behavioral strategy. RSC encodes this information
over a longer temporal horizon than the other cortical areas, and the
inactivation of RSC uniquely attenuates the use of history informa-
tion and impairs the hyperbolic-like integration. From these results,
we posit that history information is integrated in a distributed and

Fig. 4. Inactivation of RSC reduces reliance on rewarded-choice history and impairs hyperbolic weighting of past trials. (A) Schematic of inactivation. Patterns of
light delivered with a projector-based system onto the cortical surface of mice performing the task. Right: The position of stimulus for RSC, PPC, or pM2 during 15% of
trials, one area per session, and to the headbar in the other 85% of trials. Illumination at 30 Hz during the ready and answer periods of all trials, with a linear ramp down of
intensity over 100ms (pulsewidths not to scale). (B) Logistic regression weights in control (Ctrl, black line) and inactivation (Inac, blue line) trials. Means ± SEM. RSC: n = 10
mice, 26 inactivation sessions; PPC: n = 10 mice, 26 inactivation sessions; pM2: n = 9 mice, 22 inactivation sessions. Linear mixed model on the sum of the absolute
rewarded-choiceweights: RSC: P = 1.31 × 10−3; PPC: P = 0.27; pM2: P = 0.38. (C) Pairwise comparison of the inactivation effect on the sum of the absolute rewarded-choice
history weights, Σ|weights|. Each line is one session, each color is a separate animal. Linear mixed model, within area repeated from (B). For across area, RSC-PPC: P = 0.04;
RSC-pM2: P = 0.24. (D) Comparison of model performance by cross-validated log-likelihood. Model pairs trained separately on control or inactivation trials. RSC: P = 3.92 ×
10−4; PPC: P = 0.31; pM2: P = 0.43; RSC-PPC: P = 5.65 × 10−3; RSC-M2: P = 0.02; linear mixedmodel. (E) Pairwise comparison of win-stay and lose-switch probabilities under
inactivation. P(stay|win) is normalized by the overall stay probability [the average of P(stay|win) and P(stay|lose)]. P(switch|lose) was normalized by the overall switch
probability [the average of P(switch|win) and P(switch|lose)]. Each line is one session, each color is a separate animal. Linear mixed model, n.s. P > 0.05; *P < 0.05, **P <
0.01, ***P < 0.001, and ****P < 0.0001.
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diverse manner, with experience across different timescales
encoded differently across neurons. We propose a model where
history information is encoded in individual neurons by simple ex-
ponential integration with heterogeneous time constants. Behavior
arises from the combination of multiple exponentially integrative
processes, in particular those with longer time constants, which
yields a decision strategy that has the heavy-tailed feature of a hy-
perbolic function (Fig. 5).
This model provides a potential mechanism by which the brain

uses a conceptually simple mechanism of exponential value updates
to achieve a hyperbolic-like behavior. Such a heavy-tailed integra-
tion has also been described as the phenomenon of “undermatch-
ing” and has previously been considered a suboptimal form of
decision-making in laboratory behaviors (5, 6, 8). However, a
natural environment has dynamics at multiple timescales. For
example, the decision of when and where to go foraging for food
may depend on factors such as the weather, hunger state, and sea-
sonal changes in available items, just to name a few. These factors
vary across orders of magnitude in the speed of changes, rendering
an exponential integration with a constant decay rate per unit time
to be suboptimal. Hyperbolic-like decay is conserved across species
and may be an evolutionary response to an environment that has
multiple timescales of changes. Although, here, we focused on ret-
rospective processes in which historical information decays over
time, prospective discounting of potential future rewards is also
known to follow a hyperbolic function. For example, in delay dis-
counting experiments in which the animal is presented with choices
that return rewards at different temporal delays and magnitudes,
animals show a stereotypic reversal in time preference at long lags
indicative of hyperbolic discounting (15, 16). Thus, hyperbolic
functions seem common in weighting influences of events over
time. However, truly hyperbolic computation is difficult to
achieve with a recursive operation modeled in standard RL, and
other computations that approximate hyperbolic discounting have
been proposed (17–20). In contrast, exponential computation can
be achieved with a simple recursive operation. In an extension of
this logic, our model proposes that multiple exponential computa-
tions with heterogeneous time constants performed in parallel can
generate hyperbolic-like behavior.
We interpret the heavy-tailed influence of history on behavior as

a form of RL with hyperbolic-like integration of choice-outcome

information. However, we wish to note that the heavy-tailed behav-
ior can also be attributed to choice perseverance that is independent
of the outcome. The current experiments do not allow us to disso-
ciate the contributions of choice-outcome history and outcome-in-
dependent perseverance. This likely also contributes to the non-
monotonic decay of unrewarded-choice weights. Regardless, a par-
simonious observation is that history influences behavior with a
heavier tail than expected from exponential RL, and we propose
that this arises from individual neurons performing history integra-
tion with heterogeneous time constants.
The inactivation of RSC reduced, and did not eliminate, the be-

havioral reliance on the rewarded-choice history information, and
this effect was the clearest for the most recent history. It is likely that
long time-constant information, enriched in RSC, is redundantly
encoded in areas not examined in the current study. Distributed en-
coding would make distant history information more resistant to
the short-term perturbation that we used. Previous studies have
also described heterogeneity across individual neurons in their en-
coding of behavior-related temporal information within and across
brain areas (21–27). We extend these observations and uncover that
RSC is especially enriched in long time constants and that the time-
scales in RSC best match the animal’s behavioral strategy. RSC in-
activation leads to an impairment in the animal’s ability to use
history information to make its decision. Furthermore, our recent
studies uncovered that RSC uniquely maintains history information
as persistent population activity (9, 28). These identify RSC as a crit-
ical cortical area that encodes and maintains behaviorally relevant
history information.
When the environment shifts dynamically between periods of

stability and volatility, animals need to adapt their behavioral inte-
gration timescales (8, 24, 29–36). In theory, RSC neurons could
serve as a stable reservoir of heterogeneous history information,
and behavioral adaptation could be achieved by flexibly adjusting
the readout weights for different neurons by the downstream
circuit. Alternatively, individual RSC neurons may alter their time
constants of integration according to changes in environmental
demands.While RSC itself encodes a wide variety of time constants,
RSC may send different temporal information to different down-
stream areas. For example, the shorter time-constant neurons may
project predominantly to the other cortical areas recorded in this
study, consistent with the shorter time constants observed in
PPC, pM2, ALM, and S1. Longer time-constant neurons may
then convey temporal information to other (perhaps subcortical)
areas. Cortical pyramidal neurons have been shown to convey dis-
tinct information to different cortical and subcortical targets (37–
40). The dynamics of RSC encoding and downstream readout
during behavioral adaptations would be an interesting topic of
future studies.
Our results resonate with distributional RL (41, 42), which

models decision as being made as the combination of parallel esti-
mates of value that vary in their degrees of optimism and learning
rates. The advantage of such a system is to simultaneously provide
information to the animal about the range of expected outcomes,
forming a distribution of prospective reward expectations. Support-
ing this notion, midbrain dopaminergic neurons represent RPEs
with diverse reversal points between positive and negative predic-
tion errors (41). As temporal integration may be sped or slowed
with larger or smaller learning rates on reward-prediction errors,
our model of hyperbolic behavior achieved from diverse speeds of

Fig. 5. RSC as a reservoir of exponential history integrators with diverse inte-
gration windows used for decision-making. RSC neurons encode rewarded-
choice history experience with a diversity of exponential time constants, including
cells with short integration and long integration. The combination of many expo-
nential integrators yields the heavy-tailed integration observed in the behavior.
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neuronal integration could be consistent with the theoretical model
of distributional RL, as either a consequence or cause of the value
distribution.
Hyperbolic temporal integration confers a specific behavioral

advantage, which is to balance sensitivity to both short-term
changes and long-term trends. The distribution of temporal infor-
mation observed in RSC is capable of producing the hyperbolic-like
behavior, and our results suggest a specific cortical substrate and
mechanism by which hyperbolic integration might arise.

MATERIALS AND METHODS
Experimental design
Experimental model and subject details
Animals. All procedures were in accordance with protocols ap-

proved by the University of California San Diego Institutional
Animal Care and Use Committee and the guidelines of the National
Institutes of Health. The behavior and neural activity data from two-
photon imaging were first reported in (9), as was the RSC inactiva-
tion data for three of the optogenetic inactivation animals. Behavior
from three of the five RSC inactivation animals in (9) passed the
stricter behavior criteria in this study as described below, and the
data were combined with nine additional animals. Other inactiva-
tion data are new to this study. Both male and female mice were in-
cluded in the study because we did not observe sex-related
differences in their behavior or neural activity. Mice were originally
purchased from the Jackson Laboratory (CaMKIIa-tTA: B6;CBA-
Tg(Camk2a-tTA)1Mmay/J [JAX 003010]; tetO-GCaMP6s: B6;
DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 024742]; PV-Cre:
B6;129P2-Pvalbtm1(cre)Arbr/J [JAX 008069]; Ai32: B6.Cg-Gt
(ROSA) 26Sortm32(CAG-COP4* H134R/EYFP)Hze/J [JAX
024109]). All surgery, behavior training, and experiments were con-
ducted in adult mice (6 weeks or older), on a reversed light cycle
(12-hour light/12-hour dark). Mice were water-restricted to ~1
ml/day while undergoing behavior training and experiments.
Method details
Surgery for calcium imaging and optogenetic inactivation.

Animals were prepared for imaging and optogenetic experiments
with a large cranial window placed over dorsal cortex, as previously
reported in (9, 14). Briefly, mice were anesthetized with 1 to 2% iso-
flurane during surgery, the dorsal surface of the skull was exposed
and cleared of soft tissue with a razor blade and marked with the
coordinates of interest. The skull was soaked in saline until the
bone became transparent enough to visualize the vasculature pat-
terns on the surface of the brain. We took a photo with both the
marked coordinates and vasculature visible and used this as a refer-
ence to later identify the cortical area for two-photon imaging and
inactivation. A large, hexagonal craniotomy was opened to expose
all cortical areas of interest, and a glass window was placed over the
surface of the brain. Thewindowwas secured to the skull first with a
thin application of 3M Vetbond (WPI), then with cyanoacrylate
glue and dental acrylic cement (Lang Dental). Last, a custom-ma-
chined headbar was attached to the skull, posterior to the window
using cyanoacrylate glue and dental cement. Mice were injected
subcutaneously with dexamethasone (2 mg/kg) before surgery, as
well as buprenorphine (0.1 mg/kg) and Baytril (10 mg/kg)
after surgery.
The cortical areas of interest for this study were ALM (1.7 mm

lateral and 2.25 mm anterior to bregma), pM2 (0.4 mm lateral and

0.5 mm anterior to bregma), PPC (1.7 mm lateral and 2 mm poste-
rior to bregma), RSC (0.4 mm lateral and 2 mm posterior to
bregma), and S1 (1.8 mm lateral and 0.75 mm posterior to
bregma) cortex.
Behavior task. The dynamic foraging task and training paradigm

were described previously (9, 28). In summary, mice were pre-
trained through a series of behaviors to introduce the task structure
and to train to lick to both left and right water delivery ports, using
either the BControl system or Bpod to interface with MATLAB and
control the behavior apparatus. In the foraging task, head-restrained
mice were presented with two lickports monitored with infrared
beam detectors. Mice were required to withhold licking during a
light-cued ready period (2 to 2.5 s) at the start of each trial, after
which the mouse was cued with an auditory tone (10 kHz) to
report a choice during the answer period (up to 2 s). After the
choice (first lick), they received a feedback tone (left: 5 kHz, right:
15 kHz), and probabilistic water reward. The water volume of the
reward was constant at ~2.5 μl per reward. Following reward deliv-
ery, a variable-length intertrial interval followed (5 to 7 s), before the
ready period marked the beginning of the next trial. Trials in which
the mice licked during the cued ready period (“alarm trials”) or
trials in which the mouse did not make a choice during the
answer period (“miss trials”) were not rewarded and excluded
from the analysis.
Reward was assigned to each lickport on every trial according to

the reward probability for that lickport in that block. Once a reward
was baited to a lickport, it remained available there until chosen.
The reward assignment probabilities for the two lickports were
either [60%, 10%] or [52.5%, 17.5%]. This probability inverted ran-
domly every 60 to 80 trials with a deterministic order of [60%, 10%],
[10%, 60%], [52.5%, 17.5%], [17.5%, 52.5%], [60%, 10%],…with the
first block of each session being left high or right high at random.
Behavior criteria for session inclusion. For both the imaging and

inactivation experiments, mice were trained over weeks for 1 to 2
hours per session per day, to reach “expert” level performance.
Each session was evaluated for performance, and only sessions
with expert-level performance were included in the analysis,
defined as an RL index of at least 0.08, and experience performing
the task for at least 15 sessions. The RL index (9) quantifies how
closely the full RL model [Eqs. 4 to 6] captured the behavior. This
was defined as the difference in model fit as follows:

RL index ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Likelihood of the RL modeln
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Likelihood explained by bias only modeln

p
ð1Þ

where the bias-only model uses the bias term β0 of the full RLmodel
(Eq. 6), and n is the number of choice trials in a session. Expert mice
usually performed >600 trials in a session.
Two-photon calcium imaging and data processing. As previously

reported (9), imaging experiments were conducted with a two-
photonmicroscope [B-SCOPE, Thorlabs; 16× objective, 0.8 numer-
ical aperture (NA), Nikon] with excitation at 925 nm (Ti-Sapphire
laser, Newport), continuously imaged at ~29 Hz. Neurons were re-
corded from layer 2/3 in a single cortical area and hemisphere per
session. We used data for only one population from each hemi-
sphere for each cortical area of a singlemouse. The images were pro-
cessed with a custom-built pipeline (28) to correct motion artifacts
(43) and image distortions (44). We then used Suite2p (45) to select
cells and extract the GCaMP signal, identifying cells first with a
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user-trained classifier followed by manual inspection. This calcium
signal was then deconvolved to obtain estimated spiking activity
using a nonnegative deconvolution algorithm (10, 11). This estimat-
ed activity for each neuron was z-score–normalized across the time
series for the entire session before all further analysis. The mean z-
score activity from the first 2 s of the ready period, when the mouse
is withholding licking, was used for the cell activity analysis.
Optogenetic inactivation. Cortical inactivation experiments were

performed in PV-Cre::Ai32 double transgenic mice via activation of
channelrhodopsin-2 in the PV inhibitory neurons. Methods are
consistent with (9), and this paper includes RSC inactivation from
three of the animals from the previous publication. The blue light
was directed over the cortical surface through a large cranial
window (described above for imaging) with a projector-based
light delivery system. Elliptical or circular illumination patterns
were produced with Psychtoolbox in MATLAB and projected
(DLP projector, Optoma X600 XGA) through a single-lens reflex
(SLR) lens (Nikon, 50 mm, f/1.4D, AF) coupled with two achromat-
ic doublets (Thorlabs, AC508-150-A-ML, f = 150 mm; Thorlabs,
AC508-075-A-ML, f = 75 mm) to focus illumination patterns
over the brain and headbar. A dichroic mirror (Thorlabs,
DMLP490L) and a blue filter (Thorlabs, FESH0450) were placed
in the light path to pass only blue light (400 to 450 nm).
Cortical inactivation occurred on ~15% of trials, constrained to

not be within three trials of the previous inactivation. The light
turned on at the beginning of the ready period and turned off
with the mouse’s choice or at the end of the answer period, which-
ever came first. During inactivation trials, the light was directed over
the cortical area of interest (one area per session) or over the
headbar in control sessions. In the remaining ~85% of trials, the
light was directed over the headbar. The light was pulsed at 30
Hz, at an intensity between 2.5 and 6 mW/mm2, with a linear
ramp down of intensity at offset over 100 ms.
Three inactivation patterns were used: one for RSC, a 2.0 mm ×

0.5 mm ellipse, centered at 0.3 mm lateral and 2.0 mm posterior to
bregma; one for PPC, a 1.0-mm circle, centered at 1.5 mm lateral
and 2.0 mm posterior to bregma; one for pM2, a 1.0-mm circle, cen-
tered 0.3 mm lateral and 0.5 mm anterior to bregma. Each pattern
was bilaterally symmetric. The control light pattern was directed
over the headbar as two 1.0-mm circles centered 1.0 mm apart.
The stimulation pattern for each of the cortical and control condi-
tions was light area- and intensity-matched.
Overlapping sets of animals were used for the separate inactiva-

tion conditions and between two and four sessions included per
animal per condition. RSC: n = 10 mice, 26 inactivation sessions;
PPC: n = 10 mice, 26 inactivation sessions; pM2: n = 9 mice, 22 in-
activation sessions. Three of the 10 RSC animals and 7 of the RSC
inactivation sessions have been previously described (9).
Analysis details
Logistic regression behavioral model. To quantify the strategy of

the mouse, we used a logistic regression model to predict the
choices the mouse makes in each trial based on the recent experi-
ence the mouse has received. The choice on a given trial t is predict-
ed by the weighted sum of the rewarded choice (interaction of
reward and choice, RewC) and unrewarded choice (interaction of
no reward and choice, UnrC ) in the past 10 trials, along with a

constant bias term. The model is

logit½PLðtÞ� ¼
X10

i¼1
βRewCðt� iÞ�RewCðt � iÞ

þ
X10

i¼1
βUnrCðt� iÞ�UnrCðt � iÞ þ β0 ð2Þ

where PL(t) is the probability of choosing left on trial t, RewC(t − i)
is the rewarded choice on past trial t− i (1 if rewarded on the left,−1
if rewarded on the right, 0 otherwise), UnrC(t− i) is the unrewarded
choice on past trial t− i (1 if unrewarded on the left,−1 if unreward-
ed on the right, 0 otherwise). βRewC(t−i) and βUnrC(t−i) are the regres-
sion weights for each of the corresponding predictors, and β0 is the
constant bias term.Model fitting was performed in Python, with the
package Scikit-learn (46) and the function LogisticRegression, solved
by gradient descent with the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm.
Logistic regression behavioral model for optogenetic analysis. To

quantify the effect of inactivation during the ready and answer
period on the animal’s choice, we modified the logistic regression
analysis to estimate weights separately for the inactivation trials,
coded as Inac, and control trials, Ctrl. Control trials within three
trials after inactivation were excluded from the analysis.
Given that inactivation trials occurred on only ~15% of trials in a

session, we had a small number of trials for each session relative to
the number of regression parameters in the above model. To in-
crease model stability for these experiments, we reduced the
number of history trials considered from 10 to 5 trials. In addition,
we use lasso regularization with the l1 penalty on both control and
inactivation terms, with the hyperparameter selected via cross-val-
idation for each session. Without regularization, the mean CV log-
likelihood per trial was −2.23 ± 0.23; with lasso regularization, this
increased to −0.64 ± 0.02, a significant increase by two-tailed Wil-
coxon signed-rank test with P = 7.73 × 10−14.
To prevent over-penalization of the inactivation condition,

which had fewer trials than the control condition, we subsampled
from both sets of trials to have a matched number of trials per con-
dition. Each training set used a random 90% sample of all available
inactivation trials and a matched number of randomly sampled
control trials. The remaining 10% of inactivation trials and a
matched number of held-out control trials were used to evaluate
the CV log-likelihood. We iterated this subsample 1000 times
with replacement. The reported weights are the mean weights
across all iterations for each session.
The resulting model is as follows

logit½PLðtÞ� ¼
X5

i¼1
βCtrlRewCðt� iÞ�RewCðt � iÞ

"

þ
X5

i¼1
βCtrlUnrCðt� iÞ�UnrCðt � iÞ þ βCtrl0

#

� CtrlðtÞ

þ
X5

i¼1
βInacRewCðt� iÞ�RewCðt � iÞ

"

þ
X5

i¼1
βInacUnrCðt� iÞ�UnrCðt � iÞ þ βInac0

#

� InacðtÞ

ð3Þ
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where the control, Ctrl, and inactivation, Inac, conditions had sep-
arate βRewC(t−i), βUnrC(t−i), and β0 regression weights associated with
them. The terms Ctrl(t) and Inac(t) were either 0 or 1, for the cor-
responding control or inactivation trials.
Reinforcement learning behavioral model and simulated behavior.

The RL model used to generate simulated behavior was reported in
(9). This model was modified from the Rescorla-Wagner model to
describe mouse behavior in our task, with separately updated action
values for the chosen option, Qch, and unchosen option, Qunch

Qchðt þ 1Þ

¼
QchðtÞ þ αrew � ½RðtÞ � QchðtÞ� if rewarded ½RðtÞ ¼ 1�
QchðtÞ þ αunr � ½RðtÞ � QchðtÞ� if unrewarded ½RðtÞ ¼ 0�

�

ð4Þ

Qunchðt þ 1Þ ¼ ð1 � δÞ � QunchðtÞ ð5Þ

where αrew and αunr are the independent learning rates for rewarded
and unrewarded trials, respectively, and δ is the forgetting rate for
the unchosen option. Reward on trial t is R(t) (1 for rewarded, 0 for
unrewarded), and the difference between R(t) and Qch corresponds
to RPE. The learning and forgetting rates were constrained to be
between 0 and 1. Given the action value for left and right options,
which are updated independently, the probability of choosing the
left side is

PLðtÞ ¼
1

1þ e� βΔQ½β0þQLðtÞ� QRðtÞ�
ð6Þ

where QL is the value for the left side, QR is the value for the right
side, β0 is the constant bias term, and β∆Q is the sensitivity to the
value difference ∆Q. This model was fit to the choice patterns of
74 sessions of expert mouse behavior in Python using SciPy (47)
minimize function, with search algorithm L-BFGS-B, to perform
maximum likelihood estimation.
In an emulation of the task environment, with the same reward

contingencies and block structure as the real task, the RL model al-
gorithm was used to generate choices based on the trial-by-trial up-
dating value from Eqs. 4 and 5 and the softmax function (Eq. 6).
This generative model took as inputs the fit parameters from each
session of expert mouse behavior. The simulated RL agent ran
10,000 trials for each of the 74 parameter sets, producing sequences
of choices and outcomes. These choice and outcome patterns were
then fit with the logistic regression (Eq. 2) or decay models (Eqs. 7
and 8) in the identical analysis process as real behavior.
Exponential and hyperbolic behavioral models. To evaluate how

well the mouse behavior is described by exponential or hyperbolic
integration, we quantified the behavior using two explicitly defined
decay models that assumed either exponential or hyperbolic decay.
Past trials were temporally discounted with an exponential or hy-
perbolic decay, with time constants fit for each session.
The exponential model was defined as

logit½PLðtÞ� ¼ βRewC �
XN

i¼1
RewCðt � iÞ � e

1� i
τRewC þ β0 ð7Þ

where PL(t) is the probability of choosing left on trial t, RewC(t − i)
is the rewarded choice on past trial t− i (1 if rewarded on the left,−1
if rewarded on the right, 0 otherwise). Up to 15 past trials were

considered for this model (N = 15), unless otherwise noted. βRewC
is the linear regression weight on the kernel, β0 is the constant bias
term, and τRewC is the time constant of the exponential.
Similarly, the hyperbolic model was defined as

logit½PLðtÞ� ¼ βRewC �
XN

i¼1
RewCðt � iÞ �

1
1þ i� 1

τRewC

þ β0 ð8Þ

The only difference from the exponential model is the form of
the decay function, with the time constant τRewC of the hyperbolic.
For both models, τRewC was constrained to be greater than 0. These
models were fit to the choice patterns of 74 sessions of expert mouse
behavior in Python using SciPy (47)minimize function, with search
algorithm L-BFGS-B, to perform maximum likelihood estimation.
To compare the performance of each model, each session was

divided into 10 equal sets of trials, 9 of which were used to estimate
the exponential and hyperbolic models. At each iteration, the log of
the likelihood for the held-out trials was compared as loglikhyp −
loglikexp. This was iterated across each held-out test set, and the dif-
ference in log-likelihood was taken as the mean across all iterations,
yielding CV log-likelihood, and normalized by the number of trials
per test set.
Exponential and hyperbolic behavioral models for optogenetic

analysis. The exponential and hyperbolic behavioral models were
fit to the behavior by selecting only the inactivation trials or
control trials that were more than three trials after inactivation, es-
timating the models separately for the two conditions. All trials
matching this criteria were concatenated for each animal. As with
the logistic analysis, we subsampled from the sets of control and in-
activation trials to have a matched number of both training and test
trials for each iteration of the model fit, bootstrapping 30 times with
replacement. Each iteration followed the same procedure of 10-fold
cross-validation as above for the exponential and hyperbolic models
(Eqs. 7 and 8). The reported CV log-likelihood per trial is the mean
across all iterations for each animal.
Exponential and hyperbolic cell activity models. To identify the

neurons modulated by rewarded-choice history, we averaged the
neural activity during the first 2 s of the ready period, during
which the mouse was withholding licking. Then, we estimated the
influence of the most recent rewarded-choice trial as

AðtÞ ¼ βRewC � RewCðt � 1Þ þ βCCðtÞ þ β0 ð9Þ

where A(t) is the neural activity at trial t, RewC(t − 1) is the reward-
ed choice on the immediately preceding trial (1 if rewarded on the
left, −1 if rewarded on the right, 0 otherwise), and C(t) is the choice
that the animal will make on the current trial (1 if left,−1 if right) to
regress out the anticipatory movement-related activity. βRewC is the
linear regression weight on the rewarded-choice history, βC is the
weight for the upcoming choice, and β0 is baseline offset.
Neurons with P < 0.05 for βRewC by Student’s t test were considered
modulated by past rewarded choice.
Among these modulated neurons, we then calculated whether

they were more exponential or hyperbolic in their history integra-
tion, in an analogous method to the above behavior models (Eqs. 7
and 8). Specifically, neural activity was fit by the exponential model

AðtÞ ¼ βRewC �
XN

i¼1
RewCðt � iÞ � e

1� i
τRewC þ βCCðtÞ þ β0 ð10Þ
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and the hyperbolic model

AðtÞ ¼ βRewC �
XN

i¼1
RewCðt � iÞ �

1
1þ i� 1

τRewC

þ βCCðtÞ þ β0 ð11Þ

where τRewC was constrained to be between 0 and 100. The perfor-
mance of the two models was compared for each neuron as the log-
likelihood of the 10-fold CV test set, and the difference was taken as
loglikhyp − loglikexp for each iteration and normalized by the
number of trials in the test set.
The analysis of exponential time constants was performed on

cells that were exponentially modulated (P value for βRewC was <
0.05; Eq. 10) in both the first half and second half of the session.
The model fit was performed independently in the two halves of
the session, and thus, no constraint was imposed that either βRewC
or τRewC be consistent between halves. For these cells, the exponen-
tial time constant was estimated across the entire session, and also
from two nonoverlapping halves of the session. The full session
τRewC was used for all analyses except for Fig. 3 (D and E), where
the two independently estimated τRewC were compared as a metric
of the stability of neural encoding and model estimation.
Quasi-hyperbolic behavioral model. The quasi-hyperbolic model

is defined as a sum of multiple weighted exponential functions to
yield a probability of choosing left or right. From the observed dis-
tributions of τRewC of exponential neurons in each cortical area, we
randomly drew between 1 and 15 values of τ and fit theweighting on
each exponential kernel to best describe the behavior, following the
equation

logit½PLðtÞ� ¼
XM

m¼1
βm�

XN

i¼1
RewCðt � iÞ � e

1� i
τm þ β0 ð12Þ

where PL(t) is the probability of choosing left on trial t, RewC(t − i)
is the rewarded choice on past trial t− i (1 if rewarded on the left,−1
if rewarded on the right, 0 otherwise), m is the number of τ drawn
from the observed distribution, βm is the linear coefficient corre-
sponding to the exponential kernel with time constant τm, and β0
is the constant bias. The number of past trials considered was N =
15. Each set of τ was fit to each of the 74 behavior sessions to yield
the 10-fold CV log-likelihood per trial, equivalent to the exponen-
tial and hyperbolic behavior models (Eqs. 7 and 8).

Statistical analysis
Linear mixed models
Our experiments included different numbers of observations from
different animals and sessions. To account for the inter-animal and
inter-session variability, we used linear mixed models for statistical
analysis of nested data. The models used in the manuscript are as
follows

y ≏ mdlþ ð0þmdl janimalÞ þ ð1 janimal : sessionÞ ð13Þ

where the fixed effect is the model type, exponential or hyperbolic.
A random slope is included for each animal, and a random intercept
for each session nested by animal. This model was used to compare
the CV log-likelihood of real and simulated behavior in Fig. 1G and
fig. S1B.

y ≏ hemisphereþ ð1 janimalÞ ð14Þ

where the fixed effect is the hemisphere from which the session was

recorded. A random intercept is included for each animal. The dif-
ference between areas was further assessed as the interaction
between hemisphere and brain region. This model was used to
compare the fraction of cells that prefer left rewarded choice in
fig. S2A.

y ≏ mdlþ ð0þmdl j sessionÞ þ ð1 j sesion :cell idÞ ð15Þ

where the fixed effect is the model type, exponential or hyperbolic.
A random slope was included for each session, and a random inter-
cept for each cell nested by session. This model was used to compare
the CV log-likelihood for each cell in Fig. 2D

y ≏ regionþ ð1 janimalÞ ð16Þ

where the fixed effect is the brain region from which the session was
recorded. A random intercept is included for each animal. This
model was used to compare the fraction of cells that were signifi-
cantly modulated by the exponential history model across different
areas in Fig. 3B

y ≏ inacþ ð0þ inac janimalÞ þ ð1 janimal : sessionÞ ð17Þ

where the fixed effect is the inactivation condition, 1 or 0. A random
slope is included for each animal, and a random intercept for each
session nested by animal. This model was used to compare the effect
of inactivation on the sum of reward-choice history (Fig. 4, B and
C), CV log-likelihood (Fig 4D), and win-stay and lose-switch strat-
egies (Fig. 4E). The difference between areas was further assessed as
the interaction between inac and brain region.

Statistical software and libraries
Linear mixed models were run in R, using the lmer function in the
lme4 package (48) for parametric tests, or aligned rank transform
(49) for nonparametric tests. The choice of parametric or nonpara-
metric tests was determined according the normality of the data by
Lilliefors test. Log-likelihood measurements were assessed with 10-
fold cross-validation. The nonparametric test of distribution
medians was bootstrapped 100,000 times, with an equal number
of samples drawn from each cortical area and animal, with
replacement.
All other statistical analysis and data processing were performed

in Python with Statsmodels (50). Models were fit in Python with
Scikit-learn (46); SciPy (47), Pandas (51), Xarray (52), and
Numpy (53) were also used for data handling, and Matplotlib
(54) was used for data visualization.

Supplementary Materials
This PDF file includes:
Figs. S1 to S3
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