
Lawrence Berkeley National Laboratory
Recent Work

Title
A FORTRAN IMPLEMENTATION OF A NETWORK EXECUTIVE UNDER IBM'S VM/CMS

Permalink
https://escholarship.org/uc/item/7gq757z1

Author
Itzkowitz, M.S.

Publication Date
1982-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gq757z1
https://escholarship.org
http://www.cdlib.org/

LBL-14264

Lawrence· Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Engineering & Technical
Services Division

BERKELEY LABORATORY

li'!4 (l t5 1982

. LIBRARYAND
DOCUMENTS SECTION

Submitted to the SHARE 59 Meeting, New Orleans, LA
August 22-27, 1982

A FORTRAN IMPLEMENTATION OF A NETWORK EXECUTIVE
UNDER IBM'S VM/CMS

Martin S. Itzkowitz

March 1982
TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division~ Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

...

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any

. information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Galifornia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

.• '

To be submitted to
SHARE 59 Meeting, New Orleans, LA
August 22-27, 1982

LBL-14264

A FORTRAN Implementation of a Network Executive under IBM's VM/CMS*

Martin S. Itzkowitz

Lawrence Berkeley Laboratory
University of California

Berkeley, California

March 1982

* This work was supported by the U.S. Department of Energy under contract
number DE-ACQ3-76SF00098.

-0

A FORTRAN Implementation of a Network Executive under IBM's VM/CMS*

Martin S. Itzkowitz

Computation Department
Lawrence Berkeley Laboratory

Berkeley, California 94720

Abstract

The Lawrence Berkeley Laboratory Computation Department has
attached an IBM-4331 to a heterogeneous local network. The network,
named THC, uses Network Systems Corporation HYPERchannel hardware to
implement a general process-to-process communication scheme. It appears
to the user as an extension of the local operating system accessed by a
subroutine call. The executive multiprocesses requests from different
user virtual machines and exchanges messages with other nodes on the
network. We describe an as~embly-language module, occupying one page of
memory, which allows the straightforward eMS-FORTRAN implementation of
such an executive as a virtual machine, requiring no modifications what­
soever to the standard operating system. We then describe our network
executive as an example of its use.

This work was supported by the U.S. Department of Energy under con­
tract number DE-AC03-76SF00098.

Introduction

In the Spring of 1980, Lawrence Berkeley Laboratory purchased an

IBM 4331 to provide a gateway service to our existing local network. A

Network Systems Corporation HYPERchannel adapter, model A220, was

attached to a block-multiplexor channel on the machine, and connected to

our existing CDC and DEC ~achines. For our purposes, it is used as two

independent devices: one device and subchannel is used for sending mes-

sages to other machines; another is used to receive messages from other

machines.

The network protocol, named THC, establishes an interprocess com-

munication scheme which requires only three functions: establishing a

connection (i.e., virtual circuit), sending data over it, and closing

it. Functions are per formed in response to requests; a request contains

a block of up to 3840 bytes of data, and may return to the user another

similar block. The network protocol is described elsewhere1

To the user, the network executive appears to be an extension of

the local operating system; it must multiprocess requests from user vir-

tual machines, exchange messages with other machines, dynamically allo-

cate buffers and queues, and provide information to a console operator.

In other implementations, modifications to the operating system

have been necessary to recognize and process network requests; however,

VM provides the necessary tools so that, as suggested in the System

Knight, Jeremy and Marty Itzkowitz, THC -A Simple High-
Performance Local Network,. LBL Report 11426, August, 1980. - --

2

Programmer's Guide2, such an extension may be written as an independent

virtual machine interacting with user machines by means of the VMCF

interprocess communication protocol. The OMS system allows direct

access to dedicated I/0 devices, external interrupts, a real-tDne clock,

and, using the diagnose interface to CP, services such as VMCF and pag-

ing. These features are all that are needed to implement a network exe-

cutive, but, unfortunately, they are accessible only to the assembly-

language programmer.

OMS supports several higher-level languages, among them FORTRAN.

Although usually considered . less than ideal for implementing complex

systems, FORTRAN does have several advantages. It is compiled into

relatively efficient object code, it is familiar to most scientific pro-

grammers, and it has a simple interface to assembly language subrou-

tines. We here describe a set of FORTRAN-callable subroutines providing

graceful access to the full resources of the virtual machine with no

modifications to either CP or CMS.

The package is a single assembly-language module, named BKYEX@,

with multiple entry points; it contains handlers for external and I/0

interrupts, occupies one page of memory, and is initialized upon the

first call to any of its subroutines. It extends the FORTRAN language

to allow multiprocessing, to handle external interrupts, to process

requests from other virtual machines, to handle a dedicated I/0 device,

and to dynamically allocate its own memory. We will discuss each of the

subroutines in turn, and then describe the network executive as a case

2 IBM VMISP System Programmer's Guide, publication SC19-6203-0, page
159. --- -

\/.

•

3

study of their use.

Multiprocessing

One method of multiprocessing is based on a set of event flags,

each of which is associated with a subprocess. The main program of such

a multiprocessing system waits for an event flag to be set, determines

which flag it is, takes the necessary action for that process, and then

returns to sleep until another flag is set.

For our system, we used a set of sixty-three event flags. One sub-

routine, EXSET(I), sets the Ith flag; another, EXCLR(I), clears it. Two

functions perform test-and-clear operations on the flags. The first,

IFEXON(I), returns zero if the Ith flag is clear, and the value of I if

the flag is set. If called with I equal to zero, it will return the

value of the highest flag set, or zero if no flag is set. The second,

IWAITX(I), behaves similarly, except that it enters an enabled-wait

state for the virtual machine rather than return a zero value.

Of course, such a scheme is predicated on the ability to set flags

in response to asynchronous events. Subroutines to associate flags with

external and I/0 interrupts are described below. In order to perform

non-interruptible operations, two subroutines, DISABL(MASK), which

stores the current interrupt mask and then disables all interrupts, and

ENABLE(MASK), which restores interrupts, are supplied.

4

External Interrupts

Three resources necessary to implement the network executive are

accessible through external interrupts: a real-time clock, an operator

interrupt mechanism, and the VMCF interface. In order to provide access

to these interrupts, upon initialization, the package replaces the

External-New-PSW with a pointer to its own routine. (An earlier version

used the HNDEXT macro to interface with CMS, but the additional overhead

seemed pointless.) Interrupts are enabled for the clock comparator and

VMCF, the comparator is set to tick at the next second, and a VMCF

authorize function is issued. Since the CMS debug package also uses

external interrupts, it cannot be used in conjunction with these rou­

tines; CP debug corrunands are unaffected, however, and were quite ade­

quate.

When the clock comparator ticks, the external interrupt handler

updates the real-time clock and issues a diagnose 'OC' instruction to

update the virtual-elapsed-time and cpu-time clocks. One subroutine,

JSEC(I), returns the real-time in Julian seconds, that is, as an abso­

lute integer count of seconds since January 1, 1980. Similar subrou­

tines, VSEC(I), and CPSEC(I), provide integer values for virtual­

elapsed-time and cpu-time. Another set of subroutines JCLOCK(I,J),

VCLOCK(I,J), and OCUOCK(I,J), associate flag I with an interval timer

that ticks every J seconds of their respective clocks. Formatted

strings giving the current date and time are returned by subroutines

DA'IE(ADATE) and TIME(ATIME).

...

···:..··

5

We allow the operator to interrupt the program by associating an

external interrupt I with flag I. The terminal handler in_ the VM

operating system provides a simple command to generate external inter-

rupts; some are used to invoke the formatting of various displays which

are then sent to the console; others are used as commands or debugging

aids.

Interprocess Communication

The send/receive protocol of VMCF provides a mechanism which is

precisely that needed for network requests. The user virtual machine

formats the VMCF header in an ten-word array, IVBLOK; a function,

LOCF(ARG), which returns the address of its argument, is used to set up.

pointers. Subroutine VCSNRC(I,IVBLOK,IRBLOK) is called to issue the

send/receive function. When the response interrupt arrives, its header

block is copied into array IRBLOK, and flag I is set. A call to

VCCNCL(I) will causes the cancellation of the pending request associated

with flag I, and, although we do not use it, a corresponding subroutine,

VCSEND(I,IVBLOK,IRBLDK), is available for the VMCF send protocol.

Unsolicited, that is, sink-type, interrupts are rejected unless the

user has established a means for handling them. A call to

VCAUIH(EXTSUB) specifies a user~provided subroutine that will be called

to process these interrupts. It will be called as EXTSUB(IVBLOK,IREJ)

with interrupts disabled; IVBLOK is an array containing the interrupt

header, and IREJ is to be set non-zero if the interrupt handler is to

reject the transmission. Neither EXTSUB nor any subroutines it may call

6

should ever be called with interrupts enabled. A debugging aid, subrou­

tine HAt«;, which immediately stops execution of the virtual machine, was

used to uncover this reentrancy bug.

Subroutines for sink functions are provided: VCRCV(IVBLOK) reads

the data corresponding to a send or send/receive call; VCRPLY(IVBLOK)

replies to a send/receive function; and VCREJ(IVBLOK) allows program­

controlled rejection of unsolicited messages. One other subroutine,

VC!Dli1'(IVBLDK), sends an identify block to another virtual machine; it

is used to announce the restart of a user virtual machine to the network

executive. Sendx, resume, quiesce, and unauthorize functions have not

been provided: although they are trivial to write, we did not need them.

(An additional routine, THCTOD(NAME), provides a variant of VCSNRC

specific to our network FORTRAN interface: it differs in that the

response block is unpacked at interrupt time, and the flag is specified

by the VMCF message id.)

Dedicated I/0 Devices

Before any I/0 operations are performed on a dedicated device, the

program must establish a means of handling its interrupts. A subrou­

tine, IOFLAG(IFLAG,IDEV,ICSW) is used to issue a HNDINT macro for device

IDEV, defining it as device "FLii ," where "ii" is the hexadecimal

equivalent of IFLAG. When an interrupt from the device is received, and

the channel status word for the interrupt contains either device-end or

unit-check flags, or has a non-zero channel status, the channel status

word is stored in ICSW and flag IFLAG is set. Other (intermediate)

i 0

..

7

interrupts are ignored; a stmple change would allow user processing of

all interrupts.

I/0 operations are initiated by issuing an SIO instruction specify­

ing a ·channel program for the device •. The desired channel program is

formatted in an array IPROG, which must be double-word aligned, and sub­

routine EXSIO(IDIEV ,IPROO,ICC,ICSW) is called to issue the SIO instruc­

tion. ICC will be set to the condition code set by the instruction, and

ICSW will contain the channel status word. For our purposes, the other

I/0 instructions were not needed and were not coded; they would be sim­

ple variants of the SIO routine.

Dynamic Memory Management

User requests and responses and messages exchanged with other nodes

of the network are quite similar. Each has a text, 0-3840 bytes in

length, a set of descriptor words giving its mode and length, and con­

trol information amounting to some thirty to fifty additional bytes. It

seemed reasonable to use a common format for all, and keep them in 4K­

byte buffers, aligned on page boundaries.

Memory for N buffers is allocated as a single block of (N+1)*1024

integer words. Upon initialization, the program calls LOCF to obtain

the address of the block, and then computes an offset to the first word

of the next memory page. This offset is used as a base index for the

first buffer; increments of 1024 are added to compute indices for the

other buffers. Data is stored in the buffer relative to its base.

Allocation and deallocation of buffers is performed with interrupts

8

disabled. One last subroutine, DEPAGE(IFVA,LWA), which asks CP to

release any memory pages between IFWA and LWA, is called whenever a

buffer is deallocated.

The Network Executive

The THC executive has- been specified in a machine-independent

form3 It consists of four coroutines: the request-processor interfaces

between the user and the network; the listener processes some incoming

messages and dispatches the remainder to the request-processor; the

driver transmits outgoing messages over the. HYPERchannel and passes

incoming messages to the listener; and the housekeeper is invoked every

second to tidy things up. These routines share a pool of buffers and

interact through network tables and queues of messages.

The principal tables of the executive are the node-table, the

connection-table, and the statistics-table. Virtually all tables and

variables are kept as four-byte integer arrays in a single labeled com-

mon block; a few statistics are floating-point.

The network executive uses queues of messages and requests. Each

queue is associated with a flag and a list head. If the list head is

zero, the queue is empty, and the flag is left cleared. If it is non-

zero, it is the index of the first buffer on the queue, and the associ-

ated flag will be set. One of the buffer control arrays contains the

index of the next buffer on the queue, if any. The routines that push

3 Itzkowitz, Martin S. and Jeremy Knight, THC: Design Specifications,
LBL report 14144, October, 1981. ---

\i.

i

. ~

~.

9

buffers onto a queue or pop them off maintain the associated flag.

The network virtual machine is named THC and is auto logged by the

system. Its profile EXEC spools console output as an error log, bestows

some performance-related privileges on itself, dedicates the channel to

itself, resets the adapter, and then invokes the network executive. In

our configuration, the channel has only the one adapter attached; no

cOding changes would be necessary to use a shared channel with dedicated

devices.

The initialization routine sets up the tables, assigns flags for

the console processor, the request-queue (request-processor), a one-

second julian timer (housekeeper), the input subchannel of the HYPER­

channel adapter (input-driver), the output subchannel (output-driver),

the receive-queue (listener) , and the send-queue (output-driver, also).

The program then exits to its main loop.

The main loop calls IFEXON to determine the highest priority flag

set. Console, I/0 and the clock flags invoke the call of their respec-

tive coroutines. Flags for queues serve merely to wake up the execu-

tive: the queues are checked independent of the flag interrupt. When no

more flags are set, if the output-driver is idle, the main loop pops the

send-queue, and calls the output driver. Then, it pops the request and

receive queues calling the· request-processor and listener, respectively.

When the queues are empty, the main loop calls IWAITX(O) to await
I

further action.

The network virtual machine normally runs disconnected; if neces-

sary, an operator or programmer may connect to it. Some CP external

interrupts are used to invoke displays of system tables. Displays are

10

available giving the status of the whole network, information about the

connections currently open or pending, and statistical information about

traffic and resources. Other external interrupts are commands to turn

any down nodes up, to reset the HYPERchannel adapter, or to reinitialize

statistics.

Message traffic between machines is handled by the two subchannels

·Of the HYPERchannel adapter. After initialization, the output subchan­

nel on the device is idle, and the input subchannel is executing a chan­

nel program which waits for an incoming message, reads it into a preal­

located buffer, and generates a final interrupt when the message has

been read. When the input I/0 interrupt flag is triggered, the buffer

is queued to the listener , another buffer is allocated and a new channel

program is begun.

Buffers containing messages to be sent out are queued on the send­

queue. If the output driver is idle, and the queue'non-empty, the exe­

cutive pops a buffer from the queue and formats a channel progra~ to

send the message. When the completion interrupt is received, the next

buffer is sent, and so forth.

The VMCF sink interrupt for an incoming request invokes a subrou­

tine which allocates a buffer , reads the VMCF header into it, and places

the buffer on the request queue. When the buffer is popped from the

queue, the request-processor issues a receive function. Some requests

are completed immediately; others cause the generation of a message to

be sent to another machine, and are completed when a return message is

received. A request is suspended by attaching its buffer to the

appropriate connection-record. The listener, when the message arrives,

. "

l

11

or the housekeeper, should the connection time-out, detaches the buffer

from the connection-record and requeues it for completion by the

request-processor. The text of user requests and replies are used

unchanged in the network messages: rather than copy the data, the net­

work executive merely switches pointers. Under some circumstances, a

request cannot be processed because no buffer is available; in such

cases, the request-proc~ssor puts the request on a delay queue which is

popped by the housekeeper.

Incoming messages are queued to the listener. Some are replied to

by the listener, others are attached to connection-records and later

used to complete user requests, and still others are discarded upon

arrival.

Conclusions

We have described a set of subroutines that allow the FORTRAN user

access to the full resources of a virtual machine. We have shown how

these routines allow multiprocessing, external interrupt processing, I/0

device handling, and memory management. We have described an implemen­

tation of a local network executive, using this package to process

requests from other user machines, without requiring any modifications

to the underlying operating system.

L;

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

/
/

/

~~

··~---':. - .,,. ~

,,.~...,7.f:{ ~~ ·?--

·"'
TECHNICAL; INFORM.f1. TION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.........

,.
•'

·.
.. t

i '~~·>;
• •"""-=· ~

.\

'

·. '·!

. ..-:.
.,.. (· ,.d

-/':""

~ . ~- .·-
l '~"'"' t ..

<.

· ..

. ;-~~ .. ~
~.: -::

~ o(~-

··-~

··:·
)i:
,~
j.l
1· ·~· ... , .

~-~: . . -~''

~- _.,.£.:.~,\;U' ;;-:·

1 ... -;,_.~·...._

. ~ ~_ .. ~ ·~ .:: .. ~.
;.··'-

•
/

:• ·-..... ~
,r . ')

~.. '
'> ~ _, -

