
UC Berkeley
Research Reports

Title
Models Of Vehicular Collision: Development And Simulation With Emphasis On Safety III:
Computer Code Programmer's Guide And User Manual For Medusa

Permalink
https://escholarship.org/uc/item/7gt1464b

Authors
O'reilly, O. M.
Papadopoulos, P.
Lo, G.-j.
et al.

Publication Date
1998

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gt1464b
https://escholarship.org/uc/item/7gt1464b#author
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

February 1998

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 232

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Models of Vehicular Collision: Development
and Simulation with Emphasis on Safety
III: Computer Code, Programmer’s Guide
and User Manual for MEDUSA

UCB-ITS-PRR-98-10
California PATH Research Report

Oliver M. O’Reilly, Panayiotis Papadopoulos,
Gwo-Jeng Lo, Peter C. Varadi
University of California, Berkeley

Models of Vehicular Collision:
Development and Simulation with Emphasis

on Safety

REPORT { September 1997

Submitted to: PATH (MOU 232)

Oliver M. O'Reilly (PI)
Panayiotis Papadopoulos (PI)

Gwo-Jeng Lo
Peter C. Varadi

Department of Mechanical Engineering
University of California, Berkeley

Abstract

In this report, which also constitutes a �nal report for MOU232, a User's Manual and a
Programmer's Guide for the program Medusa is presented. This program is capable of
simulating the impacts of several vehicles. In particular, it assumes that the collisions are
elastic, and is consequently applicable for low relative velocity impacts. The vehicular model
and collision detection algorithm used in the program are based on previously published
reports by the authors. Several of these developments are summarized, and improved features
of the collision detection algorithm are presented in a theoretical section at the beginning of
this report.

Keywords: IVHS America, Vehicle Dynamics, Collision Dynamics, Safety, Computer Sim-
ulation, Animation and Simulation

iii

Executive Summary

This report, which constitutes a �nal report for the contract MOU232, is a User's Manual
and a Programmer's Guide for the program Medusa. In addition, a section outlining the
theoretical developments implemented in this program is presented and the source code is
provided.

The program Medusa is an ANSI-C based simulation package which is designed to
simulate the impact of an arbitrary number of vehicles which are moving on a horizontal
surface. The vehicular models are partially based on the theory of a Cosserat point. This
theory was developed by M. B. Rubin in the mid 1980's and subsequently extended in the
early 1990's by A. E. Green and P. M. Naghdi. This theory models the (elastic) deformation
of each vehicle during a motion and possible impacts with other vehicles. Additional features
include the suspension and tyre models, and a collision detection algorithm. The algorithm
models the lateral surfaces of a vehicle using a deformable ellipsoid. The development of
the vehicle model was outlined in two earlier reports by the authors. However, in the �rst
section of this report, additional features of the collision detection algorithm are presented.

This report also presents a User's Manual for the program Medusa. It is intended to
give the reader the requisite background on using the program to simulate the motion of any
number of vehicles which may collide with one another. It also contains sample input and
output �les in the appendices.

Presently, Medusa is suitable for modeling and simulating low relative velocity impacts
of vehicles. In these cases, no permanent damage to the vehicles arises, and the program
then provides data on the post-collision behavior of the vehicles. It should be noted that the
model only allows for limited modes of deformation. This feature enchances the program's
computational e�ciency and makes it ideally suited to large scale simulations. In order to
provide the user with an avenue for improving the model, a Programmer's Guide is presented
here. It can be used to modify the code so as to incorporate other tyre models or an increased
number of directors in the Cosserat point model, for instance.

Both the code for Medusa and the vehicle models will be updated and improved in
the future. In so doing, the contents of this report will also be updated. The reader in-
terested in obtaining these updated versions should contact either Prof. O. M. O'Reilly
(oreilly@me.berkeley.edu) or Prof. P. Papadopoulos (panos@me.berkeley.edu).

iv

Contents

0 Conventions 1

1 Theoretical Background 2

1.1 Introduction . 2
1.2 Review of the Vehicle Model . 2

1.2.1 The Chassis . 2
1.2.2 Suspension and Tyre Forces . 5
1.2.3 Di�erential Equations of Motion . 7
1.2.4 Energy . 8

1.3 Contact Constraints and Contact Forces . 9
1.4 Contact Detection . 10

1.4.1 The Vehicle Ellipsoid . 11
1.4.2 Minimum Distance Searching Scheme 12
1.4.3 Unique Contact Point Detection . 13

1.5 Time Integration . 15

2 User's Manual 17

2.1 Introduction . 17
2.2 The File model.dat . 18
2.3 The Platoon Description File . 19
2.4 Running the Program . 20
2.5 The Simulation Output File . 22
2.6 Adding a New Vehicle Model . 23

3 Programmer's Guide 25

3.1 Introduction . 25
3.2 Generalities . 26
3.3 The Files common.h and common.c . 28

3.3.1 Some Useful Programing Tools . 28
3.3.2 Programming Tools for Vectors and Matrices 29
3.3.3 The Globally Used Data Structure Types 32

3.4 The Function main() . 35
3.5 The Initialization Module init.c . 35

v

CONTENTS

3.5.1 General Notes . 35
3.5.2 Evaluation of the Command Line: evaluate cmd line() 36
3.5.3 Evaluation of the File model.dat: read models() 37
3.5.4 Reading the File Containing the Platoon Data: read vehicles() . . 38

3.6 Time Integration . 39
3.7 The Vehicle Model: vehicle.c . 39

3.7.1 Contact Forces: set constraint forces() 40
3.7.2 Equations of Motion: equations of motion() 41
3.7.3 Energy: energy() . 41

3.8 The Determination of Contact: contact.c . 42
3.8.1 Contact Detection: detect contact() 42
3.8.2 Unique Contact Point Detection: pert() 43

3.9 Data Output . 43
3.10 Adding User Supplied Code . 44

Bibliography 46

A The Variable Metric Method 48

B Line Search and Backtracking 51

C Sample Parameter Files 53

C.1 model.dat . 53
C.2 platoon.dat . 54

D Structure De�nitions 56

D.1 The Vehicle Model Structure . 56
D.2 The Simulation Structure . 57

E Dependencies 58

E.1 File Dependencies . 58
E.2 Function Dependencies . 58

F The Medusa Source Code 61

vi

Chapter 0

Conventions

The summation convention over repeated indices is used for the indices i; j; n;m = 1; 2; 3,
i.e.,

X i di �
3X

i=1

X i di : (0.1)

In all other cases, summation is explicitly stated. The notation x(�) is used to denote a
quantity x belonging to the vehicle �.

To enhance readability of the text, we will use a few notational conventions: Filenames
such as vehicle.c or medusa will appear slanted. Elements of the ANSI-C source code such
as functions, numbers and variables appear as typed, e.g., main(), 3.1415, dummy. The C
source code is presented as, e.g.,

#include <stdio.h>

void main()

{

printf("Hello World!");

}

Input and output from the user screen appears in the same form, e.g.,

>> medusa -e

No endtime specified. Type medusa -h for help

The prompt >> is used to indicate the user input on the command line.

1

Chapter 1

Theoretical Background

1.1 Introduction

In this section, we recall some of the background for the vehicle model and the contact
detection algorithm used byMedusa. These developments were discussed in earlier reports,
however some of the material presented here updates these reports. Furthermore, we outline
the numerical time-integration routines used in the simulations.

1.2 Review of the Vehicle Model

The vehicle model that Medusa uses is discussed in O'Reilly, Papadopoulos, Lo and Varadi
[9, 10] where the references for the di�erent parts of the model are listed. In this section,
we brie
y review the equations of the model which will be referred to later when we discuss
the program code of Medusa in Chapter 3.

1.2.1 The Chassis

In a reference con�guration of the chassis, we de�ne a convected Cartesian coordinate system
with coordinates X i (i = 1; 2; 3) and orthonormal basis vectors Ei. The origin of this
coordinate system lies at the center of mass of the chassis and the vectors Ei coincide with
the chassis' principal axes of inertia (see Figure 1.1 for the orientation of these vectors).
Clearly, in this coordinate system, a material point of the chassis has the position vector

R�(Xj) = R+X iEi ; (1.1)

where R is the position vector of the center of mass of the chassis with respect to an
inertial frame. In writing (1.1), the summation convention over repeated indices was used
(cf. equation (0.1)).

The chassis of the vehicle is modeled using the theory of a Cosserat point which was
introduced by Rubin [13], and subsequently developed by Green and Naghdi [4]. In this

2

2
−L

B /2

B /2
L

1

−H

−H
1

2

E
1

E

E
2

3

0

Figure 1.1: Schematic depiction of the reference con�guration of the chassis. The coordinates
of the suspension assembly points are also shown.

model, the position vector r�(X i; t) of a material point of the chassis at time t is approximated
by

r�(Xj ; t) = r(t) +X i di(t) : (1.2)

The vector r(t) is called the position vector of the Cosserat point. Here, it is the position
vector of the center of mass of the chassis at time t and it corresponds to R in the reference
con�guration. The three vectors di(t) are called the directors of the Cosserat point. In the
reference con�guration, they correspond to the basis vectors Ei.

The deformation gradient F associated with the motion (1.2) can be expressed as

F = di
Ei ; (1.3)

where the symbol
 denotes the usual tensor product. The position vector r� can now also
be written as

r� = F(t) (R� � R) + r : (1.4)

This notation was employed by Cohen and Muncaster [1] in their theory of pseudo-rigid
bodies which is closely related to the theory of a Cosserat point with three directors. This
notation also indicates that a pseudo-rigid ellipsoid remains ellipsoidal in any subsequent
deformation; which is consistent with classical results on homogeneous deformations which
may be found in Truesdell and Toupin [15, Sections 42-46]. We will use this property later to
determine if two vehicles are in contact. To that end, we will denote the position vectors of a
material point lying on the surface � of the vehicle in its reference and present con�gurations,
respectively, by

R� = R�(Xj
�) ; r� = r�(Xj

�; t) ; (1.5)

3

1.2. REVIEW OF THE VEHICLE MODEL

where Xj
� are the referential (Cartesian) coordinates of that surface point.

The velocity and director velocities of the Cosserat point are

v = _r ; wi = _di ; (1.6)

where a superposed dot denotes the time derivative. The relevant equations of motion of the
chassis are the balance of linear momentum and the three balances of director momenta:

m _v = l0 ; myij _wi = li � ki : (1.7)

In these equations, m is the mass of the vehicle and yij = yji are its inertia parameters.
These parameters are related to the vehicle's referential inertia tensor J0 = J ij

0 Ei
 Ej as
follows:

myij = �J ij
0 = 0 ; i 6= j ; (1.8)

0
@ J11

0

J22
0

J33
0

1
A =

0
@ 0 1 1

1 0 1
1 1 0

1
A
0
@ my11

my22

my33

1
A : (1.9)

Equation (1.8) follows from the fact that Ei coincide with the principal axes of inertia of the
chassis, and R is the position vector of the center of mass of the chassis in its �xed reference
con�guration.

The vectors l0(t) and li(t) are called the applied force and the applied director forces,
respectively1. For the vehicle model, they are calculated using

l0 =

4X
q=1

f q �mgE3 ; li =

4X
q=1

X i
q f

q : (1.10)

In this equation, g = 9:81 [m=s] is the gravitational acceleration. The point forces f q

(q = 1; 2; 3; 4) are generated by the suspensions and the wheels2. These forces act on the
suspension assembly points which are material points of the chassis with the material coor-
dinates

X i
q

8>><
>>:

q = 1 : (L1 ; B=2 ;�H1) left front
q = 2 : (L1 ;�B=2 ;�H1) right front
q = 3 : (�L2 ; B=2 ;�H2) left rear
q = 4 : (�L2 ;�B=2 ;�H2) right rear

: (1.11)

The various quantities in this equation are also depicted in Figure 1.1.

1It is usual to use the symbol n to denote the applied force l0. However, we use the former symbol in
this report to denote a unit outward normal.

2Recall from Chapter 0 that the summation convention does not apply to the index q.

4

wheel−plane

ground−plane

wheel

suspension
system

slip angle

camber angle

n

a

h

F

F
v

q
q

q

q
~

long
q

q
lat

N
q

Figure 1.2: Schematic depiction of one tyre illustrating the forces and kinematic quantities
de�ned in the text. Here, nq is the surface normal, such that faq;hq;nqg form a local
orthonormal basis. The force Nq = �F q

suspE3 is the normal contact force. The camber angle
is assumed to be negligible.

In equations (1.7), ki are called the intrinsic director forces. Their function is similar
to that of a stress tensor in continuum mechanics, and constitutive equations for the ma-
terial response are required. In the present vehicle model, we assume a nonlinearly elastic,
homogeneous, St. Venant{Kirchho� material with Lam�e constants � and �. The resulting
constitutive equations are

ki =
V

2

�
�(dj � dj � 3)di + 2�(di � dn � �in)dn

�
; �in =

�
0 : i 6= n
1 : i = n

; (1.12)

where the volume V encompasses the entire chassis. The Lam�e constants are related to
Young's modulus E and Poisson's ratio � by (see, e.g., Sokolniko� [14]):

� =
E�

(1 + �)(1 � 2�)
; � =

E

2(1 + �)
: (1.13)

1.2.2 Suspension and Tyre Forces

In the current implementation of Medusa, the road is assumed to be a horizontal plane.
This simpli�es the equations and the program code considerably.

It is assumed that the unit heading vectors h3 = h4 of the rear wheels are parallel to
the projection of d1 onto the road plane (see Figure 1.2), while the unit orientation vectors

5

1.2. REVIEW OF THE VEHICLE MODEL

a3 = a4 of the rear wheels are perpendicular to h3 and h4, respectively, i.e.,

h3 = h4 =
(d1 �E1)E1 + (d1 �E2)E2

jj(d1 �E1)E1 + (d1 �E2)E2jj ;

a3 = a4 =
�(d1 �E2)E1 + (d1 �E1)E2

jj � (d1 �E2)E1 + (d1 �E1)E2jj : (1.14)

Similarly, if we de�ne a steering angle � about E3, the unit heading vectors h1 = h2 and
the unit orientation vectors a1 = a2 of the (steered) front wheels are given by

h1 = h2 = cos�h3 + sin�a3 ; a1 = a2 = � sin �h3 + cos�a3 : (1.15)

We assume that the wheels are massless. In the simpli�ed suspension and tyre models
discussed in O'Reilly, Papadopoulos, Lo and Varadi [9], the applied forces f q in equations
(1.7) are calculated using

f q = �F q
suspE3 + F q

lat aq ; (1.16)

where F q
susp are the magnitudes of the suspension forces:

F q
susp = Cq(r+X i

q di) �E3 ��s+Dq(v +X i
qwi) �E3 ; C

q;Dq =

�
C1;D1 : q = 1; 2:
C2;D2 : q = 3; 4:

(1.17)

It is important to note that the tyre model we use does not accommodate braking or acceler-
ating of the vehicle. The parameters fC1;D1g and fC2;D2g are the linear spring coe�cients
and the linear damping coe�cients of the front and rear suspensions, respectively. The
unstretched spring length �s is assumed to be the same for all four suspensions.

Equation (1.16) expresses the assumption that the wheels roll without resistance. One
has therefore only the wheel force F q

lat acting laterally on each wheel. To calculate this force,
we �rst need to calculate the (side) slip angle �q which is de�ned as the angle between the
wheel heading hq and the direction of wheel travel ~vq, where

~vq = (vq �E1)E1 + (vq �E2)E2 ; vq = v +X i
qwi : (1.18)

Using equations (1.15) and (1.14), the slip angles are

�q = arctan

�
(hq � ~vq) �E3

hq � ~vq

�
(no sum on q): (1.19)

We assume that the force response of the tyres is delayed by an amount which is described
by a �rst order di�erential equation with a parameter ��1 [rad=s] from which the four delayed
or lagged slip angles �lag;q are calculated:

� _�lag;q + �lag;q = �q : (1.20)

6

For each wheel q, the lateral tyre forces F q

lat are now calculated using the following
identities recorded in Kort�um and Sharp [6] for a Calspan tyre model. For readability, we
drop the wheel index q:

Flat = �yFsusp g(��) ; �y = (�B1Fsusp +B3 +B4F
2
susp)SN : (1.21)

In this equation, g is called the side force shaping function given by

g(��) = ��� 1

3
��j��j+ 1

27
��3 for j��j < 3 ;

g(��) =
��

j��j for j��j � 3 ; (1.22)

where the dimensionless sideslip angle �� is calculated using

�� = �
�
A1Fsusp(Fsusp +A2)�A0A2

A2�yFsusp

�
�lag if (�Fsusp) � A2 ;

�� =

�
A0

�yFsusp

�
�lag if (�Fsusp) > A2 : (1.23)

The suspension force Fsusp is calculated using equation (1.17). Note that Flat is positive for
a positive (lagged) slip angle. The numerical values for this Calspan tyre model are

A0 = 2625 [N] ; A1 = 14:47 [:] ; A2 = 12930 [N] ; SN = 1:0274 [:] ;

B1 = �0:464 � 10�4 [N�1] ; B3 = 1:216 [:] ; B4 = 0:218 � 10�10 [N�2] : (1.24)

1.2.3 Di�erential Equations of Motion

For the sake of computational e�ciency, it is convenient to de�ne the vector components of
r, di, ki (given by equation (1.12)) and f q (given by equation (1.16)) with respect to the basis
fEig and to introduce the generalized position vector z1, the generalized velocity vector z2,
the generalized slip angle vector �, the intrinsic force component vector k, the applied force
component vector f and the body force component vector u as follows:

rj = r �Ej ; dij = di �Ej ; kij = ki �Ej ; f qj = f q �Ej ; (1.25)

(z1) = (r1 ; r2 ; r3 ; d11 ; d12 ; d13 ; d21 ; d22 ; d23 ; d31 ; d32 ; d33)
T ;

(z2) = (v1 ; v2 ; v3 ; w11 ; w12 ; w13 ; w21 ; w22 ; w23 ; w31 ; w32 ; w33)
T ;

(�) = (�1 ; �2 ; �3 ; �4)
T
;

(k) =
�
0 ; 0 ; 0 ; k11 ; k

1
2 ; k

1
3 ; k

2
1 ; k

2
2 ; k

2
3 ; k

3
1 ; k

3
2 ; k

3
3

�T
;

(f) =
�
f11 ; f

1
2 ; f

1
3 ; f

2
1 ; f

2
2 ; f

2
3 ; f

3
1 ; f

3
2 ; f

3
3 ; f

4
1 ; f

4
2 ; f

4
3

�T
;

(u) = (0 ; 0 ; �mg ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0)T : (1.26)

7

1.2. REVIEW OF THE VEHICLE MODEL

The equations (1.7) can now be written as a set of �rst-order ordinary di�erential equations:

_z1 = z2 ;

_z2 = M�1 [�k(z1) +Af(z1; z2;�lag; t) + u] � g(z1; z2;�lag;u; t) ;

_�lag = ��1�lag +� ; (1.27)

where the inertia matrix M and the in
uence matrix A are given by

(M) =

0
BB@

m I 0 0 0

0 my11 I 0 0

0 0 my22 I 0

0 0 0 my33 I

1
CCA ; (A) =

0
BB@

I I I I

X1
1 I X1

2 I X1
3 I X1

4 I

X2
1 I X2

2 I X2
3 I X2

4 I

X3
1 I X3

2 I X3
3 I X3

4 I

1
CCA ;

(1.28)

respectively. In these equations, I is the 3� 3 identity matrix, the coe�cients myii (no sum
on i) are calculated from equation (1.9) and the coordinates X i

q are de�ned in equation (1.11)
and Figure 1.1.

The program code of Medusa makes repeated use of the vector

(z) =
�
zT1 ; z

T
2 ; �

T
lag

�T
(1.29)

which has 28 components. This vector will be referred to as the state vector of the sys-
tem (1.27).

1.2.4 Energy

The total energy E of the vehicle model consists of the kinetic energy T , the stored elastic
energy m of the Cosserat point, the energies V q stored in the suspension springs and the
gravitational potential U :

E = T +m +

4X
q=1

V q + U : (1.30)

Using the notation from equations (1.17), (1.26) and (1.27), the energy terms are de�ned as
follows:

T =
1

2
z2 � (Mz2) ; U = mgr3 ;

m =
V

2

�
�"2jj + 2�"mn"mn

�
; "ij =

1

2
(di � dj � �ij) ;

V q =
1

2
Cq
�
(r3 +X i

q di3 ��s
�2

; Cq =

�
C1 : q = 1; 2
C2 : q = 3; 4

: (1.31)

Note that the expression for m is consistent with equation (1.12) (see O'Reilly, Papadopou-
los, Lo and Varadi [9]).

8

1.3 Contact Constraints and Contact Forces

When two vehicles come into contact, contact forces associated with the constraint of impen-
etrability (see O'Reilly and Varadi [11]) prevent the vehicles from interpenetrating. During
contact, the position vectors and directors of the vehicles depend on each other and so do
the individual equations of motion. For simplicity, rather than algebraically eliminating the
dependent kinematic quantities from the equations of motion using the constraint equations,
we adopt a numerical scheme in Medusa based on a normality assumption using Lagrange
multipliers. Here, the normality assumption presumes frictionless contact. This numerical
approximation allows the surfaces of the vehicles to overlap by a small amount. The resulting
contact forces are then reminiscent physically to those resulting from the compression of a
linearly elastic spring.

Consider now the situation depicted in Figure 1.3. Assume we have determined two
points r�(1) and r

�
(2) (cf. equation (1.5)) on the surfaces of the respective vehicles which we

may call contact points. Let n(1) be the outward unit normal to the surface of vehicle one.
The distance function

�1 = (r�(2) � r�(1)) � n(1)

=
�
r(2) + X i

�(2) d(2);i � r(1) � X i
�(1) d(1);i

� � n(1) = �̂1(z(1);1; z(2);1) (1.32)

quanti�es separation (�1 > 0), contact (�1 = 0) or penetration (�1 < 0). The sign of a
second function �2 indicates the relative normal velocity of the contact points:

�2 = (
�

r
�

(2) � _r�(1)) � n(1)

= �̂2(z(1);1; z(1);2; z(2);1; z(2);2) : (1.33)

Here
�

r
�

(2) is the rate of change of the position vector of the particle which occupies r�(2) at
time t. These two functions generate constraint conditions as they should be zero when the
vehicles are in contact.

During times of contact (de�ned by �1 � 0), we modify the equations of motion (1.27)
of the two vehicles � = 1; 2 as follows:

_z(�);1 = z(�);2 + c(�);1 ;

_z(�);2 = g(�) + c(�);2 ;

_�(�);lag = ��1(�)�(�);lag + �(�) : (1.34)

We will refer to c(�);1 and c(�);2 as the (generalized) contact forces. They are calculated from
the constraints (1.32) and (1.33) using a normality assumption:

c(�);1 =
1
@�̂1
@z(�);1

; c(�);2 =
2
@�̂2
@z(�);2

: (1.35)

9

1.4. CONTACT DETECTION

Figure 1.3: Schematic depiction of the kinematical quantities involved in describing the con-
tact between two bodies.

In this equation, the factors
1 and
2 are Lagrange multipliers that are determined by
the motion. We will approximate them using a numerical scheme that will be explained in
Section 1.5. In the interest of brevity, we do not write the forces (1.35) in a component form
similar to (1.26). Note however that the contact forces are functions of X i

�(�) and n(1).
We also remark that a vehicle may be in contact with several other vehicles at a given

instant. In this case, the above procedure is repeated for each pair of vehicles, and requires
proper book-keeping of the various contact constraints and contact forces.

1.4 Contact Detection

In the previous section, we assumed a priori knowledge of the position vectors r�(�) (� = 1; 2)

and the surface normal vector n(1) at the (potential) point of contact. In this section, we
are going to outline a procedure that yields these quantities uniquely. Although the ideas
presented here apply to general contact problems involving convex surfaces, we will restrict
our discussion to ellipsoidal surfaces.

Note that if the vehicles were modeled as spheres of radii �(�), the condition

jjr(2) � r(1)jj � �(1) + �(2) (1.36)

would be su�cient to determine whether the two vehicles are in mutual contact. The general

10

situation is however far more complicated. Nevertheless, this simple idea can still be used
as a preliminary fast test for contact while the vehicles are relatively far apart3.

Figure 1.4: Parametric representation of the vehicle ellipsoid in the reference con�guration.

1.4.1 The Vehicle Ellipsoid

For convenience, we approximate the outer surface � of each vehicle in the reference con�g-
uration by an ellipsoid whose major axes are parallel to Ei and whose geometric center is
identical to the center of mass of the vehicle, i.e.,4

�
X1

�

A

�2

+

�
X2

�

B

�2

+

�
X3

�

C

�2

= 1 ; (1.37)

where A, B and C are the lengths of the semi-axes of the ellipsoid. This surface has the
parametric representation

X1
� = A cos(u) cos(v) ; X2

� = B cos(u) sin(v) ; X3
� = C sin(u) ; (1.38)

3In Medusa, this idea has been implemented with � = max(A;B;C), where A, B and C are de�ned in
equation (1.37).

4It has come to our attention that these assumptions may be too restrictive. We intend to relax them in
future versions of Medusa.

11

1.4. CONTACT DETECTION

where u 2 [��=2; �=2]; v 2 [0; 2�) are the curvilinear surface coordinates of the ellipsoid
(see also Figure 1.4).

Under the action of the deformation gradient F(t) de�ned in equation (1.3), the material
surface � de�ned in equation (1.37) subsequently deforms into a surface which is described
by equation (1.4). As mentioned in the lines following that equation, that surface is also
ellipsoidal. In particular, the surface will remain convex.

Finally, the tangent vectors and the outward surface normal vector in the present con-
�guration are given by

au =
@r�

@u
; av =

@r�

@v
; n =

av � au

jjav � aujj : (1.39)

1.4.2 Minimum Distance Searching Scheme

Recall from equation (1.5) that the vectors r�(�) (� = 1; 2) denote material points on the
surface of the respective ellipsoids. Consider the distance function

f = jjr�(1) � r�(2)jj = f(x) ; x = (u(1); v(1); u(2); v(2)) : (1.40)

We would like to de�ne our contact points from Section 1.3 as those points (labeled K for
vehicle one and L for vehicle two) for which f attains a global minimum. However, before
we embark on �nding this minimum, we should consult Figure 1.5. It is intuitively clear
that we will not able to �nd unique points K and L when the vehicles are interpenetrating,
in which case inf(f) = 0 on the intersection curve. This case needs some additional work
which is outlined in Section 1.4.3.

Figure 1.5: The contact situations between two bodies

In order to �nd the points K and L on the respective ellipsoids that minimize the distance
function f , we start with two arbitrary points K1 and L1 on the respective surfaces (see also
Figure 1.6). Keeping K1 �xed, we �nd a new point L2 on the surface of the second vehicle

12

which (locally) minimizes f . Keeping L2 �xed, we �nd a new point K2 which again (locally)
minimizes f , and so forth. In this manner, we obtain a sequence L2, K2, L3, : : : which
converges to two points K and L (which will not be unique if there is a curve of intersection).

Figure 1.6: From initial guesses K1 and L1 a sequence of points L2, K2, L3, : : : is calculated
which minimizes the distance function f de�ned in the text.

The algorithm employed in Medusa to perform the series of local minimizations of
the distance function f is called the variable metric method whose details are discussed in
Appendix A. Note that every one of these minimization steps will �nd a unique (local)
minimum of f . This is due to the fact that, in each step, we are minimizing the distance
from a point to a convex surface (for further details, see Kowalik [8]).

Now consider Figure 1.5 once more. Having previously found the points K and L and
the corresponding position vectors r�(�), it is clear that the associated normal vectors n(�)

de�ned in equation (1.39) satisfy5 n(1) � �n(2) only if the ellipsoids are not penetrating. We
can therefore specify the following no-contact condition:

(r�(2) � r�(1)) � n(1) > 0 ; n(1) � �n(2) : (1.41)

If this test fails, then the vehicles are in contact and additional work needs to be done
to determine the unique points of contact for intersecting ellipsoids. We now turn to this
matter.

1.4.3 Unique Contact Point Detection

The basic idea of this scheme is to apply a suitable perturbation to K and L which were
obtained using the previous minimum distance searching iteration. For the case of interest,
the former points may lie anywhere on the curve of intersection of the two ellipsoids. Hence,
the points of contact that we seek are the two points of maximum penetration along their
common normal6.

5Up to the order of numerical accuracy.
6Clearly, this is one possibility to de�ne unique contact points. There are others, however, the detection

of the maximum penetration points is considered to be the easiest method.

13

1.4. CONTACT DETECTION

Figure 1.7: Unique contact point detection scheme

Recall that the equation of the ellipsoid for each vehicle in its reference con�gurations
has the form (1.37) which can be rewritten as

(R�
(�) �R(�)) �K(�)(R

�
(�) �R(�)) = 1 ; � = 1; 2 ; (1.42)

where (K(�)) = diag(1=A2
(�); 1=B

2
(�); 1=C2

(�)) is a second order diagonal tensor. With the

help of (1.4), the equation of the ellipsoid in the current con�guration can be expressed as

(r�(�) � r(�)) � K̂(�)(r
�
(�) � r(�)) = 1 ; � = 1; 2 ; (1.43)

where K̂(�) = F�T(�)K(�)F
�1
(�)

7. Thus, the functions of the ellipsoids 1 and 2 in the present
con�guration are de�ned as follows:

f̂(�) = (r�(�) � r(�)) � K̂(�)(r
�
(�) � r(�))� 1 ; � = 1; 2 : (1.44)

Clearly, f̂(1) = 0 for a point on the surface �(1) of ellipsoid 1 and f̂(1) is greater (less) than 0
for a point located outside (inside) of ellipsoid 1.

Consider the curve C which is the intersection of two ellipsoids in three-dimensional
Euclidean space and the point K computed using the previous iteration. The point corre-
sponding to the maximum penetration of ellipsoid 1 into the ellipsoid 2, denoted as T(1),

7The principal directions and principal semi-axes of the ellipsoid in the current con�guration can be
studied by solving the eigenvectors and eigenvalues of K̂(�).

14

is the point on the surface of ellipsoid 1 whose position vector minimizes the function f̂(2).
Similarly, the point T(2) can also be used as the maximum penetration point of ellipsoid 2
into ellipsoid 1. The pair of points, T(1) and T(2), will serve as the contact points in the case
when the penetration has occurred between two ellipsoids.

The procedure for unique contact point detection is commenced by circling around point
K using a tiny perturbation on the surface of ellipsoid 1. Suppose one picks �ve distinct
points, denoted by M(1), N(1), P(1), Q(1) and R(1), which lie on the curve C. At these points,
f̂(2) will be zero. Five curves can be plotted from the point K to each of these points by
linearly interpolating between their u� v coordinates. The midpoints of each curve from K
to M(1), N(1), P(1), Q(1) and R(1) are denoted by �M(1), �N(1), �P(1), �Q(1) and �R(1), respectively.

If �N(1) is the point where f̂(2) is minimal among the �ve midpoints, and if f̂(2) decreases
along the curve �N(1)

�M(1), then T(1), the point of maximum penetration, can be found by �rst
searching along the curve connecting �N(1) and �M(1) and then by searching along the curve
connecting K and �T(1). The corresponding point of maximum penetration, T(2), of ellipsoid
2 into ellipsoid 1 can be obtained using a similar procedure.

1.5 Time Integration

Classical explicit time integration methods have proven to be unsatisfactory when solving
the equations of motion (1.27) and (1.34) even when used with an adaptive step-size control.
Essentially, the required step size of integration is far too small to be of practical use. The
reason for this lies in the intrinsic director forces ki de�ned in equation (1.12), which produce
very high frequency modes of oscillation. Implicit integration methods on the other hand can
use much larger time steps at the expense of solving (implicit)systems of algebraic equations.

In this version of Medusa, we employ a simple explicit predictor-corrector integration
scheme based on the forward Cauchy-Euler method. We outline here the integration scheme
for equation (1.34) when two vehicles are in contact. The corresponding schemes for equation
(1.27), and for additional vehicles, are easily inferred. To simplify the notation, we supress
the vehicle index � here:

~z1;k+1 = z1;k +�t z2;k ;

1;k+1 =
1;k + p1 �1(~z1;k+1) ;

2;k+1 =
2;k + p2 �2(~z1;k+1; z2;k) ;

z1;k+1 = z1;k +�t [z2;k + c1(
1;k+1; ~z1;k+1)] ;

z2;k+1 = z2;k +�t [g(~z1;k+1; z2;k;�lag;k; t) + c2(
2;k+1; ~z1;k+1; z2;k)] ;

�lag;k+1 = �lag;k +�t
�
��1�lag;k +�(~z1;k+1; z2;k)

�
; (1.45)

where quantities of the form xk are approximations of x(tk). In these incremental equations,
�t is the step size. Equation (1.45)1 uses the forward Cauchy-Euler method to calculate
~z1;k+1 which serves as a predictor of z1;k+1. All of the other equations of (1.45) use this
prediction. Equations (1.45)4;5;6 are the forward Cauchy-Euler integrations steps of equation

15

1.5. TIME INTEGRATION

(1.34). The use of the predictor ~z1;k+1 mainly a�ects the function g in (1.45)5 since it contains
the sti�est part of the equations of motion (i.e., the intrinsic director forces).

Equations (1.45)2;3 compute approximations to the Lagrange multipliers of equation
(1.35) by penalizing the constraint functions �1 and �2. The penalty parameters p1 and
p2 are constants that must be properly chosen. When a vehicle is not in contact with an-
other, then clearly c1 = 0 and c2 = 0. We then also set
1 =
2 = 0, which serves as initial
conditions for (1.45)2;3 whenever contact is initiated.

We close this chapter with a remark concerning �t and the transitions to and from
equations (1.27) and equations (1.34) inMedusa. Whenever ~z1;k+1 predicts contact between
a pair of vehicles in the next time step, the step size �t is reduced to a smaller value in
order to keep the penetration of the vehicles small8. Once contact is lost (i.e., �1 > 0), the
Lagrange multipliers
1 and
2 are reset to zero. If contact does not reoccur during a certain
time interval (say 100�t), the step size is increased again back to its original value.

8See the Programmer's Guide for further details.

16

Chapter 2

User's Manual

2.1 Introduction

Medusa simulates arbitrarily many vehicles driving on a horizontal road without obstacles.
The program allows vehicular collisions with moderately high relative velocities. Medusa

can be used to qualitatively investigate collision scenarios that occur within platoons of
vehicles. In this chapter, we explain with examples how to use Medusa to simulate vehicle
platoons. This task involves no changes in the program code of Medusa. For details on
such changes, we refer the reader to the Programmer's Guide in Chapter 3. There, possible
modi�cations of the mathematical models of the vehicles and the road are discussed.

Note that whenever we use the terms `vehicle model' or simply `model' in this chapter, we
mean a set of parameters that is required by the mathematical model. Thus, if we say that
two vehicles have di�erent models, then we mean that their model parameters are di�erent.
Their mathematical model is however the same since it is a standard part of the program
code.

The usage of Medusa is quite simple. The user provides the vehicle models and the
initial positions, orientations and velocities of the vehicles in two separate �les. These two
input �les are written in a plain text format whose contents are explained in Sections 2.2
and 2.3, respectively. The simulation is run by typing a line similar to

>>medusa -t1.0

at the command prompt of the operating system1. The simulation is controlled with com-
mand line options like -t1.0 in the previous example. These options are explained in Section
2.4. Medusa writes the simulation data into a plain text �le that can be read and graph-
ically presented by other programs such as Matlab, Mathematica or SmartPath. We
discuss this in Section 2.5. Finally, in Section 2.6, we outline a procedure to obtain the
equilibrium state of a vehicle in which all of the vibrations of the suspensions and chassis
have damped out: we will explain in Section 2.2 why this is important.

1In this chapter, we will assume that the command prompt is >> and that the executable is named
medusa.

17

2.2. THE FILE MODEL.DAT

2.2 The File model.dat

The user must edit the �le model.dat which is in plain text format. This �le provides
Medusa with a database of vehicle models. The models in this �le are listed sequentially
and are numbered starting from one. In the next section, when we de�ne a platoon of
vehicles, we will use these numbers to de�ne a model for each vehicle. The advantage of
having such a database is that the model of a vehicle can be changed simply by using a
di�erent model number from the database. Also, if all vehicles in a platoon are identical,
then the �le model.dat need only contain one single set of model parameters.

The structure of the �le model.dat is rigorously de�ned as a sequence of mandatory
keywords, or tokens, some of which are followed by a number. If keywords are missing or
misspelled, a run-time error message is generated. The keywords are listed in their proper
order below. A sample model �le containing two vehicle models is printed in Appendix C.1
for reference. Comments can be put anywhere using the symbol %. The rest of the line
is then ignored. Note that Medusa is case insensitive, i.e., the keywords MODEL, Model or
MoDeL are considered identical. In this chapter however, we will use capital letters to denote
a keyword and small letters to denote a number that has to be substituted for it.

NUMBER OF MODELS m This keyword appears only once at the top of the �le. Medusa will
subsequently try to read m vehicle models from this �le. The sample in Appendix C.1
contains two models. If we set m equal to 3 there, an error message is generated.

MODEL m Every model starts with this keyword. The symbol m stands for the model number.
The �rst model in the �le has number 1, the second 2 and so on. This improves the
readability of the �le, but an error occurs if this sequence is not met.

For each model, the data is grouped for the Cosserat point, the suspension, the tyre
model and the contact model. An additional data group de�nes an equilibrium of the
vehicle which will be used later to de�ne initial conditions for the simulation.

COSSERAT POINT This keyword groups data pertaining to the Cosserat point:

MASS x The mass x [kg] of the vehicle.

IX x IY y IZ z The principal moments of inertia x, y and z [kgm2]. These
correspond to the parameters J11

0 , J22
0 and J33

0 in equation (1.9).

E e NU u VOLUME v The material properties are de�ned by Young's modulus e
[N=m2], Poisson's ratio u and the material volume v of the chassis [m3].

SUSPENSION This keyword groups data pertaining to the suspension models:

L1 u L2 v B x H1 y H2 z The coordinates u, v, x, y and z in [m] are de�ned
in Figure 1.1.

SPRING REF x This is the unstretched length of the suspension springs in [m]
corresponding to �s in equation (1.17).

C1 x C2 y The spring constants for the front and rear wheel suspensions in [N=m].

18

D1 x D2 y These are the corresponding viscous damping coe�cients in [Ns=m].

TYRE x This is presently the only parameter of the tyre model that can be changed.
x [s] is the tyre lag parameter and corresponds to the parameter � in equa-
tion (1.20).

CONTACT A1 x A2 y A3 z This data group lists the three semi-axes x, y and z [m] of
the ellipsoid that is used to approximate the vehicle's outer geometry. This data
is used to determine if two vehicles are in contact with each other.

EQUILIBRIUM This data group de�nes a state of equilibrium of the vehicle. The initial
conditions of the vehicle will later be de�ned relative to this equilibrium.

R3 r The height r of the vehicle's center of mass above ground in [m].

D11 x D12 y D13 z The components of director 1 at the equilibrium [:].

D21 x D22 y D23 z The components of director 2 at the equilibrium [:].

D31 x D32 y D33 z The components of director 3 at the equilibrium [:].

Additional models are added the same way starting with the keyword MODEL and then
following the above sequence of keywords. If the equilibrium state is not known, it can be
obtained using the procedure outlined in Section 2.6.

2.3 The Platoon Description File

Apart from the �le model.dat, the user has to provide a second �le containing a description
of the vehicle platoon. We assume that this �le has the default name platoon.dat. A di�erent
�lename may be speci�ed within the restrictions of the operating system when running the
program. This is explained in Section 2.4.

The structure of the �le platoon.dat is similar to that of model.dat. There is a mandatory
sequence of keywords and, as before, comments may be added starting with the symbol %.
The keywords may be typed in upper or lower case. A sample of platoon.dat can be found
in Appendix C.2.

NUMBER OF VEHICLES m This keyword appears only once at the top of the �le. Medusa will
subsequently try to read the de�nitions for m vehicles from this �le. The sample in
Appendix C.2 de�nes two vehicles. If we set m to 3 there without adding an additional
de�nition block, a run-time error message is generated.

VEHICLE HAS MODEL n This keyword starts the de�nition of a vehicle. n is the number of a
vehicle model in the database model.dat thatMedusa will use to simulate the vehicle.
Note that unlike the models in model.dat, the vehicles here are not explicitly numbered.
Medusa will however assign the �rst vehicle in this �le the number 1 and so forth.
This is the same numbering that is used in the output �le. For details, see Section 2.5.

INITIALLY WITH This keyword starts the block of initial conditions for this vehicle:

19

2.4. RUNNING THE PROGRAM

X x Y y The initial position of the vehicle's center of mass on the plane in [m].

ORIENTATION u This de�nes in [rad] the initial direction in which the vehicle is
heading. The angle is measured about E3 counter-clockwise from E1. The
value �

2
would therefore correspond to a heading in the E2 direction.

SPEED v This is the initial speed of the vehicle in [m=s].

STEERING x The present version of Medusa has a trivial steering model. The
steering angle x [rad] is held �xed for the whole simulation. The value 0

makes the vehicle drive straight. A positive value makes the vehicle turn to
the left, as viewed from the driver's perspective.

2.4 Running the Program

After one has written the model database �le model.dat and the platoon description �le
(e.g., platoon.dat), suppose that one wishes to run a simulation. Try:

>>medusa

No endtime specified. Type medusa -h for help

The program stopped execution because no simulation parameters were speci�ed. Medusa

suggests one uses its help feature:

>>medusa -h

The command line options are:

-dx.xxx set fixed stepsize to x.xxx [s] (default: 0.5e-4)

-e include total energy in output

-ffile parameter file (default: platoon.dat)

-Ffile output file (default: data.asc)

-h prints this list

-sx.xx save data point every x.xx [s] (default: 0.01)

-tx.xx simulation ends at x.xx [s] (mandatory)

-v include velocities in output

We will explain these options in a moment. Note that the option letters are case sensitive
and that they each start with '-'.

Some of the options have additional parameters. There may be no space between the
option letter and the parameter. If options are misspelled, a run-time error message is
produced. The sequence of options is however order-insensitive. Numbers are indicated with
a x.xx above. They can be written in the normal
oating point format, e.g., 0.015, .15e-1
or 1.5E-2 are all valid entries.

-dx In the present version, Medusa uses a time integrator whose constant stepsize is spec-
i�ed by x. Without the -d option, the value of the stepsize is the default indicated

20

by the -h option. Note however that at times when vehicles are in contact with each
other, the stepsize is reduced to a value that has been pre-programed into Medusa.

-e This option makesMedusa store the total energy of the individual vehicles in the output
�le. In collision dynamics, it is often a variable of interest.

-fname The platoon description is read from platoon.dat by default. However, when this
option is used, it is read from the �le name.

-Fname By default, the simulation data is written to the �le data.asc. This option redirects
the output to the �le name. If this �le already exists, its contents will be erased.

-h This prints the help screen above.

-sx Data points are stored in time intervals x. If this option is missing, a default value will
be used. This value is displayed by the -h option.

-tx The simulation starts at time zero and ends after x seconds. Medusa will not run
without this parameter

-v This option makes Medusa write the velocities and director velocities of the individual
vehicles to the output �le.

We now look at a few examples. Assume that we have written the �les model.dat and
platoon.dat. One would like to simulate the vehicles for ten seconds with a �xed stepsize of
10�5 seconds. One also wishes that the positions and the directors of the vehicles are written
to the �le test.out every 0:2 seconds. This is the command that does this:

>>medusa -t10 -Ftest.out -s.2 -d1e-5

Assume now that one has named the platoon description �le crash it, one wishes to
simulate the vehicles for one second with the default integration stepsize. In addition to the
positions and directors, one wants the velocities and the total energies to be written to the
default output �le:

>>medusa -fcrash_it -e -t1 -v

Finally, suppose that one would like to run the same simulation with di�erent vehicle models.
For this, one has written the �le new model.dat according to the guidelines of Section 2.2.
How does one run the simulation now? Medusa expects the model data in the �lemodel.dat.
In order to use the new models, one has to change the �lename new model.dat to model.dat.
It is however more e�cient to append the new models to the existing ones in model.dat. In so
doing, remember to properly modify the numbers following the keywords NUMBER_OF_MODELS
and MODEL.

At execution time, Medusa displays some information on the screen. If one runs the
program using the �le platoon.dat from Appendix C.2, the screen will look something like
this:

21

2.5. THE SIMULATION OUTPUT FILE

>>medusa -e -v -t10

The simulation for 2 vehicles will stop after 10 [s]

- stepsize: 5e-0.5 [s]

- save data point every 0.01 [s]

The columns of the output file data.asc contain the following:

col. 1: Time

cols. 2-4: Components of position vector of vehicle 1

cols. 5-13: Components of the three directors of vehicle 1

cols. 14-16: Components of position vector of vehicle 2

cols. 17-25: Components of the three directors of vehicle 2

cols. 26-28: Components of velocity of vehicle 1

cols. 29-37: Components of the three director velocities of vehicle 1

cols. 38-40: Components of velocity of vehicle 2

cols. 41-49: Components of the three director velocities of vehicle 2

cols. 50-51: The total energies of each of the 2 vehicles

t=2.1300

A counter at the bottom of the screen will show the progress of the simulation by displaying
time in seconds. We will explain the format of the output �le in further detail in the next
section.

2.5 The Simulation Output File

The simulation output is by default written to the �le data.asc. A di�erent �lename may be
speci�ed with the command line option -F (see previous section). If the output �le is viewed
with a screen editor, it will look like this:

0.000000e+00 0.000000e+00 0.000000e+00 -3.730000e-02 ...

1.000000e-02 2.444440e-01 0.000000e+00 -3.691894e-02 ...

2.000000e-02 4.888880e-01 0.000000e+00 -3.579733e-02 ...

3.000000e-02 7.333320e-01 0.000000e+00 -3.398085e-02 ...

4.000000e-02 9.777760e-01 0.000000e+00 -3.152424e-02 ...

5.000000e-02 1.222220e+00 0.000000e+00 -2.849029e-02 ...

...

The ellipses ... indicate that we have truncated the output in the interest of brevity. We
see that the �le contains a matrix. The numbers are in the standard
oating point format.
Other software packages, such as Matlab or Mathematica, can easily read the data from
this �le.

22

Every line in the �le contains one stored integration step. The �rst entry on every line
(i.e., the �rst column) contains time. The next three columns contain the three components
r �Ei (i = 1; 2; 3) of the position vector r of vehicle 1. This is followed by the three directors
of vehicle 1, each with three components (cf. equation (1.25)). If there is a second vehicle
in the platoon, the components of its position vector can be found in columns 14� 16. This
is followed by a total of 9 components for its three directors. This is repeated in this order
for every vehicle in the platoon. Also, while executing, Medusa displays this information
on the screen.

If the -v option was speci�ed on the command line,Medusa appends additional columns
to the ones just described starting with the column number 2 + 12n, where n is the number
of vehicles in the platoon. The �rst three additional columns contain the components of the
velocity of the �rst vehicle. The next 9 columns contain the components of its three director
velocities. Again, this is repeated for every vehicle in the platoon.

If the -e option was speci�ed on the command line, Medusa appends for each vehicle
one column at the end of the line. The �rst of these columns contains the total energy of
vehicle 1, and so forth.

2.6 Adding a New Vehicle Model

A new model is added to the database model.dat by adding a data group MODEL to the end
of the �le according to the guidelines in Section 2.2. The NUMBER_OF_VEHICLES must be
increased by one. This new number also becomes the number of the new model (i.e., the
number following the MODEL keyword).

In this section, we outline a procedure to obtain the EQUILIBRIUM data group of the new
appended vehicle model. We will simulate a single vehicle driving by itself in a straight
line long enough so that it can reach a relative equilibrium where the oscillations of the
suspensions and the chassis have ceased.

First, we write the EQUILIBRIUM data group of the new model in model.dat as

EQUILIBRIUM

R3 0.0

D11 1.0 D12 0.0 D13 0.0

D21 0.0 D22 1.0 D23 0.0

D31 0.0 D32 0.0 D33 1.0

We then create a new �le (e.g., test.dat) with the following contents:

NUMBER_OF_VEHICLES 1

VEHICLE_HAS_MODEL m INITIALLY_WITH X 0.0 Y 0.0

ORIENTATION 0.0 SPEED 20 STEERING 0.0

23

2.6. ADDING A NEW VEHICLE MODEL

The letter m above must be replaced by the number of the new model in model.dat. The
value of SPEED is not particularly important for this simulation and can be chosen arbitrarily2.
Medusa is now executed with the command

>> medusa -t10 -ftest.dat

The simulation time (here ten seconds) should be chosen long enough to allow the vehicle
to reach an equilibrium.

The data for EQUILIBRIUM can now be read from the last line of the output �le data.asc:
R3 from column 4 and the directors D11-D33 from column 5 through 13. Since in this
simulation the vehicle was driving in a straight line, one obtains

EQUILIBRIUM

R3 x.x

D11 x.x D12 0.0 D13 x.x

D21 0.0 D22 x.x D23 0.0

D31 x.x D32 0.0 D33 x.x

where x.x denotes the new equilibrium values.

2Note however that the tyre model that is presently used in Medusa is not valid for low speeds.

24

Chapter 3

Programmer's Guide

3.1 Introduction

Medusa is a program for the simulation of platoons of vehicles that incorporates moder-
ate vehicle collisions. We brie
y reviewed the theory behind Medusa in Chapter 1 and
explained the use of Medusa in Chapter 2. In this chapter, we describe the program code
itself1. For this we presume that the reader is familiar with the material of the previous
chapters. In addition a familiarity with the ANSI-C programing language in whichMedusa

is programmed in presumed. The complete source code is listed in Appendix F.
The program consists of several functional blocks which we refer to as modules. These

�ve modules are

� initialization,

� time integration,

� vehicle model,

� contact detection algorithm,

� data output.

The modules are, as far as possible, independent of each other. They are contained in
separate �les. Some general programing ideas are however common to all modules. These
ideas are discussed in Section 3.2. In addition, Section 3.3 presents a toolbox of de�nitions
and functions which is accessible from all modules.

As in every C program, execution starts with the function main(). It is explained in
Section 3.4. From there, the initialization module is called which also serves as the input
interface to the user and interprets the guidelines of Chapter 2. This module is explained
in Section 3.5. Next, the time integration module is executed. We discuss it in Section 3.6.

1The notation that is used in this chapter is explained in Chapter 0.

25

3.2. GENERALITIES

It integrates the equations of motion of the vehicle models in the platoon under considera-
tion. These models are collected in a single module which is explained in Section 3.7. The
module that detects collisions is explained in Section 3.8. During integration, intermediate
integration steps are written to an output data �le. This is explained in Section 3.9.

For details on the program, which are not presented in this chapter, we refer to the
source code in Appendix F. Section 3.10 is intended to give additional information for the
programmer who wishes to make substantial changes and additions to the code.

3.2 Generalities

We highlight in this section a few ideas and techniques that went into the making ofMedusa.
They are meant both to enhance the readability of the source code and improve its structure.
The mathematical models that are presently used for the vehicles are quite crude in places
(such as the tyre model). Nevertheless, we attempted to make the code su�ciently general
so that later modi�cations and improvements are possible.

Compatibility

Medusa is programed in ANSI-C (see Kernighan and Ritchie [7] for a complete reference).
It therefore runs on any computer platform supporting this programing language. The only
incompatibilities that are known so far are the following:

� Medusa The largest memory block that is allocated dynamically is the output bu�er
(see Section 3.9). If it is chosen too big, it can cause memory allocation errors on
platforms with segmented memory, in particular on IBM-compatible platforms.

� The carriage return character \r is used in several printf() statements in main.c.
This can have undesired e�ects on the screen of some platforms where \r needs to be
replaced by \n.

Modularity and Global Variables

Each *.c �le of the program is considered to be a module of the code. This means that
when global variables are used, they are only known to functions within that �le. These
variables are never used for the exchange of data between the modules. This is always done
through function arguments which often are pointers to variables. In order to ensure that
global variables remain encapsulated in a �le, the storage class speci�er static is always
used when declaring them.

Macros

The #define statements that de�ne a macro can be found either at the beginning of a source
code listing, just in front of the function that uses the macro or in separate header �les with

26

extension *.h. The macro names are mostly written in capital letters to distinguish them
visually from variables and functions. A typical set of de�nitions found in the listings is

#define N 12

#define twoN 24

#define STATES 28

Here, N stands for a total of 12 components of the position vector and the three directors of a
Cosserat point. Also, twoN includes the components of the velocities and director velocities.
STATES is the length of the state vector of a vehicle. In this case, it is the twoN plus four
states that are used for the tyre models (see Section 3.7). These de�nitions can simplify later
modi�cations when more complex Cosserat points and additional states are being simulated.

Data Types for Numerics

Almost all
oating point variables in this program are in double precision. However, in
connection with the adding of forces that act on a vehicle, we prefer to use the data type
long double in a few instances. The reason for this is the following: if the forces algebraically
add up to zero, the numerical sum may be of the order of the machine precision. This error is
negligible for all practical purposes. Nevertheless, in code segments where this is an issue, the
data type long double is used to eliminate this problem. Many platforms do not support
this data type. Their compilers generate warning messages (which may be ignored) and use
double precision for all variables instead.

For the storage of vectors and matrices and for use in vector and matrix operations, we
use the data types Vector and Matrix. They are based on ideas presented in the Numerical
Recipes in C [12]. We explain these data types in detail in Section 3.3.2.

Structures and Pointers

Structures and especially pointers to structures are an easy way to pass large amounts of
di�erent kinds of data between functions. InMedusa, almost all of the data used to run the
simulation is stored in structures which are de�ned in the �le common.h. For reference, they
are also listed in Appendix D. Here, we give a brief outline on the use of these structures:

vehicle struct Several of these structures are used to store the parameters of the vehicle
models that are de�ned in the �le model.dat (cf. Section 2.2). Their contents are
initialized at the beginning of a simulation run (cf. Section 3.5) and remain unchanged
thereafter. For each vehicle in a platoon, Medusa uses a pointer which points to a
structure of type vehicle_struct. It is very convenient to use these pointers to pass
the parameters of a particular vehicle between functions.

Currently, vehicle_struct contains substructures, scalar values, vectors and matrices
(cf. the note on numerics above). In future versions of Medusa, it is planned to
include pointers to functions as well. With this, one will be able to vary not only the
parameters of a mathematical model, but one will also be able to choose from a variety

27

3.3. THE FILES COMMON.H AND COMMON.C

of pre-programed, say, tyre models whose functions may look quite di�erent from each
other.

simu struct This structure exists only once and subsumes �xed simulation parameters such
as the integration step size and the duration of the simulation. In addition, this
structure contains vectors, matrices and also arrays of these. They are used to store
variable simulation data such as the state vectors of the vehicles and data pertaining
to the contact between the vehicles.

We discuss the contents of these structures in detail in Section 3.3.3. Another small structure
called model_struct is de�ned in init.h and explained in Section 3.5. It is only used during
the initialization of the above structures.

Source Code Listings

The complete Medusa code is listed in Appendix F. The lines and pages are numbered.
Each listing has a header containing the �lename, the date of modi�cation and a short
description of the �le. The global variables and function names are listed with line numbers at
the top of each listing to help localize them in the code. For additional reference, Appendix E
lists the �le dependencies and the function dependencies.

3.3 The Files common.h and common.c

The header �le common.h provides a body of de�nitions and function prototypes which can
be used as tools in all other parts of the Medusa program code. All the source code �les
contain the line

#include "common.h"

to make these de�nitions available to them. The functions corresponding to the prototypes
are coded and commented in the �le common.c which is listed in Appendix F. Since these
functions are adapted versions of similar ones in the Numerical Recipes in C [12], we refer
to that book for a more detailed discussion of them.

When we explain the source code of Medusa in the subsequent sections, we will assume
familiarity with the contents of the �le common.h which we will soon present.

3.3.1 Some Useful Programing Tools

Macros

� These standard de�nitions are used for
ag variables and tests:

#define FALSE 0

#define TRUE 1

28

� The number �:

#define Pi 3.141592654

� This macro calculates the scalar product of two 3-vectors:

#define DOT3(x,y) x[1]*y[1]+x[2]*y[2]+x[3]*y[3]

Function Prototypes

� These functions calculate the maximum of two numbers, the minimum of two numbers
and the square of a number, respectively:

double max(double x, double y);

double min(double x, double y);

double square(double x);

� Print an error message error_text to the screen and abort the program:

void nrerror(char error_text[]);

This is a generic error handler that is taken from Numerical Recipes in C [12].

3.3.2 Programming Tools for Vectors and Matrices

Vectors

For many vectors with known length, we declare in the source code double precision
oating
point arrays such as

double a[N+1];

In this example, the array elements a[i] correspond to the vector components ai (i =
1; : : : ; N) of an N -dimensional vector a. The array element a[0] is not used and is void.
Often we write

double a[N+1]={0.0};

to explicitly set the unused a[0] element to zero. This may be helpful for debugging the
program code.

In the ANSI-C programming language, pointers and one-dimensional arrays are essen-
tially the same (see Kernighan and Ritchie [7]). For instance, in the example above, a[1]
and *(a+1) denote the same array element. For this reason, we have created a new data
type Vector in the �le common.h:

29

3.3. THE FILES COMMON.H AND COMMON.C

typedef double *Vector;

This data type increases the readability of the source code and helps to identify physical
vectors in the program.

The memory for arrays can also be allocated dynamically during execution time using
the standard C-function malloc(). Numerical Recipes in C [12] o�ers a more convenient
solution to allocate memory for vectors. We have adopted their solution and de�ne the
following function prototypes in the �le common.h:

Vector vector(int n);

void free_vector(Vector);

We explain their use with the following short sample program:

#include <stdio.h>

#include "common.h"

void fun(int n)

{ /* calculate and print the squares of the first n integers: */

Vector a=vector(n);

int i;

for (i=1;i<=n;i++) a[i]=i*i;

for (i=1;i<=n;i++) printf("%d, ",a[i]);

free_vector(a);

}

In this example, the function vector(n) allocates memory for a double precision vector of
length n and returns a pointer to that memory to the variable a. This variable can now be
used just like a normal one-dimensional array. The function free_vector(a) de-allocates
the memory again. After this, the variable a is void. We note that vector() does not
allocate memory for the array element a[0]. Using a[0] in the above example would quite
probably lead to a runtime error.

Finally, as for double precision vectors, we de�ne similar function prototypes in the �le
common.h for vectors of integers:

int *ivector(int n);

void free_ivector(int *);

Their use parallels that of vector() and free_vector(). However, we do not de�ne an
extra data type for integer vectors (such as Vector above).

Matrices

We adapted the ideas proposed in the Numerical Recipes in C [12] to treat matrices. To
denote a matrix, we have created the new data type Matrix:2

2Note that the declarations Matrix, *Vector and **double are equivalent.

30

typedef double **Matrix;

Similar to the functions vector() and free_vector() for vectors, the following functions
are used to allocate and free memory for a n by m matrix, respectively:

Matrix matrix(int n, int m);

void free_matrix(Matrix);

The Matrix data type can be used just like a two-dimensional array. For example, the
following (admittedly simple) code segment creates a three by three matrix A, assigns the
value 2:0 to the matrix element A12 and eliminates the matrix again:

Matrix A=matrix(3,3);

A[1][2]=2.0;

free_matrix(A);

There is however a fundamental di�erence between two-dimensional arrays and the Matrix
data type. In the example above, A is actually a pointer to a one-dimensional array of row
vectors of data type Vector. The following code segment illustrates this very useful property
which is used in Medusa from time to time:

Matrix A=matrix(3,3);

Vector v;

int i,j;

for (i=1;i<=3;i++) for (j=1;i<=3;j++) A[i][j]=3*(i-1)+j;

v=A[2];

printf("The second row of A is %d %d %d",v[1],v[2],v[3]);

free_matrix(A);

Here, the variable v points to the second row of the matrix A. The output from this code
segment is therefore:

The second row of A is 4 5 6

Matrix Operations

The functions that are presented here accept vector and matrices as arguments. One should
remember to allocate memory for these variables using the functions vector() and matrix()

discussed above. Note also that as with any dynamically allocated memory, one has to be
careful when using the Vector and Matrix data type. In particular, one should free the
allocated memory when these variables are not used anymore. On the other hand, one should
obviously check that these variables are not used once the memory that they occupied has
been freed.

� Calculate the product y = Ax, where A is a n by m matrix, x is a m vector and the
result y is a n vector:

31

3.3. THE FILES COMMON.H AND COMMON.C

void matrix_times_vector(Vector y, Matrix A, Vector x, int n, int m);

� Calculate the product Y = AB, where A is a m by n matrix, B is a n by p matrix and
the result Y is a m by p matrix:

void matrix_times_matrix(Matrix Y, Matrix A, Matrix B, int m, int n, int p);

� Solve the system of linear equations Ax = b where the n by n square matrix A and
the n-vector b are given:

void lin_solve(Matrix A, int n, Vector b);

After the function has been executed, the vector b will contain the result x. Note that
the function will change the contents of A!

� The following function calculates the inverse A�1 of a non-singular n by n matrix A:

void matrix_inverse(Matrix A, int n, Matrix Ainv);

3.3.3 The Globally Used Data Structure Types

The Data Type vehicle struct

The vehicle_struct data structure helps to conveniently manage the model parameters
of a vehicle. It is listed in Appendix D.1 for reference. Medusa makes extensive use of
pointers to structures of this type. As an example, let us de�ne a pointer *model as

vehicle_struct *model;

The expression model-># denotes then an element of the structure vehicle_struct. The
following is a complete list of these elements:

model->Cosserat point.# This substructure contains the parameters of the Cosserat point
that is used to model the chassis of the vehicle. The wildcard # stands for one of the
following (e.g., model->Cosserat_point.m):

double m: The mass of the vehicle chassis.

Matrix I: The inertia matrix M in equation (1.28) of data type Matrix.

Matrix I inv: The inverse of the matrix model->Cosserat_point.I of type Matrix.

double lambda, two mu: The Lam�e constants � and 2� of equation (1.12).

double half volume: Half the volume of the Chassis; V

2
in equation (1.12).

model->suspension.# This substructure contains the parameters of the suspension model.
The wildcard # stands for one of the following (e.g., model->suspension.L1):

32

double L1, L2, half B, H1, H2: These are the coordinates L1, L2, B
2 , H1 and H2

which are de�ned in equation (1.11) and Figure 1.1.

double spring ref: The unstretched length �s of the springs de�ned in equation
(1.17).

double C1, C2: The linear sti�nesses of the front and rear suspension springs, re-
spectively, as de�ned in equation (1.17).

double D1, D2: The linear damping coe�cients of the front and rear suspensions,
respectively, as de�ned in equation (1.17).

Matrix infl: The in
uence matrix A in equation (1.28).

model->tyre.tau inv: This is the tyre force lag parameter ��1 in equation (1.20).

model->contact.semi axes[i]: The three semi-axes of the ellipsoidal which approximates
the vehicle geometry. The index i can be 1, 2 or 3.

The Data Type simu struct

The simu_struct data structure helps to conveniently manage the parameters and the
variable data which are used during the execution of Medusa. It is listed in Appendix D.2
for reference. Medusa makes extensive use of pointers to structures of these type. As an
example, let us de�ne a pointer *simulation as

simu_struct *simulation;

An element # of the structure simu_struct may now be accessed using simulation->#.
The following is a complete list of these elements:

simulation->in file: The name of the platoon description �le is stored in this character
string. By default it is called platoon.dat. This default name is preset in the �le init.h
by the macro DEFAULT_INPUT_FILE . The name is changed during run-time by the
option -f (see Section 2.4).

simulation->out file: The name of the output �le is stored in this character string. By
default it is called data.asc. This default name is preset by the DEFAULT_OUTPUT_FILE
macro in the �le init.h. The name is changed during run-time by the option -F (see
Section 2.4).

simulation->flags.# These integer
ag variables specify what kinds of data will be in-
cluded in the output �le whose name is stored in simulation->out_file (see also
Section 2.4). The wildcard # stands for one of the following:

int velocity: Corresponds to the run-time option -v (see Section 2.4).

int energy: Corresponds to the run-time option -e (see Section 2.4).

33

3.3. THE FILES COMMON.H AND COMMON.C

The corresponding data will be included in the output if a
ag is TRUE. The default
value is FALSE.

simulation->n The number of vehicles in the simulation. Medusa �nds this number in
the platoon description �le (whose name is stored in simulation->in_file) after the
keyword NUMBER_OF_VEHICLES (see also Section 2.3).

simulation->integrate.# These parameters control the time integration. Here, the wild-
card # stands for one of the following (e.g., simulation->integrate.end_time):

double end time: The simulation ends after a simulated time of end_time seconds.
This corresponds to the run-time option -t (see Section 2.4).

double delta t: The �xed stepsize of the integrator. The default value is preset by
the macro DELTA_T in the �le init.h. The value is changed by the option -d in
Section 2.4.

double save delta t: In time intervals of length save_delta_t, data points are
written to the output �le whose name is stored in simulation->out_file. The
default value is preset by the macro SAVE_DELTA_T in the �le init.h. The value is
changed by the run-time option -s (see Section 2.4).

simulation->state vector: This is a matrix of the Matrix data type. Each row vector
corresponds to the state vector z of one of the vehicles. The vector z is de�ned by
equation (1.29).

simulation->steer angle: This vector of the Vector data type contains the �xed steering
angles for each vehicle. These angles are de�ned in the platoon description �le whose
name is stored in simulation->in_file. Medusa reads them from STEERING keyword
(cf. Section 2.3).

simulation->constraint.# These variables pertain to the contact detection and contact
force calculation. The wildcard # stands for one of the following:

Matrix multiplier: For each pair of vehicles, this matrix stores the Lagrange mul-
tipliers
1 and
2 of the contact force equations (1.35).

Vector **forces: This is a pointer to a one-dimensional array of Vector * pointers.
There is one Vector * pointer for each vehicle. Such a pointer points to a one-
dimensional array of constraint force vectors (having the Vector data type).

Vector **state: This variable is a two-dimensional array of vectors having the Vector
data type. There is one such vector for every pair of vehicles corresponding to the
vector x in equation (1.40). These vectors de�ne the most recent contact points
for any two vehicles.

34

3.4 The Function main()

ANSI-C starts the execution of theMedusa program code with the function main(). main()
does the following: it calls the function init() (see Section 3.5), initializes some global
variables (cf. Section 3.2) and opens the output �le. main() also prints some information
pertaining to the simulation parameters to the screen for the convenience of the user. Finally,
main() calls the function integrate() (cf. Section 3.6) which performs the actual simulation
of the vehicles. The program ends thereafter.

3.5 The Initialization Module init.c

When Medusa is executed, the principal function main() (in the �le main.c) �rst calls the
function init() (in the �le init.c). This �le constitutes a module which performs several
tasks. It evaluates the command line options speci�ed by the user (see Section 2.4), it reads
the �les that have been provided by the user (see Sections 2.2 and 2.3) and it initializes the
globally used data structures (see Section 3.3.3).

The initialization works as follows: First, the function init() writes some default values
into the structure variable simulation. These values are de�ned in the header �le init.h

which supplements init.c. Next, the three functions

evaluate_cmd_line()

read_models()

read_vehicles()

are called in sequence, each of which performs one of the tasks of the initialization module:
we will explain them individually below. The function init() returns two pointers to the
calling function main(). The �rst is a pointer to the variable simulation. The other is a
one-dimensional array whose elements are pointers to vehicle_struct data structures. We
will discuss this array below when we describe the function read_vehicles().

3.5.1 General Notes

The global variable3 simu_struct simulation is declared within the initialization module.
Various pointers to this variable are used throughout the Medusa program code. This
module also uses a structure data type called model_struct which is listed in the �le init.h.
It is de�ned as follows:

typedef struct {

vehicle_struct vehicle;

double r3;

Matrix F;

3Recall from Section 3.2 that in our terminology a global variable is known only to those functions within
the same module (and �le).

35

3.5. THE INITIALIZATION MODULE INIT.C

} model_struct;

As an example, let us de�ne the pointer model_struct* model; the structure is accessed by
model->#, where # stands for one of the following variables:

vehicle: This structure stores the parameters of a vehicle model (see also the discussion in
Section 3.3.3).

r3: This scalar variable stores the equilibrium value of the vertical component of the position
vector of the vehicle. This value is speci�ed by the keyword R3 in an EQUILIBRIUM

section of the �le model.dat (see Section 2.2).

F: This matrix corresponds to the deformation gradient F de�ned in equation (1.3). The
matrix stores the equilibrium values of the three directors of a vehicle. These values
are speci�ed in the EQUILIBRIUM sections of the �le model.dat (see Section 2.2).

To perform the task of reading one of the input �les from the disk into a bu�er string, the
functions read_models() and read_vehicles() each �rst call the function read_file().
This function also strips the �le contents of all the comments and eliminates multiple white-
space characters from the bu�er string4. The use of comments is explained in Section 2.2.

To search a bu�er string for a keyword5 and to read the number following the key-
word into a variable, the aforementioned functions make repeatedly use of the function
read_expression(). If no number needs to be read, the function find_token() is used
instead. These two functions abort the program with an error messages if the guidelines for
writing input �les are violated. These guidelines are listed in the User Manual, Sections 2.2
and 2.3.

3.5.2 Evaluation of the Command Line: evaluate cmd line()

The contents of the command line is passed down from the function main() using the stan-
dard ANSI-C variables argv and argc. We refer to Kernighan and Ritchie [7] for a discussion
of these two variables. The function evaluate_cmd_line() uses a switch ... case control
structure to evaluate these variables according to the guidelines for command line options
in Section 2.4. The following table shows which entry of the global variable simulation is
associated with a given option:

-e simulation.flags.energy -f simulation.in_file

-v simulation.flags.velocity -F simulation.out_file

-d simulation.integrate.delta_t -s simulation.integrate.save_delta_t

-t simulation.end_time

4For a discussion of white-space characters, see Kernighan and Ritchie [7].
5Keywords are sometimes called tokens in the source code of the program.

36

3.5.3 Evaluation of the File model.dat: read models()

After the function read_models() has obtained a bu�er string (from read_file) con-
taining the condensed contents of the �le model.dat, this bu�er is searched for the key-
word NUMBER_OF_MODELS and the number of vehicle models is read into a variable. Using
malloc(), an array of model_struct structures is then allocated; one structure for every
vehicle model de�ned in the �le model.dat. This array is given the name model. The ex-
pression model[m] denotes now the m-th element of this array corresponding to the m-th
vehicle model. model is also the return value of the function read_models().

According to the guidelines in the User Manual, Section 2.2, for each model m, the bu�er
string is searched for the proper sequence of keywords together with their values. Some
values are written directly to the corresponding variable in the model[m] structure. Other
values are used to calculate the parameters needed for the vehicle model using the equations
of Chapter 1. The following list of keywords gives account of these correspondences. For
further reference, see also the details in Section 3.3.3:

IX, IY, IZ: Using equations (1.8), (1.9) and (1.28), the following matrices are allocated
and then calculated:

model[m].vehicle.Cosserat_point.I

model[m].vehicle.Cosserat_point.I_inv

E, NU, VOLUME: Using equations (1.13), the following variables are calculated:

model[m].vehicle.Cosserat_point.lambda

model[m].vehicle.Cosserat_point.two_mu

model[m].vehicle.Cosserat_point.half_volume

L1, L2, B, H1, H2, SPRING REF, C1, C2, D1, D2: These are read directly into the cor-
responding variables model[m].vehicle.suspension.#. Using equations (1.11) and
(1.28), the in
uence matrix A is calculated and copied into the variable

model[m].vehicle.suspension.infl

TYRE: The inverse of this value is copied to the variable model[m].vehicle.tyre.tau_inv.

A1, A2, A3: The values of Ai are read into the variables

model[m].vehicle.contact.semi_axes[i]

R3: This is the value of model[m].r3.

D11, : : : , D33: The matrix model[m].F is allocated and calculated using equation (1.3).

37

3.5. THE INITIALIZATION MODULE INIT.C

3.5.4 Reading the File Containing the Platoon Data: read vehicles()

First, the condensed contents of the �le which is speci�ed by the string simulation.in_file
is read into a bu�er string by read_file(). Next, the bu�er is searched for the keyword
NUMBER_OF_VEHICLES and the number of vehicles is stored in the variable simulation.n.

Now that we know how many vehicles the program needs to simulate, we can allocate
memory for various variables and initialize them. The initialization is explained in detail
after the following list of the relevant variables:

vehicle struct **vehicle: This is a one-dimensional array of vehicle_struct * point-
ers. There is one array element for each vehicle in the simulation. The value of vehicle
is returned to the function init() which passes it on to main().

simulation.state vector, simulation.steer angle: Memory is allocated.

simulation.constraint.multiplier: The elements of this matrix are set to zero.

simulation.constraint.state: This variable can be regarded as a two-dimensional array
whose components are the 4-vectors x de�ne in equation(1.40). The components of all
vectors are set to �

4 .
6

simulation.constraint.forces: This variable can be regarded as a one-dimensional array
whose components are matrices. The elements of these matrices are set to zero (i.e.,
the vehicle are assumed not to be in contact initially and all the contact forces are
therefore zero.)

The initialization now works as follows: For each vehicle v, the bu�er string is searched
for the keyword VEHICLE_HAS_MODEL and the model number is read into the variable m. The
following line now assigns the proper model data to the vehicle:

vehicle[v]=&model[m].vehicle;

Recall that the variable simulation.state_vector[v] is the state vector of the vehicle v
as de�ned in equation (1.29). For simplicity, let us call it z here. The elements z[i] need
to be initialized with the initial conditions of the simulation:

z[1], z[2]: The values for these variables come from the keywords X and Y, respectively.

z[3]: The value of this variable is copied from the variable model[m].r3.

z[4], : : : , z[12]: These variables correspond to the initial deformation gradient F0 from
equation (1.3). It is calculated from the equilibrium deformation gradient Feq (stored
in the matrix model[m].F) as follows:

F0 = Q(�)Feq ;

where the orientation � is given by the keyword ORIENTATION andQ is a planar rotation
tensor.

6There is nothing special about the choice of these initial values. See also Section 1.4.

38

z[13], z[14]: These two variables are the initial speeds of the vehicle in the E1 and E2

direction, respectively. They are calculated from the forward speed (keyword SPEED)
and the angle � de�ned above.

z[15], : : : , z[STATES]: Set to zero.

3.6 Time Integration

The �le main.c de�nes the function integrate() which calculates the left-hand sides of
equations (1.45)1;4;5;6 over a period of time at a certain time-rate. These parameters are
given by the respective variables (Section 3.5.2):

simulation->integrate.end_time

simulation->integrate.delta_t

The function set_constraint_forces() supplements hereby the equations (1.45)2;3 from
which the constraint forces c1 and c2 in the right-hand side of equations (1.45)4;5 are calcu-
lated (see Section 3.7.1)7. The right-hand sides of equations (1.45)4;5;6 are supplied by the
function equations_of_motion() which is discussed in Section 3.7.

To output intermediate integration steps to a �le, integrate() calls the functions
save_data_point() and write_to_file() which are discussed in Section 3.9.

It was pointed out in Section 1.5 that the step size �t (i.e., the variable dt) of the integra-
tor is reduced just before two vehicles come into contact. For this reason, we use the variable
h to hold a copy of the state vectors of all vehicles. The function set_constraint_forces()

returns a non-zero value when contact is detected (see Section 3.7.1). In that case, the in-
tegrator restores the state vectors of the vehicles from h and tries another integration step
with a smaller �t. The integrator continues to integrate with the current �t if no vehicles
are in contact or if �t has already been reduced to a value which is smaller then the one
given by the macro DT_MIN8.

Before �t can be increased again, the time integration continues with this step size
for at least 100 steps. This is ensured by the counter variable just_reduced and reduces
oscillations in the variable dt. After this period, �t is increased again when no vehicles are in
contact and �t is still smaller than the value given by the simulation->integrate.delta_t
variable.

3.7 The Vehicle Model: vehicle.c

The module contained in the �le vehicle.c performs three tasks which are contained in three
separate principal functions: set_constraint_forces() calculates the contact forces (1.35)

7Recall from Sections 3.3.3 and 3.5.4 that the variable simulation->constraint.forces stores the
constraint forces. For brevity, it is substituted by contact forces in the function integrate().

8This macro is de�ned in the source code just before integrate().

39

3.7. THE VEHICLE MODEL: VEHICLE.C

that act between the vehicles, equations_of_motion() calculates the equations of motion
(1.34) for a single vehicle and energy() calculates the total energy (1.30) of a single vehicle.
The latter function is presently used to calculate additional output of the program. In future
modi�cations however, the total energy may also be used to control adaptive stepsize time
integrator schemes.

3.7.1 Contact Forces: set constraint forces()

The function set_constraint_forces() repeatedly calls the function detect_contact()

(see Section 3.8) to determine if any two vehicles with numbers cv and av (cv < av) are in
contact. If so, the contact forces acting on the two vehicles are calculated. A non-zero value
is then returned which is used in the function integrate() (see Section 3.6).

A few variable substitutions are made in the source code for brevity and readability: z1
and z2 denote the state vectors z(cv) and z(av) of the two vehicles as de�ned in equation
(1.29)9. The matrices F1 and F2 are the deformation gradients of the two vehicles de�ned
by equation (1.3).

The variable ctr is a vector of n integer counters, where n is the number of vehicles. The
counters work as follows: Consider the vehicle with number v. Whenever cv = v or av = v,
a contact force is calculated for the vehicle v and ctr[v] is incremented by one. Obviously,
when the function set_constraint_forces() is �nished, ctr[v] has the value n� 1 for all
v as there are n � 1 vehicle pairs containing the vehicle v.

Further substitutions are the variables gamma1 and gamma2 which are pointers to the
Lagrange multipliers
1 and
2 of equation (1.35). These are stored in10

simulation->constraint.multiplier[cv][av]

simulation->constraint.multiplier[av][cv]

The vectors c1 and c2 are the contact forces de�ned in equation (1.35). They are stored in

simulation->constraint.forces[cv][ctr[cv]]

simulation->constraint.forces[av][ctr[av]]

The contact forces are now calculated as follows: If the function detect_contact()

detects no contact between the vehicles cv and av, the vectors c1 and c2 and the Lagrange
multipliers *gamma1 and *gamma2 are set to zero. If the vehicles are in contact, the constraint
function �1 from equation (1.32)1 is calculated11. The coordinates X i

�(�) in equation (1.32)2
are calculated using equations (1.2) and (1.3). They are used to calculate �2 from equation
(1.33). *gamma1 and *gamma2 are now updated using equations (1.45)2;312. The contact
forces c1 and c2 are �nally calculated using equation (1.35).

9These are not the vectors z1 and z2 of equation (1.26).
10Obviously, the elements simulation->constraint.multiplier[i][i] are void.
11The variables r�(1) and r�(2) of equation (1.32) correspond to the variables rho1 and rho2 in the source

code which are position vectors of the contact point with respect to the center of mass of vehicle cv.
12The penalties p1 and p2 in those equations correspond to two macros which are de�ned in the source

code just before the function set constraint forces().

40

3.7.2 Equations of Motion: equations of motion()

The function equations_of_motion() is really the heart of Medusa as it contains the ve-
hicle model outlined in Section 1.1. It is programed in a straight forward manner. The input
arguments of the function are the state vector z (see equation (1.29)) of a vehicle at time t,
the model parameters of that vehicle in form of the pointer variable vehicle_struct *model

(cf. Section 3.5.4), the array of contact forces (see Section 3.7.1) and the (constant) steering
angle of the vehicle. The output argument is the time derivative Vector dzdt of the state
vector Vector z.

To simplify matters and for brevity, the following global variables are declared to represent
the position vector r, the directors di, the velocity v and the director velocities wi of the
Cosserat point which is de�ned in equation (1.2):

Vector r, d1, d2, d3, v, w1, w2, w3;

The function equations_of_motion() assigns to them the values (cf., equations (1.29)
and (1.26))

r=&z[0], d1=&z[3], d2=&z[6], d3=&z[9];

v=&z[12],w1=&z[15],w2=&z[18],w3=&z[21];

Using these global variables, the forces that act on the Cosserat point are calculated by
the following functions which take the pointer vehicle_struct *model as argument:

constitutive equations() calculates the intrinsic forces k in equation (1.27) using equa-
tions (1.12) and (1.26)4.

steering model() calculates the wheel headings hq using equations (1.14) and (1.15)13.

applied forces() calculates the force vector f from equation (1.27) using equations (1.16)
and (1.26)5. The functions suspension_model() and wheel_lateral_force() are
hereby used to supplement the suspension forces F q

susp (cf. equation (1.17)) and the
tyre forces F q

lat (cf. equations (1.21){(1.24)).

The time derivative Vector dzdt of the state vector Vector z is now calculated using
equations (1.29), (1.27) and (1.34). We note that this calculation involves the multiplication
of a matrix with a vector. The dummy variable long double dummy is declared and used
to store the intermediate results of this linear operation14.

3.7.3 Energy: energy()

The function energy() calculates the total energy E of a single vehicle using equations
(1.30) and (1.31). The input arguments for this function is the state vector z of that vehicle
(de�ned by equation (1.29)) and the pointer to its vehicle_struct structure. A dummy
variable long double dummy is used here to reduce the numerical error when calculating the
kinetic energy T of the vehicle as it involves a matrix multiplication.

13In the source code, the vectors h1 = h2 are called front and the vectors h3 = h4 are called rear.
14See also the notes on numerics in Section 3.2.

41

3.8. THE DETERMINATION OF CONTACT: CONTACT.C

3.8 The Determination of Contact: contact.c

The module contained in the �le contact.c does three major tasks: for a pair of vehicles,
it determines contact, searches for the points of minimum-distance and determines unique
contact points as discussed in Section 1.4. This module returns the contact information
needed by the function set_constraint_forces()(see Section 3.7.1).

3.8.1 Contact Detection: detect contact()

The function detect_contact() is called by set_constraint_forces(). It needs the fol-
lowing input arguments:

� Vector cm1, cm2 : the position vectors of the respective centers of mass of vehicles 1
and 2 as de�ned in equation (1.2)15.

� Matrix deform1, deform2 : the deformation gradients of the two vehicles. These two
matrices are reassigned to the matrices F1 and F2 which corresponds to the notation
in equation (1.4).

� Vector state : This is the vector x de�ned in equation (1.40). It contains the u� v
coordinates of the most recently found contact points on each of the two vehicles.

� vehicle_struct *car1, *car2 : These structures contain the model parameters of
the two vehicles.

and the outputs

� Vector n: the unit outward normal at the contact point of vehicle 1.

� Vector r1, r2: the position vectors of the contact points of the respective vehicles
relative to the center of mass of vehicle 1.

Several functions are programed in this module. These are

� pos() calculates the position vector of the contact point by a equation (1.4) in Sec-
tion 1.2.1.

� norm() calculates the unit outward normals at the contact points using equation (1.39)
which is discussed in Section 1.4.1.

� dot() computes the dot product of two 3-vectors and returns a scalar.

� dist() provides the value of the distance function at the coordinates given by the
vector variable state.

15Recall that the position vector of the Cosserat point coincides with the position vector of center of mass
of the chassis.

42

� d_dist1() calculates the components of the gradient of the distance function in which
the coordinates of u(2) and v(2) are �xed and u(1) and v(1) are given by the vector
variable state.

� d_dist2() calculates the components of the gradient of the distance function in which
the coordinates of u(1) and v(1) are �xed and u(2) and v(2) are given by the vector
variable state.

� d_dist() calculates the components of the gradient of the distance function in which
the coordinates are given by the vector state.

The functions dist(), d_dist1(), d_dist2() and d_dist() are required by the func-
tion minimize().

� minimize() is the most signi�cant function in this module. This function adopts the
variable metric method (see Appendix A) to �nd the local minimum of a scalar-valued
function with vector variables. The convergence requirement on zeroing the gradient
is de�ned as GTOL and the di�erence between new and current points needs to be less
than TOLX.

� linesarch() predicts the next acceptable point along the descent direction computed
by the variable metric method. This function stops if either new point is too close to
the current point or equation (B.3) has been satis�ed (cf. Appendix B).

3.8.2 Unique Contact Point Detection: pert()

� func() calculates the value of the function f̂(�) (cf. equation 1.44).

� piksrt() sorts the input matrix brr, which records the curvilinear coordinates of 2n
points by their corresponding values in arr[1..n]. The latter vector records the the
values of the function f̂(�) (cf. 1.44). This module outputs the matrix brr.

� opp() calculates the positions of the points M(�), N(�), P(�), Q(�) and R(�), � = 1; 2

(see Figure 1.7). This function converges when the function f̂(2) at these points is close
to zero.

3.9 Data Output

TheMedusa �le main.c contains a simple algorithm to handle the output of data. Following
the guidelines of the User Manual outlined in Section 2.5, the data is �rst saved to a bu�er in
time intervals simulation->integrate.save_delta_tby the function save_data_point().
When the bu�er is full or at the end of the simulation, the bu�er is written (i.e.,
ushed) to
the output �le by the function write_to_file().

43

3.10. ADDING USER SUPPLIED CODE

The output �le is accessed using the �le handle FILE output_file which is a global
variable. When the �le simulation->out_file is opened for writing by the function main(),
this �le handle is initialized.

The bu�er is a global variable of data type Matrix which is created initially by the
function main(). The number of rows is given by the macro KMAX. It is the number of time
steps that are bu�ered before they are
ushed to the output �le. The number of columns is
calculated as follows:

� One column for the time parameter t.

� 12 columns for each vehicle to store the position vector and the directors.

� 12 columns for each vehicle to store the velocities and director velocities if the
ag
simulation->flags.velocity is TRUE.

� One column for each vehicle to store the total energies of the individual vehicles if the

ag simulation->flags.energy is TRUE.

We refer to Section 2.5 for details on the order in which the above quantities are stored.
The function write_to_file()uses the standard ANSI-C-function fprintf() (see Kernighan

and Ritchie [7]) to write the output �le. For this reason, all numbers are written using the
standard ASCII extended
oating point format which is applied by ANSI-C and can easily
be read by other programs.

3.10 Adding User Supplied Code

Medusa currently uses a rather restricted mathematical model of a vehicle, as pointed out
in Chapter 1. The user may therefore wish to make modi�cations and improvements to
the suspension, tyre and road models, as well as the Cosserat point itself. Also, the time
integration and output algorithms leave room for improvements.

It should be evident from the previous sections of this chapter that for each aspect of the
vehicle model there is a corresponding function in the source code of Medusa. In order to
change the mathematical model of, say, the suspension, the user only needs to consider the
function suspension_model() in the �le vehicle.c (cf. Section 3.7.2). The same holds for
the tyre model and so forth. We refer therefore to the material presented earlier for details
how the various functions work.

Quite probably, the modi�ed program code will require additional parameters that ought
to be read from the input �les (i.e., model.dat and platoon.dat) or from the command line.
We discussed in Section 3.5 how this has been implemented in Medusa. Additional param-
eters are introduced in two steps. First, the structures vehicle_struct or simu_struct

(depending on the problem) must be rede�ned in order to accommodate the new variables.
These structures are de�ned in the �le common.h and were explained in Section 3.3.3. Then
the functions that read the data from a �le must be updated. These functions are all de-
�ned in the �le init.c and were discussed in Sections 3.5.2, 3.5.3 and 3.5.4. The portions

44

of the source code that presently initialize a given variable can simply be duplicated and
then modi�ed to the needs of a new variable. The programmer is now free to use the new
parameters like all the others through the data structures and the pointers thereto.

The source code of Medusa was conceived and written in such a way that modi�cations
are reasonably simple as long as the present structure of function calls with the corresponding
arguments is maintained. Beyond that, it is hard to give general guidelines. We note
however that it is planned that future versions of this program will be able to handle program
structures with greater
exibly. In particular, the program will be able to handle a variety
of distinct mathematical models at once from which the user can choose one using the
�les model.dat and platoon.dat. The program will be written in a way that additional
mathematical models may be added without the need to change those that are already in
the program.

45

Bibliography

[1] H. Cohen and R. G. Muncaster. The Theory of Pseudo-rigid Bodies. Springer Tracts in
Natural Philosophy, Vol. 33, Springer-Verlag, New York, 1988.

[2] J. W. Daniel. The Approximate Minimization of Functionals. Prentice-Hall, New Jersey,
1971.

[3] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, New York, 1983.

[4] A. E. Green and P. M. Naghdi. A thermomechanical theory of a Cosserat point with
application to composite materials. Quarterly Journal of Mechanics and Applied Math-
ematics, Vol. 44, pp. 335-355, 1991.

[5] J. L. Greenstadt. Variations on variable-metric methods. Mathematics of Computation,
Vol. 24, pp. 1-22, 1970.

[6] W. Kort�um and R. S. Sharp, editors. Multibody Computer Codes in Vehicle System
Dynamics, in Vehicle System Dynamics, Vol. 22 Supplement. Swets and Zeitlinger,
Amsterdam, 1993.

[7] B. W. Kernighan and D. M. Ritchie. The C Programming Language. 2nd ed., Prentice
Hall, 1988.

[8] J. Kowalik and M. R. Osborne. Methods for Unconstrained Optimization Problems.
American Elsevier Publishing Company, New York, 1968.

[9] O. M. O'Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models of Vehicular Colli-
sion: Development and Simulation with Emphasis on Safety. I: Development of a Model
for a Single Vehicle. California PATH Research Report UCB-ITS-PRR 97-15, 1997.

[10] O. M. O'Reilly, P. Papadopoulos, G.-J. Lo and P. C. Varadi. Models of Vehicular Col-
lision: Development and Simulation with Emphasis on Safety. II: On the Modeling
of Collision between Vehicles in a Platoon System. California PATH Research Report
UCB-ITS-PRR 97-34, 1997.

46

[11] O. M. O'Reilly and P. C. Varadi. A uni�ed treatment of constraints in the theory of
a Cosserat point. Journal of Applied Mathematics and Physics (ZAMP), Vol. 48, 1997
(to appear).

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Numerical Recipes
in C: the Art of Scienti�c Computing. 2nd ed., Cambridge University Press, 1992.

[13] M. B. Rubin. On the theory of a Cosserat point and its application to the numerical
solution of continuum problems. ASME Journal of Applied Mechanics, Vol. 52, pp. 368-
372, 1985.

[14] I. S. Sokolniko�. Mathematical Theory of Elasticity. 2nd ed., Mc Graw Hill, New York,
1956.

[15] C. Truesdell, R. A. Toupin. The Classical Field Theories, in Handbuch der Physik.
Vol. III/1, pp. 226-858, edited by S. Fl�ugge, Springer-Verlag, Berlin, 1960.

47

Appendix A

The Variable Metric Method

In Section 1.4, the distance function from an arbitrary point outside the ellipsoid to any
point located on the surface of the ellipsoid is given and needs to be minimized to locate
the contact points. In other words, the problem that needs to be solved is an unconstrained
minimization problem [3, 2] which may be expressed as follows:

min
x 2 Rn

f : Rn �! R : (A.1)

The distance function f(x) can be approximated as a quadratic form using a Taylor's series
expansion about xj:

f(x)
:
= f(xj) + rf(xj) � (x � xj) +

1

2
(x � xj) �H(xj) (x � xj) ; (A.2)

where

rf(xj) =
@f

@x

����
x=xj

; H(xj) =
@2f

@x@x

����
x=xj

; (A.3)

are the gradient vector and Hessian of the function f(x) evaluated at x = xj, respectively.
Thus, by di�erentiating (A.2),

rf(x) = rf(xj) + H (x � xj) : (A.4)

In Newton's method, the next iteration point x is computed by setting rf(x) = 0 and is
given by

x � xj = �H�1 rf(xj) : (A.5)

A scalar function f decreases at a point x in the direction of x�xj, i.e., the Newton direction
in (A.5) is a descent direction if the directional derivative along this direction of the function
is negative:

rf(xj) � (x � xj) = �(x � xj) �H (x � xj) < 0 ; (A.6)

48

where use has been made of (A.5). In order to search for a local minimum of a scalar function
f(x), (A.6) implies that a necessary condition for the value of the function to decrease during
a full Newton's step is that the Hessian of the function must be positive de�nite. Further
details on line search and backtracking can be found in Appendix B.

The variable metric method proceeds by rescaling

x̂ = Tx ; (A.7)

where T is a nonsigular matrix with the dimension of x. Thus in the new variable space,
the quadratic model around x̂j is

f(x̂) = f(xj) + rf(xj) �T�1(x̂ � x̂j) +
1

2
T�1(x̂ � x̂j) �H T�1(x̂ � x̂j) ; (A.8)

or

f(x̂) = f(xj) + rf(xj) �T�1(x̂ � x̂j) +
1

2
(x̂ � x̂j) � (T�TH T�1)(x̂ � x̂j) : (A.9)

Since the Hessian must be symmetric and positive de�nite, the basic idea of the algorithm is
to create a symmetric and positive de�nite approximation to the Hessian. A common choice
of T is

T =
p
H: (A.10)

Observe that the scaling that leads to an identity Hessian in (A.9) at x̂j, i.e.,

T�TH T�1 = I ; (A.11)

implies (A.10). Following Greenstadt's updating formula [5]

Ĥ�1
j+1 = Ĥ�1

j +
(ŝj+1 � Ĥ�1

j ŷj+1)
 ŷj+1 + ŷj+1
 (ŝj+1 � Ĥ�1
j ŷj+1)

ŷj+1 � ŷj+1

� [ŷj+1 � (ŝj+1 � Ĥ�1
j ŷj+1)] ŷj+1
 ŷj+1

(ŷj+1 � ŷj+1)2 ; (A.12)

where

ŝj+1 = x̂j+1 � x̂j = T(xj+1 � xj) = T sj+1 ; (A.13)

ŷj+1 = T�1(rfj+1 � rfj) = T�1 yj+1 ; (A.14)

Ĥ�1
j = TH�1

j TT ; (A.15)

49

and

Ĥ�1
j+1 = TH�1

j+1 T
T : (A.16)

Notice that xj+1 can be updated by subtracting (A.5) at xj+1 from the same equation at xj:

xj+1 � xj = H�1
j (rfj+1 � rfj) ; (A.17)

where rfj = rf(xj) and rfj+1 is evaluated at x = xj+1 which is the result by the line
searches and backtracking scheme [12] along the Newton's direction from xj. Using the
relations (A.13) to (A.16) to transform (A.12) into the original variable space, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) updating formula1 is obtained

H�1
j+1 = H�1

j +
sj+1
 sj+1

sj+1 � yj+1 � (H�1
j yj+1)
 (H�1

j yj+1)

yj+1 �H�1
j yj+1

+ (yj+1 �H�1
j yj+1) u
 u ; (A.18)

where

u =
sj+1

sj+1 � yj+1 � H�1
j yj+1

yj+1 �H�1
j yj+1

: (A.19)

Since each of these updates can be derived using a scaling of the variable space that is
di�erent at every iteration, the algorithm used above is called the variable metric method.

1Another alternative formulation which is known as the Davidon-Fletcher-Powell (DFP) algorithm di�ers
from the BFGS scheme only in details of their roundo� error, convergence tolerances, etc. However, it has
become generally recognized that the BFGS scheme is superior in those respects.

50

Appendix B

Line Search and Backtracking

The strategy for proceeding from a solution estimated outside the convergence region of
Newton's method is the method of line searches and backtracking [3]. Recall that the descent
direction used in (A.5) need not decrease the function since the quadratic approximation may
not be valid if the full Newton step has been taken. The descent direction only guarantees
that initially the function f decreases as the point moves in that direction. Therefore, the
idea is that given a descent direction1, say p, an \acceptable" xj+1 is taken along that
direction. That is,

xj+1 = xj + �j pj ; 0 < �j � 1 : (B.1)

The term \line search" refers to the procedure for choosing �j in the previous equation. In
order to take advantage of the fast convergence of Newton's method near the solution, it is
important to take a full Newton step whenever possible. Thus, we take � = 1 as the �rst
try. A simple acceptance rule for the new point xj+1 requires that

f(xj+1) < f(xj) : (B.2)

However, this condition does not guarantee that xj will converge to the minimizer of f in
two cases2. The �rst case arises where there is too small of a decrease in function values
relative to the length of steps. The �rst case can be remedied by ensuring

f(xj+1) � f(xj) + ��j rf(xj) � pj ; (B.3)

where � = 10�4 (see reference [3] for details). This condition requires that the average rate
of decrease (f(xj+1) � f(xj))=�j of f be at least some prescribed fraction (i.e., �) of the
initial rate of decrease3 in that direction. The second case arises when the steps are too

1The initial descent direction in Medusa is �rf(x0) since the identity Hessian has been used as the
starting matrix from which we update the Hessian in (A.18).

2See [3] for the examples of such cases.
3Since �=1 is used to be the �rst try in the step-acceptance criteria, therefore, the directional derivative

of f at xj in the direction pj is the initial rate of decrease of f .

51

small relative to the initial rate of decrease of f . This problem can also be remedied by the
use of a backtracking strategy which we now describe. First, de�ne

 (�) � f(xj + �pj) : (B.4)

The idea is that if the full Newton step is not acceptable, which means that backtracking
is necessary, then � is chosen by using the most current information about such that the
function is minimized. Initially, we have two pieces of information about (�),

 (0) = f(xj) and
0

(0) = rf(xj) � pj : (B.5)

Since the Newton step is always attempted �rst, (1) = f(xj + pj) is also known. Thus,
 (�) can be approximated by a quadratic function:

~ (�) = [(1) � (0) �
0

(0)]�2 +
0

(0)� + (0) : (B.6)

The minimum of (�) is attained when

� = �� = �
0

(0)

2[(1) � (0) � 0(0)]
; (B.7)

for which
0

(�) = 0. It can be shown that if the full Newton step fails, i.e., (B.3) is not
satis�ed, then the upper bound of � is � � 1

2 . On the other hand, if (1) is much larger
than (0), � can be very small; then � � 0:1 is chosen to be the lower bound.

Suppose (�) = f(xj + � pj), where � is calculated from (B.7), does not satisfy (B.3).
In this case, the backtracking needs to be executed again. On the second and subsequent
backtracks, (�) is modeled as a cubic in �, using the previous value (�1) and the second
most recent value (�2),

 (�) = a �3 + b �2 +
0

(0) � + (0) ; (B.8)

where �
a
b

�
=

1

�1 � �2

�
1=�21 � 1=�22
��2=�21 �1=�

2
2

��
 (�1)�

0

(0)�1 � (0)
 (�2)�

0

(0)�2 � (0)

�
: (B.9)

Its local minimizing point is

� =
�b +

p
b2 � 3a 0(0)

3a
: (B.10)

A long, but straightforward, calculation shows that � in (B.10) can never be imaginary if
� < 1

4 . Since we have previously chosen � to be 10�4, � will always be real.

52

Appendix C

Sample Parameter Files

C.1 model.dat

The following is a printout of a sample �le model.dat. It de�nes two vehicle models that
di�er in the elastic properties of the chassis, i.e., in E and �:

%

% A sample of physical parameters for two vehicle models

%

NUMBER_OF_MODELS 2

% description of Model 1 starts here

MODEL 1

COSSERAT_POINT

MASS 1573.0 % mass of car [kg]

Ix 479.6 % moments of inertia along principal axes [kg m^2]

Iy 2594.6

Iz 2782.0

E 200.0e6 % Young's modulus [N/m^2]

nu 0.30 % Poisson's ratio

volume 0.42 % assumed volume of the Chassis [m^3]

SUSPENSION

L1 1.034 % distance from cg to front axle [m]

L2 1.491 % distance from cg to rear axle [m]

B 0.725 % track of axle [m]

H1 0.0 % vertical distance from cg to front assembly pts.

H2 0.0 % and to rear assembly points [m] (assumed)

spring_ref 0.15 % reference length of spring [m]

C1 17000.0 % spring constant for front wheel suspension [N/m]

C2 40000.0 % spring constant for rear wheel suspension [N/m]

D1 1500.0 % damping coeff. for front wheel suspension [Ns/m]

D2 1200.0 % damping coeff. for rear wheel suspension [Ns/m]

TYRE 0.0016 % lag parameter for tyre model [s]

CONTACT

A1 1.5 % semi axes of ellipsoidal [m]

A2 1.0

53

C.2. PLATOON.DAT

A3 1.0

EQUILIBRIUM

R3 -0.0373 % vertical position of vehicle's center of mass [m]

D11 0.9972 D12 0.0 D13 -0.0748 % director 1 [.]

D21 0.0 D22 1.0 D23 0.0 % director 2 [.]

D31 0.0749 D32 0.0 D33 0.9972 % director 3 [.]

% description of model 1 ends and description of Model 2 starts

MODEL 2

COSSERAT_POINT

MASS 1573.0 % mass of car [kg]

Ix 479.6 % moments of inertia along principal axes [kg m^2]

Iy 2594.6

Iz 2782.0

E 200.0e7 % Young's modulus [N/m^2]

nu 0.33 % Poisson's ratio

volume 0.42 % assumed volume of the Chassis [m^3]

SUSPENSION

L1 1.034 % distance from cg to front axle [m]

L2 1.491 % distance from cg to rear axle [m]

B 0.725 % track of axle [m]

H1 0.0 % vertical distance from cg to front assembly pts.

H2 0.0 % and to rear assembly points [m] (assumed)

spring_ref 0.15 % reference length of spring [m]

C1 17000.0 % spring constant for front wheel suspension [N/m]

C2 40000.0 % spring constant for rear wheel suspension [N/m]

D1 1500.0 % damping coeff. for front wheel suspension [Ns/m]

D2 1200.0 % damping coeff. for rear wheel suspension [Ns/m]

TYRE 0.0016 % lag parameter for tyre model [s]

CONTACT

A1 1.5 % semi axes of ellipsoidal [m]

A2 1.0

A3 1.0

EQUILIBRIUM

R3 -0.0373 % vertical position of vehicle's center of mass [m]

D11 0.9972 D12 0.0 D13 -0.0748 % director 1 [.]

D21 0.0 D22 1.0 D23 0.0 % director 2 [.]

D31 0.0749 D32 0.0 D33 0.9972 % director 3 [.]

% description of model 2 ends here

C.2 platoon.dat

The following is a printout of a sample �le platoon.dat. It describes a platoon consisting
of two vehicles which travel on n a straight line. Initially, their mass centers are 5 meters
apart. The vehicle in the front is slower that the one following it. The vehicles are bound
to collide.

54

%

% Sample initialization of a two vehicle platoon with collision

%

NUMBER_OF_VEHICLES 2

% Vehicle 1

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 0.0 % X coordinate of center of mass [m]

Y 0.0 % Y coordinate of center of mass [m]

ORIENTATION 0.0 % heading angle [.]

SPEED 24.4444 % forward speed [m/s]

STEERING 0.0 % steer angle [rad]

% Vehicle 2

VEHICLE_HAS_MODEL 1 INITIALLY_WITH

X 5.0 % X coordinate of center of mass [m]

Y 0.0 % Y coordinate of center of mass [m]

ORIENTATION 0.0 % heading angle [.]

SPEED 23.1111 % forward speed [m/s]

STEERING 0.0 % steer angle [rad]

55

Appendix D

Structure De�nitions

D.1 The Vehicle Model Structure

For each vehicle model that is speci�ed in the �le model.dat, Medusa initializes a structure
of the data type vehicle_struct which contains the model parameters. This data type is
listed below:

typedef struct {

struct {

double m; /* mass of car in kg */

Matrix I; /* inertia matrix */

Matrix I_inv; /* inverse inertia matrix */

double lambda, two_mu; /* elastic properties of Cosserat point */

double half_volume; /* half volume of the Chassis in m^3 */

} Cosserat_point;

struct {

double L1, L2; /* distance from cg to front/rear axle in m */

double half_B; /* half the track of axle in m */

double H1, H2; /* vert. dist. from cg to front/rear assembly pts. */

double spring_ref; /* reference length of suspension spring in m */

double C1, C2; /* spring constant for front/rear suspension in N/m */

double D1, D2; /* damping coeff. for front/rear suspension Ns/m */

Matrix infl; /* Influence matrix */

} suspension;

struct {

double tau_inv; /* lag parameter for tyre model in 1/s */

} tyre;

struct {

double semi_axes[4]; /* semi axes of ellipsoidal */

} contact;

} vehicle_struct;

56

D.2 The Simulation Structure

Medusa uses a structure of the data type simu_struct to store data pertaining to the
simulation. This structure is listed below:

typedef struct {

char *in_file; /* default is platoon.dat */

char *out_file; /* default is data.asc */

struct { /* defines what will be included in output data */

int velocity, energy;

} flags;

int n; /* number of vehicles */

struct {

double end_time; /* simulation runs for end_time seconds */

double delta_t; /* integration stepsize */

double save_delta_t; /* time intervals for saving a data point */

} integrate;

Vector *state_vector; /* array of state vectors */

Vector steer_angle;

struct {

Matrix multiplier; /* The Lagrange multiplier are in a n by n matrix */

Vector **forces; /* array of pointers to arrays of constraint forces */

Vector **state; /* array of vectors holds previous contact points */

}constraint;

} simu_struct;

57

Appendix E

Dependencies

E.1 File Dependencies

� contact.c �! common.h

� common.c �! common.h

� init.c �! init.h, common.h

� main.c �! common.h

� vehicle.c �! common.h

E.2 Function Dependencies

� applied_forces() : vehicle.c

{ suspension_model() : vehicle.c

{ wheel_lateral_force() : vehicle.c

� cmderror() : init.c

� constitutive_equations() :: vehicle.c

� detect_contact() : contact.c

{ pos() : contact.c

{ norm() : contact.c

{ dot() : contact.c

{ dist() : contact.c

{ d_dist1() : contact.c

{ d_dist2() : contact.c

{ d_dist() : contact.c

58

{ minimize() : contact.c

{ pert() : contact.c

� energy() : vehicle.c

� equations_of_motion() : vehicle.c

{ applied_forces() : vehicle.c

{ constitutive_equations() : vehicle.c

{ steering_model() : vehicle.c

� evaluate_cmd_line() : init.c

{ cmderror() : init.c

{ print_options() : init.c

� find_token() : init.c

� g() : vehicle.c

� init() : init.c

{ evaluate_cmd_line() : init.c

{ read_models() : init.c

� integrate() : main.c

{ equations_of_motion() : vehicle.c

{ free_matrix() : common.h

{ matrix() : common.h

{ save_data_point() : main.c

{ set_constraint_forces() : vehicle.c

{ write_to_file() : main.c

� main() : main.c

{ free_matrix() : common.h

{ init() : init.c

{ integrate() : main.c

{ matrix() : common.h

� minimize() : contact.c

{ linsearch() : contact.c

� print_options() : init.c

� pert() : contact.c

{ func() : contact.c

{ piksrt() : contact.c

{ opp() : contact.c

59

E.2. FUNCTION DEPENDENCIES

� read_expression() : init.c

{ find_token() : init.c

� read_file() : init.c

{ nrerror() : common.h

� read_models() : init.c

{ find_token() : init.c

{ matrix() : common.h

{ matrix_inverse() : common.h

{ nrerror() : common.h

{ read_expression() : init.c

{ read_file() : init.c

� read_vehicles() : init.c

{ find_token() : init.c

{ free_matrix() : common.h

{ matrix() : common.h

{ nrerror() : common.h

{ read_expression() : init.c

{ read_file() : init.c

� save_data_point() : main.c

{ energy() : vehicle.c

{ write_to_file() : main.c

� set_constraint_forces() : vehicle.c

{ detect_contact() : contact.c

{ free_ivector() : common.h

{ free_matrix() : common.h

{ ivector() : common.h

{ lin_solve() : common.h

{ matrix() : common.h

� steering_model() : vehicle.c

� suspension_model() : vehicle.c

� wheel_lateral_force() : vehicle.c

{ g() : vehicle.c

� write_to_file() : main.c

60

Appendix F

The Medusa Source Code

This appendix lists the complete source code of Medusa. The pages are individually num-
bered starting anew with page one for each �le. The �les are listed in this order:

common.h 2 pages
main.c 5 pages
init.h 1 page
init.c 8 pages
vehicle.c 8 pages
contact.c 14 pages
common.c 5 pages

61

