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Abstract
Background: Use of menopausal hormone therapy (MHT) is associated with increased risk for breast cancer. However,
the relevant mechanisms and its interaction with genetic variants are not fully understood.

Methods: We conducted a genome-wide interaction analysis between MHT use and genetic variants for breast cancer
risk in 27,585 cases and 34,785 controls from 26 observational studies. All women were post-menopausal and of
European ancestry. Multivariable logistic regression models were used to test for multiplicative interactions between
genetic variants and current MHT use. We considered interaction p-values<5x10-8 as genome-wide signi�cant, and p-
values<1x10-5 as suggestive. Linkage disequilibrium (LD)-based clumping was performed to identify independent
candidate variants.

Results: None of the 9.7 million genetic variants tested for interactions with MHT use reached genome-wide signi�cance.
Only 213 variants, representing 18 independent loci, had p-values<1x105. The strongest evidence was found for
rs4674019 (p-value=2.27x10-7), which showed genome-wide signi�cant interaction (p-value=3.8x10-8) with current MHT
use when analysis was restricted to population-based studies only. Limiting the analyses to combined estrogen-
progesterone MHT use only or to estrogen receptor (ER) positive cases did not identify any genome-wide signi�cant
evidence of interactions.

Conclusions: In this large genome-wide SNP-MHT interaction study of breast cancer, we found no strong support for
common genetic variants modifying the effect of MHT on breast cancer risk. These results suggest that common
genetic variation has limited impact on the observed MHT–breast cancer risk association.

Introduction
Breast cancer is one of the most common cancers in women. There were 268,600 new cases and 41,760 deaths due to
breast cancer estimated in the U.S. in 20191.The use of menopausal hormone therapy (MHT) is associated with up to
23% increased risk of breast cancer. MHT use has been reduced among postmenopausal women since the report by the
Women’s Health Initiative (WHI) clinical trial and observational study2, 3 which has been subsequently con�rmed by other
studies and meta-analyses4, 5. Breast cancer risk increases with longer duration of use6, and is higher for combined
estrogen-progesterone MHT (EPT) use as compared with estrogen-only (ET) regimens4, 5. Additionally, the association
between MHT use and breast cancer may also differ by tumor molecular subtype. A prospective cohort study in UK
found that current MHT use was associated with increased risk for estrogen receptor positive (ER+) breast cancers, but
not with ER- breast cancers7. Several other observational studies also found that MHT use was associated with elevated
risk of ER + breast cancer8–12.

The biological mechanisms underlying the effect of MHT use on breast cancer risk is not fully understood. One
proposed mechanism is that higher estrogen and progesterone levels increase the proliferation of breast epithelial cells,
which results in accumulation of genetic mutations and insu�cient DNA repair13, 14, and therefore induces
mutagenesis15, 16. Genome-wide association studies (GWAS) have identi�ed over 200 single nucleotide polymorphisms
(SNPs) that are associated with invasive breast cancer risk17–19. Further analyses based on these GWAS �ndings have
identi�ed several genes that might interact with MHT use on breast cancer risk, including SNPs regulating the �broblast
growth factor receptor two (FGFR2) gene20, as well as SNPs close to the Kruppel like factor 4 (KLF4) gene and the
insulin like growth-factor-binding protein 5 (IGFBP5) gene21–23. A meta-analysis of four genome-wide case-only
interaction studies found suggestive evidence of interactions between MHT use and SNPs in genes related to



Page 7/23

transmembrane signaling and immune cell activation24. However, none of the �ndings reached genome-wide
signi�cance.

In the present study, we performed a comprehensive genome-wide interaction analysis of current MHT use by pooling
individual-level data from 26 epidemiological studies. We also performed genome-wide interaction analysis of MHT use
on ER + breast cancer speci�cally.

Methods

Study population and data collection
Individual level data were pooled from 26 epidemiological studies, including eight population-based case-control studies,
13 prospective cohort studies and �ve studies with mixed design from the Breast Cancer Association Consortium
(BCAC) (Table S1). Data collection instruments for individual studies have been described previously19, 23. Breast cancer
cases were de�ned as incident invasive or in-situ breast tumors, con�rmed by medical records, pathological reports or
death certi�cates. Cases of benign breast disease or cases diagnosed more than �ve years before study enrollment were
excluded.

Participants were excluded if they were male, pre-menopausal, of non-European ancestry, with unknown age at reference
date, or missing information on MHT use. Reference date was de�ned as date of diagnosis for cases, and date of
interview for controls. Menopausal status was reported at time of interview. For women with missing menopausal
status, we assumed postmenopausal status for those who were > 54 years old. Only studies with information on MHT
use in at least 150 breast cancer cases and 150 controls were included in the data analysis.

Ethnical approval and consent to participate
All participating studies were approved by the relevant ethics committees and informed consent was obtained from
study participants.

Menopausal hormone therapy use de�nition
MHT use was de�ned as use for at least three months of any type of MHT, including EPT and ET. Current MHT use was
de�ned as use at, or within the six months prior to the reference date. Former MHT use was de�ned as women who had
a history of using MHT but had quit more than six months prior to the reference date.

Genotyping
Samples were genotyped by the Illumina custom iSelect genotyping array (iCOGs)25, 26 or the Illumina OncoArray 500K
(OncoArray)19, 27. Details on genotyping, imputation and quality-control checks have been published previously19, 26. For
these analyses, 9,680 cases and 10,598 controls were genotyped using iCOGs, and 17,905 cases and 24,187 controls
were genotyped using OncoArray. Both datasets were imputed to the 1000 Genomes Phase 3 release28. For samples that
were genotyped on both iCOGs and OncoArray, OncoArray data was used. SNPs were excluded if imputation r2 < 0.5 for
iCOGs, and r2 < 0.8 for OncoArray. A total of 9,661,037 genetic variants (SNPs and indels) were included for analysis in
both datasets.

Statistical Analysis
We used multivariable logistic regression models to test for interaction between each genetic variant and current MHT
use (relative to never users) on breast cancer risk, adjusting for age at reference date, study, former MHT use, an
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indicator for population-based study design, an interaction term of study design indicator and current MHT use, and
principal components to account for potential population strati�cation29, thus �tting a model of the form:

Each genetic variant was assessed as a continuous variable in a log-additive odds ratio model. For genetic variants that
were not directly genotyped, the expected number of copies of the variant allele (“dosage”) was used30. OncoArray and
iCOGs datasets were analyzed separately, and platform-speci�c interaction parameter estimates (βgc) were combined

using METAL31 to obtain summary estimates for each SNP. Similar analyses were also performed for EPT use only and
for ER + breast cancer. Q-Q plots were used to assess whether the distribution of the p-values indicated genomic
in�ation.

For variants reaching suggestive evidence of interaction (p < 1x10− 5), we performed linkage disequilibrium (LD)-based
clumping to identify independent loci that might interact with MHT use on breast cancer risk (SWISS version 1.0.05b).
SNPs in LD (r2 > 0.1 based on the build-in 1000G_2014-11_EUR) within 1 Mb from the most signi�cantly associated SNP
were removed so that independent SNPs remained in each region.

We also performed sensitivity analysis among patients from the population-based studies only. All analyses were
performed using R version 3.6.1 unless otherwise speci�ed.

Results
A total of 62,370 post-menopausal women from 26 studies (27,585 cases and 34,785 controls), were included in the
analyses (Table S1). Cases were slightly older (mean age: 64 years) than controls (mean age: 63 years). Current use of
MHT was more common among breast cancer cases (34%) than controls (28%), showing a suggestive increased breast
cancer risk (OR = 1.16; 95% CI: 0.99, 1.36; Fig. 1A). A total of 20,131 cases and 22,601 controls from 18 studies also had
information on current use of EPT. Current EPT use was more common among cases (19%) than controls (13%) and
was associated with an estimated 48% risk increase of breast cancer, compared to non-EPT users (OR: 1.48; 95% CI:
1.29, 1.70; Fig. 1B).

A total of 9,661,271 SNPs and indels were successfully imputed from both the OncoArray and iCOGs genotyping
platforms and were included in the meta-analysis. We did not observe any interactions between variants and current
MHT use at genome-wide signi�cance level (p-value < 5x10− 8, Fig. 2A). 213 SNPs had suggestive evidence of interaction
with MHT use on breast cancer risk (p-value < 1x10− 5). After LD-based clumping, 18 independent SNPs remained, none
of which were in LD with currently known breast cancer risk GWAS loci (Table 1). The strongest evidence of interaction
was for SNP rs4674019, located at chromosome 2q35 (p-value = 2.27x10− 7). When restricting the analyses to
population-based studies only (23,063 cases and 30,250 controls), this same SNP rs4674019 showed statistically
signi�cantly interaction with current MHT use on breast cancer risk (p-value = 3.75x10− 8; Figure S1).
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Table 1
Independent genetic variants with suggestive interactions of current MHT use on breast cancer risk after LD-based

clumping
SNP rsid Chr Position A1 A2 EAF Nearby Genes OR 95% CI P-value

rs4674019 2 216601295 A G 0.05 LINC00607 0.74 (0.66,
0.83)

2.27E-
07

rs12600110 16 962154 T C 0.38 LMF1 1.14 (1.08,
1.20)

5.11E-
07

rs548302406 2 120097151 T TA 0.35 C2orf76 0.86 (0.81,
0.92)

8.03E-
07

rs117199302 11 77378563 T C 0.02 RSF1 0.60 (0.49,
0.73)

8.82E-
07

rs150004705 7 147063496 A G 0.01 CNTNAP2 0.57 (0.46,
0.72)

9.13E-
07

rs188419699 7 6674441 G A 0.99 ZNF853 0.40 (0.27,
0.58)

2.16E-
06

rs12600110 2 189608701 C T 0.99 DIRC1,
LOC105373790

0.48 (0.36,
0.66)

3.26E-
06

rs11738429 5 36167878 G A 0.19 SKP2 1.17 (1.09,
1.25)

4.09E-
06

rs13121484 4 182999291 A G 0.33 AC108142.1 1.14 (1.08,
1.21)

5.02E-
06

rs74617030 2 206040628 G GA 0.55 PARD3B 1.13 (1.07,
1.19)

5.90E-
06

rs146251672 3 64290001 G C 0.98 PRICKLE2, LRRN1 1.50 (1.26,
1.78)

6.08E-
06

rs560643086 1 204318668 C CA 0.75 PLEKHA6 1.16 (1.09,
1.24)

6.46E-
06

rs79001083 8 106538183 A C 0.05 ZFPM2 1.30 (1.16,
1.46)

7.12E-
06

rs7900145 10 4933685 T G 0.24 AKR1C6P 1.15 (1.08,
1.22)

7.75E-
06

rs375101296 11 78180810 C CAG 0.94 NARS2 0.77 (0.69,
0.86)

8.23E-
06

rs72692777 9 10011536 T C 0.02 PTPRD 0.70 (0.59,
0.82)

8.86E-
06

rs142227065 4 132518511 T TA 0.001 RP11-314N14.1 0.22 (0.11,
0.43)

9.07E-
06

rs10015072 4 31386277 T C 0.836 RP11-315A17.1 1.18 (1.10,
1.27)

9.67E-
06

* Chr: chromosome; A1: reference allele; A2: alternative allele; EAF: estimated allele frequency for alternative allele;
OR: odds ratios error per alternative allele with current menopausal hormone therapy use on breast cancer risk; 95%
CI: corresponding 95% con�dence intervals;

** rsid and position are based on the Genome Reference Consortium Human genome build 37.
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Similarly, we did not observe any genome-wide signi�cant interactions between SNPs and combined EPT use on breast
cancer risk (Fig. 2B). There were 71 SNPs that reached suggestive signi�cance level at p-value < 1x10− 5. After LD-based
clumping, 21 independent SNPs showed suggestive interactions (Table 2). The strongest evidence of interaction was for
SNP rs4865075, located on chromosome 4q12 (p-value = 5.5x10− 7). Sensitivity analysis using population-based studies
only did not �nd statistically signi�cant interactions.
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Table 2
Independent genetic variants with suggestive interaction of current combined EPT use on breast cancer after LD-based

clumping
SNP rsid Chr Position A1 A2 EAF Nearby

genes
OR 95%

CI
P-
value

rs4865075 4 57113130 A G 0.76 KIAA1211 1.25 (1.14,
1.36)

5.50E-
07

rs7519793 1 147301176 C T 0.40 RP11-
433J22.3,
RP11-
314N2.2

1.21 (1.12,
1.31)

1.59E-
06

rs4871847 8 22964316 A G 0.30 TNFRSF10C 0.82 (0.85,
0.89)

1.77E-
06

rs2165698 13 88558039 T C 0.54 TET1P1,
RP11-
545P6.2

1.22 (1.12,
1.33)

2.76E-
06

rs34954573 3 76118773 CT C 0.56 ROBO2 0.82 (0.76,
0.89)

3.17E-
06

rs10836138 11 33996495 C T 0.47 LMO2,
CAPRIN1

0.83 (0.77,
0.90)

3.37E-
06

rs4844958 1 210361388 A G 0.47 SYT14,
SERTAD4-
AS1

1.20 (1.11,
1.30)

3.45E-
06

rs145119792 4 138681096 G T 0.99 RP13-
884E18.4,
RP11-
793B23.1

2.61 (1.74,
3.91)

3.71E-
06

rs2372593 2 216596263 G A 0.93 LINC00607 1.42 (1.22,
1.66)

4.52E-
06

rs1359939 1 177820861 G A 0.68 RP11-
63B19.1,
SEC16B

1.22 (1.12,
1.33)

4.71E-
06

rs1398476 8 5608189 C A 0.79 RP11-
281H11.1,
RP11-
728L1.1

0.79 (0.81,
0.87)

4.81E-
06

rs148904951 12 78267629 T G 0.03 NAV3 2.05 (1.51,
2.78)

4.90E-
06

rs41380949 3 105175646 A G 0.10 ALCAM 1.36 (1.19,
1.55)

5.11E-
06

rs116807456 1 232593292 A G 0.02 SIPA1L2 0.49 (0.36,
0.66)

5.76E-
06

rs79505632 8 11079796 C G 0.05 AF131215.8,
LINC00529

0.66 (0.55,
0.79)

6.17E-
06

* SNP: single nucleotide polymorphism; Chr: chromosome; A1: reference allele; A2: alternative allele; EAF: estimated
allele frequency for alternative allele; OR: odds ratios per alternative allele with current combined estrogen-
progesterone hormone therapy use on breast cancer risk; 95% CI: corresponding 95% con�dence intervals;

** rsid and position are based on the Genome Reference Consortium Human genome build 37.
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SNP rsid Chr Position A1 A2 EAF Nearby
genes

OR 95%
CI

P-
value

rs146727380 3 21750977 GAAAAC GAAAACAAAAC 0.51 ZNF385D 0.82 (0.76,
0.90)

6.61E-
06

rs146444598 6 29912227 TGGA T 0.52 HLA-A 1.19 (1.10,
1.29)

6.85E-
06

rs9690705 7 151595436 G A 0.42 PRKAG2-
AS1, RNU6-
604P

1.20 (1.11,
1.29)

7.46E-
06

rs77773073 3 44919409 G A 0.86 TGM4,
LRRN1

1.28 (1.15,
1.43)

7.65E-
06

rs1772028 14 101693861 C G 0.49 RP11-8L8.1,
CTD-
2561F5.1

0.84 (0.78,
0.91)

9.16E-
06

rs7522223 1 25217994 T C 0.15 CLIC4,
RUNX3

0.78 (0.70,
0.87)

9.26E-
06

* SNP: single nucleotide polymorphism; Chr: chromosome; A1: reference allele; A2: alternative allele; EAF: estimated
allele frequency for alternative allele; OR: odds ratios per alternative allele with current combined estrogen-
progesterone hormone therapy use on breast cancer risk; 95% CI: corresponding 95% con�dence intervals;

** rsid and position are based on the Genome Reference Consortium Human genome build 37.

Restricting our cases to those with ER + breast cancer did not result in any genome-wide signi�cant �ndings (Figures S2-
S3).

Discussion
In this large genome-wide analysis of postmenopausal women of European ancestry, we did not identify any genetic
variants that were strong modi�ers of the association between current MHT use on breast cancer risk. Although the
interaction between SNP rs4674019 and current MHT use was statistically signi�cant among population-based studies
only, the variate allele frequency is relatively rare (EAF = 5%) and needs further validation.

Consistent with previous literature2, 3, 32, we found that current use of MHT, and in particular current EPT use, was
associated with an increased risk of breast cancer for postmenopausal women. The mechanisms underlying this
association are not fully understood. It has been hypothesized that estrogen stimulates cell proliferation through ERα-
mediated hormone activity and increases mutation rates through a cytochrome P450-mediated metabolic activation that
results in DNA damage33. In addition, the risk associated with ER + breast cancer is substantially higher than for ER-
breast cancer, particularly for EPT use, suggesting an ER-dependent pathway5. In vitro and in vivo studies found that
estradiol and 4-OH-estradiol, metabolites of estrogen, may induce mutations and damage DNA by forming DNA adducts
to bind to adenine and guanine on the DNA backbone34, 35. The role of progestogens in human breast carcinogenesis is
less clear, although it has been suggested that synthetic progestogens are pro-proliferative and may thus promote
cancer cell growth36, 37.

Although MHT use has been found to be associated with increased breast cancer risk in both epidemiologic and
experimental studies, no published studies to date have identi�ed genome-wide signi�cant interactions for breast cancer
risk between candidate single variants and MHT use among postmenopausal women38, 39. In a previous two-stage
GWAS interaction analysis among ~ 2,700 cases and ~ 2,700 controls, �ve SNPs had suggestive evidence of interaction



Page 13/23

with current MHT use; but none of them reached genome-wide signi�cance40. A meta-analysis of genome-wide case-
only studies in 2,920 cases also found no statistically signi�cant interactions between SNPs and MHT use on breast
cancer overall or by subtype24. We similarly did not �nd any genome-wide statistically signi�cant interactions between
genetic variants and MHT use in this study, and we further did not replicate previously suggested SNPs (data not
shown).

The region for which the strongest evidence of interaction with current MHT use on breast cancer risk was observed
(lead SNP rs4674019), was also implicated in the analysis restricted to combined EPT use only (p-value = 4.5x10− 6). The
rs4674019 SNP is an intronic variant in the coding region for the long intergenic non-protein coding RNA 607
(LINC00607). Although the functionality of long non-coding RNAs is still not clear, it has been recently recognized that
abnormal expression of long non-coding RNAs may play an important role in cell cycle control and cell differentiation,
which is related to cancer and neurodegenerative disease41–43. Expression levels of LINC00607 were found to be
signi�cantly downregulated among lung adenocarcinoma tissues, compared to adjacent tissues44. Other GWAS have
shown genetic variants in the LINC00607 gene to be associated with height in people of European ancestry45. Previous
evidence for long noncoding RNAs in relation to breast cancer risk is limited; but it is possible that changes in exogenous
hormone levels due to MHT use result in differential expression that eventually leads to tumorigenesis.

We also observed suggestive evidence of interaction between current use of both MHT and EPT and rs146251672. SNP
rs146251672 is located in the intronic region for the prickle planar cell polarity protein 2 (PRICKLE2) gene on
chromosome 3. PRICKLE2 encodes a non-canonical Wnt signaling protein that mediates feedback ampli�cation to
generate asymmetric planar cell polarity (PCP) signaling46. The Wnt pathway has been found to be activated in more
than half of breast tumors, and is associated with lower overall survival for breast cancer patients47. In particular, the
upregulation of the Wnt/PCP pathway has been suggested to be associated with more malignant phenotypes, such as
abnormal tissue polarity, invasion and metastasis48. Exposure to estrogen has been associated with accelerated tumor
formation in ER-knockout/Wnt-1 mice35. It is plausible that MHT acts partially through the alternative Wnt pathway
rather than ER-dependent pathways to promote breast tumor development.

This study constitutes the largest genome-wide interaction analysis for current MHT use and breast cancer risk in
postmenopausal women to date. We analyzed data from more than 62,000 women for whom we had both MHT use and
genotypes from more than 9.6 million genetic variants. We controlled our analysis for potential confounding by
population strati�cation by adjusting for principal components. We performed LD-based clumping, which accounted for
correlations between genotypes to identify the strongest signal in each independent region, providing more targeted
variants and regions for future investigation.

There are some limitations to our study. We used a single binary de�nition of current MHT use within six months prior to
reference date and could not evaluate other measures such as age at MHT initiation or duration of MHT use. This could
lead to some exposure misclassi�cation, particularly for the non-population based studies, where it is possible that
those cases had stopped their MHT use at time of recruitment and were classi�ed as non-current users. Such
misclassi�cation would have attenuated the main effect of MHT and reduced our statistical power to detect any
interactions. In our sensitivity analysis using population-based studies only, we found stronger interactions between the
lead SNPs and MHT use. However, given a smaller sample size in the sensitivity analysis, it is possible that we did not
have su�cient statistical power to detect any other potential interactions. The use of estrogen only hormone therapy
(ET) was also not available among the study participants, although the statistical power might be further limited since
the main association of ET and breast cancer risk is much smaller than EPT use5. In addition, our study sample only
included women of European ancestry, and thus, our �ndings may not be generalizable to other race/ethnicity groups.
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It is important to note that the lack of statistical interaction, on the log-scale, does not necessarily imply a lack of
biological interaction. The results are consistent with a model in which the effects of genetic variants and MHT use
combine multiplicatively on risk, which could still indicate important interactions at a functional level. Overall, our results
suggest that it is not necessary to include interaction variables for G x MHT use in development of breast cancer risk
prediction models. Although our results suggested that potential interaction effect between SNP rs4674019 and current
MHT, further validation is needed. Several suggestive interactions also warrant further investigations in independent
studies.

Conclusion
In this large genome-wide SNP-MHT interaction study of breast cancer, we found no strong support for common genetic
variants modifying the effect of MHT on breast cancer risk. These results suggest that common genetic variation has
limited impact on the observed MHT–breast cancer risk association.
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Figure 1

Main effects of current menopausal hormone therapy use and breast cancer risk by study A) Current use of any
menopausal hormone therapy B) Current use of combined estrogen-progesterone menopausal hormone therapy
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Figure 2

Manhattan plot of genome-wide interaction of current use of menopausal hormone therapy on breast cancer risk A)
Current MHT use B) Current EPT use * Red line: log-transformed genome-wide signi�cant threshold at 5x10-8; Blue line:
log-transformed suggestive threshold at 1x10-5.
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