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A specialized pore turret in the mammalian cation channel
TRPV1 is responsible for distinct and species-specific heat
activation thresholds
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The transient receptor potential vanilloid 1 (TRPV1) channel
is a heat-activated cation channel that plays a crucial role in
ambient temperature detection and thermal homeostasis.
Although several structural features of TRPV1 have been
shown to be involved in heat-induced activation of the gating
process, the physiological significance of only a few of these
key elements has been evaluated in an evolutionary context.
Here, using transient expression in HEK293 cells, electro-
physiological recordings, and molecular modeling, we show
that the pore turret contains both structural and functional
determinants that set the heat activation thresholds of distinct
TRPV1 orthologs in mammals whose body temperatures fluc-
tuate widely. We found that TRPV1 from the bat Carollia bre-
vicauda exhibits a lower threshold temperature of channel
activation than does its human ortholog and three bat-specific
amino acid substitutions located in the pore turret are suffi-
cient to determine this threshold temperature. Furthermore,
the structure of the TRPV1 pore turret appears to be of physi-
ological and evolutionary significance for differentiating the
heat-activated threshold among species-specific TRPV1 ortho-
logs. These findings support a role for the TRPV1 pore turret in
tuning the heat-activated threshold, and they suggest that its
evolution was driven by adaption to specific physiological traits
amongmammals exposed to variable temperatures.

Accurate detection and response to ambient temperature are
of paramount importance for the survival of all organisms living
in environments with fluctuating ambient temperatures (1).
Both endotherms and ectotherms use cues in ambient tempera-
tures to seek favorable conditions and to avoid harm. Advanced
thermoregulatory mechanisms that evolved in endotherms, e.g.
mammals, further allowed the maintenance of a stable body
temperature, which is considered a key factor for the expansion
of their livable environment. Due to the distinct habitat temper-
atures, these animals evolved species-specific temperature-sens-
ing properties that enable them to thrive in diverse environ-
ments. Therefore, understanding the molecular bases for these

niche properties in different species is important to reveal the
underlyingmechanisms (2–4).
In most animal species, ambient temperature fluctuation is

sensed by peripheral sensory neurons. Thermal sensors ex-
pressed in such neurons are key elements to transform temper-
ature changes into electrical signals (5). The transient receptor
potential (TRP) vanilloid 1 (TRPV1) ion channel has been iden-
tified as a primary heat sensor in mammals (6). TRPV1 is a
homotetramer, with each subunit being composed of six trans-
membrane segments (S1–S6) and long intracellular terminals
(7). The central pore of TRPV1 for ion permeation is formed
mainly by the P-loop and the S6 segment. The outer pore
region, which includes the pore turret, has been suggested to be
engaged in temperature-dependent gating and thermal activa-
tion processes of TRPV1 or even other temperature-sensitive
TRP channels (8–11). Systemic application of capsaicin chemi-
cally activates TRPV1, which further leads to thermoregulatory
responses, including heat loss and hypothermia (12, 13). Con-
sistently, this thermoregulatory effect of capsaicin is signifi-
cantly weakened in TRPV1-deficient mice (14). In contrast,
antagonists of TRPV1 cause hyperthermia in mammalian spe-
cies but not in TRPV1-deficient mice (13). Although no dis-
cernable difference in core body temperature between TRPV1-
deficient and WT mice has been observed, increased vasocon-
striction and locomotion activity have been found in these
TRPV1-null mice (15). Therefore, TRPV1 plays a crucial role
not only in temperature-sensing but also in dynamic regulation
of the core body temperature inmammals.
The capacity for thermal homeostasis varies greatly from one

species to another, even among mammals. Bats, with a unique
body anatomy, exhibit widely fluctuating body temperatures,
compared with other mammalian species (Fig. 1A). Many
known physiological factors, such as mass, basal rate of metab-
olism, and thermal conductance, affect the variation of animal
thermal homeostasis (16, 17). For bats, thermal conductance is
extremely high, compared with the body mass, due to the large
body surface, which is mainly represented by the thin wings
that equip bats for sustained flight (18). Therefore, it is difficult
for bats to maintain a steady core temperature with a small
body size and a large body surface area. Their body temperature
maintains a high level, like that of other mammals, when they
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fly but drops quickly during resting periods (19). In contrast,
humans are capable of maintaining the core body temperature
within 1 °C (Fig. 1A). Given the crucial role of TRPV1 in the
thermoregulation of mammals, we first compared the heat acti-
vation properties between fruit bat TRPV1 (fbV1) and human
TRPV1 (hV1). The lower threshold temperature of fbV1 we
found in this study allowed us to further explore the structural
determinants for tuning such a threshold value.

Results

Fruit bat TRPV1 with a lower heat activation threshold

We surveyed the literature (4, 20–29) for the normal body
temperature range of various homeotherms (Fig. 1A). In gen-
eral, the average body temperature varies widely among ani-
mals; however, most animals maintain a rather stable body tem-
perature. Two kinds of bats display a substantially wide range of

normal body temperatures (21, 23, 25, 26). Therefore, we syn-
thesized the representative TRPV1 cDNA (GenBank number
JN006859.1) of fruit bat (Carollia brevicauda) and subcloned it
into the eukaryotic expression vector pcDNA3.1 (30). As
expected, HEK293 cells expressing fbV1 or its human ortholog
hV1 elicited robust channel activation in the presence of known
agonists, such as capsaicin (Fig. 1B and Table 1) and protons
(Fig. 1C). In addition, capsaicin-evoked currents of fbV1 were
blocked by capsazepine, a prototypical TRPV1 inhibitor (Fig.
1D). These results suggest that fbV1 shares similar physical and
chemical sensitivities with other mammalian TRPV1 channels.
Given the multiallosteric nature of TRPV1 activation by heat,

voltage, and ligands (11), we were able to determine the intrinsic
heat activation properties of fbV1 in the absence of other stim-
uli. To test the heat activation properties, we conducted patch-
clamp recording while raising the temperature of the recording
chamber. We found that both fbV1 and hV1 channels exhibited

Figure 1. Chemical responses (capsaicin, protons, and capsazepine) of hV1 and fbV1 expressed in HEK293 cells. A, diagram illustrating warm-blooded
animals’ body temperature ranges (boxes) and extreme body temperature ranges (dashed lines), including human (HS, Homo sapiens), rat (RN, Rattus norvegicus),
dog (CLF, Canis lupus familiaris), chicken (GG, Gallus gallus), hummingbird (TC, Trochilidae), platypus (OA, Ornithorhynchus anatinus), fruit bat (CB, Carolia brevi-
cauda), and vampire bat (DR, Desmodus rotundus). B, representative macroscopic current traces recorded from two WT TRPV1 channels activated by capsaicin
(CAP) at different concentrations (top), and the normalized concentration-response relationships superimposed to fits of a Hill equation (bottom). C, proton-induced
activation of WT channels superimposed to fits of a Hill equation. The data points at higher proton concentrations (pH of�5.0) exhibited strong proton inhibition
(58) andwere excluded from fitting.D, capsazepine-induced inhibition of fbV1 and curves representing fits of a Hill equation (n = 4 or 5).
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robust heat-evoked currents and a steep increase in current am-
plitude in response to temperature jumps (Fig. 2A). Further-
more, we used Q10 values (fold increase in current amplitude
upon a change in temperature of 10 °C) to quantify the heat sen-
sitivity, and we found that fbV1 and hV1 showed comparable
sensitivity to temperature changes (11.1 6 3.2 for fbV1 and
10.5 6 3.5 for hV1) (Fig. 2B). Interestingly, we observed that,
under our experimental conditions, fbV1 exhibited a tempera-
ture activation threshold of 40.2 6 0.4 °C, while hV1 showed a
threshold of 42.26 0.5 °C (p, 0.001, n = 5) (Fig. 2C). The lower
threshold temperature of fbV1 is unlikely to be related to dual
allosterism, because fbV1 exhibited an extremely low open
probability at180mV (Fig. 2D). Consistent with TRPV1 behav-

ing as an allosteric protein, we observed an allosteric and nono-
bligatory coupling of multiple stimuli in fbV1 (Fig. 2E). There-
fore, these findings demonstrate a significant difference in the
threshold temperatures of channel activation, which may be
related to the distinct thermoregulation of bats.

Pore turret for tuning the temperature threshold

The discernable difference in the threshold temperature
prompted us to explore the structural elements using chimeric
constructs between fbV1 and hV1 channels. From the perspective
of biophysics, previous studies have suggested that the pore do-
main of TRPV1 contains the structural elements sufficient for

Table 1
Characterization of heat and capsaicin activation of TRPV1 channels and their mutants
TRPV1 type Temperature threshold (°C) Q10 EC50 (nM) Hill slope

hV1 42.26 0.5 (n = 5) 10.56 3.5 (n = 5) 197.76 29.0 (n = 4) 1.86 0.4 (n = 4)
fbV1 40.26 0.4 (n = 5) 11.16 3.2 (n = 5) 421.26 59.3 (n = 4) 0.96 0.1 (n = 4)
V1h/fb L 39.76 1.1 (n = 5) 11.86 2.9 (n = 5) 383.96 17.7 (n = 4) 1.46 0.1 (n = 4)
V1h/fb S 40.16 1.2 (n = 5) 12.26 2.4 (n = 5) 198.16 25.5 (n = 3) 1.16 0.1 (n = 3)
V1fb/h L 42.46 0.9 (n = 5) 11.46 3.0 (n = 5) 285.06 48.9 (n = 3) 1.36 0.3 (n = 3)
V1fb/h S 42.06 0.8 (n = 5) 11.16 3.3 (n = 5) 299.36 32.8 (n = 3) 1.36 0.2 (n = 3)
hV1_triple 40.36 0.4 (n = 4) 10.26 2.0 (n = 3) 203.66 14.5 (n = 4) 1.26 0.1 (n = 4)
hP608S 39.76 1.0 (n = 3) 10.86 2.0 (n = 3) 258.26 45.6 (n = 4) 1.56 0.4 (n = 4)
hS613P 43.46 1.0 (n = 3) 11.06 3.0 (n = 3) 108.26 6.8 (n = 3) 2.26 0.4 (n = 3)
hP623S 39.06 2.2 (n = 4) 12.56 2.8 (n = 4) 157.26 20.3 (n = 3) 1.26 0.2 (n = 3)
fbV1_triple 41.96 0.4 (n = 3) 9.46 2.9 (n = 3) 200.26 26.4 (n = 3) 1.86 0.4 (n = 3)
fbS609P 42.36 0.4 (n = 3) 8.86 2.5 (n = 4) 359.56 46.2 (n = 4) 1.06 0.1 (n = 4)
fbP614S 35.06 2.4 (n = 4) 10.26 3.0 (n = 3) 346.76 41.7 (n = 3) 1.26 0.2 (n = 3)
fbS624P 47.56 0.6 (n = 3) 9.36 2.6 (n = 3) 384.16 34.3 (n = 4) 1.06 0.1 (n = 4)

Values are given as mean6 S.D. (n = 3–5).

Figure 2. Different heat response profiles of hV1 and fbV1. A, example current responses of WT hV1 (red) and fbV1 (blue) recorded at different tempera-
tures. B, theQ10 values of hV1 and fbV1 did not show a significant difference. C, the thermal threshold for activation of fbV1 is lower than that of hV1.D, the con-
ductance-voltage relationships of hV1 and fbV1 were fitted to a Boltzmann function. E, heat (45 °C) and capsaicin (100 nM) shifted the conductance-voltage
relationship of fbV1. Data points are fits of a Boltzmann function. The box top, line inside the box, and box bottom represent the 75th percentile, mean, and 25th
percentile values, respectively, of each pool of activation temperatures. The error bars show the S.D. (n = 5). ***, p, 0.001; n.s., no significance, unpaired t test.
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heat activation (10, 31–33). As illustrated in Fig. 3A, we focused
on the pore region by constructing a series of channel chimeras
based on fbV1 and hV1. Given that the S6 segments of fbV1 and
hV1 are identical in the amino acid sequence, a segment con-
taining either both the S5 segment and the pore turret (labeled
L) or just the pore turret (labeled S) was transplanted from fbV1
to hV1, and vice versa. We found that all of the chimeric chan-
nels exhibited high sensitivity to capsaicin (Table 1 and Fig. S1)
and heat (Fig. 3B, Table 1, and Fig. S2) without disruption of the
channel function, which allowed us to test the role of the pore
regions of fbV1 and hV1 in tuning the threshold temperature.
Interestingly, the chimeric channels containing the pore turret
of fbV1 (V1h/fb L and V1h/fb S) showed similarly lower threshold
temperatures, compared with WT fbV1 (Fig. 3, C and D). Con-
versely, the pore turret of hV1 provided the fbV1-based chime-
ras (V1fb/h L and V1fb/h S) with an elevated threshold tempera-
ture similar to that of WT hV1 (Fig. 3, C and D). In agreement
with our observations with WT channels (Fig. 2B), these chi-
meric channels exhibited similar Q10 values (11.8 6 2.9 for
V1h/fb L, 11.4 6 3.0 for V1fb/h L, 12.2 6 2.4 for V1h/fb S, and

11.16 3.3 for V1fb/h S), indicating that our mutagenesis did not
alter the heat sensitivity of these chimeric channels (Fig. 3E).
Given that the pore turret is sufficient to determine the distinct
threshold temperature among the tested TRPV1 channels, the
amino acids located in such amotif are likely responsive to these
species-specific thresholds for TRPV1 heat activation.

Residue interchange for temperature threshold
determination

We focused on the amino acid sequences of the pore turret
in fbV1 and hV1. As illustrated in Fig. 4A, there are eight non-
conserved residues; while many of them are similar in struc-
tural and chemical properties, a remarkable interchange
between proline and serine at three homologous positions
(defined as site 1, site 2, and site 3) is highlighted by the align-
ment of WT channels. We first mapped them onto structural
models of fbV1 and hV1 (Fig. 4B), and we observed that all
three residues are located in the loop structure, which likely
exhibits high thermal flexibility, compared with the transmem-
brane helices. While this part of the outer pore is predicted to

Figure 3. Exchange of the pore turret between hV1 and fbV1 altered their respective original thermal thresholds. A, diagram illustrating pore turret
exchange between hV1 (red) and fbV1 (blue). B, representative macroscopic current traces recorded from two TRPV1 chimeras and twoWT channels activated
by heating in the inside-out configuration at stable voltages that pulsed from 0 mV to180 mV and then from280 mV to 0 mV. C, example current responses
of four TRPV1 chimeras recorded at different temperatures.D, comparison ofQ10 values among variousWT TRPV1 channels and chimeric channels. E, compari-
son of the thermal threshold for activation among various WT TRPV1 channels and chimeric channels. The box top, line inside the box, and box bottom repre-
sent the 75th percentile, mean, and 25th percentile values, respectively, of each pool of activation temperatures. The error bars show the S.D. (n = 5). **, p,
0.01 versusWT hV1; ##, p, 0.01; ###, p, 0.001 versusWT fbV1; n.s., no significance, unpaired t test.
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have similar overall structures in fbV1 and hV1, the three key
residues may take different orientations and hence may experi-
ence differences in exposure to the aqueous environment. We
set out to test the contribution of such an interchange at each
homologous site to the host channel’s heat responses. Based on
hV1, we found that a single substitution at either site 1 or site 3
dramatically shifted the threshold temperature of the WT
channel activation (hP608S for site 1 and hP623S for site 3)
(Fig. 4,C andD, and Fig. S3). Mutation from serine to proline at
homologous site 2 in hV1 produced no discernable change in
the threshold temperature (Fig. 4, C and D). Conversely, we
mutated these three homologous sites on fbV1 to their corre-
sponding amino acids in hV1. As illustrated in Fig. 4, E and F,
compared with fbV1, substitutions at sites 1 and 3 significantly
increased the threshold of heat activation, while the mutation
at site 2 caused a decrease in the threshold temperature
(fbS609P for site 1, fbP614S for site 2, and fbS624P for site 3).
Collectively, these results suggest that such residue inter-
changes at sites 1–3 are able to independently tune the struc-

tural properties of the pore turret, allowing the TRPV1 channel
to be activated at different temperatures.
To understand the integrative effect of these sites, we con-

structed a triple-point mutation based on either hV1 or fbV1
(referred to as hV1_triple and fbV1_triple, respectively). Strik-
ingly, the hV1_triple exhibited a threshold temperature of 40.36
0.4 °C (Fig. 4,G andH), which is very close to that of fbV1. Consis-
tently, the fbV1-based triple-pointmutant (fbV1_triple) exhibited
an elevated threshold temperature (41.96 0.4 °C) as high as that
of hV1 (Fig. 4, G and H). All of these channel mutants exhibited
similarQ10 values (Fig. S4), supporting the conservation of struc-
tural integrity and heat sensitivity. Therefore, these findings show
that the residue interchange ranging from site 1 to site 3 is suffi-
cient to tune the threshold temperature of TRPV1. More impor-
tantly, such substitutions together illustrated that the pore turret
participates in setting the species-specific threshold of TRPV1
heat activation, a functional property expected to be crucial
in the control of heat loss and the regulation of the bat’s
body temperature.

Figure 4. TRPV1 turret interconvertible mutations between hV1 and fbV1 affect their heat responses. A, amino acid alignment of hV1, fbV1, and vampire
TRPV1 (vbV1) pore turrets. B, structural models of the channel pores of hV1 and fbV1, showing the orientations of proline (P) and serine (S) residues located in the
pore turret. C, current-temperature relationships of three single-pointmutant TRPV1 channels based on hV1.D, comparison of the thermal thresholds for activation
for hV1 and the related single-pointmutant channels. E, current-temperature relationships of three single-pointmutant TRPV1 channels based on fbV1. F, compari-
son of the thermal thresholds for activation for fbV1 and the related single-point mutant channels. G, current-temperature relationships of two triple-point mutant
TRPV1 channels. H, comparison of the thermal thresholds for activation forWT TRPV1 and the triple-point mutant channels. The box top, line inside the box, and box
bottom represent the 75th percentile, mean, and 25th percentile values, respectively, of each pool of activation temperatures. The error bars show the S.D. (n =
3–5). *, p, 0.05; **, p, 0.01; ***, p, 0.001 versusWT fbV1; ###, p, 0.001 versusWT hV1; n.s., no significance, unpaired t test.

Evolutionary Significance of TRPV1 Pore Turret

J. Biol. Chem. (2020) 295(28) 9641–9649 9645

https://www.jbc.org/cgi/content/full/RA120.013037/DC1
https://www.jbc.org/cgi/content/full/RA120.013037/DC1


Discussion

Identification of the pore turret as a potential module in the
thermodynamics of TRP channels (8–11) and other putative
protein structures (34–37) can provide insights into the struc-
tural basis of temperature sensitivity from a biophysical per-
spective. Recent studies have suggested that conformational
changes of the turret-containing TRPV1 pore domain are
required for heat activation (11, 38–40) or even are sufficient to
be functionally transplanted with heat activation properties
into a temperature-insensitive ion channel (31). Although a sin-
gle substitution between proline and serine at each of the three
sites identified in this study independently alters the threshold
temperature of both fbV1 and hV1, it is challenging to specu-
late, based on the limited data from the present study, whether
the effects induced by such mutations are additive. There are at
least three possibilities regarding their specific role in tuning
TRPV1’s threshold temperature, as follows. 1) The contribu-
tion of each site to TRPV1 heat activation is totally independ-
ent, so that the changed threshold temperature observed with
mutations is the result of additive effects of the three sites. 2)
As an important apparatus in heat activation, the structure of
the TRPV1 pore turret is significantly tuned by these sites with
local structural adjustments, allowing both single and triple
mutants to exhibit changed threshold temperatures. 3) These
substitutions make global changes to the heat-sensitive gating
of TRPV1, which is not confined to a specific region of the
channel. Indeed, given the significant role of the pore turret in
heat activation, it is highly likely that mutations introduced to
other turret residues would also affect the heat activation
threshold, as previous reports suggested (10, 11). In this sense,
our observation that simultaneously swapping three residues
switched the heat activation threshold indicates evolutional sig-
nificance of these residues in shaping the heat-sensing function
of the twoTRPV1 channels.
From the perspective of temperature-gating mechanisms,

the exposed hydrophobic side chains of the amino acids in the
pore turret may contribute to such a change in the heat activa-
tion threshold in fbV1. At lower temperatures, the hydration
shell formed by water molecules surrounding the exposed
hydrophobic side chain is expected to be more stable (41),
which makes the residues at these three sites energetically
favorable in the closed state. Since proline and serine have a sig-
nificant difference in hydrophobicity (42–44), substitutions at
the three sites during evolution may endow fbV1 with unique
characteristics during the heat-sensitive gating. Interestingly,
the crucial role of hydrophobic side chains has been deter-
mined in TRPM8 (45), a prototypical temperature-sensitive
TRP channel. Furthermore, proline and serine are different in
local structural stability, which may cause a pore turret with
such a mutation to undergo distinct temperature-dependent
conformational changes at a different temperature. The biolog-
ical significance of the pore turret in thermoregulatory TRPV1
during evolution has yet to be fully established. In this study, we
made the first description of the fbV1 pore turret that shows
distinct sequence diversity, which provides this thermoregula-
tor with a lower heat activation threshold in the fruit bat, com-
pared with other mammalian TRPV1 channels. Subjected to

widely fluctuating core body temperatures, fbV1 is expected ei-
ther in the closed state during rest periods or in the open con-
figuration during flying, thus robustly participating in the ther-
mal homeostasis of bats. In this sense, the bat could be an
excellentmodel for understanding the role of TRPV1 in balanc-
ing heat generation and loss toward thermal homeostasis.
More generally, the structural elements of mammalian

TRPV1 orthologs are found to be flexible in function through-
out evolution. Besides the pore turret region, the N and C ter-
mini of TRPV1 provide highly evolved mammals with the gat-
ing transition for heat-induced desensitization (4). In addition,
species-specific N-terminal domains are thought to provide
camel and ground squirrel TRPV1 channels with higher heat-
activated thresholds (3). Given the crucial role of TRPV1 in am-
bient temperature detection and thermal homeostasis, we
therefore assume that such a fine-tuningmolecular mechanism
not only is employed by bats, camels, squirrels, and platypuses
but alsomay contribute to the unique thermal adaptation or ac-
climatization of other mammals with distinct evolutionary
drives or special physiological traits.
Including TRPV1, there are a series of molecular thermo-

regulators used by mammals for delicate thermal homeosta-
sis (46, 47). Given the differences in species-specific ranges
of core body temperatures and preferred ambient tempera-
ture conditions, the properties (e.g. temperature thresholds
and sensitivity) of these orthologous thermoregulators are
thought to be diverse among species (3, 4, 48–50). Based on
our understanding of the bat’s TRPV1 pore turret, investiga-
tion of the distinct thermal homeostasis in the bat will likely
provide another opportunity to reveal biophysical mecha-
nisms of other thermoregulators or even novel functions of
thermal detectors.

Experimental Procedures

cDNAs and reagents

WT hV1 and fbV1 were synthesized by TsingKe (Beijing,
China). The fused enhanced GFP at the end of the TRPV1 C
terminus was used to confirm the protein expression level. The
fluorescence tag did not affect the functional properties of the
channel, as reported previously (51). Chimeric channels and
themutants were generated by overlapping PCR (fast mutagen-
esis kit v2) and confirmed by sequencing. Capsaicin and capsa-
zepine were purchased from Abcam (UK) and MedChemEx-
press (USA), respectively. Lipofectamine 2000 was purchased
fromThermo Fisher Scientific (USA).

Transient transfection

HEK293 cells were cultured at 37 °C in 5% CO2 in DMEM
with 10% FBS, 100 U/ml penicillin, and 100 mg/ml streptomy-
cin. Cells were transiently transfected with 1.0 mg cDNA using
Lipofectamine 2000, according to the manufacturer’s instruc-
tions. TRPV1-expressing cells were later digested with 0.25%
trypsin, between 1 and 2 days after transfection. Electrophysio-
logical experiments were performed after the cells had attached
to the glass slide.
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Electrophysiological recordings

Macroscopic currents from TRPV1-expressing cells were
recorded in the inside-out mode using a HEKA EPC10 ampli-
fier controlled with PatchMaster software (HEKA). Patch pip-
ettes were pulled from thick-walled borosilicate glass (A-M
Systems) with a resistance of ;5 MV. Both bath and pipette
solutions contained 130 mM NaCl, 0.2 mM EDTA, and 3 mM

HEPES orMES. For solutions at pH 7.2 to 6.0, HEPES was used
as the buffer; for solutions at pH 5.5 to 4.5, MES was used (52).
The membrane potential was held at 0 mV, and currents were
elicited by a protocol consisting of a 300-ms step to 180 mV
followed by a 300-ms step to280 mV at 1-s intervals. The con-
ductance-voltage curve was determined from currents in
response to a series of voltage steps starting from 2150 mV.
Stimulation of the channels with different concentrations of
capsaicin was achieved by perfusion with a rapid solution
change system (RSC-200; Biological Science Instruments). Pro-
ton-evoked currents were recorded by patch-clamping in the
outside-out mode.

Temperature control

Automatic heat control was achieved by using aWarner tem-
perature controller (Model TC-324C). The monitor thermistor
of Model CC-28 (Warner Instruments) was placed in the bath
to accurately monitor the changes in solution temperature. The
HEKA patch-clamp amplifier registered the temperature read-
out from the thermometer simultaneously with the current re-
cording. The speed of the temperature change was set at a mod-
erate rate of about 0.3 °C/s. This rate ensured that heat-driven
gating transitions of the channels reached equilibrium during
temperature changes. For testing of ligand-induced channel
activation, electrophysiological assays were all conducted at
room temperature (;25 °C).

Modeling

Membrane symmetry loop modeling was performed in the
Rosetta v3.7 molecular modeling software suite, in which the
cryo-EM structure of rat TRPV1 (3J5P) was used as a template.
De novomodeling of the extracellular pore turret was incorpo-
rated using the KIC loop modeling protocol (53). Briefly,
around 10,000 models were generated in each round. After
seven rounds of loop modeling, the top 10 lowest energy mod-
els converged. Once the lowest energy cluster was identified,
the transmembrane domains and the extracellular pore turret
of mouse TRPV1 and its orthologs were modeled using the
comparative modeling application (RosettaCM) (53–57) and
subsequently relaxed.

Data analysis

The current-temperature relationship exhibited two phases.
The first slow phase represented mostly temperature-depend-
ent increase from the leak current. It was followed by a rapid
takeoff phase that represented heat-induced channel activation.
A linear fit was conducted for each phase. The intersect point
of the two fitting lines was defined as the activation threshold
temperature. Q10 measurements were used to quantify heat

responses here. We first obtained the current amplitude (I1) at
threshold temperature (T1) from the linear equation of heat
activation. The current amplitude (I2) at a higher temperature
(T2 = T1 1 10 °C) was also obtained from this linear equation,
yielding Q10 = (I2/I1)^(10/(T2 2 T1)). The capsaicin concentra-
tion dependence of the current amplitude was fitted to a Hill
equation to estimate the EC50 and slope factor values, using
IGOR PRO software (WaveMetrics). Data points for chemically
induced activation or inhibition were fitted to a Hill equation.
The plots for the conductance-voltage relationship were fitted
to a Boltzmann function. All statistical values are shown as
means6 S.D., and the n value represents the sample size of the
experiment. Statistical analysis was performed using unpaired
Student’s t tests.

Data availability

All data are contained within themanuscript.
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