
UC San Diego
Technical Reports

Title
On-line Parallel Tomography

Permalink
https://escholarship.org/uc/item/7gs5m3ws

Author
Smallen, Shava

Publication Date
2001-06-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gs5m3ws
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

On-line Parallel Tomography

A thesis submitted in partial satisfation of the

requirements for the degree Master of Siene in

Computer Siene

by

Shava Smallen

Committee in harge:

Professor Franine Berman, Chair

Professor Sott B. Baden

Professor Mark Ellisman

2001

The thesis of Shava Smallen is approved, and it is aept-

able in quality and form for publiation on miro�lm:

Chair

University of California, San Diego

2001

iii

To my family.

iv

TABLE OF CONTENTS

Signature Page . iii

Dediation . iv

Table of Contents . v

List of Tables . vii

List of Figures . viii

Aknowledgements . x

Abstrat . xii

I Introdution . 1

A. O�-line Parallel Tomography . 4

1. GTOMO . 6

B. On-line Parallel Tomography . 7

C. Thesis Summary . 10

D. Organization of Thesis . 10

II Tunable On-line Parallel Tomography 12

A. GTOMO Extension . 12

B. Tunable Parameters . 17

1. Redution Fator . 18

2. Projetions Per Refresh . 20

3. Cost . 20

C. Summary . 21

III User-Direted AppLeS . 22

A. Design . 22

B. Searhing for Triples . 25

C. Work Alloation Experiments . 26

1. Appliation Model . 28

2. Computation . 29

3. Communiation . 31

4. Cost . 35

5. Putting it all together . 36

D. Summary . 37

v

IV Experiments . 39

A. Introdution . 39

B. Work Alloation . 39

1. Performane Metri . 40

2. Simulation . 42

3. Case Study: NCMIR luster . 44

a. Partially Trae-driven Simulations 49

b. Completely Trae-driven Simulations 53

4. Synthesized Grid Experiments 56

a. Grid Constrution . 57

b. Sheduler Comparisons . 64

. Partial Orders . 68

d. Soring . 71

5. Summary . 75

C. Tunability Experiments . 75

1. Grid Constrution . 76

2. Experiments . 77

3. User Model . 78

4. Tunability Results . 79

5. Partial Order Results . 83

6. Summary . 84

D. Sheduling Lateny . 86

1. Summary . 88

V Related Work . 89

VI Conlusion . 91

Appendies

A Tables . 94

Bibliography . 97

vi

LIST OF TABLES

III.1 Example on�gurations . 23

IV.1 Summary of sheduler harateristis. 40

IV.2 NCMIR mahine desriptions. 46

IV.3 Summary statistis for NCMIR bandwidth traes 46

IV.4 Summary statistis for NCMIR CPU availability traes 49

IV.5 Summary statistis for NCMIR simulations with perfet load pre-

ditions. 50

IV.6 Summary statistis for NCMIR simulations with imperfet load

preditions. 53

IV.7 Number of Grids generated for eah Grid type p

1

p

2

p

3

. 62

IV.8 Sheduler ranking based on umulative �

l

for syntheti Grid sim-

ulations . 64

IV.9 Average deviation from best sheduler based on umulative �

l

for

syntheti Grid simulations. 65

IV.10 Summary statistis for syntheti Grid simulations. 66

IV.11 Summary statistis for AppLeS searh times. 88

A.1 Feasible triples for a highly variable Grid 94

vii

LIST OF FIGURES

I.1 Spiny dendrite . 2

I.2 Parallelism of tomography . 3

I.3 Proessing steps of tomography . 5

I.4 GTOMO arhiteture. 8

II.1 R-weighted bakprojetion algorithm 14

II.2 Arhiteture of GTOMO on-line parallel tomography extension . . 16

II.3 Redution algorithm. 19

II.4 Sample redution illustration . 19

III.1 Flow diagram for a user-direted AppLeS 24

III.2 AppLeS triple searh algorithm. 27

III.3 Ptomo proessing algorithm. 30

III.4 Fully onneted network . 33

III.5 Example LAN network topology. 33

III.6 Example ENV logial representation. 34

III.7 The model of on-line parallel tomography. 38

IV.1 NCMIR topology . 45

IV.2 ENV representation of NCMIR topology 45

IV.3 NCMIR bandwidth traes. 47

IV.4 NCMIR CPU availability traes 48

IV.5 NCMIR partially trae-driven simulations: mean �

l

. 51

IV.6 NCMIR partially trae-driven simulations: �

l

CDF 52

IV.7 NCMIR ompletely trae-driven simulations: mean �

l

. 54

IV.8 NCMIR ompletely trae-driven simulations: �

l

CDF 55

IV.9 Grid topology for work alloation simulations 57

IV.10 CoeÆient of variane histogram for bandwidth traes 59

IV.11 Correlation between v and �e

p

for bandwidth traes 60

viii

IV.12 CoeÆient of variane histogram for CPU availability traes. . . . 61

IV.13 Correlation between v and �e

p

for CPU availability traes 63

IV.14 Sheduler ranking based on umulative �

l

. 65

IV.15 Syntheti Grid simulation results: �

l

CDF 67

IV.16 Histogram of mean trae CPU availability 68

IV.17 Syntheti Grid simulations grouped by partial order P

1

. 70

IV.18 Syntheti Grid simulations grouped by partial order P

2

. 72

IV.19 Low preditability trae segment 73

IV.20 Syntheti Grid simulations: �

l

CDF grouped by � 75

IV.21 Grid topology for tunability experiments 77

IV.22 Triples found for (61; 1024; 1024; 300) experiment. 80

IV.23 Triples found for (61; 2048; 2048; 600) experiment. 81

IV.24 Frequeny of parameter hanges for E

1

experiments 82

IV.25 Frequeny of parameter hanges for E

2

experiments 83

IV.26 Partial order results: frequeny of triple hanges 85

IV.27 AppLeS sheduling lateny for E

1

experiments. 87

IV.28 AppLeS sheduling lateny for E

2

experiments. 87

ix

ACKNOWLEDGEMENTS

Working on this thesis has been a really great learning experiene for me.

It has also been an enjoyable experiene largely in part to all of the great people

I have met and interated with while working on this projet.

First, I would like to thank my advisor, Fran Berman, for all of her

support and inspiration. She has been a great role model and her guidane has

allowed me to grow a lot over these past three years.

I am also extremely grateful to my o-advisor, Henri Casanova, who has

been a great mentor and has been there to provide feedbak and enouragement

whenever I needed it.

Speial thanks to Rih Wolski for his insightful omments and always

lear (and entertaining) explanations.

Furthermore, I would like to thank the members of my ommitte, Sott

Baden and Mark Ellisman.

I would also like to express my gratitude to all the folks that I have worked

with on the Telesiene projet for whih this work grew out of. I would espeially

like to thank Mei-Hui Su from ISI who wrote the original GTOMO ode and has

been inredibly wonderful to work with. From NCMIR, I would espeially like to

thank Steve Lamont who wrote the original tomography ode and has graiously

answered many tomography-related questions for me; Dave Foster and Mona Wong

for providing NCMIR systems support; and Marty Hadida-Hassan.

The experiment results presented in this thesis were run in parallel using

APST (AppLeS Parameter Sweep Template) developed by Henri Casanova and a

number of workstation lusters. I would like to thank Satoshi Matsuoka for use

of the Prospero and Presto lusters at the Tokyo Institute of Tehnology, Phil

Papadopoulos for use of the Meteor luster at SDSC, and David Huthes for use

of the Ative Web luster at UCSD.

Additionally, I would like to thank Robert Ellis, Roummel Maria, and

Tuker MElroy from the Graduate Mathematis Consulting Group at UCSD.

x

Last, but de�nitely not least, thanks to all the folks in the Grid Comput-

ing Lab. This group has been inredibly supportive, a great soure of tehnial

information, and just fun to be around. I would espeially like to thank Holly Dail

and Alan Su for always being there to provide feedbak. Thanks to Walfredo Cirne

and Jaime Frey who worked with me on the o�-line GTOMO ode, Jim Hayes for

providing software engineering advie, and Graziano Obertelli for administering

the irus mahines and supporting my laptop whenever it was in trouble. Speial

thanks to Mario Faerman, Gary Shao, Otto Sievert, Renata Teixeira, and Dmitrii

Zagorodnov. Also, thanks to Nadya Williams for providing hoolate support.

xi

ABSTRACT OF THE THESIS

On-line Parallel Tomography

by

Shava Smallen

Master of Siene in Computer Siene

University of California, San Diego, 2001

Professor Franine Berman, Chair

Tomography is a omputationally intensive proess by whih the three-

dimensional struture of an objet an be reonstruted from a series of two-

dimensional projetions. In this thesis, we address on-line exeution of tomography

to provide real-time feedbak to users olleting data from an on-line instrument.

Context for this work is provided by a powerful eletron mirosope loated at

the National Center for Mirosopy and Imaging Researh (NCMIR). Aquiring

data from NCMIR's mirosope is a lengthy proess and is suseptible to on�g-

uration errors. Thus, real-time tomography feedbak will allow users to quikly

identify on�guration problems and interat with the mirosope in order to more

eÆiently aquire data from it.

We present an implementation of on-line parallel tomography whih al-

lows for prodution runs in Computational Grid environments. Developing ap-

pliations that leverage this type of platform is diÆult beause resoures are

heterogenous and dynami. In our approah, on-line parallel tomography is de-

signed to be tunable suh that it an be on�gured to adapt to di�erent resoure

availabilities. It is oupled with an user-direted, appliation-level sheduler whih

exploits the tunability of the appliation to determine a shedule for soft real-

time exeution. The sheduler utilizes user onstraints, an appliation model, and

dynami resoure load preditions to determine feasible run-time on�gurations.

xii

The on�gurations are displayed as hoies to the user where eah on�guration

involves trade-o�s between resolution of the reonstrution, frequeny of feedbak,

and ost of exeution. One an appropriate on�guration is hosen by the user,

the sheduler selets resoures, alloates work, and exeutes the appliation.

xiii

Chapter I

Introdution

Reonstruting the three-dimensional struture of an objet from a se-

ries of two-dimensional projetions is alled tomography. Tomography has been

applied to many �elds suh as medial imaging, earth siene, and astronomy [27℄.

In this thesis, we onentrate on the appliation of tomography to eletron mi-

rosopy. Context for this work is provided by the National Center for Mirosopy

and Imaging Researh (NCMIR) where tomography is run on data olleted from

an intermediate-high voltage transmission eletron mirosope (IVEM). NCMIR's

eletron mirosope allows sientists to study speimens at the ellular and sub-

ellular level and is one of the few of its kind in the United States that is available

to the biologial researh ommunity [25℄. During a session with the eletron mi-

rosope, a speimen is rotated about a single axis while projetions are aquired

from a CCD (harge-oupled devie) amera. Typially 61 projetions are a-

quired, where the size of eah projetion depends on the resolution of the CCD

amera, urrently either 1k� 1k or 2k� 2k. In Figure I.1, we show an example of

a tomographi volume generated from a spiny dendrite data set that was olleted

from NCMIR's eletron mirosope.

The tomographi algorithms used by NCMIR are omputationally inten-

sive. They inlude the R-weighted bakprojetion algorithm whih performs the

tomographi reonstrution; it is optionally followed by iterative ART (Algebrai

1

2

Figure I.1: Spiny dendrite.

Reonstrution Tehnique) or SIRT (Simultaneous Iterative Reonstrution Teh-

nique) algorithms whih further re�ne the volume [38℄. Fortunately these algo-

rithms are also embarrassingly parallel whih failitates a parallel implementation

of tomography [39℄. Figure I.2 illustrates the parallelism of these tomographi algo-

rithms. The information required to produe the ith X-Z slie of the volume is the

ith sanline from all projetions. Therefore, the three-dimensional volume an be

deomposed into a series of X-Z slies where eah slie is omputed independently

of the others.

There are two senarios for whih NCMIR is interested in using parallel

tomography: o�-line parallel tomography and on-line parallel tomography. In o�-

line parallel tomography, a user is interested in running tomography on a dataset

that resides somewhere on seondary storage. The user's goal is to obtain a sin-

gle, high-resolution tomogram as soon as possible. Conversely, in on-line parallel

tomography, a user is interested in running tomography on data as it is olleted

from the mirosope. The user's goal is to ompute suessive tomograms in quasi-

real-time in order to obtain feedbak on the quality of the data aquisition.

3

X

Y

scanline

slice

specimen

projection

Z

Figure I.2: Parallelism of tomography (adapted from [21℄). The information re-

quired to reonstrut the ith X-Z slie is the ith sanline from all projetions.

4

I.A O�-line Parallel Tomography

Traditionally, NCMIR sientists have run parallel tomography on data

sets previously olleted from the eletron mirosope. This proedure is referred

to as o�-line parallel tomography and is illustrated in Figure I.3. A data set

of p projetions, eah of size x � y, is aquired from the mirosope and then

preproessed to orret for imperfetions of the data aquisition proess (e.g. �du-

ial alignment, normalization) [39℄. Next, the projetions are transformed into y

sinograms of dimension x � p, where the ith sinogram is omposed from the ith

sanlines of eah projetion. The sinograms will then be parallel proessed into

slies of the tomogram. A slie is of dimension x � z, where the value for z is

derived from the atual physial thikness of the speimen in pixels. Finally, the

slies are olleted into a tomogram, a three-dimensional volume, and viewed by

the user.

We de�ne an o�-line parallel tomography experiment, E

off

, using the

parameters that determine the amount of data and omputation involved in the

tomographi reonstrution.

De�nition I.1

E

off

= (p; x; y; z)

where

� p is the total number of projetions aquired from the mirosope,

� x is the width of the projetion,

� y is the height of the projetion (also the number of slies to om-

pute), and

� z is the thikness of the speimen.

Given NCMIR's 1k�1k and 2k�2k CCD ameras, the following are representative

examples of the size of experiments run by NCMIR users: (61, 1024, 1024, 300)

and (61, 2048, 2048, 600).

5

y

x
p

1

y

x

p
1

y
x

z

xz

y

projections sinograms slices tomogram

(a) (b) (c) (d)

Figure I.3: Proessing steps of tomography.

6

I.A.1 GTOMO

We and our ollaborators implemented a version of o�-line parallel to-

mography alled GTOMO [46℄ whih is targeted to a Computational Grid [18℄.

Traditionally, it an be hallenging to develop appliations that leverage this type

of platform beause resoures are heterogeneous, dynami, and governed by di�er-

ent administrative poliies (i.e., aounting, loal sheduler, seurity, et.). Fortu-

nately, there are several Grid infrastruture projets [19, 24, 30, 6, 43℄ available

to failitate running an appliation aross di�erent administrative domains. In

GTOMO, we use servies from the Globus toolkit [19℄ for remote proess ontrol

and interproess ommuniation. We then implemented a sheduler for running

o�-line parallel tomography in a heterogeneous, dynami environment.

Sine the tomographi algorithms used by NCMIR are embarrassingly

parallel, we an employ a self-sheduling [26℄ strategy. In GTOMO, we use a sim-

ple work queue algorithm where one slie of work is assigned to a proessor at a

time until all slies have been proessed. However, e�etive resoure seletion is

more ompliated beause NCMIR's platform inludes spae-shared resoures (su-

peromputers). On spae-shared resoures, jobs exeute on dediated proessors

but typially have to wait in a queue before exeution. Depending on the number

of proessors requested and the load of the mahine, the queue time of a job an

range from seonds to days. In GTOMO, we implemented a oalloation strat-

egy that avoids queue time delays entirely by adaptively submitting job requests

that an start running immediately. To submit a job request that starts imme-

diately, we utilize availability information exported from a superomputer's bath

sheduler suh as the Maui Sheduler [33℄; this information inludes the number

of nodes available for immediate use and, more importantly, the length of time for

whih they are available. Therefore, we say our strategy oalloates the exeution

of parallel tomography over workstations and immediately available superomputer

proessors. The oalloation strategy implemented in GTOMO was implemented

as an AppLeS. An AppLeS (appliation-level sheduler) [1℄ integrates with the

7

target appliation to develop a shedule for deploying the appliation in a Grid

environment. The sheduler makes preditions of the performane the appliation

may experiene on prospetive resoures at exeution time. Using these predi-

tions, a potentially performane-eÆient shedule for the appliation is identi�ed

and deployed [49, 48, 16, 46℄. In [46℄, we showed that the GTOMOAppLeS strategy

improved the turnaround time of o�-line parallel tomography over strategies that

targeted either workstations or superomputers alone. Currently, GTOMO is used

in prodution at NCMIR on multi-user workstation lusters and superomputers.

The arhiteture of GTOMO is displayed in Figure I.4. There are four

types of proesses in GTOMO: driver, reader, writer, and ptomo. The driver is

invoked by the user and starts up all other proesses using the AppLeS oalloation

strategy. It also oordinates interations among the di�erent proesses and ontrols

the work queue. The reader and writer are multi-threaded I/O proesses and have

diret aess to the user's �le system. The reader reads input �les o� the disk and

sends them to the ptomos for proessing. The writer reeives output �les from

ptomos and writes them to disk. Note that the reader and writer enable GTOMO

to run aross di�erent �le systems. The ptomo reeives input �les from a reader,

does all the omputational work, and sends the output to a writer. Sine data is

typially read and written to one disk (not neessarily the same disk), we use one

reader, one writer, and any number of ptomos.

I.B On-line Parallel Tomography

The time to aquire a single projetion from NCMIR's eletron miro-

sope ranges from 45 seonds to 3 minutes. Therefore, it an take at least 45

minutes to aquire a omplete data set of 61 projetions. When the user visualizes

the data at the end of the aquisition proess, they might disover that the data is

awed or might �nd a better area of the speimen to study. In this ase, the user

will restart the whole experiment with di�erent parameters. It would therefore

8

writerreader

driver

slicesinogram

sinogram

ptomo ptomo ptomo

disk disk

slice

Figure I.4: Arhiteture of GTOMO, the o�-line parallel tomography implemen-

tation.

9

be useful to ompute tomograms during data aquisition to provide users with

feedbak on the quality of their data; eah suessive tomogram would reveal more

information about the three-dimensional struture of the speimen. This would

allow for more eÆient use of the mirosope beause users would be able to make

hanges to their experiment early during the aquisition proess. Furthermore, it

ould potentially redue the amount of speimen damage by limiting exposure to

the eletron beam [47℄.

The proedure of on-line parallel tomography is as follows: When the �rst

projetion is olleted from the mirosope, a oarse tomogram of the speimen

is generated. Eah projetion is then suessively proessed in order to re�ne the

tomogram with additional data. We de�ne the aquisition period as the time to

aquire a projetion from NCMIR's eletron mirosope. NCMIR is urrently tar-

geting an aquisition period of 45 seonds; therefore, we use this value throughout

this thesis.

We de�ne an on-line parallel tomography experiment, E

on

, using a set of

parameters whih desribe the data olleted from the eletron mirosope.

De�nition I.2

E

on

= (a; p; x; y; z)

and

� a is the time to aquire a projetion from the mirosope,

� p is the total number of projetions aquired from the mirosope,

� x is the width of the projetion,

� y is the height of the projetion (also the number of slies to om-

pute), and

� z is the thikness of the speimen.

Note that the re�nement proess involves hanging the values of pixels within slies

of the tomogram. Therefore, the size of the tomogram is onstant throughout data

10

aquisition.

I.C Thesis Summary

In this thesis, we desribe an extension to GTOMO to support on-line

parallel tomography. Beause on-line parallel tomography is resoure-intensive and

our target platform is dynami, we implemented on-line parallel tomography as a

tunable appliation. A tunable appliation is haraterized by the availability of

alternate on�gurations, where eah on�guration orresponds to a di�erent exeu-

tion path and resoure usage [9℄. For on-line parallel tomography, a on�guration

is de�ned by the resolution of the tomogram, frequeny of re�nements to the to-

mogram, and ost of exeution. These parameters allow on�guration of on-line

parallel tomography to aommodate di�erent resoure availabilities.

Seond, we desribe the implementation of an user-direted AppLeS that

exploits the tunability of on-line parallel tomography in order to adaptively shed-

ule its exeution onto a set of resoures. The AppLeS is implemented as multiple

onstrained optimization problems derived from an appliation model, user infor-

mation, and dynami resoure load information. This methodology is exible and

an be solved eÆiently using linear programming.

I.D Organization of Thesis

In Chapter II, we disuss the motivation and implementation of on-line

parallel tomography as a tunable appliation. Chapter III details the design and

implementation of the user-direted AppLeS. Three sets of experimental results are

desribed in Chapter IV. The �rst set of experiments desribed in Setion IV.B

shows that dynami resoure load information, in partiular bandwidth informa-

tion, is key to real-time exeution performane. In Setion IV.C, we show that

tunability is an important appliation harateristi for running on-line parallel

11

tomography in a multi-user, dynami environment. Finally, in Setion IV.D we

evaluate the sheduling lateny introdued by the AppLeS. We disuss related work

in Chapter V and onlude the thesis in Chapter VI.

Chapter II

Tunable On-line Parallel

Tomography

As disussed in Chapter I, we have implemented on-line parallel tomog-

raphy as a tunable appliation; i.e., an appliation whose on�guration is deter-

mined by a set of parameters whih an be varied or "tuned". Tunability is an

important appliation harateristi for running on-line parallel tomography in a

dynami Grid environment sine resoure availability hanges over time. Tuning

parameters allow the appliation to be on�gured to adapt to run-time resoure

availability. In Setion II.A, we disuss the motivation and implementation of

the GTOMO extension to allow for tunable on-line parallel tomography. In Se-

tion II.B, we disuss the three parameters that de�ne a on�guration of on-line

parallel tomography: resolution of the tomogram, frequeny of re�nements to the

tomogram, and ost. s

II.A GTOMO Extension

To motivate the required hanges to GTOMO to allow for on-line parallel

tomography, we �rst disuss how the urrent o�-line GTOMO design is insuÆient

for on-line parallel tomography. Suppose that a NCMIR user wants to run an

12

13

on-line parallel tomography experiment E = (45; 61; 2048; 2048; 600) as desribed

in De�nition I.2 and Setion I.A. If NCMIR had aess to resoures of in�nite

apability (i.e., in�nite bandwidth links and in�nite proessor speed), we would be

able to run the o�-line implementation of parallel tomography after eah projetion

was aquired from the mirosope and have it omplete instantaneously. Thus,

users would be able to obtain the highest resolution tomogram possible and would

see re�nements of the tomogram at the highest frequeny possible, the mirosope

aquisition rate. Now, let us onsider E for a set of more realisti resoures.

Using De�nition I.2, there will be 2048 slies of work to proess for ex-

periment E. To proess a single sanline of a projetion into a slie using the

R-weighted bakprojetion method [41℄ takes approximately .33 seonds on a ded-

iated 700 MHz AMD Athlon proessor (see Figure II.1 for a desription of the

R-weighted bakprojet algorithm). Using this as an average proessor speed,

the �rst re�nement of the tomogram (or refresh) would take :33 � 2048 � 676

seonds. Under the urrent implementation of GTOMO, eah suessive tomo-

gram refresh omputation would repeat the work done to ompute the previous

tomogram refresh. This is due to GTOMO's sheduling strategy (work queue);

a ptomo proesses one slie of work at a time, sends it to the writer, and then

deletes it (i.e., a ptomo is stateless). Therefore, when a new projetion is aquired

from the mirosope, all data must be sent out again and proessed. Conse-

quently, the seond refresh of the tomogram would take 2 � :33 � 2048 � 1352

seonds sine ptomo must reproess the sanline from the previous projetion

and then proess the sanline from the new projetion. Likewise, the third re-

fresh would take 3 � :33 � 2048 � 2028 seond; the last refresh would take

61� :33 � 2048 � 41; 226 seonds. To exeute in real-time, we want the proess-

ing of one projetion to omplete before the next one arrives. Assuming optimal

parallelization speedup, the �rst refresh would require d676=45e = 16 proessors,

the seond refresh would require d1352=45e = 31 proessors, and the last refresh

would require d41; 226=45e = 917 proessors. This tehnique requires an inreas-

14

Algorithm : bakprojetSanline(sanline; slie; angle)

loal height; width

height getSlieHeight(slie)

width getSlieWidth(slie)

RWeightSanline(sanline)

for y 0 to height� 1

for x 0 to width� 1

slie[y℄[x℄ slie[y℄[x℄ + alulateContribution(angle; sanline)

Figure II.1: Algorithm for bakprojeting a single sanline of a projetion (at

angle) into a slie of the volume. First, the sanline is modi�ed using the

RWeightSanline funtion to smooth the data. Then, every pixel of the slie is

updated to onsider the ontribution of the sanline.

ing amount of omputational power; furthermore it is ineÆient beause it is not

augmentable. To be augmentable, a tehnique should allow eah suessive om-

putation to build upon the previous omputation without repeating work. Hene,

a more eÆient tehnique would be to store all previous omputation so that re-

freshes do not repeat work. Therefore, we added an extension to GTOMO so

that the R-weighted bakprojetion algorithm an be exeuted as an augmentable

tehnique.

Our approah is to use a stati work alloation strategy. A stati work

alloation is a �xed assignment of omputation to a set of resoures. In this

ontext, a stati work alloation is an assignment of y slies of work among a set

of ptomos. We then modify the ptomos so that they are stateful. In partiular,

whenever a projetion is aquired from the mirosope, the ith sanline is sent

to the ptomo that has been alloated the ith slie so that it may proess the

new data. The advantage of this tehnique is that we redue the omputation

by a fator

p

X

i=1

i, where p is the total number of projetions aquired from the

mirosope. Therefore, in the example presented in the previous paragraph, eah

15

refresh would require 672 seonds sine we only proess the sanline data from the

new projetion for eah refresh. Therefore, we need 16 proessors for the entire

omputation. The drawbak of this approah is that we use lose the run-time

adaptive sheduling advantage of work queue [26℄ used in the o�-line GTOMO

ase; we address this tradeo� in Chapter VI.

The struture of GTOMO on-line parallel tomography extension is shown

in Figure II.2. As in the o�-line parallel tomography mode, the driver is invoked

by the user and starts up all other proesses. The eletron mirosope sends a

projetion to the preproessor every a seonds. The preproessor divides the pro-

jetion into setions, where eah setion ontains multiple sanlines. The setions

are alloated to ptomo proesses suh that the sanlines in eah setion an be

proessed in parallel. All ptomos will periodially send their slies to the writer in

order to update the tomogram. A visualization program will then display updated

tomograms to the user.

As a �nal note, reall from Chapter I that the optional iterative ART and

SIRT algorithms operate on the speimen data after the R-weighted bakproje-

tion ompletes. In eah iteration, the tomogram is orreted based on di�erenes

between the original projetion data and reonstruted volume. For the ART [23℄

algorithm, pixels in the slies are orreted p times during a single iteration; the

orretion for a pixel (from the ith slie) is alulated from the ith sanline from

one of the projetions. For the SIRT [22℄ algorithm, eah pixel in the ith slie

gets updated one during a single iteration using a orretion based on the ith

sanlines from all projetions (also known as a sinogram). Therefore, sine both

the ART and SIRT algorithms assume all data has been aquired from the miro-

sope (eah iteration involves data from all projetions), these algorithms are not

augmentable. Hene, for on-line parallel tomography we only use the R-weighted

bakprojetion whih omputes suÆiently re�ned tomographi reonstrutions to

provide feedbak on the quality of the data aquisition. Note that if the user wants

to re�ne their tomogram with the ART or SIRT algorithms, they an run GTOMO

16

writerpreprocessor

driver

slice

projection

scanlines

tomogram

ptomo ptomo ptomo

Figure II.2: Arhiteture of GTOMO on-line parallel tomography extension. The

eletron mirosope sends data to the preproessor. The data is then alloated to

the ptomos to be proessed in parallel. The output data is olleted by a writer

proess where it an be visualized.

17

in o�-line parallel tomography mode after data aquisition is omplete.

II.B Tunable Parameters

We now de�ne the parameters that de�ne a on�guration of on-line paral-

lel tomography. These parameters will allow the appliation to be tuned to adapt

to di�erent resoure availabilities.

Consider the ommuniation assoiated with the experiment E = (45, 61,

2048, 2048, 600). Eah slie will be about 4.7 MB, yielding a tomogram of 9.6 GB.

If we plae our writer on a mahine with an observable bandwidth of 300 Mb/s,

it will take 1024 seonds (17 minutes) to transfer the whole tomogram. Note that

sine ptomos prefeth slies into memory using multi-threading, we neglet disk

aess time. Given that we do not want to overload the network by sending a

tomogram before the transfer of the previous tomogram has ompleted, we an

send a re�ned tomogram to the writer every d1024=45e = 23 projetions. We

therefore say the number of projetions per refresh is 23 and the refresh period is

23� 45 = 1035 seonds (17.25 minutes). Sine NCMIR users would like refreshes

to omplete within 10 minutes, this is unaeptable. One solution is to redue

the size of the projetions. Suppose we redue the projetions by a fator of 2

in eah dimension.

1

We will then have an experiment E' = (45, 1024, 1024, 300)

to proess. Therefore, eah slie will be about 1.2 MB, yielding a tomogram of

1.2 GB, 8 times smaller than the 2k � 2k data set. If we again assume 300 Mb/s

bandwidth, it will take 128 seonds to transfer eah tomogram whih would redue

the number of projetions per refresh to 3. Similarly, if we were to redue by a

fator of 4, it would take 16 seonds to transfer eah tomogram whih would redue

the projetions per refresh to 1, the best refresh frequeny possible. Given that

we annot predit what trade-o�s will be preferable to a user, we let eah user

1

Note that it takes about 1.3 seonds to redue a 2k � 2k projetion on a 700 MHz AMD

Athlon proessor. Therefore, we introdue a lateny of 1.3 seonds in the time to aquire the

initial projetion from the mirosope. However, the period between suessive projetions will

not be a�eted; therefore, the aquisition period will also not be a�eted.

18

individually deide whih on�guration is best for them.

Note that the ommuniation assoiated with the input data is relatively

small ompared with that of the output data. For example, in a 2k� 2k data set,

projetions are 16 MB, whereas a tomogram is 9.6 GB. For a 1k� 1k experiment,

eah projetion would then be only 4 MB whereas eah tomogram would be 1.2

GB. In both ases, the output data is two orders of magnitude larger than the

input data set.

We now formally de�ne two parameters that determine the quality of

an exeution of on-line parallel tomography: redution fator (f) and projetions

per refresh (r). We then de�ne a third ost parameter, servie units (su). The

on�guration of on-line parallel tomography is de�ned by a triple (f; r; su). We

desribe eah of these in more detail below.

II.B.1 Redution Fator

The redution fator (f) is a salar integer value that results in a redu-

tion of the size of a projetion in eah dimension. For example, if we redue a

projetion of size x� y by f , we will have a projetion of size

x

f

�

y

f

. An inrease

in the redution fator dereases both the number of slies to ompute and the

amount of omputation per slie. For the time being, we onsider just a simple

averaging redution method. We modi�ed the averaging algorithm given in [28℄ so

that it works for arbitrary redution fators. The modi�ed averaging algorithm,

given in Figure II.3, works by �rst dividing the x�y projetion into square windows

of size f � f . For eah window, the values of the pixels are averaged to reate a

single pixel in the redued projetion. Figure II.4 shows an 8�8 projetion redued

by a fator of 2. Note that in order to yield a suÆiently detailed tomogram for

NCMIR users, projetions should not be redued beyond 256� 256. For example,

the maximum f for a 1k � 1k experiment is 4 and the maximum f for a 2k � 2k

experiment is 8.

19

Algorithm : redue(projetion; x; y; f)

for i 1 to y=f

for j 1 to x=f

sum 0

for m 1 to f

for n 1 to f

sum = sum+ projetion[i � f +m℄[j � f + n℄

reduedProjetion[i℄[j℄ = sum=(f � f)

return (reduedProjetion)

Figure II.3: Redution algorithm.

reduce

Figure II.4: A 8� 8 projetion being redued by a fator of 2.

20

II.B.2 Projetions Per Refresh

The projetions per refresh (r) parameter refers to the number of new

projetions proessed into eah suessive tomogram re�nement or refresh. For ex-

ample, if r = 3, a user would see a refreshed tomogram after every third projetion

was aquired from the mirosope. We refer to the time to omplete a refresh as

the refresh period. The refresh period an be determined by multiplying r by the

aquisition period, a. Inreasing r redues the frequeny of refreshes sent to the

user and thus redues the amount of ommuniation. As mentioned previously, an

upper bound on the time between suessive tomogram refresh is 10 minutes for

NCMIR users. Therefore, for an aquisition period of 45 seonds, r should be no

more than b600=45 = 13.

II.B.3 Cost

Thus far, we have assumed that all resoures are free. While this model

may be appropriate for workstations where resoure usage is not monitored, it is not

appropriate for many superomputers. At superomputer enters, resoure usage

is generally monitored through alloation [13, 10, 35, 37, 34℄. Usually a researh

group is given an alloation of superomputer time per quarter. If the group

exeeds their alloation, they will no longer be allowed to run on that resoure

for the duration of that quarter. Therefore, a group may want to moderate their

superomputer usage. We de�ne a parameter, servie units (su), for on-line parallel

tomography to indiate how muh superomputer time will be onsumed by a run.

Servie units are alulated using the following equation based on the wall lok

harging poliies of �ve superomputer enters [13, 10, 35, 37, 34℄.

su = harge fator � number of CPUs� wall lok time (II.1)

The harge fator is simply a generi integer value to aount for di�erent harging

poliies enfored by superomputer enters. The harge fator ould be based on

21

the type of user, the queue type, or some other fator spei� to the superomputer

enter.

II.C Summary

In this hapter, we desribed an extension to GTOMO to allow for on-

line parallel tomography. The extension enables the R-weighted bakprojetion

method to exeute as an augmentable tehnique. This is more eÆient than run-

ning o�-line parallel tomography multiple times but loses the run-time adaptive

sheduling advantage of work queue. We then de�ned a on�guration of on-line

parallel tomography as a triple of tunable parameters, (f; r; su). These parameters

represent resolution of the tomogram, frequeny of re�nements to the tomogram,

and ost. As desribed in the next hapter, these parameters will allow the AppLeS

to adapt the appliation on�guration to the availability of a set of resoures.

Chapter III

User-Direted AppLeS

In the previous hapter, we disussed the design of on-line parallel tomog-

raphy as a tunable appliation. However, it is diÆult to hoose a on�guration

and work alloation that eÆiently utilize multi-user, dynami sets of resoures at

run time. First, determining an appropriate work alloation requires availability

information for eah resoure (e.g. CPU, bandwidth). Seond, sine these are

dynami resoures, the best on�guration will vary over time. In this hapter, we

disuss the design of an user-direted AppLeS for on-line parallel tomography. In

Setion III.A, we motivate and de�ne a user-direted AppLeS. We then desribe

the design of the AppLeS in Setion III.B and III.C.

III.A Design

In Setion II.B, we de�ned a triple (f; r; su) that determined the on-

�guration of on-line parallel tomography. If enough resoures are available, users

will always want to run using the best on�guration, (1; 1; 0). This would result

in the highest resolution tomogram being refreshed at the highest frequeny pos-

sible for zero ost. Yet, in pratie, resoure availability may prevent users from

ahieving this on�guration. In this ase, users will need to hoose an alternate

on�guration. However, it is is not always obvious whih on�guration is the best

22

23

f = 1 f = 2 f = 2

r = 6 r = 2 r = 1

su = 4 su = 8 su = 20

(a) (b) ()

Table III.1: Three example on�gurations available for a tomographi reonstru-

tion and resoure platform.

alternative.

Suppose the on�gurations listed in Table III.1 are three possible on-

�gurations for a tomographi reonstrution and target platform. Without some

knowledge of the user's riteria, it is not obvious whih on�guration is the best.

Furthermore, hoosing a on�guration that favors one parameter may involve trad-

ing o� the bene�ts of another parameter. For example, a higher f would allow for

a smaller r (sine there would be less data to transfer). Also, a higher su ould re-

sult in a lower f and/or lower r (sine there would be more omputational power).

In the example presented in Table III.1, if resolution was the most important pa-

rameter, (a) would be the best hoie for a user. On the other hand, if frequeny

of refreshes was more important, (b) or () would be better hoies; () would be

the best hoie if spending 20 servie units was aeptable.

Automating the proess of determining the best on�guration for a user

is beyond the sope of this thesis. In this work, the AppLeS assists users in

seleting a on�guration that works for them and is thus referred to as a user-

direted AppLeS. The design of the user-direted AppLeS sheduler is illustrated

in the ow diagram shown in Figure III.1. The grayed shapes orrespond to user

ations while the white shapes orrespond to AppLeS ations. We detail eah step

in the following desription.

(i) The user spei�es bounds on eah on�gurable parameter: f; r, and su. This

orresponds to the maximum and minimum value the user is willing to tol-

erate for a parameter.

24

generate
request

display
triples

adjust
request

review
triples

process
request

find
work

allocation

execute

accepts one

rejects all

infeasible

feasible

Figure III.1: Flow diagram for a user-direted AppLeS. The grayed shapes orre-

spond to user ations while the white shapes orrespond to AppLeS ations.

25

(ii) The AppLeS searhes the parameter spae for feasible triples; eah triple

orresponds to a feasible on�guration of the tunable appliation. If no on-

�gurations an be found, the user will need to adjust the request.

(iii) The user onsiders all on�gurations and then selets a single triple for exe-

ution.

(iv) The AppLeS will determine an appropriate work alloation for the user-

seleted triple and then exeute.

This approah allows the user to selet the best on�guration for them from the set

of feasible on�gurations determined by the AppLeS. In the following subsetions,

we desribe how the user-direted AppLeS �nds feasible triples and determines

work alloation.

III.B Searhing for Triples

In order for the AppLeS to searh for available on�gurations, the user

supplies it with a lower and upper bound on eah parameter; this indiates the

range of values the user �nds aeptable for a parameter. Therefore, we say a

triple (f; r; su) is a andidate if,

f

min

� f � f

max

r

min

� r � r

max

(III.1)

su

min

� su � su

max

For an experiment, E, and a set of resoures, M , we say a andidate triple is

feasible if there exists a work alloation, W , for it (see Setion III.C); if no W an

be found, we say the triple is infeasible.

26

As disussed in the previous setion, our goal is to present the user with a

set of feasible triples (f; r; su). One approah is exhaustive searh. For eah triple

(f; r; su), one an searh for a possible work alloation. A more eÆient approah

is to solve three optimization problems:

(i) �x f and r, minimize su;

(ii) �x r and su, minimize f ; and

(iii) �x f and su, minimize r.

This approah has the added advantage of �ltering out suboptimal triples. For

example, suppose that triples (1; 1; 0) and (1; 2; 0) are feasible. We assume that

users would alway hoose (1; 1; 0) over (1; 2; 0).

We display the AppLeS searh algorithm in Figure III.2.

There are three loops that orrespond to the three optimization prob-

lems outlined above. The three funtions findOptimalServieUnits,

findOptimalProjetionsPerRefresh, and findOptimalRedutionFator

searh for a work alloation given two �xed input parameters; this is aomplished

by solving a onstrained optimization problem as desribed in the next setion. If

a work alloation is found, the optimized parameter is returned and the triple is

added to a list. For added eÆieny, we stop searhing whenever the optimized

parameter found stops improving. Sine the three loops may result in dupliate

triples, we add a proedure at the end to remove dupliates from the list.

III.C Work Alloation Experiments

Consider an experiment E = (a; p; x; y; z). The goal is to �nd a work

alloation for a set of resoures, M . We de�ne a work alloation as a set W :

W = fw

m

: m 2Mg (III.2)

27

Algorithm : searh(f

min

; f

max

; r

min

; r

max

; su

min

; su

max

)

triples ;

for i f

min

to f

max

optimal su 1

for j r

min

to r

max

if findOptimalServieUnits(i; j;&su) == FOUND

if su < optimal su

triples:add(i; j; su)

else

break

for i f

min

to f

max

optimal r 1

for j su

min

to su

max

if findOptimalProjetionsPerRefresh(i; j;&r) == FOUND

if r < optimal r

triples:add(i; r; j)

else

break

for i r

min

to r

max

optimal f 1

for j su

min

to su

max

if findOptimalRedutionFator(i; j;&f) == FOUND

if f < optimal f

triples:add(f; i; j)

else

break

triples:removeDupliates()

return (triples)

Figure III.2: AppLeS triple searh algorithm.

28

where w

m

is the number of tomogram slies alloated to resoure m. We have the

following two onstraints:

8m 2M w

m

� 0 (III.3)

X

m2M

w

m

= y: (III.4)

Reall that there are a total of y tomogram slies to ompute, i.e., we assume that

there is no work repliation. To �nd W , we �rst reate a model of the appliation;

the model is simply a system of equalities and inequalities. We then plug dynami

resoure load information into the model and solve the system using the method

desribed in Setion III.C.5.

III.C.1 Appliation Model

The model for on-line parallel tomography frames it as a soft real-time

appliation. A soft real-time appliation is haraterized by the exeution of tasks

whih have soft deadlines [31℄. That is, the usefulness of a task with a soft deadline

dereases as the lateness of the task inreases [31, 4℄. Given the disussion in

Setion II, our soft-deadlines are:

(i) The omputation time of one projetion will be less than the aquisition

period.

(ii) The transfer time of a tomogram will be less than the refresh period.

If one of these deadlines is missed, performane degrades. Therefore, our goal is to

�nd a work alloation for whih all deadlines are met. We express the problem as

a onstrained optimization problem. In Setions III.C.2 and III.C.3 we translate

the deadlines expressed above into inequalities. In Setion III.C.4, we add in a set

of equalities to express the ost of exeution. Finally, we add in the user's bounds

de�ned in Equation III.1. The omplete system of equalities and inequalities is

displayed in Figure III.7.

29

III.C.2 Computation

In order to satisfy the soft omputation deadline outlined above, we in-

trodue the following inequality into our model:

8m 2M T

omp

(m) � a; (III.5)

where T

omp

(m) is the time to ompute w

m

slies on resoure m and a is the

aquisition period. In other words, we want the omputation of one projetion to

omplete before the next projetion is aquired. Otherwise, the projetions will

queue up and we will lose real-time exeution (i.e., refreshes to the tomogram). To

determine T

omp

(m), we examine the ptomo algorithm displayed in Figure III.3.

Suppose a resoure m is assigned w

m

slies � to �. Eah time a projetion is

aquired from the mirosope, the preproessor will send it sanlines � to � for

proessing. Resoure m will reeive the w

m

sanlines and then bakprojet eah

sanline into its appropriate slie. The exeution time, t

b

, for bakprojetSanline

is approximately proportional to the number of pixels in the slie (see Figure II.1).

That is,

t

b

� tpp

m

�

x

f

�

z

f

; (III.6)

where tpp

m

(time per pixel) is the time in seonds to proess a sanline into a

single pixel of the slie on a dediated proessor of m and f is the redution fator.

Sine the omputation time is dominated by bakprojet, the time to ompute w

m

slies on a dediated proessor of m is

T

omp

(m) � tpp

m

�

x

f

�

z

f

� w

m

: (III.7)

Reall that our set of resoures, M , ontains two types of ompute re-

soures: time-shared resoures (workstations) and spae-shared resoures (super-

30

Algorithm : proess(�; �)

global projetionsPerRefresh; angleList

loal angle; sanlines; slies

for projetionId 0 to p� 1

angle angleList[projetionId℄

sanlines revSanlines(�; �)

for i � to �

bakprojetSanline(sanlines[i℄; slies[i℄; angle)

if (projetionId mod projetionsPerRefresh) = 0

sendSlie(slies[i℄)

Figure III.3: Ptomo proessing algorithm.

omputers). Let TSR be the set of time-shared resoures and SSR be the set of

spae-shared resoures suh that

TSR [SSR =M: (III.8)

On a time-shared resoure,

T

omp

(m) �

tpp

m

pu

m

�

x

f

�

z

f

� w

m

; (III.9)

where pu

m

is the fration of CPU available on m. In pratie, we obtain a predi-

tion of the value for pu

m

from the Network Weather Servie (NWS) [55, 16℄. The

NWS is a resoure monitoring system that provides dynami resoure load fore-

asts (e.g. available CPU, bandwidth, and memory). Likewise, for a spae-shared

superomputer,

T

omp

(m) �

tpp

m

u

m

�

x

f

�

z

f

� w

m

; (III.10)

where u

m

is the number of proessors on m that are unused (i.e., proessors imme-

diately available for exeution). We an obtain u

m

from bath shedulers suh as

the Maui Sheduler [33℄ as disussed in Setion I.A.1 using the ommand showbf.

31

In summary,

T

omp

(m) �

8

>

>

<

>

>

:

tpp

m

pu

m

�

x

f

�

z

f

� w

m

if m 2 TSR

tpp

m

u

m

�

x

f

�

z

f

� w

m

if m 2 SSR

(III.11)

III.C.3 Communiation

For ommuniation, we introdue the following transfer onstraint into

our model:

8m 2M T

omm

(m) � r � a; (III.12)

where T

omm

(m) is the time in seonds for resoure m to transfer w

m

slies to the

writer, r is the projetions per refresh, and a is the time to aquire a projetion

from the mirosope. In other words, we want the transfer of a tomogram to

omplete within the refresh period.

We model the transfer time, T

omm

(m), using the equation given in [14℄,

T

omm

(m) = T

o

+

B

m

; (III.13)

where T

o

is the message overhead, is the amount of data transferred, and B

m

(b/s) is the transfer rate from resoure m to the writer. However, sine slies are

generally megabytes in size (e.g. 1.2 MB, 4.7 MB), we treat T

o

as a nominal value.

Therefore, we say

T

omm

(m) �

B

m

: (III.14)

Given w

m

slies of size x� z,

 = w

m

� (

x

f

�

z

f

� sz) (III.15)

32

where sz is the number of bits used to represent a pixel. In our urrent implemen-

tation, a pixel is stored as a oat (e.g. 32 bits). We obtain a predition on the

value of B

m

(b/s) from the NWS [56, 54℄. Therefore,

T

omm

(m) �

w

m

� (

x

f

�

z

f

� sz)

B

m

: (III.16)

Note that this model assumes a fully onneted network suh as that

displayed in Figure III.4. However, in pratie, many resoures are onneted by

way of a shared network link [51, 40℄ . For example, Figure III.5 shows a 10 Mb/s

ethernet subnet and a 100 Mb/s ethernet subnet onneted via a swith. Using our

urrent model, the AppLeS would shedule as if both A and B had a bandwidth

of 10 Mb/s to the writer even though they atually share the 10 Mb/s bandwidth.

Therefore, we inorporate network topology information into our model in order

to determine a more e�etive work alloation. We group resoures into subnets,

where a subnet ontains a set of ompute resoures whih share a network link to

the writer. Let S be the set of subnets suh that

[

S

i

2S

S

i

=M: (III.17)

where S

i

is a subnet. In pratie, the subnet groupings in S an be obtained using a

tool like ENV [44℄. ENV (E�etive Network View) uses a number of heuristis (e.g.

bandwidth tests) to determine a logial representation of the network topology

relative to a soure mahine. In our ase, ENV groups M into subnets using the

writer as the soure mahine; it also returns a subnet bandwidth to the soure

mahine. For example, Figure III.6 shows the ENV representation of the network

topology shown in Figure III.5. Using the logial network information provided by

ENV, the following additional transfer onstraint an then be introdued into our

model:

33

Figure III.4: Example of a fully onneted network.

A B

writer

100 Mb/s

10 Mb/s

100 Mb/s

Figure III.5: Example of a LAN network topology.

34

writer

10 100100

A B

Figure III.6: ENV logial representation of the network topology shown in Fig-

ure III.5.

8S

i

2 S T

omm

(S

i

) � r � a (III.18)

where T

omm

(S

i

) is the time in seonds for all ompute resoures in S

i

to transfer

X

m2S

i

w

m

slies to the writer. Therefore, we write

T

omm

(S

i

) �

X

m2S

i

w

m

!

�

x

f

�

z

f

� sz

B

S

i

(III.19)

where B

S

i

is the apaity (b/s) of the subnet link obtained from ENV. In other

words, we want to alloate work to resoures suh that their umulative transfers

do not exeed the apaity of the subnet. Note that beause we assume a het-

erogeneous network, Equations III.18 and III.19 omplement Equations III.12 and

III.16 rather than invalidating them.

In pratie, there is no automated way to determine the bandwidth of the

writer link using ENV unless one an ensure there is at least one other mahine

in M that is sharing the same link. Therefore, we do not inlude a onstraint on

the sum of the subnet transfers to the writer. However, if the bandwidth of the

35

writer link was available, it would be straightforward to add this onstraint into

the model.

Finally, we also do not introdue any transfer onstraints into our model

involving input data (i.e., projetion data sent from the preproessor to the pto-

mos). For the NCMIR senarios, the input data is two orders of magnitude smaller

than the output data (as noted in Setion II.B) and its transfer time is amortized

into the aquisition period. For other senarios, this model ould be extended in

a straightforward way to inlude onstraints on input data transfer.

III.C.4 Cost

In Setion II.B.3, we de�ned ost in servie units using the following

equation:

su = harge fator � number of CPUs� wall lok time (III.20)

Therefore, we add Equation III.20 to our system. Reall that in our model, a

spae-shared resoure m is represented as a single resoure (see Equation III.10).

It is therefore possible that a spae-shared resoure will be alloated an amount

of work that does not require the omputational power of all u

m

immediately

available proessors. In this ase, we want to alulate how many proessors are

required to omplete the omputation for harging purposes. This is aomplished

by alulating the time it would take to ompute w

m

on one proessor of m and

then dividing by the aquisition period, a.

n

m

=

tpp

m

�

x

f

�

z

f

� w

m

a

(III.21)

Sine superomputer enters do not harge for frational piees of CPU, we om-

pute dn

m

e. To express this in our equations, we add a slak variable, l

m

, to the

equation, where 0 � l

m

< 1, and onstrain n

m

to be an integer. Thus, n

m

an be

found using,

36

tpp

m

�

x

f

�

z

f

� w

m

a

+ l

m

� n

m

= 0 (III.22)

Therefore, the following onstraint an now be added to our model:

su =

X

m2SSR

h

m

� n

m

� p� a (III.23)

where h

m

is the harge fator, n

m

is the number of CPUs used on m, and p � a

is the wall lok time of exeution. In other words, we sum together the servie

units using the harging poliy of all resoures in SSR. Note that,

8m 2 SSR n

m

� u

m

: (III.24)

III.C.5 Putting it all together

The last set of onstraints are the user onstraints expressed in Equa-

tion III.1. We an now summarize our model in Figure III.7. Given this system

of equalities and inequalities, determining W beomes an optimization problem.

Reall from Setion III.B, that we searh for feasible triples by �xing two of the

parameters and optimizing for the third. For onveniene, we rewrite the three

optimization problems from Setion III.B here:

(i) �x f and r, minimize su;

(ii) �x r and su, minimize f ; and

(iii) �x f and su, minimize r.

For both (i) and (iii), the system beomes linear upon substition of f . This is

a lear advantage beause there are numerous linear programming solvers freely

available [29℄. However, the system remains nonlinear for (ii). While nonlinear

37

programming solvers are also freely available [36℄, we opt to use a simpler tehnique.

As a �rst approah, we exploit the disreteness and small range of f to redue

the nonlinear program to multiple linear programs using substitution. All linear

systems are then solved using the lp solve pakage [32℄ and the one with the

optimal solution is hosen.

Ideally, an optimal solution would be found by formulating the linear

program as an integer program.

1

An integer program is a linear program where all

variables are onstrained to be integers [2℄. However, integer programs are harder

to solve than linear programs [29℄. Our experiments indiate that a mixed-integer

approah, where w

m

and l

m

are expressed as ontinuous variables and all others

as integer variables, is eÆient. The drawbak of this approah is that we have

to round the values found for w

m

2 W sine we annot alloate frational slies

to ptomos. Therefore, the result is an approximate solution; we assess this in the

following hapter.

III.D Summary

In this hapter, we de�ned a user-direted AppLeS. The AppLeS works

by disovering feasible triples at run-time based on urrent resoure availability

and displays them as hoies to the user. One the user piks a triple, the Ap-

pLeS determines a work alloation. We then desribed how the AppLeS searhes

for triples and determines work alloation by haraterizing sheduling/tuning as

multiple onstrained optimization problems. In the next hapter, we evaluate the

performane of the AppLeS using simulations.

1

Equation III.22 an be rewritten without l

m

, the only ontinuous variable in our system.

38

8m 2 M w

m

� 0 (1)

X

m2M

w

m

= y (2)

8m 2 TSR

tpp

m

pu

m

�

x

f

�

z

f

� w

m

� a (3)

8m 2 SSR

tpp

m

u

m

�

x

f

�

z

f

� w

m

� a (4)

8m 2 M

w

m

� (

x

f

�

z

f

� sz)

B

m

� r � a (5)

8S

i

2 S

X

m2S

i

w

m

�

x

f

�

z

f

� sz

B

S

i

� r � a (6)

8m 2 SSR

tpp

m

�

x

f

�

z

f

� w

m

a

+ l

m

� n

m

= 0 (7)

8m 2 SSR n

m

� u

m

(8)

su =

X

m2SSR

h

m

� n

m

� p� a (9)

f

min

� f � f

max

(10)

r

min

� r � r

max

(11)

su

min

� su � su

max

(12)

Figure III.7: The model of on-line parallel tomography.

Chapter IV

Experiments

IV.A Introdution

In this setion we show three sets of results. In Setion IV.B, we show

that using dynami load information improves sheduler performane. In the se-

ond set of results, desribed in Setion IV.C, we demonstrate that tunability is an

important harateristi for running on-line parallel tomography in a Computa-

tional Grid. Finally, we evaluate the sheduling lateny of the AppLeS sheduler

in Setion IV.D.

IV.B Work Alloation

The goal of the �rst set of experiments was to investigate the impat

of dynami information on sheduler performane for on-line parallel tomography.

For an experiment (45, 61, 1024, 1024, 300) as desribed in Setions I.A and I.B,

we �x the appliation on�guration (f; r; su) and ompare the work alloation

strategy of the AppLeS sheduler to shedulers whih use no or partial dynami

information. In Table IV.1, we summarize the harateristis of the shedulers.

The �rst sheduler, wwa (weighted work alloation), orresponds to a very

simple sheduling strategy that a user might employ to perform load balaning in

39

40

in�nite bandwidth dynami bandwidth

dediated pu wwa wwa+bw

dynami pu wwa+pu AppLeS

Table IV.1: Summary of sheduler harateristis.

a heterogenous system. It performs work alloation based only on the relative

proessor benhmarks of the appliation in dediated mode. This tehnique is

onsidered simple beause the only overhead is performing an appliation benh-

mark for eah proessor; this is a one-time only proess and is something any user

an perform.

1

In partiular, this sheduling tehnique assumes no dynami load

information; i.e., it assumes dediated proessors and in�nite bandwidth links.

The remaining shedulers build upon the wwa approah by assuming in-

reasingly realisti harateristis about Grid resoures. The sheduler wwa+pu

assumes that ompute resoures are shared among multiple users. It extends wwa

by utilizing dynami CPU load information. This orresponds to users who might

run a system tool suh as the UNIX ommand uptime on eah mahine to �nd

out CPU availability before exeuting their appliation. The AppLeS sheduler,

as desribed in Chapter III, assumes both ompute and network resoures are

shared among multiple users. It builds upon wwa+pu, by also utilizing dynami

bandwidth information. As explained in setion III.C, dynami CPU load and

bandwidth information are obtained from the NWS. Note that some e�ort on the

part of the user is required to set up and maintain the NWS sensors. The wwa+bw

sheduler assumes only dynami bandwidth information and no CPU load infor-

mation.

IV.B.1 Performane Metri

Given the soft-real time requirement for on-line parallel tomography, we

say that performane degrades when either the omputation or ommuniation

1

The UNIX system all, lok, an be used to determine the approximate length of CPU

time used by a proess whih an be used to approximate dediated time.

41

soft deadlines, as desribed in Setion III.C, are violated. Sine the lateness of a

omputation deadline will e�et the lateness of the ommuniation deadline, we

an summarize performane based on the refresh ompletion times. Therefore, we

say that performane degrades when a refresh is late; that is, when a refresh's

ompletion time is greater than the refresh period, r � a. For eah refresh, we

measure the lateness relative to the lateness of the previous refresh. We all this

relative refresh lateness (�

l

) and use this as our performane metri for on-line

parallel tomography. We now de�ne �

l

formally.

Let R = f1; :::;

p

r

g be a set of refreshes for a single exeution of on-line

parallel tomography. Also, let d(i) be the expeted ompletion time (deadline) of

a refresh i 2 R suh that

d(i)� d(i� 1) = r � a: (IV.1)

In other words, eah refresh is expeted to omplete within the refresh period.

Note that we assign d(0) = 0. Now let, (i) be the atual ompletion time of

refresh i with respet to d(0). If refresh i � 1 is not late, then �

l

(i) is simply

the di�erene between the atual refresh ompletion time, (i), and the expeted

refresh ompletion time, d(i):

�

l

(i) = (i)� d(i): (IV.2)

Substituting Equation IV.1 into Equation IV.2 gives

�

l

(i) = (i)� d(i� 1)� r � a: (IV.3)

Now, if refresh i� 1 is late, then (i� 1) > d(i� 1) and we measure the lateness

of refresh i relative to (i� 1). Therefore,

�

l

(i) = (i)� (i� 1)� r � a: (IV.4)

42

Combining Equations IV.3 and IV.4 gives the de�nition of �

l

(i):

�

l

(i) = (i)�max(d(i� 1); (i� 1))� r � a: (IV.5)

If (i) arrives early, then refresh i is not late and we de�ne �

l

= 0. Therefore,

�

l

(i) = max[(i)�max(d(i� 1); (i� 1))� r � a; 0℄: (IV.6)

Note that if all refreshes arrive on time, eah run will have

p

r

refreshes.

However, if any refreshes are late, it is likely that only a fration of the refreshes

will omplete within data aquisition. Therefore, the total number of ompleted

refreshes an also be a performane metri.

IV.B.2 Simulation

In order to ompare sheduler performane, we must exeute the appli-

ation with eah sheduler under the same environmental onditions. However,

ahieving reproduible environmental onditions is diÆult in a dynami environ-

ments [20℄. One approah is to run experiments bak-to-bak in order to ahieve

similar environmental onditions [48, 46, 16℄. Another approah is to use simula-

tion [7℄.

Given the long makespan of on-line parallel tomography, ahieving re-

produible environmental onditions with bak-to-bak experiments is infeasible.

Therefore, we onduted our experiments using simulation. This had the added

bene�t of allowing us to study the behavior of the shedulers in many di�erent

environments. We wrote a simulator using the Simgrid toolkit whih provides

a simulation API for studying sheduling algorithms in distributed systems [5℄.

Simgrid allows us to implement a disrete-event simulator and provides a notion

of tasks (e.g. omputation, data transfer) and resoures (e.g. proessors, network

links). Tasks an have dependenies among them and are sheduled on resoures.

43

Resoures behaviors are modeled by servie rates that an be modeled by traes

from real resoures (e.g. CPU availability, bandwidth of network link). Suh traes

are ommonly available by existing resoure monitoring tools suh as the NWS.

Furthermore, Simgrid makes it possible to reate arbitrary resoure interonnet

topologies. The Simgrid approah has been veri�ed in [5℄ and has been used

to evaluate sheduling algorithms for parameter sweep appliations [7, 8℄. Similar

trae-based resoure simulation approahes have also been applied in projets suh

as Briks [50℄.

In our simulator, we model four types of tasks based on pro�le information

from the appliation:

aquire: aquire a projetion from the mirosope

sanline transfer: send a sanline from the preproessor to a ptomo

bakprojet omputation: bakprojet a sanline to a slie

slie transfer: send a slie from a ptomo to the writer

For a single simulation, there are p aquires. For eah aquire, there are y san-

line transfers and y bakprojetion omputations. Given the value of r, there an

also be y slie transfers following the bakprojetion omputations. Resoures are

modeled as a Computational Grid ontaining multi-user workstations and spae-

shared superomputers. The servie rates workstations are modeled using NWS

CPU availability traes taken from real mahines. Similarly, the number of proes-

sors available on a superomputer is taken from traes from a real superomputer.

Note that sine we are modeling superomputers as spae-shared, proessors of the

superomputer are modeled as having a onstant servie rate (i.e., no load). Sim-

grid allows us to reate topologies in whih workstations share the same network

link to the preproessor and writer; depending on the network topology, multi-

ple workstations an also share the same network link to the preproessor/writer.

Similarly, dediated proessors on a superomputer are modeled as sharing the

44

same network link to the preproessor and writer. The servie rates for network

links are modeled using NWS bandwidth traes taken from real pairs of mahines.

Note, that in following Grid topology �gures, we display the writer as the only I/O

proess even though we do simulate I/O from the preproessor. That is, we display

only relevant sheduler information (reall from Setion III.C.3 that shedulers do

not onsider data transfers from the preproessor to ptomo).

In Setion IV.B.3, we show the results of simulations based on real traes

from a luster of workstations at NCMIR. These results indiate a relationship

between the auray of preditions and sheduler performane whih we study

for a wider range of senarios in Setion IV.B.4.

IV.B.3 Case Study: NCMIR luster

We �rst simulated experiments over a set of resoures modeled after a real

luster of workstations at NCMIR. The mahines are desribed in Table IV.2 and

the network topology is shown in Figure IV.1.

2

The mahine hamming was used as

the writer mahine beause it had the highest bandwidth apaity. In Figure IV.2,

we show the ENV representation of the topology relative to hamming. Note that

due to the swithed network and hamming's 1 Gb/s NIC, almost all mahines

appeared as if they had dediated network links to hamming. The exeptions were

golgi and repitus whih both have 100 Mb/s NICs. In this ase, the ENV tool

deteted some network interferene at the swith. We therefore modeled golgi and

repitus as sharing the same network link in our simulations.

To model the load on eah resoure, we olleted CPU availability and

bandwidth traes using the NWS on Marh 8th, 2001 from 8:00 A.M. to 4:00 P.M.

PST. This orresponds to a workday during whih users at NCMIR would run

on-line parallel tomography. The sample period for both CPU availability and

bandwidth were set to the NWS defaults, 10 and 120 seonds respetively. The

2

There are other mahines not inluded in our simulation that are onneted to both swithes;

two other mahines are onneted to the Ciso 2916 XL swith and 11 other mahines are

onneted to the Ciso 6509 swith.

45

knackgappy hamming crepitusgolgi

camshaft hi ranvier

10010

1000
100

100

10
10

10

Cisco

2916XL

Cisco

6509

Figure IV.1: Network topology of a luster of mahines at NCMIR.

hamming

6303 6496 6931700272163 89375

camshaft hi ranvier gappy knack golgi crepitus

Figure IV.2: ENV representation of NCMIR topology. The numbers in the dia-

monds are the subnet bandwidths (Kb/s) found by ENV.

46

Name Manufaturer Model Proessor Speed Memory

amshaft Sun Ultra-60 UltraSPARC-II 295 MHz 384 MB

gappy SGI Indigo2 MIPS R10000 175 MHz 384 MB

golgi SGI Otane MIPS R10000 250 MHz 2 GB

knak SGI Indigo2 MIPS R4400 200 MHz 128 MB

repitus SGI Otane MIPS R10000 250 MHz 2 GB

ranvier SGI Indigo2 MIPS R4400 200 MHz 128 MB

hi SGI Indigo2 MIPS R10000 195 MHz 512 MB

hamming Sun Ultra-80 UltraSPARC-II 450 MHz (2) 4 GB

Table IV.2: NCMIR mahine desriptions.

mean std v min max

amshaft 43.432 3.988 0.092 10.758 51.925

gappy 7.122 2.309 0.324 2.764 9.126

knak 7.119 2.371 0.333 2.149 9.007

golgi/repitus 77.218 8.845 0.115 5.113 80.179

ranvier 6.911 2.220 0.321 2.611 8.899

hi 8.921 0.376 0.042 3.618 9.072

Table IV.3: Summary statistis for the bandwidth traes (Mb/s) displayed in

Figure IV.3.

traes are displayed in Figures IV.3 and IV.4. Summary statistis for the traes

are displayed in Tables IV.3 and IV.4. For eah trae, the table shows the mean

(mean), the standard deviation (std), the oeÆient of variane (v), the minimum

(min), and the maximum (max) trae values. We onduted two sets of simulations

at 10 minute intervals throughout the simulated 8 hour period. In the �rst set of

simulations desribed in Setion IV.B.3.1, we simulate runs where the shedulers

have perfet load preditions; this is aomplished by running partially trae-driven

simulations. In the seond set of simulations desribed in Setion IV.B.3.2, we allow

the load on resoures to vary aording to the traes.

4
7

0
50

100

camshaft

0
5

10

gappy

0
5

10

knack

ba
nd

w
id

th
 (

M
b/

s)

0
50

100
golgi
crepitus

0
5

10

ranvier

0 1 2 3 4 5 6 7 8
0
5

10

hours since 03/08/01 − 8:00 PST

hi

Figure IV.3: NWS Bandwidth traes taken from NCMIR mahines on Marh 8th, 2001 from 8:00 A.M. to 4:00 P.M. PST.

4
8

0

0.5

1

camshaft

0

0.5

1

gappy

0

0.5

1

golgi

0

0.5

1

knack

C
P

U
 a

va
ila

bi
lit

y

0

0.5

1

crepitus

0

0.5

1

ranvier

0 1 2 3 4 5 6 7 8
0

0.5

1

hours since 03/08/01 − 8:00 PST

hi

Figure IV.4: NWS CPU availability traes taken from NCMIR mahines on Marh 8th, 2001 from 8:00 A.M. to 4:00 P.M.

PST.

49

mean std v min max

amshaft 0.988 0.013 0.013 0.824 0.997

gappy 0.988 0.017 0.017 0.878 0.993

golgi 0.902 0.157 0.174 0.376 0.984

knak 0.944 0.032 0.034 0.622 0.964

repitus 0.925 0.136 0.147 0.427 1.000

ranvier 0.958 0.047 0.049 0.582 0.987

hi 0.946 0.059 0.062 0.487 0.972

Table IV.4: Summary statistis for the CPU availability traes displayed in Fig-

ure IV.4.

IV.B.3.1 Partially Trae-driven Simulations

In this set of experiments, we simulated runs where the shedulers had a-

ess to perfet load preditions. This represents the optimal running environment

for the shedulers sine the sheduling deision made at the beginning of exeution

was good throughout exeution. At the start of eah simulation, we used the trae

to determine a onstant resoure load for the duration of the simulation. There-

fore, we say the simulations are partially trae-driven. In Figure IV.5, we show

the results of the simulations by plotting the mean relative refresh lateness for

eah sheduler over the eight hour simulation period. From this �gure, it is lear

that the AppLeS sheduler outperforms all the other shedulers. It is followed by

the wwa+bw sheduler whih outperforms both the wwa and wwa+pu shedulers

indiating that ommuniation is the dominant fator in appliation performane.

The almost idential performane of the wwa and wwa+pu shedulers further il-

lustrates this in that the performane degradation due to bandwidth mispredition

experiened by the wwa sheduler dominates the CPU availability mispredition.

Note that for these resoures, assuming 100% CPU availability does not result in

signi�antly high errors due to the high fration of CPU availability on the NCMIR

mahines (see Table IV.4).

In Figure IV.6, we show the distribution of �

l

for all refreshes. For eah

sheduler, we plot the umulative distribution funtion of �

l

. A point (x; y) on the

50

sheduler wwa wwa+pu wwa+bw AppLeS

ount 337 341 1383 1449

% late 0.8220 0.7419 0.2061 0.0524

mean 290.8878 285.4264 3.8361 0.0004

std 739.2997 735.2143 13.9819 0.0121

min 0.0000 0.0000 0.0000 0.0000

max 2610.0000 2610.0000 96.8300 0.4580

median 57.8400 53.7220 0.0000 0.0000

Table IV.5: Summary statistis for NCMIR simulations with perfet load predi-

tions.

graph represents that y perent of the refreshes were less than x seonds late. Here

again we see the almost idential performane of the wwa and wwa+pu shedulers,

although wwa+pu has a higher fration of small �

l

. For the wwa+bw sheduler,

we see that most refreshes are under 10 seonds late with the rest under about 100

seonds late. Finally, the AppLeS sheduler shows the best performane with all

�

l

under one seond late.

Summary statistis for eah sheduler are displayed in Table IV.5. For

eah sheduler, the table shows the number of ompleted refreshes over all runs

(ount), the fration of refreshes that were late (% late), the mean �

l

(mean),

the standard deviation of �

l

(std), the minimum �

l

(min), the maximum �

l

(max), and the median �

l

(median). The table shows more preisely that only

5% of the refreshes arrived late for the AppLeS sheduler (in fat, all were under

a half a seond late). Therefore, the approximate solution approah desribed

in the previous hapter only marginally a�eted performane. So, we onlude

that with perfet load preditions, the AppLeS sheduler had near perfet real-

time performane. We now onsider simulations where load preditions may be

imperfet.

51

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

hours since 3/8/2001 − 8:00 PST

m
ea

n
re

la
tiv

e
re

fr
es

h
la

te
ne

ss

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.5: Simulation results with perfet load preditions. The mean relative

refresh lateness for eah sheduler is plotted over an 8 hour simulation period.

52

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.6: Simulation results with perfet load preditions. The umulative

distribution funtions of �

l

for eah sheduler.

53

sheduler wwa wwa+pu wwa+bw AppLeS

ount 331 338 1160 1156

% late 0.87 0.88 0.58 0.58

mean 287.47 277.91 27.16 27.67

std 694.87 683.39 48.19 48.89

min 0.00 0.00 0.00 0.00

max 2610.00 2610.00 466.93 466.93

median 78.36 74.33 2.94 2.95

Table IV.6: Summary statistis for NCMIR simulations with imperfet load pre-

ditions.

IV.B.3.2 Completely Trae-driven Simulations

In this set of experiments, we used traes to determine resoure load

variation throughout simulation. Therefore, these simulations are ompletely trae-

driven. Consequently, the initial load preditions may be imperfet throughout the

simulated period. The results of the simulations are displayed in a mean relative

refresh lateness plot shown in Figure IV.7 and a umulative distribution funtion

plot shown in Figure IV.8. Here again, we see that the wwa and wwa+pu shed-

ulers have nearly idential performane. Furthermore, the wwa+bw and AppLeS

sheduler also have nearly idential performane. Comparing this to the previous

set of simulations, we see how imperfet preditions impat the performane of the

AppLeS sheduler.

Summary statistis for the simulations are shown in Table IV.6. From

these numbers, we see that the wwa+pu sheduler outperforms the wwa sheduler

indiating no and/or negligible CPU availability mispreditions. However, using

CPU availability preditions does not seem to bene�t the AppLeS sheduler in the

same way.

In Figure IV.7, the mean relative refresh lateness is lowest for the wwa+bw

sheduler �ve times (at .167, .333, .833, 2.833, and 3.333 hours). Upon further in-

vestigation, we found that the AppLeS' performane drop was not a result of CPU

availability mispreditions (the wwa+pu sheduler outperforms the wwa shed-

54

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

hours since 3/8/2001 − 8:00 PST

m
ea

n
re

la
tiv

e
re

fr
es

h
la

te
ne

ss

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.7: Simulation results with imperfet load preditions. The mean relative

refresh lateness for eah sheduler is plotted over an 8 hour simulation period.

55

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.8: Simulation results with imperfet load preditions. The umulative

distribution funtions of �

l

for eah sheduler.

56

uler). Rather the performane drop was a result of bandwidth mispreditions. In

all simulations, the wwa+bw and AppLeS shedulers alloated work to mahines

amshaft, gappy, and golgi. In the ases where the AppLeS sheduler deteted a

drop in CPU availability on the mahine golgi, work was also alloated to knak

and sometimes repitus. From Figure IV.3, we an see that network bandwidth

to knak is muh more variable than to golgi; as a result the AppLeS sheduler

mispredited the bandwidth availability resulting in a worse work alloation than

the wwa+bw's work alloation.

However, we note that the mispreditions made by the AppLeS shed-

uler resulted in marginal degradation for the most part ompared to the wwa+bw

sheduler; in the �ve ases listed above, the di�erene in the average mean relative

refresh lateness was 26.7, 4.4, 1.4, 8.5, and 4.0 seonds. However, we also note

that the the mean relative refresh lateness for the AppLeS sheduler is 27.6710

seonds higher than in the perfetly predited simulations. This is most likely the

result of misprediting bandwidth availability to gappy (one of the more variable

traes). Chapter VI disusses a ouple of approahes to address this problem. In

the next setion, we further investigate the impat of bandwidth mispreditions

on sheduler performane.

IV.B.4 Synthesized Grid Experiments

In the previous setion, we found that bandwidth preditions had a higher

impat on sheduler performane than CPU availability preditions. Therefore, in

this setion, we provide a more general disussion of the impat of bandwidth pre-

ditability on sheduler performane. Rather than studying additional snapshots

of real Grids as done in the previous setion, we synthesize Grids using real CPU

availability and bandwidth traes. This allows us to study a wider range of net-

work behaviors. In Setion IV.B.4.1, we disuss how we ategorize and onstrut a

Grid using a bandwidth preditability metri. Setion IV.B.4.2 disusses relative

sheduler performane and Setions IV.B.4.3 and IV.B.4.4 disuss the results of

57

the simulations in terms of bandwidth preditability.

IV.B.4.1 Grid Constrution

In order to study the impat of bandwidth preditability on sheduler

performane, we �xed the topology of the Grids in order to have omparable results.

The topology we used is illustrated in Figure IV.9; it ontains three lusters of

workstations omposed of 8, 8, and 16 hosts respetively. All hosts in the luster

shared one network link to the writer mahine. We then varied the traes used

for eah Grid in order to exhibit di�erent network behaviors. For all simulations,

the CPU availability of eah host and the bandwidth of eah network link were

ompletely trae-based.

writer

cluster3

cluster2

cluster1

Figure IV.9: Grid topology for work alloation simulations.

The traes we used were olleted from various researh sites aross the

United States and Europe using the NWS. For bandwidth, we olleted 429 traes

from 66 mahines spread aross 12 sites using the NWS default sample period of

58

2 minutes. These traes were olleted during the period February 10 - 27, 2001.

We then proessed these traes for gaps (i.e., missed measurements) and divided

them into 546 ontinuous trae segments suh that the elapsed time between two

suessive measurements was no more than 6 minutes. CPU availability traes

were taken from 100 mahines spread over 17 sites using the NWS default sample

period of 10 seonds. These traes were olleted during the period August 31

to Otober 25, 1999 and were proessed into 1021 trae segments suh that the

elapsed time between suessive measurements was no more than 5 minutes.

In order to lassify the traes we olleted, we needed a method to har-

aterize the preditability of a trae. Determining the preditability of a trae for

on-line parallel tomography is diÆult due to its long makespan and the lak of

long-range foreasters. Given that our sheduler uses short-term foreasts provided

by the NWS, we estimated that the preditability of a trae would be orrelated

to the variability of a trae for appliations with long makespans. Therefore, we

approximate preditability using the oeÆient of variane.

For bandwidth, we plotted the histogram shown in Figure IV.10. The

histogram shows three lusters whih we used to divide the traes into three at-

egories: [0, 0.20), [0.20, 0.45), and [0.45, 0.70). We labeled the ategories high,

medium, and low preditability respetively. We then piked ten trae segments

from eah ategory where eah trae ranged from two to eight days in length. To

substantiate the use of the oeÆient of variane, we alulated the average pre-

dition error for eah of the ten traes. To determine the average predition error,

we used the NWS foreaster library to alulate the predited value, v

p

, for eah

atual trae value, v

a

. The average predition error, �e

p

is then alulated for n

measurements using

�e

p

=

n

X

i=1

jv

p

(i)� v

a

(i)j

n

: (IV.7)

In Figure IV.11, we plot the average predition error versus the oeÆient

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

coefficient of variance

nu
m

be
r

of
 tr

ac
e

se
gm

en
ts

Figure IV.10: CoeÆient of variane histogram for bandwidth traes.

of variane for eah trae. The highest luster of green triangle points orrespond

to the traes ategorized as low preditability, the middle luster of red diamond

points orrespond to the traes of medium preditability, and the lowest luster of

blue square points orrespond to the traes of high preditability. From this graph,

we see that there is a high orrelation between the oeÆient of variane and the

average predition error. However, we emphasize that this tehnique is a oarse

measurement of preditability; we will disuss ases where this tehnique did not

suÆiently apture the preditability of a trae in Setion IV.B.4.3.

For CPU availability, we applied the same tehnique as done for the band-

width traes. The oeÆient of variane histogram is plotted in Figure IV.12 whih

we used to divide the traes into three ategories: [0, 0.2), [.2 .4), and [.4, .5℄. We

then piked �fteen traes from eah ategory. However, the CPU availability traes

did not exhibit the same orrelation to average predition error as the bandwidth

traes (see Figure IV.13). As a result of this and beause we are mostly inter-

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

coefficient of variance

av
er

ag
e

pr
ed

ic
tio

n
er

ro
r

low predictability

medium predictability

high predictability

Figure IV.11: Correlation between oeÆient of variane and average predition

error for bandwidth traes.

61

ested in bandwidth preditability (see Setion IV.B.3.2), we therefore haraterize

a Grid by the types of traes used for bandwidth. In other words, a Grid an be

desribed using a triple, (p

1

; p

2

; p

3

), where p

1

; p

2

; p

3

2 flow;medium; highg; p

1

is

the type of bandwidth trae used for the network link between luster 1 and the

writer, p

2

is the type of trae used for luster 2, and p

3

is the type of trae used

for luster 3. For onveniene, we abbreviate low;medium; and high as L;M , and

H respetively and write a tuple as p

1

p

2

p

3

(e.g. LHM).

Given the triple p

1

p

2

p

3

, there are 27 di�erent types of Grids. We randomly

generated a total of 2510 di�erent Grids (Table IV.7 shows the number of Grids

that were generated for eah Grid type). Sine there are four shedulers, this

resulted in a total of 10,040 simulations. The results of these simulations follow in

the next three subsetions.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

coefficient of variance

nu
m

be
r

of
 tr

ac
e

se
gm

en
ts

Figure IV.12: CoeÆient of variane histogram for CPU availability traes.

62

Grid type # of Grids

LLL 100

LLM 130

LLH 140

LML 70

LMM 100

LMH 120

LHL 90

LHM 80

LHH 110

MLL 70

MLM 120

MLH 90

MML 70

MMM 100

MMH 90

MHL 50

MHM 100

MHH 100

HLL 60

HLM 120

HLH 80

HML 120

HMM 70

HMH 40

HHL 130

HHM 90

HHH 70

Table IV.7: Number of Grids generated for eah Grid type p

1

p

2

p

3

.

63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

12

coefficient of variance

av
er

ag
e

pr
ed

ic
tio

n
er

ro
r

Figure IV.13: No orrelation between oeÆient of variane and average predition

error for CPU availability traes.

64

1st 2nd 3rd 4th

wwa 182 97 1770 461

wwa+pu 452 139 1164 755

wwa+bw 1105 900 412 93

AppLeS 2077 376 50 7

total 3816 1512 3396 1316

Table IV.8: Sheduler ranking based on umulative �

l

for syntheti Grid simu-

lations. The table displays the number of times a sheduler ranked �rst, seond,

third, and fourth plae.

IV.B.4.2 Sheduler Comparisons

To ompare the simulation results for the shedulers on a run-to-run

basis, we plotted the number of times eah sheduler ranked �rst, seond, third,

and fourth plae in a staked bar graph in Figure IV.14; the ranking is based on

umulative relative refresh lateness (

P

�

l

) for eah run. Values for the graph are

displayed in Table IV.8. Ranking for this graph was performed as follows:

1. For a single run, sheduler i reeived a rank k if k � 1 shedulers beat it.

2. For a single run, if more than one sheduler had the the same umulative

relative refresh lateness, they reeived the same rank.

Here it is lear that the AppLeS sheduler performed better than all other shed-

ulers. The wwa+bw sheduler followed as seond. However, the relative perfor-

mane between the wwa and wwa+pu sheduler is unlear; wwa+pu is �rst more

frequently than wwa but is also last more frequently than wwa. Therefore, for eah

sheduler, we alulated the average deviation from best sheduler in Table IV.9.

Here, we see that wwa+pu beat wwa by 46.98 seonds; therefore, when wwa+pu

is in last plae (from mispreditions), it is not far from third plae. Furthermore,

we see that the AppLeS sheduler beat wwa+bw by 126.03 seonds.

Figure IV.15 shows the umulative distribution funtions of �

l

over all

10,040 simulations; the results are grouped by sheduler. This shows that the Ap-

65

wwa wwa+cpu wwa+bw AppLeS
0

500

1000

1500

2000

2500

3000

scheduler

nu
m

be
r

of
 r

un
s

1st
2nd
3rd
4th

Figure IV.14: Sheduler ranking based on umulative �

l

.

wwa wwa+pu wwa+bw AppLeS

705.89 658.91 127.10 1.07

Table IV.9: Average deviation from best sheduler based on umulative �

l

for

syntheti Grid simulations.

66

sheduler wwa wwa+pu wwa+bw AppLeS

ount 29721 35024 64621 81583

% late 0.80 0.68 0.71 0.59

mean 145.11 116.93 36.76 18.54

std 400.00 348.38 106.55 50.75

min 0.00 0.00 0.00 0.00

max 2745.00 2745.00 2655.00 2655.00

median 16.27 1.075 7.88 0.37

Table IV.10: Summary statistis for syntheti Grid simulations.

pLeS sheduler has the highest fration of small �

l

and the lowest fration of large

�

l

; onversely the wwa sheduler has the smallest fration of small �

l

and the high-

est fration of large �

l

. We also see that the wwa+pu and wwa+bw's umulative

distribution funtions ross over eah other; this shows that the wwa+pu shed-

uler has a higher fration of low �

l

ompared to wwa+bw, but also has a higher

fration of high �

l

. In Table IV.10, we display summary statistis for the simula-

tions. These statistis also show that the AppLeS sheduler outperforms all other

shedulers. Furthermore, they show that the wwa+pu sheduler outperforms wwa.

However, the relative performane between the wwa+pu and wwa+bw shedulers

is not as lear. The wwa+pu sheduler has a smaller fration of late refreshes and

a smaller median than wwa+bw; however, the wwa+bw sheduler has ompleted

signi�antly more refreshes and exhibits a lower mean and standard deviation.

Therefore, we say that both CPU availability and bandwidth preditions an im-

prove sheduler performane. However, we onlude that bandwidth preditions

are more important beause when refreshes are late for wwa+bw, they are late by a

smaller amount than wwa+pu's. This is further supported in Figure IV.14, where

the AppLeS and wwa+bw shedulers dominate �rst and seond plae.

Note that the bene�t of CPU availability preditions is more apparent in

these simulations beause of a more diverse set of CPU availability traes (reall

that for the NCMIR simulations desribed in Setion IV.B.3 the mean CPU avail-

ability for eah mahine was at least .90). See Figure IV.16 for a histogram of the

67

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

relative refresh lateness (seconds)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.15: Syntheti Grid simulation results: the umulative distribution fun-

tions of �

l

for eah sheduler.

68

mean CPU availability of the traes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

mean CPU availability

nu
m

be
r

of
 tr

ac
es

Figure IV.16: Mean of CPU availability for traes used in syntheti runs.

Given the importane of bandwidth preditions identi�ed above, we now

study how the quality of bandwidth preditions a�et sheduler performane.

IV.B.4.3 Partial Orders

To study how quality of bandwidth preditions e�et sheduler perfor-

mane, we look at how sheduler performane degrades as the quality of band-

width preditions degrades. Sine there is no lear way to summarize bandwidth

preditability for a Grid, we haraterize a Grid's bandwidth preditability using

the triple p

1

p

2

p

3

. Then we ompare simulation results that form a partial order.

For example, we say that

(HHL;HML;HLL; LLL)

69

forms a dereasing partial order beause for eah suessive triple, there is at

least one trae with lower preditability than its predeessor and no traes with

a higher preditability (note that H > M > L). Therefore, we say all triples in

the partial order are omparable and ompare the simulation results only between

omparable triples. We make no assumptions about triples ontaining lower and

higher preditability traes than the other. For example, we say the triples HLM

andHML are not omparable beause HLM has a trae with a lower preditability

than HML's (L < M), and a trae with a higher preditability than HML's

(M > L). We de�ne the partial order more formally below.

As desribed in Setion IV.B.4.1, we denote the preditability of a trae

to be p, where p 2 P = fL;M;Hg. A total ordering on the set P is

(L;M;H): (IV.8)

For triples a; b 2 P

1

� P

2

� P

3

where a = (a

1

; a

2

; a

3

) and b = (b

1

; b

2

; b

3

), we de�ne

a relation R, a is more preditable than b, as

a � b; if a

i

� b

i

; i = 1; 2; 3: (IV.9)

The relation R is reexive, symmetri, and transitive, and therefore is a partial

order [11℄. For example, HHM � HHL: However, HLM � LHM and LHM �

HLM . We say HLM and LHM are not omparable.

We now look at the simulation results using dereasing partial orders.

Figure IV.17 shows the results for 7 partially ordered triples:

P

1

= (HHH; HHM; HMM; HLM; MLM; LLM; LLL): (IV.10)

Eah triple in the partial order, P

1

, is represented by a group of 4 boxplots. The

boxplots are ordered from left to right and represent the wwa, wwa+pu, wwa+bw,

70

and AppLeS shedulers respetively. Eah boxplot is omputed from 70 simulations.

The square on the boxplot represents the mean �

l

, the lower bar represents the

minimum �

l

, and the upper bar represents the maximum �

l

. From this graph,

we see that the mean �

l

for the AppLeS sheduler is quite good at 3 seonds

for the HHH Grids. Then the �

l

inreases by 14 seonds for the HHM Grids

and ontinues to inrease until it levels o� at about 35 seonds. This shows that

performane of the AppLeS and other shedulers degrades as Grid preditability

degrades.

HHH HHM HMM HLM MLM LLM LLL .
10

0

10
1

10
2

10
3

10
4

re
la

tiv
e

re
fr

es
h

la
te

ne
ss

 (
se

co
nd

s)

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.17: Simulation results grouped by partial order P

1

. Eah boxplot sum-

marizes 70 simulations.

However, not all dereasing partial orders experiene an inrease in the

mean �

l

. Figure IV.18 shows a partial order, P

2

:

P

2

= (HMH; MMH; LMH; LLH): (IV.11)

71

Eah boxplot in Figure IV.18 is omputed from 40 simulations. Here the mean �

l

of MML is 7 seonds lower than LML and 4 seonds lower than HML. In this

ase, the performane of the AppLeS sheduler was not monotonially dereasing.

We attribute this is to our oarse preditability lassi�ation tehnique as noted

in Setion IV.B.4.1. For example, a low preditable trae (using the lassi�ation

sheme in Setion IV.B.4.1) does not always imply bad preditions. To illustrate,

onsider the trae segment haraterized as having low preditability displayed in

Figure IV.19. The upper plot shows a bandwidth trae taken from tor8.s.utk.edu

to tor4.s.utk.edu during the morning of February 12, 2001. The lower plot is a

predition of the upper trae that was generated using the NWS foreaster library.

Now onsider the average bandwidth over a period of 45 minutes (the minimum

time it would take to aquire a data set from NCMIR's eletron mirosope).

Depending on when the sheduler queries for a bandwidth foreast, the sheduler

might get point O, an overestimate of the average bandwidth; U , an underestimate

of the average bandwidth; or G, a good estimate of the average bandwidth.

In summary, we demonstrated that under the preditability lassi�ation

outlined in Setion IV.B.4.1, the performane of the AppLeS sheduler degrades

as the quality of bandwidth preditions degrades. We also noted a ase where

the performane of the AppLeS sheduler did not monotonially degrade thereby

illustrating the oarseness of our preditability measurement. However, as we

disuss in the next setion, if we onsider the results of all simulations, we see

that our preditability measurement does demonstrate that the performane of the

AppLeS sheduler does degrade as the quality of bandwidth preditions degrades.

IV.B.4.4 Soring

In this setion, we onsider the performane of the AppLeS sheduler and

quality of bandwidth preditions over all simulations. We use an arbitrary soring

tehnique to oarsely summarize the preditability of a Grid. Then, we assign a

preditability sore to eah type of Grid and group results with the same sore.

72

LML MML HML HHL
10

0

10
1

10
2

10
3

10
4

re
la

tiv
e

re
fr

es
h

la
te

ne
ss

 (
se

co
nd

s)

wwa
wwa+cpu
wwa+bw
AppLeS

Figure IV.18: Simulation results grouped by partial order P

2

. Eah boxplot sum-

marizes 40 simulations.

73

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

ba
nd

w
id

th
 (

M
b/

s)

bandwidth

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

O

U

G

elapsed seconds

ba
nd

w
id

th
 (

M
b/

s)

predicted bandwidth

Figure IV.19: Bandwidth trae taken from tor8.s.utk.edu to tor4.s.utk.edu

during the morning of February 12, 2001.

74

We emphasize that this is not a preise method for measuring Grid preditability

but is one way to represent the results of all simulations. We desribe our soring

tehnique below.

For a trae with preditability p, we arbitrarily assign it the weight

using the following:

 =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if p = L

2 if p =M

3 if p = H

(IV.12)

For eah simulation with Grid type p

1

p

2

p

3

, we assign it the sore, �, using the

following:

� =

3

X

i=1

(p

i

) (IV.13)

Note that the weighting sheme in Equation IV.12 results in the bound

3 � � � 9; (IV.14)

where '3' indiates a Grid with low preditability and '9' indiates a Grid with high

preditability. Next the simulation results are ategorized into seven groups based

on their sore. The umulative distribution funtions of �

l

for the simulations

in eah group are plotted in Figure IV.20. This �gure learly shows that the

performane of the AppLeS sheduler inreases as preditability inreases. Here,

we see that for Grids where � = 9, the AppLeS sheduler performs really well

with over 90% of its refreshes having a �

l

under 10 seonds. Similarly the AppLeS

sheduler performs well when � = 8 and � = 7. Conversely, in Grids where � = 3,

only about 40% of refreshes have a �

l

under 10 seonds.

75

10
0

10
1

10
2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

relative refresh lateness (secs)

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 r

ef
re

sh
es

Γ = 3
Γ = 4
Γ = 5
Γ = 6
Γ = 7
Γ = 8
Γ = 9

Figure IV.20: AppLeS umulative distribution funtions for �

l

grouped by �.

IV.B.5 Summary

In this setion, we studied the impat of dynami load preditions on

sheduler performane. We ompared the AppLeS to three other shedulers whih

used no or partial dynami information. We found that dynami load predi-

tions signi�antly improved real-time exeution of on-line parallel tomography.

In partiular, we found that the performane gain was largely due to bandwidth

preditions. We then examined the impat of bandwidth preditions on the perfor-

mane of the AppLeS. Our experiments show that the performane of the AppLeS

is largely dependent on the quality of bandwidth preditions.

IV.C Tunability Experiments

In Setion I.C, we motivated the design of on-line parallel tomography

as a tunable appliation for dynami Grid environments. In this setion, we as-

76

sess the usefulness of tunability; we say that tunability is useful if hanging the

on�guration at run-time (from the previous on�guration) results in a better on-

�guration for the user and/or better real-time exeution than not hanging the

on�guration. We ondut a ase study of tunability in Grids omposed of two

lusters of workstations and a superomputer. These Grids are haraterized by

the variability of their traes as desribed further in Setion IV.C.1. For eah Grid,

we study how the on�guration of on-line parallel tomography would hange for

a user running bak-to-bak experiments during a two-day period. Setion IV.C.2

desribes the experiments and Setion IV.C.3 desribes the user model used for

these experiments. The results desribed in Setions IV.C.4 and IV.C.5 show that

appliation tunability was exploited frequently and therefore provide a ase for

tunability in dynami Grid environments.

IV.C.1 Grid Constrution

In order to have omparable results, we study a �xed Grid topology om-

posed of a luster of 8 workstations, a luster of 16 workstations, and a super-

omputer. Figure IV.21 illustrates the Grid topology. We then study tunability

under di�erent variability onditions. In these experiments, we look at the vari-

ability of both bandwidth and CPU availability traes. To ollet traes for these

experiments, we use a similar method as that desribed in Setion IV.B.4.1. The

di�erene is that we label our trae ategories in terms of variability, i.e., the

oeÆient of variane is used as a oarse measurement of trae variability rather

than preditability. A Grid an be desribed using a tuple, (v

1

; v

2

; v

3

; v

4

; v

5

), where

v

1

; v

2

; v

3

; v

4

; v

5

2 fL;M;Hg; v

1

is the type of bandwidth trae used for the net-

work link between superomputer and the writer, v

2

is the type of CPU availability

traes used for the luster of 8 workstations, v

3

is the type of bandwidth trae used

for the network link between the luster of 8 workstations and the writer, v

4

is is

the type of CPU availability traes used for the luster of 16 workstations, and

v

5

is the type of bandwidth trae used for the network link between the luster

77

of 16 workstations and the writer. For onveniene, we abbreviate low;medium;

and high as L;M , and H respetively and write a tuple as v

1

v

2

v

3

v

4

v

5

. There are

a total of 243 di�erent types of Grids.

writer

supercomputer

cluster1

cluster2

Figure IV.21: Grid topology for tunability experiments.

Note that to model the load on the superomputer, we olleted immedi-

ately available information from SDSC's Blue Horizon [3℄ using the Maui Shed-

uler's ommand showbf [33℄; the trae was olleted from February 9 to April 23,

2001 using a sample period of 5 minutes.

IV.C.2 Experiments

We onsider two di�erent on-line parallel tomography experiments:

E

1

= (45; 61; 1024; 1024; 300) and E

2

= (45; 61; 2048; 2048; 600) (IV.15)

78

As desribed in Setions I.A and I.B, these two experiments are representative of

the size of experiments run by NCMIR users and orrespond to datasets olleted

from 1k � 1k CCD amera and 2k � 2k CCD amera respetively.

IV.C.3 User Model

In order to study the usefulness of tunability, we model how a user would

hoose a triple and then wath how it hanges over time. For these experiments,

we hose a simple user model. We assumed that the user would always hoose

triples that have the lowest f , followed by the lowest r. We also used the following

harging model for servie units:

su = n

m

� p� a (IV.16)

Sine p = 61 and a = 45, su will always be a multiple of 61� 45 = 2745.

The parameter bounds for the (45, 61, 1024, 1024, 300) experiment, are

as follows:

1 � f � 4

1 � r � 13

0 � su � 137250 (IV.17)

Similarly, for the (61; 2048; 2048; 600), the bounds are:

1 � f � 8

1 � r � 13

0 � su � 137250 (IV.18)

In both ases, the upper bound on su orresponds to 50 proessors.

79

IV.C.4 Tunability Results

For eah experiment, E

1

and E

2

, we ran 243 simulations, one simulation

for eah of the 243 types of Grids. To simulate a user running bak-to-bak on-

line parallel tomography experiments, we exeuted the sheduler every 45 minutes

throughout the two-day period. For eah two-day period, there were a total of 61

on-line parallel tomography experiments. Eah time, we hose one triple aord-

ing to the user model. There were a total of 14,823 on-line parallel tomography

experiments for all 243 simulations.

In Figure IV.22, we display the range of triples found by the AppLeS

sheduler for the E

1

experiments in a 3D graph. Eah quadrant of Figure IV.22

displays a di�erent view of the 3D graph. Here we see that most of the refresh

fators fall within 1 and 3. Furthermore, no more than 3 proessors are ever piked

on the superomputer. Similarly, we display the range of triples found for the E

2

experiments in Figure IV.23. Note, that sine the projetions are larger in this

experiment, we an use a higher redution fator. Here we an see that up to 25

proessors are used on the superomputer. Note on these types of Grids, it is not

possible to get triples (1,1,x) or (1,2,x).

Now, we look at how the triples hange within a single simulation. Sup-

pose T = f1; :::; 61g is a set of triples piked by the user during a 2-day simulation.

For any t

i

; t

i+1

2 T , if t

i

6= t

i+1

, then we say that the user's triple hanged. We use

the number of hanges within a spei�ed time period to measure the usefulness

of tunability. For example, when the triple hange frequeny is low, we say that

tunability is not useful. That is, it is likely that a user ould use the same on�gu-

ration from run to run and not experiene a signi�ant drop in performane. This

was the ase with the MLLLL Grid and E

1

; the user's triple remained onstant

at (1; 1; 0) throughout the simulated 2-day period. Conversely, when the triple

hange frequeny is high, we say that tunability is useful. We predit that a user

running with the same on�guration from run to run would experiene signi�ant

performane drops and/or would under-utilize the resoures. With E

2

the Grid,

80

0
1

2
3

4
5

0

5

10

15
0

2000

4000

6000

8000

fr

su

(a)

0 1 2 3 4 5
0

5

10

f

r

(b)

0 1 2 3 4 5
0

2000

4000

6000

8000

f

su

()

0 5 10
0

2000

4000

6000

8000

r

su

(d)

Figure IV.22: Triples found for (61; 1024; 1024; 300) experiment.

81

0
2

4
6

8

0

5

10

15
0

2

4

6

x 10
4

fr

su

(a)

0 2 4 6 8
0

5

10

f

r

(b)

0 2 4 6 8
0

2

4

6

x 10
4

f

su

()

0 5 10
0

2

4

6

x 10
4

r

su

(d)

Figure IV.23: Triples found for (61; 2048; 2048; 600) experiment.

82

MLMMH, exhibits this type of performane; the user's triple hanged 44 times

during the 2-day period. We show the user's triples for the MLMMH Grid in

Table A.1; it also shows the other triples the AppLeS sheduler found to be feasible.

Consider now the results of all simulations for both the E

1

and E

2

exper-

iments. Using the user model outlined in Setion IV.C.3, the triple hanged 1910

out of 14823 times for the E

1

experiments and 3813 out of 14823 times for the E

2

experiments. Therefore, overall there was a 12.9% hane the triple hanged from

run to run for the E

1

experiments and 25.7% hane for the E

2

experiments. For

eah simulation, we also alulated how many times the parameters, f; r, and su

hanged over the 2-day period. The results for the E

1

experiments are displayed in

Figure IV.24 and the results for the E

2

experiments are displayed in Figure IV.25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n

of
 c

ha
ng

es

parameters

f
r
su

Figure IV.24: Frequeny of parameter hanges for E

1

experiments.

In both ases, r was the parameter that hanged the most frequently, followed by

su. Furthermore, we see that the frequeny of hange in redution fator more

than doubled from the E

1

to E

2

experiments.

83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n

of
 c

ha
ng

es

parameters

f
r
su

Figure IV.25: Frequeny of parameter hanges for E

2

experiments.

IV.C.5 Partial Order Results

In this setion, we study the relationship between frequeny of triple

hanges and Grid variability. We piked 7 partially ordered Grids whih inrease

in variability:

84

LLLLL

LLLLM

LLLLH

LLLMH

LLLHH

LLMHH

LLHHH

LMHHH

LHHHH

MHHHH

HHHHH

We then generated 20 di�erent instantiations of eah Grid type and simulated both

E

1

and E

2

over a 2-day period. The results are displayed in Figures IV.26 and

IV.26 respetively. These �gures show that the frequeny of triple hanges does

inreases as Grid variability inreases. However, we note that the inrease in not

monotoni.

IV.C.6 Summary

In this setion, we did a ase study on the usefulness of tunability in a

�xed Grid topology omposed of two workstation lusters and a superomputer.

We looked at tunability for two types of experiments representative of NCMIR

users. We then ran simulations to study how the on�guration of on-line parallel

tomography would hange for a user running bak-to-bak experiments during a

two-day period. The goal was to measure the usefulness of tunability in Grids

that di�er in resoure variability. We found that on average, there was a 12.9%

likelihood that user's triple would hange from one run to another for the 1k �

1k experiments and 25.7% hane for the 2k � 2k experiments. We also found

that the usefulness of tunability inreased as the variability of the Grid inreased.

85

lllll llllm llllh lllmh lllhh llmhh llhhh lmhhh lhhhh mhhhh hhhhh
0

50

100

150

200

250

300

350

Grid type

nu
m

be
r

of
 c

ha
ng

es

(a)

lllll llllm llllh lllmh lllhh llmhh llhhh lmhhh lhhhh mhhhh hhhhh
0

50

100

150

200

250

300

350

400

450

500

Grid type

nu
m

be
r

of
 c

ha
ng

es

(b)

Figure IV.26: Partial order results: frequeny of triple hanges by (a) 1k� 1k and

(b) 2k � 2k

86

We onlude that tunability was useful in this �xed Grid topology and therefore

provided a ase for tunable on-line parallel tomography.

IV.D Sheduling Lateny

In this setion, we assess the AppLeS' sheduling lateny. We de�ne the

sheduling lateny to be the time it takes for the AppLeS sheduler to disover a

set of feasible triples for an on-line parallel tomography experiment E and set of

resoures M . The sheduling lateny is dependent on the size of the parameter

spae (see searh algorithm in Figure III.2) and the exeution time for the linear

program solver.

We timed all experiments outlined in Setion IV.C and grouped results by

the type of experiment, E

1

and E

2

. A histogram for the E

1

experiment searh times

is displayed in Figure IV.27 and a histogram for the E

2

experiment searh times is

displayed in Figure IV.28. From these results we see that for most experiments, the

sheduling lateny is nominal (88% of E

1

experiments and 63% of E

2

experiments

had a seond or less sheduling lateny). Table IV.11 displays summary statistis

for both E

1

and E

2

experiments. Here we see that the mean sheduling overhead

is .35 seonds for the E

1

experiments and .99 seonds for the E

2

experiments.

Therefore, the sheduler overhead more than doubled in time. This is warranted

given that the parameter spae for E

2

is larger than E

1

's. (Reall that for E

2

the

bound on f is between and 1 and 8 while the bound on f for E

1

is between 1 and

4).

Finally, there were a handful of outliers in both the E

1

and E

2

experiments

that are too small to see on Figures IV.27 and IV.28. For the E

1

experiments,

.09% of the experiments had searh times between 3 and 8 seonds; for the E

2

experiments, .5% of the experiments had searh times between 3 and 9 seonds.

Due to time onstraints, we were unable to determine the ause. However, we note

that the perentage of these higher searh times is nominal.

87

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

seconds

nu
m

be
r

of
 e

xp
er

im
en

ts

Figure IV.27: AppLeS sheduling lateny for E

1

experiments.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

seconds

nu
m

be
r

of
 e

xp
er

im
en

ts

Figure IV.28: AppLeS sheduling lateny for E

2

experiments.

88

mean std min max median

E

1

0.35 0.45 0.04 7.85 0.13

E

2

0.99 0.68 0.11 8.68 0.92

Table IV.11: Summary statistis for AppLeS searh times.

IV.D.1 Summary

To assess the impat of the AppLeS sheduler on appliation exeution

time, we studied the sheduling lateny introdued by the AppLeS sheduler. We

found that for the majority of exeutions, the AppLeS sheduler introdued a nom-

inal sheduling lateny of less than two seonds.

Chapter V

Related Work

On-line parallel tomography has also been addressed as part of the Com-

puted Mirotomography (CMT) projet [52, 53℄. Projetions are olleted from

the Advaned Photon Soure (APS) at Argonne National Laboratory, proessed

by an SGI Origin 2000, and visualized on an ImmersaDesk [15℄ or in a CAVE [12℄.

The CMT on-line parallel tomography ode spei�ally targets high-speed net-

works and superomputers and is a slightly extended version of the GTOMO ode

desribed in Setion I.A.1

1

. The CMT extension enables data to be taken diretly

from APS and introdues proessing stages. Eah proessing stage re�lls the work

queue and results in a refresh to the tomogram. This is the same tehnique that

was desribed in Setion II.A where work is repeated in eah stage. Thus, the

on-line parallel tomography implementation presented in this thesis di�ers from

CMT's in that it enables the R-weighted bakprojetion method to exeute as an

augmentable tehnique. Note that it would be straightforward to add the same ex-

tension to the CMT ode in order to improve real-time exeution. Seond, our im-

plementation enables on-line parallel tomography to exeute aross a more diverse

set of resoures (e.g. workstations, spae-shared superomputers, lower-apaity

networks) through the use of appliation tunability.

1

The base ode for the CMT implementation of on-line parallel tomography and the base

ode for the implementation desribed in this thesis are the same. We refer to the base ode as

GTOMO in this thesis.

89

90

Appliation tunability is a onept that has been applied in the MILAN

projet [9℄ and in [17℄. In MILAN, tunability is used by the system sheduler to

improve throughput. The system sheduler is referred to as the QoS arbitrator and

is responsible for alloating proessors to appliation tasks. Eah appliation has

a QoS agent whih interats with the QoS arbitrator to ensure that its exeution

requirements are being satis�ed. The QoS agent is automatially generated from

annotated ode. Our work di�ers from MILAN's in that our objetive is to use tun-

ability to improve appliation performane rather than system performane. We

provide a single AppLeS proess whih funtions as both the appliation's QoS

agent and QoS arbitrator. While MILAN provides a simpler API, it is urrently

unable to suÆiently apture the requirements of on-line parallel tomography be-

ause the QoS arbitrator does not shedule bandwidth on network links. Given the

large amount of data transfer required for on-line parallel tomography, the abil-

ity to express bandwidth requirements is ritial to ahieving real-time exeution

performane.

The work presented in [17℄ also uses tunability to improve appliation

performane. Two appliations are presented and lassi�ed as predition-based,

best e�ort, real-time appliations. Using preditions of appliation performane

based on dynami load preditions, the appliation is mapped to a set of resoures.

Our work di�ers from theirs in that preditions of appliation performane are

model-based rather than history-based.

Finally, the AppLeS desribed in this thesis builds upon other previous

AppLeS work [49, 48, 16, 46℄ in its strategies for resoure seletion and work allo-

ation. These AppLeS have foused on improving the performane of appliations

with �xed on�gurations. The AppLeS desribed herein distinguishes itself from

these shedulers in its ability to improve the performane of an appliation (with

multiple on�gurations) by exploiting its tunability.

Chapter VI

Conlusion

In this thesis, we implemented a Grid-enabled version of on-line parallel

tomography whih provides soft real-time feedbak to users olleting data from a

powerful eletron mirosope loated at NCMIR. Aquiring data from NCMIR's

mirosope is a lengthy proess and is suseptible to on�guration errors. Soft

real-time tomography feedbak, whih has been previously unavailable to NCMIR

users, is important beause it will allow users to quikly identify on�guration

problems and interat with the mirosope in order to more eÆiently aquire

data from it. In this setion, we summarize the ontributions of the work for eah

hapter and onlude with future work.

In Chapter II, we motivated an extension to GTOMO to allow for on-line

parallel tomography. This extension signi�antly redued the amount of omputa-

tion required for real-time exeution of on-line parallel tomography by enabling the

R-weighted bakprojetion method to exeute as an augmentable tehnique. This

required a hange from a work queue sheduling strategy to stati work alloation.

This extension is more omputationally eÆient than adapting the o�-line par-

allel tomography algorithm to on-line exeution, but does not have the run-time

adaptive sheduling advantage of work queue. We then de�ned a on�guration

of on-line parallel tomography as a triple, (f; r; su). These parameters represent

resolution of the tomogram, frequeny of re�nements to the tomogram, and ost

91

92

of exeution. These tunable parameters allow the appliation to be adapted to

di�erent resoure availabilities.

In Chapter III, we de�ned a user-direted AppLeS. The AppLeS exploits

the tunability of on-line parallel tomography to determine a shedule for soft real-

time exeution of the appliation over a set of resoures at run-time. The sheduler

utilizes user onstraints, an appliation model based on soft deadlines, and dynami

resoure load preditions to formulate multiple onstrained optimization problems

whih are solved to determine feasible run-time on�gurations. We showed that

eah optimization problem ould be eÆiently and e�etively solved using mixed-

integer programming. The on�gurations are displayed as hoies to the user

where eah on�guration involves trade-o�s between resolution of the tomogram,

frequeny of refreshes, and ost of exeution. One an appropriate on�guration

is hosen by the user, the sheduler selets resoures, alloates work, and exeutes

the appliation.

Finally in Chapter IV, we evaluated the impat of dynami information

on sheduler performane. We �rst ran experiments that simulated on-line parallel

tomography at NCMIR. We found that the AppLeS ahieved near perfet real-time

exeution when it used perfet load preditions. These results also showed that

bandwidth preditions were the most signi�ant fator to improving sheduler per-

formane. We then ran experiments that simulated on-line parallel tomography at

NCMIR with imperfet load preditions. These results indiated that the shed-

uler's performane was suseptible to the quality of the bandwidth preditions.

Further experiments showed that sheduler performane degraded as the quality

of bandwidth preditions degraded. Seond, we ran a set of experiments where we

examined the usefulness of tunability on Computational Grids. Our results showed

that the usefulness of tunability inreased as Grid variability inreased. Finally,

we showed that the sheduling lateny introdued by the AppLeS was nominal.

Future work on this researh would be to redue the impat of bad pre-

ditions on real-time exeution performane. One approah would be to extend

93

the AppLeS to reshedule the appliation during run-time (sine our urrent stati

work alloation strategy does not perform run-time adaptive sheduling). This

strategy would allow the appliation to better tolerate bad preditions by hang-

ing the work alloation during run-time. The �rst step would be to detet a need

for resheduling by weighing the potential bene�t of resheduling with the overhead

of resheduling suh as in [45℄. The AppLeS would then �nd a new work alloation

using urrent dynami resoure load information. The new work alloation would

be ompared to the old work alloation to �nd an eÆient way to shu�e the slies

among ptomos.

A seond way to redue the impat of bad preditions would be to use

a stohasti approah as outlined in [42℄. In this work, NWS predition error

information was used to represent the load on a resoure using a range of values.

For on-line parallel tomography, the value we hoose to represent the load on a

resoure ould be based on how onservative the user wanted to be with their

sheduling strategy. That is, a user ould hoose a more onservative, but possibly

less eÆient sheduling strategy or a less onservative, but possibly more eÆient

sheduling strategy. The user's onservativeness ould be represented as a fourth

parameter of the on-line parallel tomography on�guration.

Finally, we would like to deploy the implementation of on-line parallel

tomography desribed in this thesis into prodution at NCMIR. We expet that

real-time feedbak will allow NCMIR users to interat with the mirosope to more

e�etively aquire data from the it. Overall, this will allow for more eÆient usage

of this powerful, sare resoure.

Appendix A

Tables

Table A.1: Feasible triples for highly variable Grid,

MLMMH.

Time (s) Triple hosen Other feasible triples

0 (1, 11, 13725) (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)

2745 (1, 12, 10980) (1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)

5490 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

8235 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

10980 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

13725 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

16470 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

19215 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

21960 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

24705 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

27450 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

30195 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

32940 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

35685 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Continued on next page

94

95

Table A.1 { ontinued from previous page

Time (s) Triple hosen Other feasible triples

38430 (1, 13, 10980) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

41175 (1, 12, 13725) (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

43920 (1, 13, 10980) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

46665 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

49410 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

52155 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

54900 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

57645 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

60390 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

63135 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

65880 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

68625 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

71370 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

74115 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

76860 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

79605 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

82350 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

85095 (1, 12, 13725) (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

87840 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

90585 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

93330 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

96075 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

98820 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

101565 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

104310 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

107055 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Continued on next page

96

Table A.1 { ontinued from previous page

Time (s) Triple hosen Other feasible triples

109800 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

112545 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

115290 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

118035 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

120780 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

123525 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

126270 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

129015 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

131760 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

134505 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

137250 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

139995 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

142740 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

145485 (1, 12, 16470) (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)

148230 (2, 2, 2745) (2, 3, 0), (3, 1, 0)

150975 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

153720 (1, 12, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

156465 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

159210 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

161955 (1, 13, 16470) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

164700 (1, 13, 13725) (2, 2, 2745), (2, 3, 0), (3, 1, 0)

Bibliography

[1℄ Franine Berman, Rihard Wolski, Silvia Figueira, Jennifer Shopf, and Gary

Shao. Appliation Level Sheduling on Distributed Heterogeneous Networks.

In Proeedings of Superomputing 1996 , 1996.

[2℄ Dimitri P. Bertsekas. Nonlinear Programming, hapter 1, page 2. Athena

Sienti�, 1999.

[3℄ Blue Horizon User Guide at http://www.npai.edu/Horizon.

[4℄ Stefan D. Bruda and Selim G. Akl. Real-Time Computation: A Formal De�-

nition and its Appliations. Tehnial Report 435, Queen's University, 2000.

[5℄ Henri Casanova. Simgrid: A Toolkit for the Simulation of Appliation

Sheduling. In Proeedings of the IEEE/ACM International Symposium on

Cluster Computing and the Grid , May 2001.

[6℄ Henri Casanova and Jak Dongarra. NetSolve: A Network Server for Solving

Computational Siene Problems. The International Journal of Superomput-

ing Appliations and High Performane Computing, 1996.

[7℄ Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov, and Franine Berman.

Heuristis for Sheduling Parameter Sweep appliations in Grid environments

. In Proeedings of the 9th Heterogenous Computing Workshop, May 2000.

[8℄ Henri Casanova, Graziano Obertelli, Franine Berman, and Rih Wolski. The

AppLeS Parameter Sweep Template: User-Level Middleware for the Grid. In

Proeedings of the Superomputing 2000, 2000.

[9℄ Fangzhe Chang, Vijay Karamheti, and Zvi Kedem. Exploiting Appliation

Tunability for EÆient, Preditable Resoure Management in Parallel and

Distributed Systems. Journal of Parallel and Distributed Computing, 60:1420{

1445, 2000.

[10℄ CHPC webpage at http://www.hp.utah.edu.

[11℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdution

to Algorithms, hapter 5, page 83. M.I.T. Press, Third edition, 1990.

97

98

[12℄ C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-Sreen Projetion-

Based Virtual Reality: The Design and Implementation of the CAVE. ACM

Computer Graphis, 27(2):135{142, July 1993.

[13℄ CTC webpage at http://www.t.ornell.edu.

[14℄ David E. Culler and Jaswinder Pal Singh. Parallel Computer Arhiteture,

hapter 1, pages 60{61. Morgan Kaufmann Publishers, In., 1999.

[15℄ Marek Czernuszenko, Dave Pape, Daniel Sandin, Tom DeFanti, Gregory L.

Dawe, and Maxine D. Brown. The ImmersaDesk and In�nity Wall Projetion-

Based Virtual Reality Displays. Computer Graphis, 31(2):46{49, 1997.

[16℄ Holly Dail, Graziano Obertelli, Franine Berman, Rih Wolski, and Andrew

Grimshaw. Appliation-Aware Sheduling of a Magnetohydrodynamis Ap-

pliation in the Legion Metasystem. In Proeedings of the 9th Heterogenous

Computing Workshop, May 2000.

[17℄ Peter A. Dinda, Brue Lowekamp, Loukas Kallivokas, and David R.

O'Hallaron. The Case for Predition-based Best-e�ort Real-time Systems

. Tehnial Report CMU-CS-98-174, Carnegie Mellon University, 1999.

[18℄ I. Foster, C. Kesselman, and S. Tueke. The Anatomy of the Grid: Enabling

Salable Virtual Organizations. To be published in Intl. J. Superomputer

Appliations, 2001.

[19℄ Ian Foster and Carl Kesselman. The Globus Projet: A Status Report. In

Pro. IPPS/SPDP '98 Heterogeneous Computing Workshop, 1998.

[20℄ Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastruture, hapter 12. Morgan Kaufmann Publishers, In.,

1999.

[21℄ J. Frank and M. Radermaher. Three-Dimensional Reonstrution of Non-

periodi Maromoleular Assemblies from Eletron Mirographs . In J. K.

Koehler, editor, Advaned Tehniques in Biologial Eleton Mirosopy III.

Springer-Verlag, 1986.

[22℄ P. Gilbert. Iterative Methods for the Three-dimensional Reonstrution of

an Objet from Projetions . J. Theoret. Biol., 36:105{117, 1972.

[23℄ R. Gordon, R. Bender, and G.T. Herman. Algebrai Reonstrution Teh-

niques (ART) for Three-dimensional Eletron Mirosopy and X-ray Photog-

raphy . J. Theoret. Biol., 29:471{481, 1970.

[24℄ A. Grimshaw, A. Ferrari, F.C. Knabe, and M. Humphrey. Wide-Area Com-

puting: Resoure Sharing on a Large Sale. IEEE Computer, 32(5), May

1999.

99

[25℄ M. Hadida-Hassan, S.J. Young, S.T. Peltier, M. Wong, S. Lamont, and M.H.

Ellisman. Web-based Telemirosopy. J. Stru. Biology, 125:235{245, 1999.

[26℄ T. Hagerup. Alloating Independent Tasks to Parallel Proessors: An Exper-

imental Study. Journal of Parallel and Distributed Computing, 47:185{197,

1997.

[27℄ A. C. Kak and M. Slaney. Priniples of Computerized Tomography Imaging.

IEEE Press, 1998.

[28℄ Reinhard Klette and Piero Zamperoni. Handbook of Image Proessing Oper-

ators, hapter 4, pages 120{125. John Wiley and Sons, Ltd., 1996.

[29℄ Linear Programming FAQ webpage at http://www-unix.ms.anl.gov/ot/

Guide/faq/linear-programming-faq.html.

[30℄ M. J. Litzkow, M. Livny, and M. W. Mutka. Condor|A Hunter of Idle Work-

stations. In Pro. of the 8th Int'l Conf. on Distributed Computing Systems,

pages 104{111, 1988.

[31℄ Jane W.S. Liu. Real-Time Systems, hapter 2, pages 26{33. Prentie-Hall,

In., 2000.

[32℄ lp solve FTP site at ftp://ftp.es.ele.tue.nl/pub/lp_solve.

[33℄ Maui Sheduler webpage at http://www.mhp.edu/ maui.

[34℄ Robert Dant - MHPCC (personal ommuniation, Jan 02, 2001).

[35℄ NCSA webpage at http://www.nsa.uiu.edu.

[36℄ Nonlinear Programming FAQ webpage at http://www-unix.ms.anl.gov/

ot/Guide/faq/nonlinear-programming-faq.html.

[37℄ NPACI webpage at http://www.npai.edu.

[38℄ G.A. Perkins, C.W. Renken, J.Y. Song, T.G. Frey, S.J. Young, S. Lamont,

M.E. Martone, S. Lindsey, and M.H. Ellisman. Eletron Tomography of

Large, Multiomponent Biologial Strutures. Journal of Strutural Biology,

120:219{227, 1997.

[39℄ G.A. Perkins, C.W. Renken, S.J. Young, S.P. Lamont, M.E. Martone, S. Lind-

sey, T.G Frey, and M.H. Ellisman. Eletron tomography of large multiom-

ponent biologial strutures. J. Strut.Biol., 120:219{227, 1997.

[40℄ Radia Perlman. Interonnetions, hapter 2, page 19. Addison Wesley Long-

man, In., seond edition, 2000.

100

[41℄ M. Radermaher. Three-dimensional reonstrution of single partiles from

random and nonrandom tilt series. J. Eletron Miros. Teh., 9:359{394,

1988.

[42℄ J. Shopf. Performane Predition and Sheduling for Parallel Appliations

on Multi-User Clusters. PhD thesis, University of California, San Diego, 1998.

[43℄ S. Sekiguhi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf :

Network based Information Library for Globally High Performane Comput-

ing. In Pro. of Parallel Objet-Oriented Methods and Appliations (POOMA),

pages 39{48, February 1996.

[44℄ Gary Shao, Fran Berman, and Rih Wolski. Using E�etive Network Views

to Promote Distributed Appliation Performane. In Proeedings of the 1999

International Conferene on Parallel and Distributed Proessing Tehniques

and Appliations , 1999.

[45℄ Gary Shao, Rih Wolski, and Fran Berman. Prediting the Cost of Redistri-

bution in Sheduling. In Proeedings of the 8th SIAM Conferene on Parallel

Proessing for Sienti� Computing , 1997.

[46℄ Shava Smallen, Walfredo Cirne, Jaime Frey, Franine Berman, Rih Wolski,

Mei-Hui Su, Carl Kesselman, Steve Young, and Mark Ellisman. Combining

Workstations and Superomputers to Support Grid Appliations: The Parallel

Tomography Experiene. In Proeedings of the 9th Heterogenous Computing

Workshop, May 2000.

[47℄ Gabriel E. Soto, Stephen J. Young, Maryann E. Martone, Thomas J. Deer-

ink, Stephan Lamont, Bridget O. Carragher, Kiyoshi Hamma, and Mark H.

Ellisman. Serial setion eletron tomography: A method for three-dimensional

reonstrution of large strutures. Neuroimage, 1:230{243, 1994.

[48℄ Neil Spring and Rih Wolski. Appliation Level Sheduling of Gene Sequene

Comparison on Metaomputers. 12th ACM International Conferene on Su-

peromputing , July 1998.

[49℄ Alan Su, Franine Berman, Rihard Wolski, and Mihelle Mills Strout. Using

AppLeS to Shedule Simple SARA on the Computational Grid. International

Journal of High Performane Computing Appliations , 13(3):253{262, 1999.

[50℄ A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. Overview

of a performane evaluation system for global omputing sheduling algo-

rithms. In Proeedings of 8th IEEE International Symposium on High Per-

formane Distributed Computing, 1999.

[51℄ Andrew S. Tanenbaum. Computer Networks, hapter 1, page 8. Prentie Hall,

In., Third edition, 1996.

101

[52℄ Gregor von Laszewski, Mei-Hui Su, Joseph Insley, Ian Foster, John Bresna-

han, Carl Kesselman, Marus Thiebaux, Mark Rivers, Steve Wang, Brian

Tieman, and Ian MNulty. Real-time analysis, visualization, and steering of

tomography experiments at photon soures. In Ninth SIAM Conferene on

Parallel Proessing for Sienti� Computing, Apr 1999.

[53℄ Yuxin Wang, Franeso De Carlo, Ian Foster, Joseph Insley, Carl Kesselman,

Peter Lane, Gregor von Laszewski, Derrik Manini, Ian MNulty, Mei-Hui

Su, and Brian Tieman. A quasi-realtime xray mirotomography system at the

Advaned Photon Soure. In Proeedings of SPIE, volume 3772, 1999.

[54℄ Rih Wolski. Dynamially Foreasting Network Performane to Support Dy-

nami Sheduling Using the Network Weather Servie. In Pro. 6th IEEE

Symp. on High Performane Distributed Computing, August 1997.

[55℄ Rih Wolski, Neil Spring, and Chris Peterson. Implementing a Performane

Foreasting System for Metaomputing: The Network Weather Servie. In

Proeedings of Superomputing 1997 , 1997.

[56℄ Rih Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Servie:

A Distributed Resoure Performane Foreasting Servie for Metaomputing.

The Journal of Future Generation Computing Systems , 1999.

