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Parmar, David Scully, Eric Rind, and John Berezney for countless moments of joy and

laughter over the past 4 years. My college friends Sergio Aguayo, Jesus Aguilar, Nick

Rubio, Roger Martinez Reyes, and Blayne Wagner for staying in contact despite no longer

seeing each other as often as we once did. To the people who made the first-year trailer

an enjoyable experience: Ryan Schmitz, Adolfo Holguin, Michael Oshiro, Mina Lee, and

Erin Yandel to name a few.

Last but not least, a toda mi famila. Mil gracias a todos los que estuvieron presentes

y ayudaron en cada paso de mi carrera. Sin el apoyo de mi Máma nada de esto hubiera
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Abstract

Geometry and Topology of Soft Elastic Systems

by

Roberto Abril Valenzuela

We study two separate systems each of which emphasizes the geometrical and topolog-

ical aspects of soft condensed matter systems. The geometry side of condensed matter is

exemplified by the geometrical frustration experienced by constrained thermalized mem-

branes. We study the dynamics of the novel tilted phase of thermalized cantilevers and

find that the geometry of the system plays an important role in determining the behav-

ior of the underdamped dynamics. We then delve into the topology of soft matter by

studying the non-Abelian braiding of singular defect lines of systems with biaxial symme-

try. Biaxial nematic defects have a non-Abelian topology that allows for the formation

of topologically stable braided structures. We devise a braid theory that incorporates

strand labeling via colors and allows for crossing relations that take colorings into ac-

count. We use this colored braid theory to translate complex braided structures into

algebraic expressions that can be used to determine whether the braid is entangled un-

der the algebra of its assigned fundamental group. We supplement this with possible

experimental realizations of the non-Abelian structures inherent to the biaxial nematic

system.
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Chapter 1

Introduction

In this dissertation, we will explore problems in soft matter systems that are not inher-

ently “soft” in the traditional sense of the word. Soft matter systems are often char-

acterized by energy scales comparable to that of the system’s temperature. In other

words, soft matter systems are those in which entropic e↵ects will dominate. Such sys-

tems have been thoroughly studied for over a century now for their vast applications in

fields of statistical mechanics and their success in explaining several problems in material

physics. Soft matter problems can span several length scales and- from the microscale in

the modeling of biological systems such as morphogenesis and tissue mechanics [1, 2], to

the macroscale in the active dynamics of flocking [3].

We will focus on two separate topics: the dynamics of constrained thermalized mem-

branes and the classification of knots and links of biaxial nematic defect lines. The former

will elucidate the role of geometry in the dynamics of a thin, elastic solid at finite tem-

peratures while the latter will showcase the rich topology that is tied to biaxial nematic

systems and their singular disclination lines.
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Introduction Chapter 1

Figure 1.1: Magnified electron micrograph of a “ghost” erythrocyte cytoskeleton ob-
tained by removing the surrounding lipid bilayer. Figure adapted from [4].

1.1 Statistical Mechanics of Crystalline Membranes

The physics of thin plates with thickness tmuch smaller than the length of the system,

L, has been predominantly studied within continuum mechanics for decades [5]. From

studying their elastic properties and vibrational modes [6], one might think the classical

mechanics of plates and shells has nothing more to reveal. Interest in the mechanics

of thin sheets has been rekindled recently in fields such as metamaterials [7, 8, 9] and

biology, where one finds many examples of two-dimensional plate-like systems [10, 11, 12],

more appropriately referred to as a membranes. In classical mechanics, scales are large

enough where the e↵ect of thermal fluctuations can be ignored. Biological membranes,

however, are often subject to media where external fluctuations significantly impact the
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Introduction Chapter 1

physics.

The model systems for thermalized membranes, both solid and liquid, are often mo-

tivated by biological systems. Lipid membranes are prime examples of liquid membranes

while the two-dimensional cytoskeletal cortex structures in red cell membranes, which can

be separated from the lipid layer [11, 4], are that of solid membranes [12], an experimen-

tally imaged isolated sample of which can be seen in Fig. 1.1. Both of these examples have

elastic properties that are modified by thermal fluctuations. In the presence of such large

thermal fluctuations the elastic properties of the system become scale-dependent. As we

will later explain, this scale dependency, becomes ubiquitous in the study of membranes

at non-zero temperature.

Perhaps unsurprisingly, the interest in solid membranes, specifically, has been rekin-

dled in the last decade due to the emergence of graphene as a wonder material with

manifold applications in physics and materials engineering. There has been no short-

age of research on the electronic properties of graphene over the last few decades. The

elastic properties of graphene, however, have been much less explored and provide a rich

playground for extreme mechanics at finite temperatures. Room temperature graphene

is an experimentally accessible system to probe the elastic properties of thermalized solid

membranes, however, the same physical analysis applies to a vast number of 2D meta-

materials. Taking graphene as our membrane of choice, we will focus on the mechanical

properties of solid membranes.

I will now introduce the most commonly used model of the continuum elastic proper-

ties of a two-dimensional membrane or sheet embedded in an ambient space R3. Consider

an initially flat sheet configuration on the plane, r0 = (x1, x2, 0). A distortion, r0, on this

flat state can then be parametrized using the Monge parametrization [13]:

r(x, h) = r0 + r
0 = (xi + ui(x))êi + h(x)ê3 (1.1)

3



Introduction Chapter 1

Figure 1.2: Relevant fields in the continuum model of elastic sheets in 3D. The in-plane
field, u(x), measures displacements in the plane of the sheet while the out-of-plane
field, h(x), measures the displacements in the dimension transverse to the sheet.

where i = 1, 2. Here, there are two continuum fields of interest: (1) a vector in-plane

displacement field u(x) 2 R2 and (2) a scalar out-of-plane displacement field h(x) 2 R,

both of which are pictorially depicted in Fig. 1.2. We can then measure infinitesimal

distortions of a line segment, dr, and write down the metric for the sheet,

dr2 = dr20 + 2uijdxidxj, (1.2)

where uij is the so-called non-linear strain tensor, which, to lowest order in gradients of

ui and h, is given by

uij ⇡
1

2
(@iuj + @jui) +

1

2
@ih@jh. (1.3)

Note that the second term of the strain tensor provides a non-linear contribution which

separates the mechanics of 3D materials from those of 2D sheets in R3. This non-linearity

manifests itself in several forms, but most important of all is the long-range interaction

4
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of out-of-plane fluctuations.

The energy of an elastic sheet configuration can now be formulated to have two main

contributions: an energetic cost to bending and an energetic cost to stretching. This

takes the form [5, 13]

F [h(x),u(x)] =

Z
d2x

✓


2
(r2h)2 + µu2

ij +
�

2
u2
kk

◆
(1.4)

where the energy of bending is mediated by a bending rigidity, , physically penalizing

local changes of Gaussian curvature, r2h, and has units of energy. On the other hand,

stretching is measured through the non-linear strain tensor and mediated by the so-called

Lamé coe�cients, µ and �, which have units of energy per unit area. The equilibrium

equations of plates, better known as the Föppl-von Kármán equations, can then be

derived via variation of the free energy above (�F = 0). The resulting equations are

non-linear and biharmonic, meaning they are a set of fourth-order partial di↵erential

equations that are extremely di�cult to solve with scarce analytic solutions [5].

We have assumed zero-temperature so far. In order to study the statistical mechanics

of membranes, however, we must analyze the partition function given by the free energy

Eq. 1.4. This takes the form of the following functional integral1

Z =

ZZ
DhDu e�F [h,u]/kBT . (1.5)

In this form, we can simplify the model by noting that the in-plane modes, ui, appear

quadratically in F . This means that the ui integral is Gaussian and can be integrated

1Note that we have written this in terms of a free energy and not as energy. This is because we can
partition the sum over all di↵erent configurations into a sum over groups of configurations with the same
energy levels; that is, Z =

P
i e

�Ei/kBT =
P

E ⌦(E)e�E/kBT where ⌦(E) = eS/kB is the degeneracy of
the configuration with energy E.
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to derive an e↵ective theory in h; that is we write

Fe↵ [h(x)] = �kBT ln

Z
Dui e

�F [h(x),u(x)]/kBT , (1.6)

which, after integration (see Appendix A for the details), yields the e↵ective theory

Fe↵ [h(x)] =

Z
d2x

✓


2

�
r

2h(x)
�2

+
Y

8
(P T

ij @ih@jh)
2

◆
, (1.7)

where P T
ij = �ij � @i@j/r2 is the transverse projection operator and we have also intro-

duced the 2D Young’s modulus, Y ,

Y =
4µ(µ+ �)

2µ+ �
, (1.8)

which measures a material’s bulk resistance to strain due to applied forces. In this form,

the model now presents the non-linearity in the strain tensor upfront in the form of a

quartic term, making the e↵ective energy resemble that of a �4 model.

Now that we have a T > 0 theory with one field, we can study the role of thermal

fluctuations, which, in a solid membrane, play an essential role in modifying the elastic

properties. To see this, consider the height-height correlator, which in the Gaussian

theory (Y = 0) in Fourier space reads

hh(q)h(�q)i0 =
kBT

Aq4
, (1.9)

where A is the area of the sheet and h·i0 denotes the Gaussian average. Allowing now

Y 6= 0, we write the correlator

hh(q)h(�q)i =
kBT

AR(q)q4
, (1.10)
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Figure 1.3: Finite temperature configuration of a simulated free-standing sheet of
graphene [15]. Scale bar shows the relative size of the thermal lengthscale, `th ⇡ 2 Å.

where the correction provided by the non-linear stretching term is said to renormalize

the bending rigidity, defining the renormalized, scale-dependent bending rigidity

R(q) =
kBT

q4hh(q)h(�q)i
. (1.11)

A self-consistent approach leads a solution for R which has the scaling form [14],

R(q) ⇠ q�1, (1.12)

which tells us how thermal fluctuations modify the bending rigidity. Such fluctuations,

however, only become relevant beyond a certain lengthscale, referred to as the thermal

lengthscale,

`th =

s
32⇡32

0

3KBTY0
, (1.13)

for bare zero-temperature values 0, Y0 (see Appendix B for a derivation).

More sophisticated approaches beyond the self-consistent approach, such as ✏-expansions,

7
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reveal that thermalized sheets are controlled by a Föppl-von Kármán fixed point where

all the elastic constants are scale-dependent. That is, the bending and stretching moduli

(`), µ(`),�(`) are promoted to functions of the system size, ` as follows

R(`)

0
⇠

✓
`

`th

◆⌘

(1.14)

µ(`)

µ0
,
�(`)

�0
,
Y (`)

Y0
⇠

✓
`

`th

◆�⌘u

, (1.15)

where the anomalous exponent is estimated by both analytic calculations and simulations

to be ⌘ ⇡ 0.8 [16, 17, 18, 19, 20, 21, 22] while the second exponent, ⌘u, is exactly related

to ⌘ by the rotational invariance Ward identity (see Appendix C)

⌘u = 2� 2⌘, (1.16)

yielding an estimate of ⌘u ⇡ 0.4. The renormalization group analysis tells us that, at

scales beyond the thermal lengthscale (` � `th), the bending rigidity increases and the

system becomes sti↵er to bending. At the same time, the stretching moduli decrease,

meaning the stretching modes are softened by thermal fluctuations. This is a remarkable

example of attaining order from disorder as states with higher thermal fluctuations tend

to be stabilized into an extended or flat state. The mean square displacements of the

height field due to thermal fluctuations is

hh2
i =

Z
d2q

(2⇡)2
hh(q)h(�q)i ⇠ L2�⌘

⌘ L2⇣ , (1.17)

where ⇣ is the roughness exponent and is approximated to be ⇣ ⇡ 0.6 [13]. This tells

us that the root-mean-square displacements scale as hrms/L =
p
hh2i/L = L�⌘/2 which

approaches zero as L!1, indicating the system is flat but rough. It is this same rough-

8
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ening of the membrane surface that helps explain the stabilization of graphene as a 2D

crystal that “seemingly” violates the Mermin-Wagner theorem (see Fig. 1.3). The logic

of Mermin-Wagner would lead one to believe that long wavelength modes would destroy

the ordered phase as the mean square displacement diverges logarithmically with sys-

tem size. The codimensionality of the surface once again allows out-of-plane fluctuations

to interact at long ranges with the help of a bilaplacian mediator, thus circumventing

the Mermin-Wagner restrictions. This stability only lasts until an inevitable crumpling

transition at some critical temperature, Tcrumpling, where disorder dominates and surface

normals are no longer correlated.

In practice, the elastic properties of membranes can often be quantified using the

Föppl-von Kármán number, which for system of size L, is given by

vK = Y L2/ (1.18)

and it roughly measures the relative importance of stretching versus bending. We may

rewrite vK by writing Y = Et and  = Et3, where E is the three dimensional Young’s

modulus and t the thickness of the membrane. This means that for any material,

vK ⇡ (L/t)2, which makes vK � 1 for t ⌧ L, generally indicating that stretching

is more energetically costly than bending deformations, leading to F leading to bending

domination in thin membranes. For the case of graphene, the microscopic elastic values

are  ⇡ 1.2 eV and Y ⇡ 20 eV Å
�2
, which for a system size of order 100 µm gives

vK ⇡ 1012. What makes graphene, additionally special is that, the thermal lengthscale

is of the order `th ⇠ 2 Å, which is comparable to the thickness of a monolayer sample

of graphene. This means that any experimental sample of graphene will be in the ther-

malized limit `� `th at low temperatures, which makes it an ideal material to study the

properties of thermalized membranes experimentally. To put this into perspective, the

9
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thermal lengthscale for a membrane such as the aforementioned red blood cytoskeleton

is `th ⇡ 10 µm which is slightly larger than the typical size of red blood cells ` ⇡ 8 µm.

On the same note, a more sizeable material like paper, has `th ⇡ 50 km, meaning thermal

fluctuations cannot be witnessed in a regular sheet of printer paper.

Chapter 2 of this thesis will make use of the membrane physics introduced in this

section as applied to explain the rich dynamics of a symmetry-breaking phase transition,

which we aptly refer to as the tilt transition. It can be thought of as a thermalized

cantilever analog to the Euler buckling transition in classical elastic beam theory. We

will see how the interplay between geometry and thermalization leads to a unique dynamic

phase of tilting where, at the onset of transition, the system spontaneously chooses one of

two available states but can dynamically “tunnel” into the opposite state. This is based

on work published in [23].

C

N

N

O

Figure 1.4: Molecular structure of the most commonly used nematic constituent
molecules, (a) 5CB and (b) MBBA, both of which exhibit nematic transitions near
room temperature. The latter is often used in liquid crystal displays (LCDs).

10



Introduction Chapter 1

1.2 Topology of Biaxial Nematics

The second half of this thesis will focus on a di↵erent project that explores the rich

topology of biaxial nematic systems.

Before introducing the biaxial system, it is instructive to consider its simpler cousin,

the uniaxial nematic, one of the most thoroughly studied systems in soft condensed

matter, due to its analytical simplicity coupled to its vast range of applications in other

fields of physics [24], including biological physics systems such as the supracellular actin

fiber networks in Hydra [25]. Nematics are known as the most basic phase of liquid

crystal systems, which are aptly named as they flow like liquids but possess long-range

elastic distortions like crystals. More complex phases exist, such as the layered smectic

phase and the chiral nematic (cholesteric) phase with twisting layers [26]. Liquid crystals

are composed of thin rod-like molecules such as 5CB and MBBA2 (see Fig. 1.4) which

have rod-like or cylindrical symmetry, D1, which is depicted in Fig 1.5. As they have no

particular polarity, nematic molecules are often characterized by an angular orientation

of a director n, which is a unit vector with head-tail symmetry, that is, n = �n.

Biaxial nematics were first theoretically introduced about 50 years ago by Toulouse in

his seminal paper where he described the system as a generalization of uniaxial nematic

liquid crystals [27]. In his paper, Toulouse expands upon the rod-like symmetry of local

geometries by considering constituent molecules with rectangular point-group symmetry,

D2, instead of rod-like symmetry, D1, of uniaxial molecules. Biaxial nematics, in that

sense, follow a similar construction as uniaxial nematics and can be seen as an extension

with reduced symmetry.

Consider an ensemble of molecules with the same rotational symmetry except now

we consider the rectangle’s rotational symmetry, D2. One can think of biaxial molecules

2p-Pentyl-p’-Cyanobiphenyl and N-(p-Methoxybenzylidene)-p’-Butylaniline

11
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Figure 1.5: (a) Visual representation of the symmetry group of uniaxial nematics,
D1 which is generated by a reflection along the long axis of the rod (left) and an
infinite set of rotations about the long axis parametrized by an angle, ✓ (right). (b)
Visual representation of the 4-element symmetry group of biaxial nematics, D2. This
group is generated by a ⇡ rotation about the z-axis (left) and reflections along the x
(middle) and y axes (right).

as “brick”-like constituents. Note that the group D1 is infinitely large, as its elements

correspond to the reflection along the molecule’s long axis as well as rotations around it,

parametrized by an angle ✓ 2 R (see Fig. 1.5(a)). On the other hand, the rectangular

group, D2, is only generated by 3 non-trivial elements that correspond to a ⇡ rotation

about the out-of-plane axis as well as reflections across the long and short axes (see

Fig. 1.5(b)). Similar to the uniaxial director, the orientation of a biaxial molecule can

be described using a triad of directors, (n,m, l) each corresponding to a principal axis of

12
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symmetry and all of which are unit length and obey

n = �n (1.19)

m = �m (1.20)

l = �l. (1.21)

The orientational information of all three directors can be combined into a traceless-

symmetric tensor, Qij, known simply as the Q-tensor. It has the form,

Qij = S

✓
ninj �

�ij
3

◆
+ T

✓
mimj �

�ij
3

◆
, (1.22)

where S and T are the uniaxial and biaxial order parameters, respectively. Here, we can

recover the uniaxial Q-tensor as simply the case where T = 0.

1.3 Topological Defects

Typically, one may consider global or average nematic configuration textures and their

overall phase or alignment often characterizes the degree of order. However, at the local

level, the orientation fields may become singular at a region in space. These singularities

are what are known as topological defects, usually characterized by a topological invariant

(charge), and may vary in dimensionality depending on the dimension of the system and

the dimension of a measuring surface that encloses it.

Take for example a nematic in 2D which has a Q-tensor of the form

Q =
1

2

0

B@
cos ✓ sin ✓

sin ✓ � cos ✓

1

CA , (1.23)
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Figure 1.6: The two defect textures with equal and opposite winding numbers found
in 2-dimensional uniaxial nematics. Note that in 3D, these would extend in the third
dimension and the defect core would become a defect line.

where ✓ is the local orientation of the nematic. Topological point defects for this config-

uration would then present themselves as a singularity in ✓ and are characterized by a

winding number q 2 Z/2 given by

2⇡q =

I
d✓, (1.24)

which simply measures the amount by which the angle ✓ winds around a circle that

encloses the defect. 2D nematics are host to two fundamental point defect charges q =

±1/2, both of which are depicted in Figure 1.6. Higher winding number defects exist,

however, these are more rare as they are higher in energy by a factor of ⇠ q2.

In three dimensions, we may have line defects or disclinations, which are similarly

described by a topological number, q, which measures the amount by which the angle

rotates along a circuit surrounding the defect line. Note that we can still have point

defects in 3D, however, the classification system using the winding number in 2D no

14
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longer has any meaning, as we cannot draw a loop around a point in 3D. Instead, we

must take a more sophisticated approach.

1.3.1 Homotopy group theory

Tuolouse and Kleman first introduced the topological classification of defects in [28]

and then popularized by Mermin in his seminal review [29]. They applied the mathe-

matical machinery of homotopy theory, which studies families of continuous mappings

ht : X �! Y , known as homotopies between spaces X and Y , where t 2 [0, 1]. The ho-

motopy map, ht, forms an equivalence relation, written as ', between two spaces h0 = X

and h1 = Y and they are said to be homotopic to each other. Topologically speaking,

this forms a sense of topological equivalence between two topological spaces as one can

just be deformed into the other without puncturing or gluing. If one chooses a familiar

space for the space X such as the the n-sphere, Sn = {x 2 Rn+1
| |x| = 1}, the set

of equivalence classes of maps from Sn
�! Y , forms a group called the nth homotopy

group, ⇡n(Y ).

In practice, for the space of allowed configurations known as the order parameter

space, OP , the first homotopy group, more commonly referred to as the fundamental

group, ⇡1(OP ), classifies the singularities of codimension 2 available in some order pa-

rameter space than can be enclosed by closed curves as shown in Fig. 1.7(a). Generally,

the n-th homotopy group, ⇡n(OP ), classifies singularities of codimension n + 1 (i.e. di-

mension D � n� 1) which can be contained within n-spheres.

Let us take for example, 3D uniaxial nematics, whose order parameter space is given

by all the allowed local rotations (SO(3)) that obey the symmetry of the molecule (D1),

that is

OPuniaxial = SO(3)/D1 ' S2/Z2 ' RP2 (1.25)
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Figure 1.7: In 3D, (a) a singular defect line classified by circular loop c whose
equivalence classes up to homotopy, [c], define the specific element by which the line
is classified under the fundamental group, ⇡1(OP ). (b) A point defect surrounded by
a sphere, s, is classified by the equivalence classes, [s], in the second homotopy group,
⇡2(OP ).

where RP2 is the real projective plane (the set of all lines through the origin). Defect

lines or disclinations are then classified by the fundamental group of the real projective

plane,

⇡1(RP2) = Z2. (1.26)

This is an Abelian (commutative) group of order 2, which tells us that there is only

one topologically distinct 1-dimensional defect other than the identity. In addition, the
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second homotopy group, which classifies point defects is

⇡2(RP2) = Z. (1.27)

meaning unit point charges exist in 3D uniaxial nematics. This group is also Abelian. In

fact, only the fundamental group can be non-Abelian as all higher homotopy groups can

be shown to always be either trivial or Abelian for any topological space [30].

In breaking azimuthal symmetry in the plane perpendicular to the constituent molecules’

long axis, i.e D1 �! D2, we vastly reduce the available local degenerate states. This

ultimately leads to exotic properties in the singular defects that become topologically

accessible to biaxial systems in three dimensions. On that note, biaxial disclinations are

have an order parameter space given by

OPbiaxial = SO(3)/D2. (1.28)

The corresponding fundamental group is then

⇡1(SO(3)/D2) ' ⇡1(SU(2)/Q) = Q, (1.29)

where Q = {±1,±i,±j,±k} is the group of quaternions, which is non-Abelian (ij = k 6=

ji). The proof of this statement is quite lengthy but can be summarized in the following

short exact sequence [30]

0 �! ⇡1(SU(2)) �! ⇡1(SU(2)/Q) �! ⇡0(Q) ' Q �! 0, (1.30)

along with the fact that ⇡1(SU(2)) ' ⇡1(S3) = 0. A sketch of the full proof is given

in Appendix F. Here the crucial distinction between the uniaxial and biaxial systems is

17



Introduction Chapter 1

that the biaxial fundamental group is non-Abelian, which can be seen as a consequence

of the reduced symmetry. In contrast to the uniaxial case, the second homotopy group is

⇡2(SU(2)/Q) = 0, (1.31)

which means the biaxial nematic system does not admit point defects.

From a mathematical standpoint, the homotopy groups considered so far must be

made up of restricted maps fixed at a basepoint, x0. If we allow the base point to

shift we must adjust the elements of the group accordingly and this procedure turns out

to be an inner automorphism that sends an element ↵ 2 ⇡1(X) to a conjugate �↵��1

for � 2 ⇡1(X). If the fundamental group is abelian, this shift is clearly trivial, so the

base point is irrelevant and the free homotopy group is often implied. In a non-Abelian

setting, however, this conjugation forces one to classify based on its conjugacy classes

of ⇡1 rather than the group elements of ⇡1. The quaternion group of 8 elements, for

example, partitions into 5 conjugacy classes:

Q = {1} [ {�1} [ {i,�i} [ {j,�j} [ {k,�k}, (1.32)

each of which represents a class of line defects. Physically, this non-commutativity man-

ifests itself in path dependence when combining two defect lines, meaning that the result

of fusing two defect lines may di↵er depending on the path taken around other disclina-

tions in the medium. This can be seen algebraically in the quaternions as i(ij) = �j but

(ij)i = �iij = j. In topological quantum computing, this is typically known as having

multiple fusion channels and is a result of braiding two 2D anyons in (2 + 1) dimensions

[31]. Unlike the anyons, however, we have 1D strands that can be braided in real space.

Toulouse, along with mathematician Valentin Poenaru, rigorously described the e↵ects of
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Figure 1.8: (a) Two linked Abelian defect lines may disentangle themselves while
(b) non-Abelian defect lines necessarily produce tethering defect line with topological
charge given by the commutator of the two defects, [↵,�] = ↵�↵�1��1, if they cross.

this path dependence in the process of crossing two defect lines. One can show through

various deformations of a measuring loop that in the non-Abelian case, the braiding re-

sults in a topologically stable structure and they may only disentangle by generating a

tether with conjugacy class given by the commutator, [↵, �] = ↵�↵�1��1, of the two

entangled defects [32] (Fig. 1.8(b)). In contrast, Abelian defect lines, such as those in

3D uniaxials, are topologically allowed to freely cross through each other without any

obstruction as their commutator are always trivial (Fig. 1.8(a)).

Nearly 50 years after the theoretical formulation of biaxial nematics, there is still

no concrete experimental evidence for a pure biaxial system. There has been, how-

ever, progress in obtaining systems that, although not purely biaxial, mimic or exhibit
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Figure 1.9: Chiral liquid crystal ground state structure with right handed twist, q0 < 0.
The twisted structure defines a pitch direction, P, as well as a length scale known as
the pitch, p, defined to be the length of a 2⇡ rotation.

a relatively high degree of biaxiality and which provide an approximation and a testing

ground for the topological entanglement of biaxial defects. One such system is chiral (or

cholesteric) liquid crystals (CLCs). These are liquid crystals in which the ground state

energetically favors a twist q0, which breaks chiral symmetry of the nematic thus defining

a handedness (see Fig. 1.9) through some chiral dopant in the medium. Despite the fact

that the system is locally uniaxial at the molecular scale, the twist sets a pitch scale

p = 2⇡/q0, which, defines a direction along which the molecules rotate, P. This, along

with the nematic director and the cross product n⇥P, define an orthonormal triad that

breaks the uniaxial symmetry at the pitch scale. CLCs, therefore, have ground states

that are topologically identical to those of biaxials.

Chapter 3 of this thesis begins with a more detailed introduction to the biaxial system

as well as a more in-depth presentation of the entangled non-Abelian structures. I will
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then introduce a classification system for complex braided structures that takes advantage

of the non-Abelian properties of the system. We will conclude with simple examples of

structures that are experimentally realizable in chiral systems as part of an experimental

collaboration. This is based upon work currently in preparation [33].
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Chapter 2

Switching Dynamics of Thermalized

Graphene Cantilevers

The rise in popularity of graphene-based materials in the hard condensed matter field

reinstated the interest in the study of thermalized membranes. Graphene as a membrane

possesses fantastic elastic properties that provide a testing ground for the predictions

made decades ago about thin solid materials subject to thermal fluctuations. One such

important prediction is the renormalization of the elastic constants. In Chapter 1, we

discussed that thermal fluctuations sti↵en the bending rigidity, , while the stretch modes

controlled by the Young’s modulus, Y , are softened. Experimental e↵orts to verify these

e↵ects in thermalized graphene have yielded positive results wherein  was found to be

significantly enhanced by R/0 ⇠ 4000 in graphene cantilevers [34] while the in-plane

sti↵ness decreases as YR/Y0 ⇠ 1/20� 1/3 at room temperature [35].
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2.1 The tilted phase

The thermalization of graphene membranes modifies not only the aforementioned

elastic properties, but also the geometry of the sheet itself. At zero temperature, a

rectangular sheet has area W0 ⇥ L0 (Fig. 2.1(a)). Once a sheet is thermalized, thermal

corrugations store some of the area in the form of out-of-plane fluctuations leading to

overall thermal shrinking and smaller average projected area, Wth ⇥ Lth, at thermal

equilibrium (see Fig. 2.1(b)). Here the values have the property Lth < L0 and Wth < W0.

Figure 2.1: (a) T = 0 triangulated sheet with length L0, width, W0 and aspect ratio
↵ = W0/L0 = 5. Highlighted in red (along (x, y) = (0, y)) are the fixed vertices
corresponding to the clamp at x = 0. Highlighted in blue and outlined in black
(along (x, y) = (x, 0)) are the vertices that constitute the middle slice of the sheet (b)
Same sheet, shown in blue (top), at finite temperature with free boundary conditions:
the finite temperature dimensions Lth,Wth are smaller than their zero-temperature
counterparts.

We now proceed to exploit this thermal shrinkage in order to study a symmetry-

broken phase, the tilted phase. Consider an elastic sheet with zero-temperature width

W0, length L0 so that the aspect ratio of the sheet is ↵ = W0/L0. We clamp along one of

the two extended edges, say at x = 0 (pink box in Fig. 2.1(a)) so that the clamped width
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is Wclamp. Unlike zero temperature elasticity, deformations upon this initial configuration

will not be in reference to the sheet of area W0 ⇥ L0 but rather the thermalized sheet

with area Wth ⇥ Lth, which we will refer to as the thermalized reference state.

In the cantilever configuration described above, if T > 0, the clamped edge will

attempt to adjust back to the reference thermal reference state length, Wth < W0. This

will in turn generate a clamping strain

✏clamp =
Wclamp �Wth

Wth
(2.1)

which, in the case where Wclamp = W0, is simply the thermal shrinkage. The clamping

then generates a source of stress localized around the clamped edge, generating some

stress in the perpendicular direction. As we mentioned in the introduction, thin mem-

branes are easier to bend than to stretch, thus the most energetically favored way to

alleviate this stress is through bending. This means that the sheet can take on curved

configurations as seen in classical buckling instabilities such as Euler buckling [5] which

has a thermalized analogue [36]. This curved configuration creates a buckled phase known

as the tilted phase, where the free end has a non-zero height in some spontaneously cho-

sen direction (see Fig. 2.2). The existence of this tilted phase was first explored both

theoretically and numerically in [37] where they found the phase requires aspect ratios

↵ > 1 as well are some low and high-temperature cuto↵s.

2.2 1D Strip model

The complex nature of the elastic free energy of this system makes it incredibly

di�cult to analyze it in the context of tilt. However, we can make use of the mirror

symmetry along the y-axis in order to make further reductions. Consider taking a slice
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Figure 2.2: Thermalized sheet with aspect ratio ↵ = 8 in the tilted state with height,
H, and tilt angle, ✓.

of the cantilever setup along the y = 0 axis (blue box in Fig. 2.1(a)). We refer to this as

the middle slice. We can then reduce our free energy into a model for this middle slice.

We start with the classical elastic model given by Eq. 1.4 and average along the

y-direction, which yields a factor of Wclamp and gives

F1D =

Z L

0

dx

"
̃

2

✓
d2h

dx2

◆2

+
Ỹ

2

 
dux

dx
+

1

2

✓
dh

dx

◆2
!#

(2.2)

where the tilde indicates a factor of W , e.g. ̃ = W. The Fourier expansions of the

in-plane and out-of-plane modes can then be written as

@ux

@x
= u0 +

X

q 6=0

iqu(q)eiqx (2.3)

A(x) ⌘
1

2

✓
@f

@x

◆2

= A0 +
X

q 6=0

A(q)eiqx (2.4)

where we have separated the zero modes, u0 and A0. Upon substitution of the Fourier
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expansions, the stretching part of the energy becomes

Fstretch =
Ỹ L

2

"
(u0 + A0)

2 +
X

q 6=0

|iqu(q) + A(q)|2
#

(2.5)

If we fix the height profile, h(q), the stretching energy will be minimized when u(q) =

�iA(q)/q and the second term above vanishes. We can now apply the cantilever boundary

conditions:

ux(x = 0) = 0 (2.6)

ux(x = L) = �� (2.7)

where� is some displacement. Doing so, we find the following expressions for the in-plane

zero mode:

u0 =
1

L

Z L

0

dx
dux

dx
= �

�

L
(2.8)

and the out-of-plane mode is

A0 =
1

2L

Z L

0

dx

✓
dh

dx

◆2

. (2.9)

Putting everything together, we find a model for the 1D slice of the tilted membrane

F1D =
̃

2

Z L

0

dx

✓
d2h

dx2

◆2

�
Ỹ�

2L

Z L

0

dx

✓
dh

dx

◆2

+
Ỹ

8L

Z L

0

Z L

0

dx dx0
✓
dh

dx

◆2✓ dh

dx0

◆2

.

(2.10)

The first term is the usual bending term that penalizes curvature of h. The second term

is a force term arising from the free boundary condition and acts as the “mass” term

of the theory. Note that we don’t have a quadratic term such as this one in the free
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theory (Eqn. 1.4) as we did not include external forces. The third term is our non-linear,

non-local stretching term. Note that the energy landscape is symmetric about the flat

state (Fig. 2.3). We can generalize this by adding a symmetry-breaking, transverse field

(such as a gravitational or an electric field) that couples linearly to the height h(x) in

Eq. 2.10. This will create an asymmetric potential well, resulting in two distinct minima.

Near the tilt transition, we choose as an ansatz the first buckling mode in the T = 0

cantilever problem, h(x) = H
⇥
1� cos

�
⇡x
2L

�⇤
, where H is the height of the free end [38].

Upon inserting this ansatz into Eq. 2.10, we obtain a mean field energy

EMFT (H) = a (�c ��)H2 + bH4 (2.11)

where a = ⇡2WYR/16L2 and b = a⇡2/32L. This yields a critical compression

�c =
⇡2

4L

̃R

ỸR

. (2.12)

In this form, it is easy to see a clear separation between the flat phase (� < �c) and the

tilted phase (� > �c) as shown in Fig. 2.3.

In the tilted phase there are two minima, E±, separated by an energy barrier,

�Eb = |Eflat � E±| (2.13)

where Eflat = E(H = 0) = 0 is the energy of the unstable flat state and E± = E(H±)

is the energy of a tilted state (see Fig. 2.3. We can calculate the location of the minima

H± to find

H± = ±
4
p
L

⇡

p
���c (2.14)
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Figure 2.3: Diagramatic depiction of the e↵ective mean-field energy EMFT (H) for
� < �c (left) and � > �c (right). The finite energy barrier, Eb, separating the two
tilted states allows for transitions from one state to the other with probability R.

which makes the energy barrier

�Eb =
⇡4�̄2W

32L3

2

Y
, (2.15)

where we define a relative compression

�̄ =
���c

�c
(2.16)

which is positive in the tilted phase. This relative compression can be estimated by

obtaining an expression for the compression of the free end due to a clamping stress.

This has a form [37]

� ⇡
L0↵✏

2 sinh2
�
⇡↵
4

�
h⇡↵
4

cosh
⇣⇡↵

4

⌘
(1 + ⌫R)� sinh

⇣⇡↵
4

⌘
(1� ⌫R)

i
, (2.17)
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where ⌫R is the renormalized Poisson ratio and ✏ is none other than the thermal shrinking

strain at the clamp, which is given by [39]

✏ ⌘

⌧
Wclamp �Wth

Wth

�
⇡

1

8⇡̃0

"
1

⌘
�

1

⌘

✓
L0

`th

◆�⌘

+ ln

✓
`th
a

◆#
. (2.18)

Once the system is in one of the tilted states, as in any such two-state systems [40],

there is a non-zero probability of transitioning from one state to the other with maximal

transition probability at some resonant value of an external parameter such as temper-

ature or an external driving frequency [41]. One might expect the transition rate at

finite temperatures to be controlled primarily by thermal fluctuations over the barrier.

However, we show that the dimensionless and purely geometrical aspect ratio is a key

determiner.

2.3 Transition Rates

Consider a system with an energy landscape given by Eq. 2.11 and assume that

� > �c so that we are in the tilted phase. We can assign each of the extrema of EMFT a

characteristic frequency, !± and !B, which are obtained from the second-order expansion

of E(H) at one of the tilted states (H = H±) and the saddle point (H = 0), respectively.

We can estimate the rate R of transitioning from one of the tilted wells to the other

using Kramers’ theory [42, 43], which predicts

R ⇡ R0e
��Eb/kBT (2.19)

where the amplitude R0 will take a form that depends on the friction of the system,

� = �/m, which is the ratio of the friction to the mass m of the sheet and has the units
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of frequency. The system can be underdamped (� ⌧ !B) or overdamped (� � !B).

Given the energy barrier Eq. 2.15, this yields a transition rate

R ⇡ R0 exp


�
⇡4�̄2W

32L3

2

kBTY

�
. (2.20)

Here, we do not include an inversion symmetry-breaking field and so we assume that the

transition rates are equal regardless of direction. That is, R+!� = R�!+ = R.

As previously mentioned, the prefactor R0 depends on the magnitude of the friction,

�. It takes the form [42]

R0 ⇡

8
>><

>>:

m��Eb

⇡kBT , � ⌧ !B

!±!B

2⇡� , � � !B,

(2.21)

where we see a turnover from a linear to an inversely proportional dependence in �.

We are interested in system sizes su�ciently large that thermal fluctuations are impor-

tant. This means the length of the sheet satisfies L� `th, where `th is the characteristic

thermal length scale beyond which the elastic constants become scale-dependent as given

in Eq. 1.13. As introduced in the previous chapter, the elastic moduli  and Y are renor-

malized by thermal fluctuations, rendering them length-scale dependent [44]. They must

then be replaced by their respective renormalized values given by the scalings

R ⇠ 0

✓
L

`th

◆⌘

(2.22)

YR ⇠ Y0

✓
L

`th

◆�⌘u

, (2.23)
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which make the boltzmann factor in Eq. 2.20
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=
3⇡�̄2

512
↵ (2.27)

where the second equality used the Ward identity ⌘u = 2� 2⌘ and the last equality uses

the definition of `tg (Eq. 1.13). For a fixed relative compression, �̄, corresponding to a

fixed value of the tilt order parameter or energy barrier, the transition rate is controlled

by the aspect ratio ↵ in the exponential, which therefore plays the role of a Boltzmann

factor. E↵ectively geometry is replacing temperature as the main driver for transitions.

Temperature enters implicitly in tuning to a fixed relative compression as well as in the

amplitude.

In the thermalized limit, L� `th, we obtain the following prefactors

R0 ⇡

8
>><

>>:

3m��̄2

512 ↵, � ⌧ !B

⇡3�̄0

32
p
2m�L2

⇣
L
`th

⌘⌘
↵, � � !B,

(2.28)

in which we note that the temperature dependence in the overdamped case comes from the

renormalization of the bending rigidity as given by the scaling of R. In the underdamped

case, we see the same cancellation of temperature that occurs in the Arrhenius factor

in Eq. 2.27 and we have explicit independence of temperature at constant compression

�. Note that for both cases, we expect the Arrhenius factor to provide the dominant

behavior for significant compression �̄.
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To summarize, focusing on the underdamped case, the transition rate is given by

R(L� `th) ⇡
⇡3�̄0

32
p
2m�L2

✓
L

`th

◆⌘

↵ exp

✓
�
3⇡�̄2

512
↵

◆
. (2.29)

Figure 2.4: (a) Density plot of the theoretical transition rate as a function of aspect
ratio and temperature (/ (L/`th)2) with color, as indicated by the color bar (right),
representing the estimated transition rate normalized by the maximum value within
the range. Mean field theory prediction of the tilted phase boundary is shown as a red
dashed line, where we di↵erentiate between bare and renormalized elastic constants
beyond the L0/`th = 1 line (green solid line). The white dash-dotted line shows the
phase boundary were the elastic constants to have no scale dependence beyond the
thermal length scale. (b-c) 2D slices of the theoretical transition rate as a function
of aspect ratio (b) and temperature (c). (d) Plot of the reduced compression, �̄, as
a function of the aspect ratio, ↵, as predicted by Eqn. 2.17. Note that the regions of
positive �̄ coincides with regions of R > 0.

Having all the pieces, we can now visualize the di↵erent regions of tilt transition be-

havior by plotting the transition rate as a function of aspect ratio, ↵, and temperature in

the form of (L/`th)2 ⇠ kBT . Fig. 2.4 shows a density plot of the underdamped transition
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rate as a function of temperature and aspect ratio, normalized by the maximum rate in

the displayed region as predicted by Eq. 2.20. We include a phase boundary provided by

setting the predicted compression, � in Eq. 2.17, equal to the critical compression, �c,

computed from the 1D mean field theory (Eq. 2.12). In other words, we plot the line

� = �c (2.30)

accounting for renormalization of the elastic constants for L0 > `th. To the left of this

boundary, the system is in the flat phase (� < �c) and the transition rate vanishes.

Note the high transition rate localized near the phase boundary. As the temperature is

increased deep in the tilted state the transition rate reaches a dynamically stable “basin”

with long dwell times, as indicated by the dark blue region. The ↵-scaling form of Eq. 2.29

does not capture the full behavior near the upper branch of the phase boundary as it

neglects the higher order contributions coming from �̄. Indeed our mean field theory will

break down in the limit of large ↵ where the length of the membrane becomes negligible

compared to the width and the 1D midline model is no longer applicable.

Temperature is a more traditional parameter to tune the dynamics of these types of

oscillator systems as higher temperatures often decrease the energy barrier and allows

for higher transition probabilities. In this system, however, we see that thermalization

gives access to another possible parameter that controls transitions namely, ↵, and with

the addition of thermal factors in the prefactor, we see that high temperature instead

stabilizes the system in one of the stable tilted states with close to zero transition prob-

ability. This can be thought of as temperature decreasing the rest area of the reference

state, thereby e↵ectively increasing the clamping strain. Based on the predicted form

of the transition rate, we can expect R ⇡ 0 for large temperatures, where we expect

the sheet to be in a fully tilted state. This means that in an experimental setting, low
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temperatures are needed to access the dynamic tilted state, where R 6= 0, and in order

to retain a specific constant transition rate, the temperature must remain constant. One

can circumvent this by considering the aspect ratio of the sample as a tunable param-

eter. We can prescribe appropriate geometrical dimensions corresponding to an aspect

ratio that leads to the desired transition rate at some constant temperature. Thus, the

aspect ratio gives access to a larger sample parameter space in the production of nano-

mechanical actuators and may prove to be are more desirable parameter to tune in the

manufacturing of such devices.

2.4 Simulating tilt transition rates

In order to verify the validity of our findings, we turn to simulating sheets in the

dynamic tilted state. To do so, we turn to a discrete or coarse-grained version of our

elastic free energy 1.4. It can be verified that on a triangularized 2-dimensional sheet

with lattice constant a, the elastic free energy takes the form

E = ̂
X

hI,Ji

(1� n̂I · n̂J) +
kstretch

2

X

hi,ji

(rij � a)2, (2.31)

where the continuum bare bending rigidity 0 and Young’s modulus Y0 are related to

the discrete bending rigidity ̂ and the harmonic spring constant kstretch by 0 =
p
3̂/2

and Y0 = 2kstretch/
p
3. The first term represents the discretized bending energy resulting

from normals on adjacent plaquettes (triangular faces) that are not perfectly aligned and

the second term is a harmonic stretching energy between adjacent nodes. The first sum

is performed over all nearest neighbor plaquettes, hI, Ji, while the second sum is over all

nearest-neighbor vertices hi, ji (see Fig. 2.5).

The coarse-grained energy (2.31) can be simulated using the HOOMD-blue python
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Figure 2.5: Two neighboring plaquettes in the course-grained system forming a dihe-
dral. Simple geometry can be used to replace the angle between the two plaquette
normals, ✓IJ , by the dihedral angle, ⇥dih: ✓IJ = ⇡ � ⇥dih. Using this dihedral angle
proves to be more convenient when working with MD packages, such as HOOMD-blue,
that have energies associated to dihedral angles readily available.

package for molecular dynamics (MD) [45] for a triangular lattice with a = 1. The

stretching term is treated as a harmonic potential between two nodes and the bending

energy has a discrete representation in terms of the dihedral angle formed by neighboring

triangular plaquettes, ⇥dih = ⇡ � ✓IJ , where ✓IJ is the angle between the two plaquette

normals (see Fig.2.5). Dihedral angles can be readily obtained using HOOMD-blue. A

triangular lattice with fixed dimensions is initialized with two rows along the y-axis held

fixed to simulate the clamp at one edge. The width of the clamp may be varied by

adjusting the x-positions of the clamped nodes with some prescribed displacement. The

system is then integrated in an NVT ensemble for a total of N = 2⇥107�108 time steps

with step size dt = 0.005 time steps and with energy scale set by kBT . The first half of

these time steps is discarded to ensure thermalization. We extract the time series of the

out-of-plane height of a single node at the middle of the free edge opposite the clamped

edge: (x, y) = (L, 0). We generate multiple independent runs (n = 3-5) for each set
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of initial parameters to generate error statistics which are computed using the jackknife

procedure [46].

To test the predicted transition rate, we simulate multiple systems with elastic prop-

erties parallel to that of real crystalline systems (Y0 = 20 eV Å
�2
,  = 1.2 eV) at fixed

length L = 20a (⇡ 50 Å for graphene) and for a range of temperatures kBT/ ⇡ 0.01�2

(or L/`th ⇡ 0.8�5) and aspect ratios ↵ = 2�9 1. Once we ensure thermalization we can

proceed to analyze the dynamics of the tagged node. We estimate the thermalized length

of the system, Lth, as the length of the free membrane at a given temperature, projected

onto the z = 0 plane, shown in Fig. 2.1(b). We then define the compressed length, Lc,

as the projected length in the clamped configuration, illustrated in Fig. 2.1(d).

The up-down transition rate is calculated by tabulating the average time spent in a

tilted state, the dwell time ⌧dwell. Residence in the tilted state is determined conditionally

with a threshold height hth = 0.1⇥ L0: viz. |h(tn)| > hth is assigned to the tilted state.

The transition probability is then R ⇠ 1/⌧dwell.

A more elaborate method of determining the dwell time is by computing the autocor-

relation function of the time series post-thermalization. The normalized autocorrelation

function, ⇢(⌧) ⌘ Ct(⌧)/Ct(0), will decay exponentially with a time constant, ⌧ac. This

time constant corresponds to the shortest time scale available to the system, which in

this case is the time spent in a given tilted state: ⌧dwell ⇡ ⌧ac.

One can think of the dynamics of the sheet in the flat state, specifically the average

height of the tagged node, as a Brownian particle trapped in a harmonic well. In the

pre-buckling regime, the Langevin equation for the position z(t) of a particle of mass m

is

z̈(t) = �
�

m
ż(t)� !2

0z(t) +
1

m
⇠(t) (2.32)

1Note that at fixed L, ↵ is controlled by the clamped width Wclamp which is equal to W0 unless
otherwise stated
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where !0 = k/m and ⇠(t) is Gaussian noise with

h⇠(t)i = 0 (2.33)

h⇠(t)⇠(t0)i = 2m�kBT �(t� t0). (2.34)

Fourier transforming ( dn

dtn z(t)! (�i!)nz(!)) gives

z(!) =
1

m

⇠(!)

!2
0 � !2 + i �

m!
. (2.35)

We can now compute the correlation function via the inverse Fourier transform of the

squared average in frequency space,

Ct(t
0) = hz(t)z(t0)i =

Z 1

�1

d!

2⇡
h|z(!)|2ie�i!t (2.36)

=
�kBT

⇡m2

Z 1

�1
d!

e�i!t

(!2 � !2
0)

2 + �
m!2

. (2.37)

The integral in Eq. (2.37) via complex methods with a semicircular contour

Ct(⌧) =
kBT

m!2
0

e�
�⌧
2m


cos!1⌧ +

�

2m!1
sin!1⌧

�
. (2.38)

The normalized autocorrelation function is then

⇢(⌧) =
Ct(⌧)

Ct(0)
= e�

�⌧
2m


cos!1⌧ +

�

2m!1
sin!1⌧

�
. (2.39)

For su�ciently long times (⌧ � tdwell) and for systems with low tilt transitions the

autocorrelation will decay as [46]

⇢(⌧) ⇠ exp(�⌧/⌧ac). (2.40)
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Comparing Eqs. (2.39) and (2.40) shows that

⌧ac ⇡
2m

�
(2.41)

We now provide a more detailed comparison between the simple average dwell time

method and the autocorrelation method.

Figure 2.6: Transition rates for ↵ = 2, 5 as a function of temperature as measured
by L

`th
. The points are computed from both dwell time averaging over multiple runs

(circles) and from extracting the time constant ⌧ac from a fit of the autocorrelation
function, ⇢(⌧), to Eqs.(2.39,2.40) for the regime with observable transitions and the
fully tilted, low transition-rate regime, respectively (squares).

We compute the autocorrelation function of the height time series within a state

and fit the curve to a function of the form of Eq. (2.39), extracting the time constant,

⌧ . We can then compare to our previous results. Fig. 2.6 shows a semilog plot of

⌧�1
dwell as a function of (L/`th)

2, which is proportional to kBT . The transition rate data

⌧�1
dwell are approximated using two methods: (i) height filtering and (ii) fitting to the

autocorrelation function. Note that in the tilted regime, using autocorrelation to extract
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the time constant may sample smaller timescales than the one of interest, namely the

transition time, ⌧trans < ⌧dwell, which is the time it takes to jump from one state to the

other. Fig. 2.6 shows autocorrelation estimates and we see that both methods provide

roughly the same probability values and trends. There is, however, high variance in

the autocorrelation estimate which can be attributed to uncertainty in the fit. The two

methods agree qualitatively and for the purposes of studying the trends in the transition

rate, we chose the former to save computational time.

To investigate the role of clamping we simulated several systems clamped at a range

of strains close to Wclamp = Wth. Fig. 2.7 shows the time series of the height field

h = h(x = L, y = 0), for several clamping strains, ✏ ⌘ (Wclamp �Wth)/Wth. Clamping

su�ciently close toWth does not induce tilt – the sheet fluctuates about a mean horizontal

state (blue curve). Above a positive parameter-dependent threshold for ✏ we see the onset

of tilt and the accompanying up-down inversions (red curve). The dwell time increases

with ✏ (black curve).

It is instructive to measure the e↵ective plane stress throughout the clamped sheet,

as determined by displacements with respect to a fixed average thermalized free state.

We take the particle positions of a sheet configuration at a fixed timestep and compute

the displacements relative to the average thermalized, free reference state. Treating our

lattice as a triangulated mesh and embedding the displacement field to the vertices of this

mesh, we compute the linear 2D plane stress via finite element analysis. Appendix D.2

describes a related method that transforms the stresses back into the nodal basis.
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Figure 2.7: (left) Simulated time series of the height, h(tn), at timestep tn of the
middle slice at the free end of a sheet for ↵ = 3 and /kBT = 4 (L/`th ⇡ 3). Each
curve represents a di↵erent value of the clamping strain, ✏ = (Wclamp �Wth)/Wth (in
%). When clamped at near zero strain, ✏ ⇡ 0.1 (blue), we see oscillations centered
around zero tilt, while at larger strains, ✏ ⇡ 2.5, 3% (red, black resp.), we observe
transitions between two nonzero tilt states and oscillations around a single nonzero
tilt state, respectively. Note that the height can be easily translated into a tilt angle:
see the red curve which oscillates between ✓ = ±20�, as measured from the xy plane
(see inset). Inset shows examples of the definition of the up and down dwell times,
⌧up/down. (right) Histogram of the probability distribution of heights for the time series
time window above. Each distribution corresponds to a di↵erent clamping strain and
shows the three possible cases: unimodal with zero mean (blue, back), bimodal (red,
middle), and unimodal with nonzero mean (black, front). These correspond to the
states where the sheet is flat, tilted with frequent transitions, and tilted with infrequent
transitions, respectively.
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Figure 2.8: Diagonal components of the e↵ective plane stress on the simulated
sheet with ↵ = 5 and L/`th ⇡ 3 along with a map of the height field for (left)
Wclamp = W0 > Wth and (right) Wclamp ⇡ Wth. Sheet is shown as the projection of
the deformed state onto the plane. The strain tensor is computed directly by di↵er-
entiating the displacements from the free thermalized state.

For an e↵ective extensive strain concentrated at the clamp (Wclamp > Wth), there

are two competing e↵ects: (1) the zero-temperature elastic response associated with a

standard positive Poisson ratio, leading to compression along x and (2) the response

associated with a negative Poisson ratio thermalized sheet associated with the known

behavior at the thermal föppl-von Kármán fixed point, which creates an extensive re-

sponse along x. The first e↵ect should dominate in a zone of influence near the clamp

as stretching suppresses thermal fluctuations. The second e↵ect should dominate su�-

ciently far from the clamp where the sheet closely resembles a free fluctuating membrane.

Fig. 2.8 shows a simulated map of both diagonal elements of the stress tensor at fixed
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time steps obtained using the finite element method described above. We see that the

�xx component confirms compressive stress for the tilted state (Wclamp = W0 > Wth) and

very little stress in the flat state (Wclamp ⇡ Wth), as expected. The �yy component shows

the expected extension in the tilted phase. We note that the flat phase also exhibits some

extension, which we attribute to the fact that we have a nearly but not quite zero strain

at the clamp. We can also compare these stress maps to results found in previous work

on tilted flaps [37].

Figure 2.9: Theoretical approximation of the plane stress for an ↵ = 5 sheet with
extension ✏ = 0.02 at T = 0.

The estimated stress components are shown in Fig. 2.9 for a sheet of ↵ = 5 and

✏ = 0.02. Comparing to the simulated stresses in Fig.2.8 we see that we have a similar

accumulation of high extensive stress in the yy component for both theory and simulation,
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indicating the extension of the clamp in reference to the free thermalized stress. We do

see, however, a discrepancy in the location of this extension along the x-axis. Theory

predicts this should be localized near the clamped side (x = 0). In the simulated stress

we instead have high extension near the edge opposite to the clamp (x = 20a) with a

region of low extension near the middle of the clamped edge. A possible explanation

of this is the auxetic behavior of a free thermalized sheet. It is well known that free

thermalized polymerized sheets are controlled by a föppl-von Kármán fixed point with

a negative Poison ratio. Using a negative Poisson ratio for the sti↵ness matrix used to

calculate our simulated stresses leads to extensive behavior not found in typical solids.

If we assume clamping renders the Poisson ratio positive (at least in a neighborhood of

the clamp which can be quite large) we can recover the compressive behavior in �xx.

One can confirm that the flat state reflects a zero-stress configuration from by the

height-height correlation function, which is expected to scale as

h|h(q)|2i ⇡
kBT

A(R(q)q4 + �ijqiqj)
. (2.42)

where � is the stress due to the clamp, A is the projected area of the sheet and R scales

as in Eq. 2.22. In the absence of stress, the bending term dominates and the correlation

function will scale as q�(4�⌘). On the other hand, if there is a significant source of stress,

we expect the quadratic term to dominate. Fig. 2.10 shows the mean-squared height

fluctuations in momentum space for three classes of clamp width. For clamping near the

thermalized width (" ⇡ 0) the slope is approximately �(4 � ⌘), indicative of bending

dominance. The other two classes exhibit a quadratic fall-o↵, indicating stress dominance

at low wavevector (see Eq. 2.42).
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Figure 2.10: Height-height spatial correlation function, h|h(qx = 0, qy)|2i, as a function
of wavevector in the y-direction at fixed temperature L/`th ⇡ 3. Clamping near the
thermalized width, Wth (red, top, ✏ ⇡ 0.007), leads to a scaling with power law q�(4�⌘)

indicating a negligible stress term in Eq. 2.42. Note that Wth < W0. For non-zero
strain, we have Wclamp = W0, ✏ ⇡ 0.013 (blue, middle) and Wclamp > W0, ✏ ⇡ 0.024
(green, bottom). The correlations have quadratic scaling, indicating there is significant
stress in the y direction.
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Figure 2.11: (Top) Transition rate as a function of the squared relative compression,
�̄. Each curve represents a di↵erent value of the aspect ratio. (Bottom) Same data
as the plot above but scaled by the R0 obtained from fitting the top curves to a line.
The x axis is scaled by the constants predicted in Eq. 2.29. We see a near collapse
onto the line y = x, as predicted for a temperature independent Arrhenius factor.
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We can now verify the predictions we found summarized in Fig. 2.4 made by the

underdamped Kramers’ theory along with the elastic mean field theory described in Sec.

I. We first estimate �̄ = (���c)/�c using a time average of the in-plane displacement

at a variety of temperatures. The critical compression is obtained by computing the

height susceptibility in analogy to the classical Ising model [36].

Eq. 2.29 predicts that the log of the transition rate falls linearly with slope�3⇡↵�̄2/512.

Fig. 2.11 shows a semi-log plot of the transition rate as a function of �̄: the curves are

indeed linear at large �̄. Further confirmation of 2.29 is found by normalizing R by

the best-fit y-intercept, R0. This in turn isolates the boltzmann factor and focuses on

the energetic contribution to the transitions. The bottom plot of Fig. 2.11 shows the

normalized transition rate, R/R0, as a function of the full argument 3⇡↵�̄2/512. We see

a near linear collapse.

Thermal fluctuations usually promote transitions between distinct energy minima.

We find instead that they suppress transitions in the L� `th regime, locking the mem-

brane in one of the two tilted states. Recall that displacements are being measured with

respect to a free-standing configuration where thermal fluctuations shrink the overall

area: W (T1) < W (T2) for T1 > T2. As temperature is increased the strain induced at

the clamp grows, driving the system deeper into the tilted phase.

We now turn to the role of geometry as controlled by the aspect ratio. Geometrical

tuning o↵ers a very di↵erent addition to the experimental toolkit which may well be more

feasible and reliable [47, 48] than precise tuning of temperature and does not require any

new materials or external fields. To explore this dependence we fix a temperature in the

tilted phase and simulate a set of distinct aspect ratios in the range 0.5 < ↵ < 9 and

extract the simulated dwell time, ⌧dwell.

Fig. 2.12 shows the inverse dwell time normalized by the maximum value for a set

of temperatures corresponding to L/`th ⇡ 0.9, 2.1, 2.7, 3.3. For L > `th, there is a clear
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Figure 2.12: Inverse average dwell time as a function of the aspect ratio, ↵, for various
temperatures as shown in the legend. We see a clear dependence on ↵, with a peak
reaching nearly the entire simulation time around ↵ = 4 � 5, indicating the sheet is
tilted for the entire simulation run. Note that for L < `th (red points), while the dwell
time is non-zero, it is significantly lower than the thermalized curves.

↵-dependence with a minimum for ↵ ⇡ 4� 5. We can compare this to Fig. 2.4(b) where

Kramers’ theory also predicts this low transition-rate region. This dynamically stable

basin can be interpreted as a region where elastic e↵ects dominate over thermal fluctua-

tions and we recover zero-temperature behavior, where the sheet is stress-locked into one

of the tilted states until the aspect ratio becomes large enough. Further comparison can

be found in Fig. 2.13, in which we showcase the data taken from Fig. 2.12 overlayed on

top of Fig. 2.4(a). We see general agreement in the trends derived from the mean field

treatment, that is a dynamically stable region surrounded by a highly dynamic region

near the tilt transition point.

To summarize this chapter, we combine a one-dimensional mean-field model of a ther-

malized thin elastic sheet with cantilever boundary conditions and Kramers’ transition
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Figure 2.13: Density plot of the transition rate as a function temperature and aspect
ratio as obtained from molecular dynamics data. Comparing this plot to Fig. 2.4
(shown as the background colors) we see general agreement with the high rates (red)
localized in two regions of ↵, separated by a dynamically stable region (blue). For
reference, the magenta star in the plot denotes the location of a graphene sample of
the same size (L ⇡ 50 Å) at room temperature.

state theory, to analyze the transition dynamics of the tilted state in the regime where

the width exceeds the length (↵ > 1). Renormalization of the elastic constants due to

thermal fluctuations beyond the thermal lengthscale leads to a cancellation of tempera-

ture in the Boltzmann factor of the transition probability, leaving a dominant dependence

on the aspect ratio. Implicit temperature dependence enters via the relative compression

�̄, slowing the dynamics and suppressing transitions between the two degenerate tilted

states. Below the critical crumpling transition, the transition rate is low, locking the

system in one of the two tilted phases. A key role is played by the e↵ective stress at the

48



Switching Dynamics of Thermalized Graphene Cantilevers Chapter 2

clamp with respect to a free thermalized sheet.

The predictions of Kramers theory are verified by analyzing the variation of the

transition rate with the compression �̄. The transition rate dependence in the transition

rate exhibits the expected Arrhenius behavior ⇠ exp
�
�C�̄2

�
with C = 3⇡↵/512.

The temperature ranges where we observe the behavior studied here are currently

beyond standard 2D-metamaterials such as micron-scale room temperature graphene.

Perforated sheets and other kirigami-like structures [49] which lower the bare bending

rigidity and enhance bending fluctuations, as well as permitting new bending configu-

rations, may allow the observation of tilt and its dynamics in experimentally realizable

systems. In particular geometric control of the dynamical switching exhibited by the elas-

tic sheets studied here should have rich applications in micro- and nanoelectromechanical

systems (MEMS/NEMS) [50, 51].
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Chapter 3

Topologically Stable Braids in

Biaxial Nematic Systems

This chapter will cover the topology half alluded by the title of this thesis. Topological

concepts may arise in the study of thermalized membranes, especially when you delve

deeper into the di↵erential geometry of sheets embedded in spaces with codimension 1,

however, in the case of the thermalized cantilever, geometrical frustration at the clamp

became the dominating e↵ect. Thus, to showcase the use of topology in soft condensed

matter, I will focus on a completely di↵erent system.

Chapter 1 briefly the biaxial nematic system as an extension of the usual uniaxial

nematics that have been thoroughly studied in the field. Compared to uniaxial nematics,

the topology of the biaxial phase is considerably richer. In this chapter, I will begin with

a more detailed look at the topology of the biaxial system and the entanglement of defects

that arise from it. I will then introduce a classification that serves as an extension of

mathematical braid theory and takes advantage of the unique defect interactions of this

system to create topologically stable structures. Then we will look at the colored braid

theory through examples of allowed complex structures that can be formed and how it
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applies to links. This chapter will conclude with comparisons to experimental structures

found in chiral nematic systems which serve as an approximation to a real biaxial system.

3.1 Classification of biaxial nematic defects

First introduced by Freiser [52] and later analyzed by Toulouse [27], the topological

novelty of biaxial symmetry in ordered systems has been studied theoretically in the

last 50 years [29, 32, 53]. Soon after the topological classification of singular defects

in biaxial systems was elucidated. Recall from the introductory chapter of this thesis

that the classification of defect lines is governed by the fundamental group of the order

parameter space, which, for systems with biaxial symmetry is

M = SO(3)/D2, (3.1)

the space of all 3-dimensional rotations, SO(3), that obey the symmetry of the rectangle,

D2. In contrast to uniaxial nematics, whose fundamental group algebra is Abelian (the

integers in 2-dimensions or Z2 in three dimensions), the fundamental group of biaxial

nematics is non-Abelian and is in fact given by the quaternion group,

⇡1[SO(3)/D2] = Q = {1,�1, i,�i, j,�j, k,�k}. (3.2)

In fact, the quaternion group is the smallest non-Abelian group that arises by modding

out a discrete group from the rotation group [29]. The multiplication table for the group

elements of Q8 is given in Table 3.1.

One of the principal consequences of the loss of commutativity in the fundamental

is the loss of path independence. Mathematically speaking, the leads to paths with

similar endpoints to be related via inner automorphisms. Physically, this means that the
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⇥ 1 �1 i �i j �j k �k

1 1 �1 i �i j �j k �k
�1 �1 1 �i i �j j �k k
i i �i �1 1 k �k �j j
�i �i i 1 �1 �k k j �j
j j �j �k k �1 1 i �i
�j �j j k �k 1 �1 �i i
k k �k j �j �i i �1 1
�k �k k �j j i �i 1 �1

Table 3.1: Multiplication table of the quaternion group elements Q . Conjugacy class
assignments are highlighted by di↵erent colors.

one-dimensional defects are no longer classified via the group elements of ⇡1[SO(3)/D2]

[29, 54]. Instead, the conjugacy classes of the fundamental group classify the topologically

distinct line defects in systems with non-Abelian fundamental groups. These classes are

represented pictorially in Table 3.1 as colors. The quaternion group can be partitioned

into 5 conjugacy classes

Q = {1} [ {�1} [ Ci [ Cj [ Ck (3.3)

where Ci = {±i}, Cj = {±j}, Ck = {±k}, each corresponding to one of the conjugacy

classes. One can interpret the defect class Ci/j/k as a defect texture in which there is

a singularity in all symmetry directions except the direction corresponding to i/j/k.

Examples of defects of class Ck (singular in both i but non-singular in j) as well as a

non-removable �1 disclination are shown in Fig. 3.1 1. One important thing to note is

that from symmetry of the coloring of Table 3.1, we can see that the conjugacy classes

are additive or Abelian. This can be seen easier if we look at the addition table for the
1 Note that Fig. 3.1(a) and Fig. 3.1(b) can be continuously interchanged by a local ⇡ rotation of

each triad about the horizontal axis since they belong to the same conjugacy class. They are, however,
topologically distinguishable as group elements by their winding numbers - one can transform into the
other by circumnavigation around a third defect, as shown in Fig. 3.2
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conjugacy classes of the quaternions, Table 3.2.

(a) (b)

(c)

Figure 3.1: (a) +k representative of the Ck class, forming a 1/2 disclination in both the
i and j fields and nonsingular in k. Escaping into the third dimension (discontinuously)
transforms into the +1/2 equivalents of the Ci and Cj classes. (b) �k representative of
the Ck class, forming a �1/2 disclination in i and j and nonsingular in k. Similarly,
escaping into the third dimension gives the Ci and Cj equivalents. (c) One of the
three representatives of the �1 class of defects. Note that the usual escape into the
third dimension in either i or j axes results in another (singular) representative of
the �1 class, unlike in uniaxial nematics, where the same transformation removes the
singularity.

Naively, the fact that we go from a non-Abelian fundamental group structure to

classification via the Abelian conjugacy structure may seem like there is no longer an

interesting structure left in biaxial defects. However, the non-Abelian path dependence

remains in the conjugacy structure in the form of ambiguous results or “channels” as

referred to in the context of non-Abelian anyon fusion [31]. That is, when combining

two defects belonging to the same class, the resulting defect is either +1 or �1, and the
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+ +1 �1 Ci Cj Ck

+1 +1 �1 Ci Cj Ck

�1 +1 +1 Ci Cj Ck

Ci Ci Ci 2(+1)� 2(�1) 2Ck 2Cj

Cj Cj Cj 2Ck 2(+1)� 2(�1) 2Ci

Ck Ck Ck 2Cj 2Ci 2(+1)� 2(�1)

Table 3.2: Multiplication table for the conjugacy classes of Q. Note that combining
two defects belonging to the same class produces an ambiguous result, 2(+1)�2(�1),
where the 2 indicates the degeneracy of the result (see Table 3.1), in which case the
actual result is determined by the path taken to combine the two initial defects.

result depends on the path taken to combine the defects. Fig. 3.2 is an example of two

such paths. In the presence of a third defect, such as Ck, we can form two non-homotopic

curves, c1 and c2, that are possible path histories. The path given by c1 avoids the third

defect and leads to the two defects annihilating, which is algebraically equivalent to +1.

The path given by c2 is equivalent to the composition c1 � c3, which braids the left defect

around the top defect along c3 and then takes c1 to combine the defects. This total path

leads to a �1 defect line, meaning that the act of braiding changes the composition of the

defect without changing its topological classification under the lens of the fundamental

group.

Arguably of more importance is the result of braiding two non-Abelian defects around

each other. A loop drawn around the crossing can be deformed up to homotopy to show

that the configuration is equivalent to the commutator of the two defect classes [32, 29,

55].

To see this, suppose we take two defects ↵, � 2 Q and braid them around each

other as shown in Fig. 3.3(a). In order to figure out the topological classification of the

e↵ective defect generated by the braid we may draw a loop, c, around the middle braid

(see Fig. 3.3(a)). We may continuously deform c in such a way that we can form the

collection of loops shown in Fig. 3.3(b). We recall that a loop around defect lines defines
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Figure 3.2: Fusion of two defects belonging to the same class, showing the path de-
pendence of the resulting defect. The top path braids the defect around a third defect
belonging to a di↵erent class, Ck, which continuously rotates the director structure of
the defect without changing it’s conjugacy class resulting in a �1 defect. The bottom
path avoids the third defect, resulting in annihilation.

the topological charge of the defect, so each of these loops signify di↵erent factors of

the corresponding defect charge. In other words, if we were to pull apart the braid, the

e↵ective defect charge formed in the middle can be read o↵ from the loops in Fig. 3.3(b)

and it corresponds to the commutator

[↵, �] = ↵�↵�1��1. (3.4)

One can check that due to the structure of the quaternion group, this commutator can

only result in either ±1. The trivial result occurs when ↵ and � belong to the same

conjugacy class or one of the ±1 classes. On the other hand, when the two lines belong
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to di↵erent conjugacy classes, we obtain the non-trivial result, �1. This leads to the

ability to form non-trivial entangled structures that are topologically stable to external

fluctuations.

Figure 3.3: Braided structure formed by two defect lines of conjugacy classes ↵ and
�. Black loop classifies the homotopy class of the braided crossing. The black loop
can be isotopically deformed to the equivalent set of 4 loops shown which reveals that
pulling the lines apart results in a third defect of charge given by the commutator of
the two initial defects, [↵,�] = ↵�↵�1��1.

This example of the topological entanglement of two disclination lines is one of the key

signatures of non-Abelian behavior in a system. We extend on the idea of the left side of

Fig. 3.3 where we can think of two connected trivalent junctions of the type (↵,↵, [↵, �])

and (�, �, [↵, �]) and define other trivalent junctions based on the algebra of the group

Q, that being the cyclic property ij = k and the square property i2 = j2 = k2 = �1.

Diagramatically, we represent the three types of junctions as shown in Fig. 3.4.

These junctions provide another signature of the non-Abelian fundamental group for

biaxial like systems. Additionally, we can use these as fundamental building blocks to

form more complex structures.

Amongst the possible complex structures, there are non-trivial links and networks.

The simplest possible network can be realized minimally with two junctions. Take, for

example, a (�, ⌧,�)-junction. One can take two legs and connect them on the third leg,
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Figure 3.4: Three classes of trivalent junctions formed from the quaternion algebra.
(a) Junction consisting of three disclinations belonging to three distinct conjugacy
classes (b-c) Junctions that represent the path-dependent result of combining two
disclinations in the same conjugacy class, C2

i = +1 � �1, respectively. Note that
similar junctions as (b) and (c) exist for Cj and Ck classes.

creating a closed two-junction structure (see Fig. 3.5(c)).

Here we focus on more complex structures. One such structure can be realized from

the entanglement viewpoint as follows: considering several defect lines of alternating

defect classes, we then perform the braid operation shown in Fig. 3.5(a). This structure

is topologically equivalent to the set of junctions shown in Fig. 3.5(b). Such a structure

can then be repeated to form an arbitrarily long hexagonal network, which can be seen

as either a network or a braid. In practice, implementation of a network of this kind

will have the topology shown in Fig. 3.5, although the geometry may not the exactly

hexagonal. This is due to energetic di↵erences in the elastic tension of each defect line.
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(b)

(a)

(c)

Figure 3.5: (a) Braided structure of four defect lines belonging to two di↵erent con-
jugacy classes gives rise to a topologically equivalent network “unit cell” where the
green line belongs to the �1 class. This unit cell can be repeated to form a junction
network (right). (b) A stable junction of three defect lines belonging to separate con-
jugacy classes also generates a unit cell for more complex lattice structures (right).
(c) Simplest possible connected structure made from connecting all the free ends from
the junction in (b) together.
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An experimental verification requires a suitable biaxial system. Recent work on the

phases of molecular-colloidal systems has shown that they are biaxial even in the very

dilute “colloidal-gas” phase [56]. This allows for a biaxial interpretation of CLCs. Chiral

systems also admit a stable braid structure in the form of a kink; a half-braided �⌧

pair [57]. We will touch upon the chiral nematic system and its biaxial signature later in

this chapter.

Note that Fig. 3.5(a) admits a braid interpretation. This braid makes use of the simple

entangled structure introduced in Fig. 3.3, however, we can have more complex braids

that can be topologically stable in the non-Abelian algebra. Classical mathematical

braid theory does not assign types to di↵erent strands as works in analogy to physical

braiding of strands. However, here we need a way to distinguish strand types and to

allow for reconnections in the case where we have two strands of the same type physically

entangled. To do so, we device an extension to classical braid theory and apply it to the

algebra of the quaternions to determine the topological stability of not only braids, but

also links.

3.2 Topological stable structures in Biaxial nematics

– Colored Braid theory

We work in analogy with classical braid theory2 and define our “colored” braid group

on n strands, denoted Bn(C) where the set C is a a set of m colors. The color set C,

mathematically speaking, is a group whose conjugacy classes will label the strands of a

braid in Bn(C). We can then construct the colored braid group on n strands and m colors,

Bn(C), via a family of colored braid generators. These can be defined as
n
�(↵,�)
i

o↵,�2C

i=1,...,n�1

2see Appendix E for a brief review
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where

�(↵,�)
i =

i(↵) (i+1)(�)

(3.5)

and i(↵) is the i-th strand decorated by color ↵. We can then see that the inverse of this

generator is then

⇣
�(↵,�)
i

⌘�1

⌘
�
��1
i

�(�,↵)
=

i(�) (i+1)(↵)

(3.6)

which can be easily visually verified:

�(↵,�)
i

⇣
�(↵,�)
i

⌘�1

= (3.7)

= (3.8)

= (3.9)

=
⇣
�(↵,�)
i

⌘�1

�(↵,�)
i . (3.10)

Here we have used the definition of the identity in within this group which is intuitively

given by n undeformed strands:

1n = (3.11)

As in the regular Artin braid group (see Appendix E), we must establish genera-
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tor relations in order to ensure we can perform braid moves without breaking isotopy

invariance. Using the colored generators, these are

�(↵,�)
i �(�,�)

j = �(�,�)
j �(↵,�)

i , for |i� j| � 2 (3.12)

�(↵,�)
i �(↵,�)

i+1 �(�,�)
i = �(�,�)

i+1 �(↵,�)
i �(↵,�)

i+1 , (3.13)

for ↵, �, �, � 2 C, or, diagrammatically,

i(↵) (i+1)(�) j(�) (j+1)(�)

. . . =

i(↵) (i+1)(�) j(�) (j+1)(�)

. . . (3.14)

i(↵) (i+1)(�) (i+2)(�)

=

i(↵) (i+1)(�) (i+2)(�)

(3.15)

which establish the far commutativity and allowed moves in braids.

In addition to the usual relations, we have to impose a constraint that allows for

crossings to be reversed if two strands have the same color. Note that we are relating

a defect’s conjugacy class to a strand’s color. We can impose this constraint on the

generators as follows

�(↵,↵)
i =

i(↵) (i+1)(↵)

=

i(↵) (i+1)(↵)

=
⇣
�(↵,↵)
i

⌘�1

(3.16)
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or, multiplying both sides by �(↵,↵)
i ,

⇣
�(↵,↵)
i

⌘2
=

i(↵) (i+1)(↵)

=

i(↵) (i+1)(↵)

=

i(↵) (i+1)(↵)

= 12 (3.17)

.

We can now form the group Bn(C) via the group presentation

Bn(C) =
D
�(↵1,↵2)
1 , . . . , �(↵n�1,↵n)

n

���3.14, 3.15, 3.17, ↵1, . . . ,↵n 2 C

E
(3.18)

We mentioned that this mathematical description of non-Abelian braids can also help

us describe links made up of the same non-Abelian strands. This can be seen through

the notion of braid closures which for braid B is denoted trB. For this, we need to define

a sense of purity. Pure braids are braids that have the same ordering of strands at the

start and end of the braid. However, here we don’t need to impose this strong sense

of purity. Instead, we require only the colors of the braid to match at the endpoints of

the braid. We will refer to a colored braid with such property as simply as a colored

pure braid. Consider the most simple non-trivial colored pure braid. The most basic

non-trivial link can be obtained via the closure (connecting strands the first strand on

top to the first strand on the bottom and second strand to second strand and so on) of

the braid described above. The result of closing the braid above is none other than the
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Hopf link3:

tr

0

BBBB@

↵ �
1

CCCCA
= (3.19)

which, depending on the particular conjugacy classes that defects ↵ and � belong to,

may or may not become unlinked.

It is easy to see that every pure colored braid B has a link representation given by

L = trB. But is the reverse true? A major result of classical braid theory linking

braids to links is known as Alexander’s theorem, which states that any oriented link

can be deformed to be the closure of a braid [59]. Alexander’s theorem only proves the

existence of such braid but to obtain the braid, one must resort to algorithms, one of

such being the Yamada-Vogel algorithm [60]. Here, we will present a modified version of

the Yamada-Vogel algorithm to admit colored braids.

Suppose we have a colored link L. We begin by assigning each crossing of L a sign ±

based on the following convention:

= +, = � (3.20)

. We then put the split every crossing into two arcs, minding orientation and ignoring

color combinations (see Fig. 3.6). This should result in k oriented circles (maybe of mixed

colors). Connect circles that were joined by a crossing using an edge that will carry a

tuple (⌘,~c), where ⌘ is the sign of the original crossing, and ~c is a color “vector” written

as ~c = (↵, �) where ↵, � are the colors of the two strands that made up the original

3Technically there will be a mismatch in orientations when one looks at the fundamental group loop
assignments of each strand before and after the crossing, however the example is instructive to show the
idea behind closures. For more details see [58].
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crossings.

Figure 3.6: Splitting process used to obtain Seif(L).

The resulting graph is the modified Seifert graph, Seif(L), of L. This will be made up

of multiple oriented circles connected by edges. We say two circles are coherent if they

are (a) connected by an edge, (b) nested and in the same orientation, or (c) un-nested

and oriented in the opposite direction. Otherwise they’re are incoherent. The goal is to

make every circle coherent. If two circles Ci and Cj are incoherent, we can draw a line,

`, between the two. We perform a reducing move by merging Ci and Cj along ` and

create a nested coherent partner inside the merged circle, connected to the outer circle

with edges perpendicular to `, carrying opposite signs and appropriate color vector (see

Fig. 3.7).

Ci Cj
` (+,(�,�))

(�,(�,�))
↵

�

� �
↵

�

�

Figure 3.7: Reducing move turning a pair of incoherent circles into a coherent pair.

The previous move is equivalent to a Reidemeister move that eliminates the incoherent

pair and performing the move helps determine the appropriate color vector for the internal

edges. We repeat this process until all circles are coherent. We can then perform “changes

of infinity” to nest all the circles (see Fig. 3.8) The final structure will be a series of nester
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Seif (L) Seif (L)
1

Figure 3.8: Change of infinity move

Seifert circles from which the braid word can be read out. The number of circles is the

braid index, or number of strands, and an edge with sign ⌘ and color vector ~c connecting

circles Ci and Ci+1 correspond to the braid generator
�
�~c
i

�⌘
. The resulting braid word is

the braid representation of L.

Take as an example the Whitehead link (Fig. 3.9), which under the algebra of Q is

trivial. Its Seifert circle representation is given in Fig. 3.10

Figure 3.9: Colored Whitehead link
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(+,↵,↵)

(+,↵,↵)

(+,�,↵)

(+,↵,↵)

(�,�,↵)

(�,↵,�)

(+,↵,�)

(�,↵,↵)

Figure 3.10: Seifert circle representation of the colored Whitehead link

The corresponding braid word is then:

�(↵,↵)
1 �(↵,�)

2

⇣
�(↵,↵)
3

⌘�1 ⇣
�(↵,�)
2

⌘�1

�(↵,↵)
1

⇣
�(�,↵)
2

⌘�1

�(↵,↵)
3 �(�,↵)

2 (3.21)

which corresponds to the following braid:
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Now that we have a braid word for the link, we should be able to apply the colored

braid relations established by the presentation 3.18. We know that the whitehead link is

trivial under our biaxial relations, so the braid should reduce to the identity under the

closure. Also, note that we will be taking advantage of the fact that we are working with

the closure of the braid, which allows us to “transport” sections of the braid along the

trace strands and move them from the bottom to the top of the braid (or vice versa).

This calculation, although tedious, is relatively simple and is deferred to the appendix

(Appendix G).

This theory of colored braids is useful in giving a seemingly diagrammatic problem,

an algebraic structure that can be easily computed whether by hand or by some algebraic

solver. As of recent, there have been attempts at mathematically classifying knots and

links defined over some non-Abelian group [58, 61]. However, they are quite limited in

structure, due to the self-connected nature of links. While the latter extends the theory

from links to spatial graphs which account for crossings of defects, the former only looks

at topologically stable linked structures with no interactions.

3.3 Experimental Realizations

There have been countless experimental e↵orts to find or synthesize a pure biaxial

system since its theoretical inception. However, the success of such e↵orts has been

contested by the liquid crystal community.

One of the systems that have been often cited as having biaxial symmetry are chiral

nematic liquid crystals or CLCs (see Fig.1.9 and the end of Chapter 1 for an introduction).

CLCs have a local ground state configuration that is clearly biaxial. That is, there exist

three orthogonal directions (n,P,n ⇥ P), defined by the molecular director, the pitch

direction, and their cross product respectively. In literature, these are often assigned the
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labels, (�,�, ⌧ ) This set of fields spans a local biaxial triad and thus provides a direct

connection to the elasticity the pure biaxial model [62, 63, 64]. While the ground states

are topologically identical, excitations upon this ground states will deviate from the pure

biaxial model. However, the locally biaxial CLC should provide a decent approximation

and testing ground for non-Abelian properties of defects.

Current work tries to establish a more concrete mapping between locally D2 (biaxial)

chiral liquid crystals (D2CLCs) by relating the tensorial and Frank-Oseen models of

biaxials to yield a biaxial description of a chiral nematic system [33]. Additionally,

molecular-colloidal hybrid systems exhibit unavoidable biaxiality that persists even at

low colloid concentration [56] reducing to the biaxial model of Priest and Lubensky at

zero concentration [65]. Here, we focus on non-colloidal D2CLCs and we treat the biaxial

interpretation of CLCs as an approximation that is exact on the ground state manifold.

Recall that one of the signatures of the non-Abelian quaternion algebra is the ex-

istence of junctions categorized as in Fig. 3.4. Simulations of D2CLCs reveal stable

structures in the form of junctions consisting of defects in all three of the (�, ⌧,�) fields.

These junctions are found to be both topologically and energetically stable for the chosen

simulation parameters that mimic real D2CLC systems. These simulated junctions come

in two categories: “L”-shaped and “T”-shaped (see Fig. 3.11(a) and (b), respectively),

the latter of which are more reminiscent of the theoretically proposed junctions.

Experimentally, the defect junctions are realized via surface patterning techniques

that fix the boundary conditions of the cell. However, the only stable junction found is

of the “L” type. This is because of the anisotropy of elastic constant e↵ectively making

isolated ⌧ -type junctions, energetically unfavorable.

To further explain this, we turn to explain the stability of the �⌧ bound state. Inspired

by the approach in Ref. [66] for a three-constant achiral model with no anisotropic term,

we now analyze the bound state of parallel defect lines in the elastic model given by the
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Figure 3.11: Numerically simulated �/�/⌧ 3-fold junctions for the cases (a)
“L”-shaped ⌧��+

 ! �� and (b) “T”-shaped ⌧�  ! ���� with their respec-
tive diagrams shown. The results are obtained from minimization of the Landau-de
Gennes energy. Simulations performed by J.S. WU [33].

standard elastic model

felastic = �1@kQij@kQij + �2@jQij@kQik + �6Qij@iQkl@jQkl (3.22)

with Qij given by Eq. 1.22. In addition to the anisotropy provided by �6 we include the

lowest order chiral term

fchiral = �4✏ijkQil@jQkl (3.23)

where ✏ijk is the Levi-Civita tensor [67].

Suppose we have two defect lines with topological charge q1 and q2 living at a distance

⇢ from each other in a cylindrical region ⌦ = DR ⇥ [0, L] where DR is a disc of radius

R. The region of interest away from the defect core with radius rc is the annular region

rc ⌧ r ⌧ R. Here, the Q-tensor may be continuously deformed to satisfy the sliding

boundary condition @rQij = 0 which allows us to assume that the order parameter

mostly depends on the azimuthal angle. The elastic free energy density can then be
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approximated as

felastic ⇡
f(�)

r2
+

g(�)

r
(3.24)

where f(�) is the angular dependence of the expansion of the �1,�2, and �6 terms in

Eq. 3.22 with the addition of the chiral term. Similarly, g(�) is the angular dependence

for the chiral �4 term. The free energy can now be approximated by integrating over the

volume of ⌦ which, for convenience, can be split into three terms:

F = Fq1 + Fq2 + Fq3 . (3.25)

The first two terms are identical up to the exchange q1 $ q2 and represent the individual

energies of each defect. The radial integrals for these two terms are calculated in the

annulus rc < r < ⇢ surrounding each defect line and take the form

Fq1,2 ⇡

Z L

0

dz

Z 2⇡

0

d�

Z ⇢

rc

rdr

✓
f(�)

r2
+

g(�)

r

◆
(3.26)

= �1LS
2K(1)

q1,2 ln

✓
⇢

rc

◆
+ �4LS

2(⇢� rc)K
(6)
q1,2 . (3.27)

Similarly, the third term is computed over the annular region ⇢ < r < R surrounding the

bound state

Fq3 ⇡

Z L

0

dz

Z 2⇡

0

d�

Z R

⇢

rdr

✓
f(�)

r2
+

g(�)

r

◆
(3.28)

= �1LS
2K(1)

q3 ln

✓
R

⇢

◆
+ �4LS

2(R� ⇢)K(4)
q3 , (3.29)
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where we have defined the elastic constants obtained from the azimuthal integrals:

K̄(1)
qi ⌘ F (1)

qi

✓
T

S
,
�2
�1

◆
+

�6
�1

SF (6)
qi

✓
T

S

◆
(3.30)

⌘ K(1)
qi +

�6
�1

SK(6)
qi (3.31)

K(4)
qi ⌘ Gqi

✓
T

S

◆
(3.32)

Additionally, upon defining the elastic energy losses:

�K̄(1)
⌘ K̄(1)

q1 + K̄(1)
q2 � K̄(1)

q3 (3.33)

�K(4)
⌘ K(4)

q1 +K(4)
q2 �K(4)

q3 . (3.34)

The energy then becomes:

F = �1S
2L


�K̄(1) ln

✓
⇢

rc

◆
+K(1)

q3 ln

✓
R

rc

◆�

+ �4S
2L


�K(4)(⇢� rc) +K(4)

q3 (R� rc)

�
, (3.35)

The energy may now be minimized to find that there exists a minimum at separation

⇢min = �
�1�K̄(1)

�4�K(4)
(3.36)

and the second derivative evaluated at this point is

@2
F

@⇢2

����
⇢min

= �
�2
4(�K(4))2

�1�K̄(1)
. (3.37)

which requires �K̄(1) < 0 or, in other words, defect repulsion for ⇢min to truly be a

minimum.
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Recall that the sign of �4 determines the handedness of the system. In the case that

�4 > 0, ⇢min > 0 requires �K(4) > 0. On the other hand, if �4 < 0, we must have

�K(1) < 0. Seemingly, the sign of the �K(4) term changes based on the handedness,

however, if we instead focus on the sign of the product �4�K(4), we see that it is required

to be positive in both cases. This must be the case because unlike the constants K̄(1)
qi ,

which have some recollection of the elastic moduli �1 and �6, the K(4)
qi is agnostic to

the elastic dependence of the system as seen in Eq. 3.32. Thus, it is more appropriate

to consider the sign of �4�K(4) > 0 for a minimum to exist in the repulsive case, with

�K̄(1) < 0.

Unlike the achiral non-anisotropic case, where the repulsion condition leads to the

energy being minimized when the defects are as far apart as possible, here we have a

minimum separation distance that is stabilized within the bounds of the medium by

none other than the elastic tension provided by the intrinsic chiral nature of the bulk.

This agrees with the observation of bound states of � and ⌧ defect pairs in the D2CLCs.

We can further compare this to the braided achiral non-anisotropic case in which

there is a stable minimum radius. However, the tension that creates the bound state in

that case is provided by an extrinsic chirality generated by physically braiding the two

defects.
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Appendix A

Derivation of the e↵ective elastic

theory of membranes

We start with the in full elastic free energy of the thin elastic sheet

F [h(x),u(x)] =

Z
d2x

✓


2
(r2h)2 + µu2

ij +
�

2
u2
kk

◆
(A.1)

where h(x) is the out of plane displacement and the non-linear strain tensor uij = (@iuj+

@jui+@ih@jh)/2. Note that the in plane displacement modes, ui(x), appear quadratically

in the free energy above. This means we can integrate out ui from the free energy to

derive an e↵ective theory in the out-of-plane modes. That is, we can write

Fe↵ [h(x)] = �kBT ln

Z
Dui e

�F [h(x),u(x)]/kBT (A.2)

where T is the temperature and kB is the Boltzmann constant.
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We proceed using the method laid out in [13] and define a vector potential given by

Aij(x) =
1

2
@ih@jh (A.3)

which is a rank-2 symmetric tensor that can be decomposed into longitudinal and trans-

verse parts as follows,

Aij =
1

2
(@ivj + @jvi) + P T

ij�(x) (A.4)

where v is some vector appropriate to the decomposition, P T
ij = �ij � @i@j/@2 is the

transverse projection operator, and �(x) is some scalar field. Note that we can find � by

applying the projection P T
ij to both sides of Eqn. A.4 and using the fact that (P T )2 = 1

to obtain

�(x) =
1

2
P T
ij @ih@jh (A.5)

We can now rewrite the strain tensor in terms of these transverse and logitudinal modes:

uij =
1

2
(@iuj + @jui + @ivj + @jvi) + P T

ij� (A.6)

=
1

2
(@iūj + @jūi) + P T

ij�, (A.7)

where we defined a shifted displacement ūi = ui + vi. We can now redefine the e↵ective

energy in terms of these shifted variables as follows,

Feff [h(x)] = �kBT ln

Z
DūDu0

ij e
�F [h(x),u(x)] (A.8)

We can now proceed by expanding the strain tensor into its Fourier components and
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separate the q = 0 components

uij(x) = u0
ij + A0

ij +
X

q 6=0

⇢
i

2
[qiūj(q) + qjūi(q)] + P T

ij�(q)

�
eiq·x (A.9)

and we plug into the stretch component of the free energy A.1, which I will expand term

by term. Starting with the µ term,

Z
d2x u2

ij

= 2(u0
ij +A

0
ij)
X

q 6=0

✓
i

2
[qiūj(q) + qjūi(q)] + P T

ij�(q)

◆Z
d2x eiq·x

+
X

q,q0 6=0

✓
i

2
[qiūj(q) + qjūi(q)] + P T

ij�(q)

◆✓
i

2

⇥
q0iūj(q

0) + q0jūi(q
0)
⇤
+ P T

ij�(q
0)

◆

⇥

Z
d2xei(q+q0)·x +

Z
d2x (u0

ij + A0
ij)

2 (A.10)

=
X

q 6=0

✓
i

2
[qiūj(q) + qjūi(q)] + P T

ij�(q)

◆✓
�
i

2
[qiūj(�q) + qjūi(�q)] + P T

ij�(�q)

◆

+ Asheet(u
0
ij + A0

ij)
2 (A.11)

= Asheet(u
0
ij +A

0
ij)

2 +
X

q 6=0


1

2

�
q2|ūi(q)|

2 + qiqjūi(q)ūj(�q)
�
+ |�(q)|2

�
(A.12)

and, similarly, the � term becomes

Z
d2x ū2

kk =

Z
d2x ūiiūjj

= 2(u0
ii +A

0
ii)
X

q 6=0

�
iqjūj(q) + P T

jj�(q)
� Z

d2x eiq·x

+
X

q,q0 6=0

�
iqiūi(q) + P T

ii�(q)
� �

iq0jūj(q
0) + P T

jj�(q
0)
� Z

d2xei(q+q0)·x

+

Z
d2x (u0

kk +A
0
kk)

2 (A.13)

=
X

q 6=0

(iqiūi(q) + �(q)) (�iqjūj(�q) + �(�q)) + Asheet(u
0
kk +A

0
kk)

2 (A.14)
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= Asheet(u
0
kk +A

0
kk)

2 +
X

q 6=0

⇥
qiqjūi(q)ūj(�q) + 2iqiūi(q)�(�q) + |�(q)|2

⇤
.

(A.15)

Putting this together we obtain

Z
d2xµū2

ij +
�

2
ū2
kk

= Asheet

✓
µ(u0

ij +A
0
ij)

2 +
�

2
(u0

kk +A
0
kk)

2

◆

+
X

q

⇢
µ

2
q2|ūi(q)|

2 +
µ+ �

2
qiqjūi(q)ūj(�q) +

2µ+ �

2
|�(q)|2

�
(A.16)

= Asheet

✓
µ(u0

ij +A
0
ij)

2 +
�

2
(u0

kk +A
0
kk)

2

◆

+
X

q

⇢
ūi(q)


µq2

✓
�ij �

qiqj
q2

◆
+ (2µ+ �)q2

qiqj
q2

�
ūj(�q)

+ i�qiūi(q)�(�q) +
2µ+ �

2
|�(q)|2

�
(A.17)

= Asheet

✓
µ(u0

ij +A
0
ij)

2 +
�

2
(u0

kk +A
0
kk)

2

◆

+
X

q

⇢
ūi(q)

⇥
µq2P T

ij + (2µ+ �)q2PL
ij

⇤
ūj(�q)

+ i�qiūi(q)�(�q) +
2µ+ �

2
|�(q)|2

�
(A.18)

We can now evaluate Eqn. A.8 by rewriting it into a more familiar form

Feff =

Z
d2x




2
(r2h(x))2 +

2µ+ �

2
�(x)2

�
+ kBT ln

Z
Dū e�

1
2 ūMūT+JT ū (A.19)
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where

kBTMij = µq2P T
ij + (2µ+ �)q2PL

ij (A.20)

kBTJi = i�qi�(q) (A.21)

The functional integral can be evaluated using the following identity:

ln

Z
Dū e�

1
2 ūM

�1ūT+JT ū =
1

2
J
T
M

�1
J (A.22)

which with the definitions given in Eqns. A.20 and A.21 we obtain

JiM
�1
ij Jj = �kBT�

2 qiqj
q2

|�(q)|2
✓
1

µ
P T
ij +

1

2µ+ �
PL
ij

◆
(A.23)

= �kBT�
2
|�(q)|2

✓
1

µ
PL
ijP

T
ij +

1

2µ+ �
PL
ijP

L
ij

◆
(A.24)

= �kBT
�2

2µ+ �
|�(q)|2 (A.25)

Thus, Eqn. A.19 becomes

Feff =

Z
d2x




2

�
r

2h(x)
�2

+

✓
2µ+ �

2
�

�2

2µ+ �

◆
�(x)2

�
(A.26)

for which, recalling the form of � in Eqn. A.5, we obtain the final expression for the

e↵ective height field theory:

Feff [h(x)] =

Z
d2x




2

�
r

2h(x)
�2

+
Y

8
(P T

ij @ih@jh)
2

�
(A.27)
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where we have also defined the 2D Young’s modulus, Y ,

Y =
4µ(µ+ �)

2µ+ �
. (A.28)
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Appendix B

The thermal lengthscale, `th

In the previous appendix, Eq. A.27 describes an e↵ective theory of the height field, h(x,

by integrating out the in-plane degrees of freedom. Recall that in the thermalized limit

(` � `th), thermal fluctuations renormalize the elastic moduli. One can then describe

the e↵ect of renormalization beyond a Gaussian, non-interacting theory by writing a

renormalized bending rigidity,

R(q) ⌘
1

q4hh(�q)h(q)i
, (B.1)

and we calculate the correlation function in the denominator perturbatively in Y .

We can diagrammatically write the non-linear stretching interaction as follows: which,

,

upon expanding up to one loop gives the following expression for the renormalized bend-
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ing rigidity

R(q) = 0 + Y0kBT

Z
d2k

(2⇡)2
qiP T

ij (k)qj
|k+ q|

+O(Y 2
0 ). (B.2)

The integral above diverges as

Z
d2k

qiP T
ij (k)qj

|k+ q|
⇠

1

q2
(B.3)

for small q. This means that the first correction to the normalized bending rigidity, (1)
R ,

has the form

(1)
R ⇠

Y0kBT

0q2
, (B.4)

and becomes of order 0 when thermal fluctuations are important. The lengthscale at

which this happens is then

qth ⇠

s
Y0kBT

2
0

, (B.5)

or,

`th ⇠

s
4⇡22

0

Y0kBT
, (B.6)

which is the thermal lengthscale.
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Appendix C

The Rotational Ward Identity

In the flat phase, the membrane breaks the rotational symmetry of O(3)⇥O(2) down to

O(3)⇥O(2)/O(2). Upon renormalization of the elastic theory, the remaining rotational

symmetry requires the full nonlinear strain tensor Eq.1.3 to be preserved. That is, in the

elastic continuum theory, the rotationally invariant term,

Z
d2x u2

kk, (C.1)

must remain invariant under the following scaling transformation:

x 7! bx0 (C.2)

u(x) 7! b⇣uu0(x0) (C.3)

h(x) 7! b⇣hh0(x0). (C.4)

We can now expand:

u2
kk = (@kuk)

2 + @kuk@jh@jh+ (@kh@kh)
2, (C.5)
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and note that we must require the first two terms to scale the same way. Applying the

transformation gives the following

2⇣u � 2 = ⇣u + 2⇣h � 3. (C.6)

Recall that the mean-square fluctuations of the fields scale with anomalous dimensions

hh(x)i ⇠ L2⇣h (C.7)

hui(x)i ⇠ L2⇣u . (C.8)

These can also be calculated in Fourier space via their respective correlation functions:

hh(q)h(�q)i =
kBT

0q4�⌘
⇠ q�(4�⌘) (C.9)

hui(q)uj(�q)i =
kBT

µ0q2�⌘u
P T
ij +

kBT

(2µ0 + �0)q2�⌘u
PL
ij ⇠ q�(2�⌘u), (C.10)

which, for a 2D membrane, gives

2⇣h = 2� ⌘ (C.11)

2⇣u = �⌘u. (C.12)

Thus, plugging into Eq. C.6 gives the identity required for rotational invariance in terms

of the exponents ⌘ and ⌘u:

⌘u = 2� 2⌘. (C.13)
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Appendix D

Discussion of data analysis methods

D.1 The jackknife procedure

Given a large data set of size N � 1, we can block our data into a set of N/b data

blocks of size b (similar to block spins in renormalization of the Ising model) and define

an observable, Ot, at time t as the block average

Ob,i =
1

b

biX

t=(i�1)b+1

Ot. (D.1)

The jackknife procedure is a resampling method for estimating errors of functions of

R observables

f
�
hO(1)

i�, hO
(2)
i�, . . . , hO

(R)
i�

�
(D.2)

where hO(i)
i� is the mean value of Oi without initialization bias (first ndis data points

discarded) [46, 68].

The jackknife estimate is obtained as follows:

1. Estimate the function D.2 by f(O(1), O(2) . . . , O(R)) where Oi is the sample estimate
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of hO(i)
i.

2. Form jackknife blocks from the blocked data D.1 and define the block averages as

follows:

O(r)
jack,b,i ⌘

1
N
b � 1

X

j 6=i

O(r)
b,j (D.3)

fjack,b,i ⌘ f(O(1)
jack,b,i, O

(2)
jack,b,i, . . . , O

(R)
jack,b,i) (D.4)

which in simpler terms, is a block of data with one data point omitted.

3. The square error of D.4 is then

�2
f =

✓
N

b
� 1

◆2

4 b

N

N/bX

i=1

f 2
jack,b,i �

0

@ b

N

N/bX

i=1

fjack,b,i

1

A
23

5 (D.5)

There are other sampling methods such as bootstrapping which is a non-linear version

of the jackknife, and are more useful for fitting. However, since we are only estimating

errors, the jackknife should be appropriate using di↵erent runs as our jackknife blocks.

D.2 The discrete gradient

We introduce here a method of numerically calculating gradients on triangularized

surfaces This is a method that is commonly implemented on various di↵erential operators

defined on meshes [69, 70], and here we apply it to compute strains on simulated sheets.

Consider a graph G = {V,E} with vertices V coinciding with the vertices V and edges

E of our simulated lattice and we define some vector field ~fi : V ! R2, for i 2 V . We start

by focusing on a single vertex vi 2 V and its neighborhood (or star) N (vi) = {TI}
6
I=1

where TI is 1 of the 6 triangles making up the neighborhood of vi. We then compute
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the gradient defined in each triangle TI . This is done via barycentric interpolation of the

three values of fi on the vertices TI . The gradient at triangle TI is given by

(rfTI )ij = (fi � fk)
(vk � vj)?

2ATI

+ (fj � fk)
(vi � vk)?

2ATI

(D.6)

where v? is the 90� rotation of vector v and ATI is the area of triangle TI . This gives a

gradient tensor in the basis of the faces of G.

In order to move back to the basis of vertices we compute a weighted average over

the neighborhood of vertex v and define the gradient at v as

(rfv)ij =
1P

TI2N (v) ATI

X

TI2N (v)

ATI (rfTI )ij

We can now compute the mesh gradient of the in-plane displacement field, ui, as

defined on the vertices of the deformed lattice. The in-plane gradient is then obtained

by symmetrizing the gradient as computed above, that is, Uij = (@iuj + @jui)/2.
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Appendix E

Brief overview of classical braid

theory

Classical braid theory is built in analogy to physical braids. That is, strands that can

become physically entangled by moving one strand over the other in some succession.

Mathematically, this is formulated by what is known as the Artin braid group [59].

The Artin braid group on n strands, Bn is a finite group generated by the braid

generators, �i and ��1
i , which are defined as the exchange operators on strands i and

i+ 1. Diagramatically, these are

�i =

i i+1

(E.1)

and

��1
i =

i i+1

(E.2)
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The Artin braid group generators are subject to the following relations:

�i�j = �j�i (E.3)

for |i� j|  2 which states that crossings commute as long as they don’t share a strand

and

�i�i+1�i = �i+1�i�i+1 (E.4)

for all 1  i < n. These are simply mathematical expressions that establish physical

isotopy that is to be expected from physical strands.

The Artin braid broup is then written as the presentation

Bn = h�i, �
�1
i |�i�j = �j�i, �i�i+1�i = �i+1�i�i+1i. (E.5)
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Appendix F

Proof of ⇡1(SO(3)/D2) ' Q

The fact that biaxial nematic systems have disclinations whose algebra is that of the

quaternion group, Q, is well known and quoted with confidence. However, for the sake

of self-containment, here we sketch the proof of the statement. In a more mathematical

language, we want to prove that

⇡1(SO(3)/D2) ' Q (F.1)

To do so, we require the following theorem which proves useful in computing homotopy

groups of coset spaces:

Theorem 1 Let G be a simply connected Lie group with subgroup H  G and identity

component H0 E G. Then

⇡1(G/H) ' H/H0 (F.2)

Proof of this statement establishes an isomorphism between the fundamental group

and the quotient space H/H0 by relating the loops in G/H based at H to paths in G
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from a connected piece of H to the piece that contains the identity, H0.

Theorem 1 allows one to compute ⇡1(SO(3)/D2) by lifting to a universal cover map.

This is

SO(3) �! SU(2) (F.3)

D2 �! Q8 (F.4)

Here, the covering map sends ⇡ rotations about each symmetry axis of the rectangle,

into ⇡ rotations in SU(2) parametrized by the Pauli matrices. The set of such rotations

forms the lift of D2, that is

{±1,±i�x,±i�y,±i�z} (F.5)

which is simply the group of quaternions, Q.

Now, applying theorem 1, we have

⇡1(SO(3)/D2) ' ⇡1(SU(2)/Q) ' Q/Q0 = Q (F.6)

since Q0 = {1}.

Note that in 1 this result was summarized by the short exact sequence

0 �! ⇡1(SU(2)) �! ⇡1(SU(2)/Q) �! ⇡0(Q) ' Q �! 0 (F.7)

which is a restatement of theorem 1 using the language of exact sequences.
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Appendix G

Triviality of the Whitehead link

Here, we show the closure of the braid word 3.21 is trivial:

Tr


�(↵,↵)
1 �(↵,�)

2

⇣
�(↵,↵)
3

⌘�1 ⇣
�(↵,�)
2

⌘�1

�(↵,↵)
1

⇣
�(�,↵)
2

⌘�1

�(↵,↵)
3 �(�,↵)

2

�

= Tr

⇣
�(�,↵)
2

⌘�1

�(↵,↵)
3 �(�,↵)
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2

⇣
�(↵,↵)
3
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2
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1

�
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2
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1
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3
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1

�
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1
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2
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1

⌘�1
�
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2
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1
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2

⌘�1
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[61] Y. Nozaki, T. Kálmán, M. Teragaito, and Y. Koda, Homotopy classification of
knotted defects in ordered media, Feb., 2024. arXiv:2402.16079 [cond-mat].

[62] G. E. Volovik and V. P. Mineev, Investigation of singularities in superfluid he/sup
3/ in liquid crystals by the homotopic topology methods, Sov. Phys. - JETP (Engl.
Transl.); (United States) 45:6 (6, 1977).

[63] M. Kleman and O. D. Lavrentovich, Soft matter physics: an introduction.
Springer, 2003.

95



[64] J. Pollard and G. P. Alexander, Contact Topology and the Classification of
Disclination Lines in Cholesteric Liquid Crystals, Physical Review Letters 130
(June, 2023) 228102. Publisher: American Physical Society.

[65] R. G. Priest and T. C. Lubensky, Biaxial model of cholesteric liquid crystals,
Physical Review A 9 (Feb., 1974) 893–898. Publisher: American Physical Society.
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Di↵erential-Geometry Operators for Triangulated 2-Manifolds. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2003.

96


	Abstract
	Introduction
	Statistical Mechanics of Crystalline Membranes
	Topology of Biaxial Nematics
	Topological Defects

	Switching Dynamics of Thermalized Graphene Cantilevers 
	The tilted phase
	1D Strip model
	Transition Rates
	Simulating tilt transition rates

	Topologically Stable Braids in Biaxial Nematic Systems
	Classification of biaxial nematic defects
	Topological stable structures in Biaxial nematics – Colored Braid theory
	Experimental Realizations

	Derivation of the effective elastic theory of membranes
	The thermal lengthscale, lth
	The Rotational Ward Identity
	Discussion of data analysis methods
	The jackknife procedure
	The discrete gradient

	Brief overview of classical braid theory
	Proof of pi1(SO(3)/D2)=Q
	Triviality of the Whitehead link
	Bibliography

