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Clinical Infectious Diseases

M A J O R A R T I C L E

HIV/AIDS

CD8 T-Cell Expansion and Inflammation Linked to
CMV Coinfection in ART-treated HIV Infection
Michael L. Freeman,1,a Joseph C. Mudd,1,ab Carey L. Shive,1,2 Souheil-Antoine Younes,1 Soumya Panigrahi,1 Scott F. Sieg,1 Sulggi A. Lee,3 Peter W. Hunt,3

Leonard H. Calabrese,4 Sara Gianella,5 Benigno Rodriguez,1 and Michael M. Lederman1

1Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Case Medical Center, and 2Veterans
Administration Medical Center, Cleveland, Ohio; 3Department of Medicine, University of California San Francisco; 4Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Foundation,
Ohio; and 5Division of Infectious Diseases, University of California San Diego, La Jolla

Background. Persistent CD8 T-cell expansion, low CD4/CD8 T-cell ratios, and heightened inflammation persist in antiretroviral
therapy (ART)-treated human immunodeficiency virus (HIV) infection and are associated with increased risk of morbid outcomes.
We explored the role of cytomegalovirus (CMV) infection in CD8 lymphocytosis and inflammation in ART-treated HIV infection.

Methods. Absolute CD4 and CD8 T-cell counts were abstracted from clinical records and compared among 32 HIV-infected
CMV-seronegative subjects, 126 age, CD4 and gender-matched HIV-infected CMV-seropositive subjects, and among 21 HIV-
uninfected controls (9 CMV-negative, 12 CMV-positive). Plasma inflammatory indices were measured in a subset by ELISA.

Results. Median CD8 counts/µL were higher in HIV-positive/CMV-positive patients (795) than in HIV-positive/CMV-negative
subjects (522, P = .006) or in healthy controls (451, P = .0007), whereas CD8 T-cell counts were similar to controls’ levels in HIV-
positive/CMV-negative subjects. Higher plasma levels of IP-10 (P = .0011), TNF-RII (P = .0002), and D-dimer (P = .0444) were also
found in coinfected patients than in HIV-positive/CMV-negative subjects.

Conclusions. CMV infection is associated with higher CD8 T-cell counts, resultant lower CD4/CD8 ratios, and increased
systemic inflammation in ART-treated HIV infection. CMV infection may contribute to risk for morbid outcomes in treated
HIV infection.

Keywords. HIV; CMV; coinfection; CD8 T-cell expansion; inflammation.

In the era of combination antiretroviral therapy (ART), human
immunodeficiency virus (HIV)-infected individuals are living
longer and healthier lives. More HIV-infected people than
ever are entering old age, but due to increased inflammation
and elevated risks of cardiovascular disease that are linked to
HIV infection, even younger ART-treated patients are suc-
cumbing earlier to many of the same complications that affect
the HIV-uninfected elderly [1]. We and others have previously
linked persistent CD8 T-cell expansion and inflammatory
mediators such as interleukin (IL)-6, tumor necrosis factor
(TNF)-α, and type 1 interferons to the morbid outcomes of
HIV infection [2–5], and more recently, we have specifically im-
plicated the inflammatory mediators interferon (IFN)-α, IL-6,
and IL-1β in the pathogenesis of poor CD4 T-cell restoration
in the setting of sustained combination ART [6, 7]. In most
persons with HIV infection, expansion of the CD8 T-cell pool
is demonstrable early in infection as CD4 T-cell numbers

progressively fall, and this expansion typically persists even
when HIV replication is controlled with ART [8]. In ART-
treated patients, inversion of the ratio of CD4 T cells to CD8
T cells is associated with poor clinical outcomes, even in the
setting of normal CD4 T-cell counts [5, 9], suggesting that CD8
T-cell expansion is associated with and could be an important
driver of increased morbidity and mortality [5]. In ART-treated
HIV infection, the determinants of persistent CD8 T-cell
expansion are poorly understood.

Like HIV, human cytomegalovirus (CMV) is a lifelong viral
pathogen associated with inflammation and cardiovascular risk,
particularly in the elderly [10]. CMV infection is especially
prevalent in aging populations—increasing in prevalence from
36% in 6–11 year-olds to over 90% in those older than 80 years
old [11]—whereas approximately 90% of HIV-infected individ-
uals are coinfected with CMV, independently of age [12]. In im-
munosuppressed individuals, such as untreated HIV-infected
patients and organ transplant recipients, active CMV infections
can be particularly devastating, leading to severe end organ dis-
ease and death. Most HIV-infected persons experience inter-
mittent bursts of CMV replication (even during suppressive
ART) that might contribute to persistent stimulation of the
CD8 T-cell population [10].

Here, we sought to determine whether persistent CD8 T-cell
expansion and increased inflammation observed in ART-treated
HIV infection was associated with CMV coinfection.
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METHODS

Clinical Indices
This work was approved by the Institutional Review Board at
University Hospitals/Case Medical Center. With written
informed consent, blood was acquired in EDTA tubes from
21 HIV-uninfected persons (12 CMV-positive, 9 CMV-
negative) and 158 HIV-infected patients (126 CMV-positive,
32 CMV-negative) receiving ART (median duration of treat-
ment 3.15 years) with undetectable plasma HIV levels (typically
below 50 copies/mL). CD4 and CD8 T-cell counts were deter-
mined in the hospital clinical laboratory by flow cytometry.
CMV serostatus was determined in the hospital clinical laboratory
by IMMULITE 2000 CMV IgG Ab immunoassay (Siemens).
HIV-infected CMV-seropositive subjects were age, gender-, and
CD4 T cell count-matched 4:1 to HIV-infected CMV-seronegative
subjects. Participant characteristics are shown in Table 1.

ELISA
Whole blood in EDTA was obtained at the time of CMV sero-
status determination and after centrifugation, plasmas were frozen
at −80°C, then thawed and analyzed in batch by enzyme-linked
immunosorbent assay (ELISA) per manufacturer’s protocols for
levels of D-dimers (Asserachrom), IP-10, IL-6, IL-18, soluble
CD14 (sCD14), and TNF-RII (all from R & D Systems).

Statistics
We compared continuous variables using the Mann–Whitney
U test or the Kruskal–Wallis test with Dunn’s correction for
multiple variables. Categorical data were compared using Fisher
exact test. Correlations were determined using a nonparametric
Spearman test.

RESULTS

Clinical Characteristics
We compared 3 groups: HIV-uninfected controls (n = 21), ART-
treated HIV-infected CMV-seronegative individuals (n = 32),
and ART-treated HIV-infected CMV-seropositive individuals
(n = 126). All 3 groups were similarly aged, and the HIV-infected
groups had similar CD4 counts, CD4 nadirs, duration of ART,
and proportions of men (Table 1). We did not find significant

differences in CD4 or CD8 numbers between the CMV-
seropositive (n = 12, median CD4 count = 938/µL, median CD8
count = 501/µL) and the CMV-seronegative HIV-uninfected
controls (n = 9, median CD4 count = 876/µL, median CD8
count = 440/µL), so we analyzed them here as one group. Plas-
ma levels of IL-6, D-dimer, and sCD14 among these healthy
controls have been reported as a group earlier [13].

Elevated CD8 T-Cell Numbers and Decreased CD4/CD8 Ratio in HIV and
CMV Coinfection
Median circulating CD8 T-cell number was significantly higher
in HIV-infected CMV-seropositive patients (795/µL) than in
HIV-infected CMV-seronegative subjects (522/µL, P = .006)
or HIV-uninfected controls (451/µL, P = .0007). Absolute
CD8 T-cell counts among the HIV-infected CMV seronegative
subjects were not different from those among healthy controls
(P > .99), suggesting that the expansion of circulating CD8 T
cells that is a hallmark of ART-treated HIV infection is specif-
ically linked to coinfection with CMV. As the HIV-infected
groups were matched for CD4 T-cell counts, CD4 T-cell nadirs,
and duration of ART, the observed difference in CD8 T-cell
counts was not related to differences in immune restoration.
As expected, CD4 T-cell counts in each HIV-infected group
were lower than among HIV-negative controls (Figure 1B).
Consequently, coinfection with HIV and CMV resulted in a sig-
nificantly lower CD4/CD8 ratio than was seen among HIV-in-
fected CMV-seronegative subjects (P = .004, Figure 1C). As
both increased circulating CD8 T-cell numbers and low CD4/
CD8 ratios are associated with poor clinical outcomes in
ART-treated HIV infection [5, 9], our findings implicate
CMV coinfection as a possible driver of non-AIDS morbidities
in treated HIV disease.

Elevated Expression of Select Markers of Inflammation
We next asked if the presence of HIV and CMV coinfection was
associated with increased plasma levels of the inflammatory and
coagulation markers IP-10, TNF-RII, D-dimer, IL-18, IL-6, and
sCD14 (Figure 2). Levels of IP-10 (P = .0011), TNF-RII
(P = .0002), and D-dimer (P = .0444) were higher in plasmas
of HIV, CMV coinfected subjects compared to HIV-infected

Table 1. Participant Characteristics

HIV-positive

P Value

Total

P ValueCMV-negative CMV-positive HIV-positive HIV-negative

N, (male, %) 32 (84.75%) 126 (84.13%) 1.00 158 (84.18%) 21 (52.4%) .0018

CMV-positive (%) 0% 100% <.0001 79.7% 42.9% .0281

Age (y), Median (IQR) 41.5 (35.25–47) 42 (36–48.25) >.9999 42 (36–48) 37 (30.5–48.5) .0526

Time on ART (y), Median (IQR) 3.29 (2.61–4.71) 3.14 (1.86–4.69) .4634 3.15 (2.11–4.67) NA NA

CD4 (cells/µL), Median (IQR) 437 (275.3–591.8) 490 (309–640) .4201 467 (300.5–635) 907 (703.5–1059) <.0001

CD4 nadir (cells/µL), Median (IQR) 178.5 (89.3–268.5) 180 (71–300.1) .6527 180 (72.5–290) NA NA

Significance was determined using Mann–Whitney U test or Fisher exact test. P values <.05 were considered significant.

Abbreviations: ART, antiretroviral therapy; CMV, cytomegalovirus; HIV, human immunodeficiency virus; IQR, interquartile range; NA, not applicable.
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CMV-seronegatives. Expression of IL-18, a member of the
IL-1β family of cytokines, was not significantly elevated
(P = .0722). Plasma levels of IL-6, a powerful predictor of mor-
bid outcomes in treated HIV infection [3, 4] were not different
(P = .8389) between the CMV-seropositive and seronegative
HIV-infected groups, suggesting that the drivers of IL-6 expres-
sion might not be related to CMV coinfection in ART-treated
HIV infection. The soluble form of the lipopolysaccharide
(LPS) coreceptor, sCD14, is elevated in settings of microbial
translocation but also can be induced by other monocyte/mac-
rophage-activating stimuli [14]. Similarly, levels of sCD14 were
comparable between CMV-seronegative CMV-seropositive
ART-treated HIV-infected subjects (P = .4087), suggesting that
CMV coinfection is not central to microbial translocation/
monocyte activation in ART-treated HIV infection.

DISCUSSION

In our age-matched cohorts, we found elevated circulating CD8
T-cell numbers only in individuals coinfected with both CMV
and HIV but not in persons infected with HIV alone or CMV
alone. Although not associated with IL-6 or soluble CD14
levels, CMV coinfection was associated with lower CD4/CD8
ratios and higher plasma levels of interferon-inducible protein
10 (IP-10), tumor necrosis factor receptor – type II (TNF-RII),
and D-dimers, suggesting CMV coinfection in HIV-infected
persons is a potential contributor to increased inflammation
and coagulation observed in HIV disease [3, 5, 9, 15, 16].
These findings also suggest that the drivers of activation and
morbidities in treated HIV infection are likely to be multifacto-
rial [17, 18]. The mechanisms of how CMV coinfection drives
circulating CD8 T-cell persistence and increased inflammation
in HIV infection and the role of CMV in the morbid outcomes
of treated HIV infection merit further study.

CMV infection is linked to CD8 T expansion in the HIV-
uninfected elderly but less so among younger CMV-infected
adults [19–23]. In our slightly younger HIV-uninfected controls,

we saw no significant differences in CD8 T-cell counts between
CMV-seronegative and CMV-seropositive individuals. Yet CD8
T-cell expansion was striking in CMV/HIV coinfected subjects
but not in those singly infected with HIV, who presented normal
levels of circulating CD8 T cells. Barrett, et al reported that
among HIV-infected patients on ART but not necessarily with
controlled HIV replication, CMV coinfection was associated
with both diminished CD4 T-cell restoration and a modest
CD8 T-cell expansion that was characterized by increased expres-
sion of the senescence marker CD57 and decreased expression
of the coreceptor CD28 [24]—both indices that are linked to
CD8 T-cell expansion/maturation. That study did not include

Figure 1. Elevated CD8 T-cell counts and reduced CD4/CD8 ratio in human immunodeficiency virus (HIV)-positive/cytomegalovirus (CMV)-positive individuals. Absolute CD8
T-cell numbers (A), absolute CD4 T-cell numbers (B), or CD4/CD8 ratios (C) were determined for HIV-uninfected individuals (n = 21); HIV-infected CMV-seronegative subjects
(n = 32); and HIV-infected CMV-seropositive subjects (n = 126). (A and B) Significance was determined by Kruskal–Wallis test with Dunn’s correction for multiple comparisons;
(C) Significance was determined using Mann–Whitney U test.

Figure 2. Elevated expression of selected markers of inflammation. Donor plasma
was acquired from human immunodeficiency virus infected donors who were cyto-
megalovirus (CMV)-seronegative (CMV-negative; n = 32) or CMV-seropositive (CMV-
positive; n = 42) and tested by enzyme-linked immunosorbent assay for expression of
inflammatory mediators interferon-inducible protein 10 (A), tumor necrosis factor
(TNF)-RII (B), D-dimer (C), interleukin (IL)-18 (D), IL-6 (E ), and sCD14 (F ). Significance
was determined using Mann–Whitney U test.
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comparison to HIV-uninfected controls, nor were soluble indices
of inflammation measured. In the present study, performed
among patients with controlled HIV replication on ART carefully
matched for current and nadir CD4 T-cell counts and duration of
ART exposure, CMV coinfection was linked to dramatic CD8
T-cell expansion, whereas singly HIV-infected subjects had
normal CD8 T-cell counts. Thus, our data suggest that HIV
and CMV infections together drive CD8 T-cell expansion—but
how does this happen? One possibility is that increased CMV
reactivation and shedding in HIV-infected subjects drives activa-
tion and proliferation of CMV-specific CD8 T cells. Immuno-
compromised individuals experience more frequent CMV
reactivation and shedding [25], and CMV shedding is associated
with increased levels of T-cell activation, proliferation, and ex-
haustion [10]. As many as half of all CD8 T cells can be CMV-
reactive in the CMV-infected elderly [20, 26], and the percentage
of CD8 T cells specific for CMV antigens is increased in HIV-
infected subjects [27–30]. One potential driver of CD8 T-cell
expansion in the setting of coinfection is IL-15, which can be
upregulated by herpesvirus-infected cells and is upregulated
early in HIV infection [31, 32]. Previous studies have clearly
demonstrated that CMV infection favors a fully differentiated,
effector memory phenotype [33] and that HIV infection may
be characterized by a proliferative block in CD8 T cells [34].
Therefore, it is conceivable that the combined proinflammatory
environment of HIV and CMV coinfection drives both T-cell
activation and some level of bystander proliferation that aug-
ments cognate peptide-driven CD8 T-cell expansion, coupled
with a failure to deplete the existing CD8 T-cell pool. Although
the precise role for CMV in driving CD8 T-cell expansion has not
yet been demonstrated in HIV disease, administration of the anti-
CMV drug valganciclovir to ART-treated HIV-infected patients
with incomplete CD4 T-cell recovery reduced CD8 T-cell activa-
tion [35], suggesting that herpesvirus recrudescence contributes
to persistent activation in ART-treated HIV infection.

During inflammation, TNF-RII is shed from the surface of
cells upon binding with TNFα and its expression can be used
as a surrogate for TNFα activity [36]. In untreated HIV infection,
TNF-RII levels correlate with HIV RNA levels and are reduced
upon initiation of ART [37]. Serum TNF-RII levels are also in-
creased during CMV disease [38] and, notably, also in untreated
HIV-infected patients with CMV disease [39]. Our data suggest
that CMV-induced inflammation may be an important driver of
TNFα expression during ART-treated HIV infection. Similarly,
IP-10 is an important chemokine induced by interferons that is
involved in a variety of immune pathways and is a biomarker for
disease severity in multiple settings. IP-10 expression is elevated
in ART-treated HIV infection and in settings of CMV infection
following lung transplantation [40, 41]. Here we show that CMV
coinfection increases IP-10 expression more than is seen in
ART-treated HIV infection alone. Thus, TNFα and interferons
produced during the cellular immune response to CMV could

contribute to the increase in TNF-RII and IP-10 levels, seen in
treated HIV infection.

Notably, HIV and CMV infection and related inflammation
are each associated with increased cardiovascular risk [42]. In
particular, levels of the fibrin degradation product D-dimer, a
coagulation biomarker, are associated with cardiovascular dis-
ease and mortality in HIV-infected patients [2]. Elevated
CMV-specific T-cell responses and levels of CMV IgG are cor-
related with increased carotid artery intima-media thickness in
HIV-infected patients [28], making CMV a plausible contribu-
tor to risk and an attractive target for therapeutic intervention
to prevent HIV-associated cardiovascular complications. Future
studies are needed to determine if suppressing CMV replication
in HIV coinfection will lead to reductions in inflammatory and
coagulation indices and CD8 T-cell numbers, and a diminution
in the risk of cardiovascular complications and other morbidities
in ART-treated HIV infection.
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