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Discovery of a Cellular Mechanism Regulating Transcriptional
Noise

Ravi Desai

Abstract

Stochastic fluctuations in gene expression (‘noise’) are often considered detrimental but, in

other fields, fluctuations are harnessed for benefit (e.g., ‘dither’ or amplification of thermal fluc-

tuations to accelerate chemical reactions). Here, we find that DNA base-excision repair am-

plifies transcriptional noise, generating increased cellular plasticity and facilitating reprogram-

ming. The DNA-repair protein Apex1 recognizes modified nucleoside substrates to amplify ex-

pression noise—while homeostatically maintaining mean levels of expression—for virtually all

genes across the transcriptome. This noise amplification occurs for both naturally occurring base

modifications and unnatural base analogs. Single-molecule imaging shows amplified noise orig-

inates from shorter, but more intense, transcriptional bursts that occur via increased DNA super-

coiling which first impedes and then accelerates transcription, thereby maintaining mean levels.

Strikingly, homeostatic noise amplification potentiates fate-conversion signals during cellular re-

programming. These data suggest a functional role for the observed occurrence of modified bases

within DNA in embryonic development and disease.
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Chapter 1

Introduction

From Brownian motion to electrical ‘shot’ noise, fluctuations are fundamental to physical pro-

cesses. Since the 1800s [1], fluctuations have been recognized to dynamically shape the distribu-

tion of microstates a system adopts, and modulation of fluctuations has been harnessed throughout

engineering and the sciences. For example, in chemistry, thermal fluctuations—amplified via tem-

perature increase (e.g., Bunsen Burners)—accelerate reactions [2]; in engineering, amplification of

electrical, acoustic, or mechanical fluctuations (i.e., ‘dither’, from the Middle English ”didderen”

meaning to ”tremble”) is used for signal recovery [3], and in neuroscience, electrophysiologi-

cal fluctuations—first reported in the 1950s [4]—are clinically amplified to improve sensorimotor

function [5, 6, 7]. Such ‘dither’ approaches break Poisson dependency so that ∆variance 6=∆ mean.

Evolutionary theories dating to the 1960s [8, 9, 10] proposed that biological organisms max-

imized fitness by harnessing putative fluctuations to enable probabilistic ‘bet-hedging’ decisions.

Subsequent studies showed that intrinsic molecular fluctuations in gene expression (i.e., stochas-

tic ‘noise’), modulated by gene-regulatory circuits, enabled probabilistic fate selection (Figure

1.1A) in diverse biological systems [11, 12, 13]. Open questions remain as to whether cellu-

lar noise control is limited to inherently locus-specific gene-regulatory circuits or if generalized

noise-modulation mechanisms exist, if and how such mechanisms might orthogonally tune noise
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independent of mean, and, given the detrimental effects of noise, if such putative mechanisms

might be regulated ‘on-demand’ to potentiate cell-fate specification.

Non-genetic variability or noise in gene expression, often quantified by measurement of cell-to-

cell variability in reporter expression, can arise from multiple sources, both intrinsic and extrinsic.

Extrinsic noise refers to correlated variability across two or more promoters in the same cell. Cell

cycle, cell size and abundances of communal cellular components like ribosomes contribute to

extrinsic noise [14]. Intrinsic noise results from stochastic fluctuations in rates of biochemical

reactions responsible for birth, maturation and death of mRNA and protein molecules [15, 16]. Al-

though the relative contribution of intrinsic vs. extrinsic factors to expression noise differs for each

gene, the small number of reactants involved in many biochemical processes renders stochasticity

an inescapable aspect of gene expression that can either be amplified or suppressed.

Stochasticity or intrinsic noise first emerges from transcription, where the collision of small

numbers of reactants undergoing Brownian motion culminates with discrete realizations: the birth

of mRNAs [17, 18]. In the diffusion-limited case where noise is lowest, cell-to-cell divergence

in transcript numbers follows a Poisson distribution where variance is equal to the mean and the

Fano factor is equal to one [19]. In both prokaryotes and eukaryotes, however, many genes have

transcript variances far greater than the mean (super-Poissonian, Fano factor >1). Elegant single-

molecule imaging techniques have revealed a significant cause of this enhanced noise: many genes

engage in short periods of high transcriptional activity that are interspersed with long periods of

inactivity [17, 18, 20, 21, 22, 23, 24]. Toggling of a promoter between an inactive OFF state and a

productive ON state, also known as transcriptional bursting, is a significant contributor to enhanced

noise on both the mRNA and protein level [25].

The two-state random-telegraph model describes this bursting via two parameters: (i) the frac-

tion of time a promoter is active (KON/[KON +KOFF ]), and (ii) the number of transcripts produced

2



during the ON state (burst size, KT X/KOFF) [26, 27, 28]. These bursting parameters are tuned by

regulatory machinery [24] like histone acetyltransferases, which can increase burst frequency by

facilitating nucleosome clearance from promoters thereby increasing mean transcriptional levels

[29]. Increases in mean expression (µ) are typically accompanied by a stereotypical reduction in

noise measured by coefficient of variation, CV, (σ/µ) (Figure 1.1B), whereas stressors that de-

crease mean are typically accompanied by an increase in noise [30, 31, 32]. This 1/µ scaling

of noise can be broken by gene-regulatory circuits such as feedback and feedforward loops [33],

and some small-molecule pharmaceuticals can modulate transcriptional fluctuations/noise (σ/µ)

independent of change in mean (µ) [34, 35]. Since some molecules can amplify expression noise

of diverse unrelated promoters [34, 36], we asked if these molecules might be functioning via dis-

ruption or enhancement of a putative cellular noise-control mechanism.

In E. coli, DNA supercoiling and the cooperative recruitment of RNA polymerases have been

proposed as general properties of transcription that together account for the bursting phenomenon

and set mechanical bounds on transcriptional noise [37, 23, 38, 39]. According to the twin-

supercoiled-domain model, translocation of an RNA polymerase leads to overwinding of down-

stream DNA (positive supercoils) and underwinding of upstream DNA (negative supercoils) [40,

41, 42]. This can create both positive and negative feedback loops where upstream negative super-

coiling facilitates additional polymerase recruitment while buildup of downstream positive super-

coils inhibits elongation [37, 39, 43]. For eukaryotic systems however, it is unclear whether the

mechanical limitations imposed by supercoiling affect transcriptional bursting and gene expression

noise more broadly? Furthermore, if supercoiling is a modifier of transcriptional bursting as shown

in prokaryotes, could it serve as a lever to actively control gene expression noise in eukaryotes?

Here, we find that DNA base-excision repair amplifies transcriptional noise, generating in-

creased cellular plasticity and facilitating reprogramming. Using mouse embryonic stem cells

(mESCs) as our model eukaryotic system and a set of small molecules identified as transcriptional

3



noise enhancers, we uncovered how the DNA-repair protein Apex1 recognizes modified nucle-

oside substrates to amplify expression noise—while homeostatically maintaining mean levels of

expression—for virtually all genes across the transcriptome. This noise amplification occurs for

both naturally occurring base modifications and unnatural base analogs. Single-molecule imaging

shows amplified noise originates from shorter, but more intense, transcriptional bursts that occur

via increased DNA supercoiling which first impedes and then accelerates transcription, thereby

maintaining mean levels. Stochastic modeling predicted a parameter space for tuning noise en-

hancement, which we experimentally validate using several modulators of DNA repair and topoi-

somerase activity. Strikingly, homeostatic noise amplification potentiates fate-conversion signals

during cellular reprogramming. The results suggest that gene expression noise partly emerges from

the biophysical constraints of DNA, which are tuned by topoisomerases. Additionally, these data

suggest a functional role for modified bases within DNA as modulators of cellular plasticity in

embryonic development and disease.
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Figure 1.1: Search for a cellular noise-control mechanism.
(A) (Left) Monte-Carlo simulations of the two-state Random-Telegraph model of transcription
showing low noise and higher noise trajectories with matched mean expression levels. Coefficient
of Variation (σ2/µ2, CV2) quantifies magnitude of fluctuations. (Right) The predicted facilitation
of state transitions through ‘dithering’. (B) (Top) Schematic of two-state Random-Telegraph model
of transcription. (Bottom) Schematic of mean vs. CV2 for mRNA abundance with solid gray line
representing Poisson, inverse scaling of CV2 as a function of mean. Question mark symbolizes
unknown noise-control mechanisms that amplify fluctuations independently of mean. Histograms
depict expected shift in mRNA copy number distributions.
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Chapter 2

Identification of a global noise-enhancer

2.1 Introduction

To uncover what processes modulate transcriptional bursting and thus gene expression noise,

we used the following logic: identify perturbations that alter bursting kinetics and then elucidate

the mechanism of action. From a library of 1600 FDA-approved small molecules, the Weinberger

lab recently identified 85 compounds that amplify expression noise of the HIV promoter without

altering the promoter’s mean-expression level [34]. From these results, we asked whether the

noise-enhancing compounds alter a gene-specific property of the LTR promoter or perturb a more

ubiquitous regulatory control on bursting kinetics which would manifest as generalizability to other

cell-types and promoters.

2.2 Results

2.2.1 5’-iodo-2’-deoxyuridine (IdU) increases gene expression noise in Ju-

rkat and K562 cells

I first tested a subset of noise-enhancer compounds on Jurkat cells harboring a d2GFP reporter

driven by a EF1αpromoter and K562 cells harboring a d2GFP reporter driven by either a EF1αor

6



UBC promoter. I identified one compound, 5’-iodo-2’-deoxyuridine (IdU), which consistently in-

creased expression noise (Figure 2.1).
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Figure 2.1: Nucleoside analog increases expression variability of housekeeping promoters in
Jurkat and K562 cells.
(A) Representative flow cytomtery distributions of d2GFP expression in an isoclonal population of
Jurkat cells treated with either 20μM IdU or equivalent volume DMSO for 24 hours. Mean and SD
are derived from 2 biological replicates. (B) Representative flow cytomtery distributions of d2GFP
expression in isoclonal populations of K562 cells treated with either 20μM IdU or equivalent vol-
ume DMSO for 24 hours. Mean and SD are derived from 2 biological replicates.
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Methods

Noise Enhancer Testing on Isoclonal Jurkat and K562 Cells

Isoclonal Jurkat T Lymphocytes with lentivirally integrated EF1α-d2GFP construct were pre-

viously described (36). Human immortalized myelogenous leukemia (K652, female) cells were

cultured in RPMI-1640 medium (supplemented with L-glutamine, 10% fetal bovine serum, and

1% penicillin-streptomycin), at 37°C, 5% CO2, in humidified conditions at 2 × 105 to 2 × 106

cells/mL. Isoclonal K562 cells with lentivirally integrated EF1α-d2GFP and UBC- d2GFP con-

structs were previously described (36).

Jurkat and K562 cells were seeded into 12-well plates at densities of 0.2 × 106 and 0.4 × 106

cells/mL respectively in media containing 20 μM IdU (Sigma, cat:I7125, dissolved in DMSO) or

equivalent volume of DMSO for 24 hours. Flow cytometry was performed using a BD LSRII

cytometer. Treated cells were run unfixed and live to avoid additional sources of variability from

fixation. 50k live cells were collected from each sample for noise measurements. Conservative

gating for a live subset of approximately 3k cells of similar size, volume, and state, was applied on

the FSC vs. SSC to reduce extrinsic noise contributions as previously described (15,18).

2.2.2 IdU increases global gene expression noise in mouse embryonic stem

cells

To test whether IdU has an effect on the global structure of mRNA noise, single-cell sequencing

was performed on mouse embryonic stem cells (mESCs) treated with either 10μM IdU or DMSO

for 24 hours. mESCs were chosen as the model system due to their extensive characterization in

both developmental and noise biology. Strikingly, single-cell RNA sequencing (scRNA-seq) of

mESCs maintained in 2i/LIF media—after filtering and normalization using Seurat [44]—showed

8



that IdU amplified cell-to-cell variability in transcript levels (i.e., transcript noise) for virtually all

genes across the genome—4,578 genes analyzed—with little alteration in mean transcript levels for

most genes, as analyzed by either CV2 or variance versus mean (Figures 2.2A-B). To account for

the Poisson scaling of variance on mean, transcript noise was also quantified using the Fano factor,

which measures how noise deviates from Poisson scaling [45, 27, 46]. Despite mean-expression

levels exhibiting minimal changes (Figure 2.2C), the Fano factor increased for >90% of genes

(Figure 2.2D) with lowly expressed genes showing a slightly greater change in Fano (Figure 2.3).

These results of a global increase in transcript noise with little change in mean levels are in stark

contrast to the effects of transcriptional activators or cellular stressors that alter noise in a stereo-

typic manner together with changes in mean [31, 21].

To account for technical noise and quantify statistical significance of changes in noise and

mean, we used an established Bayesian hierarchical model [47, 48] to create probabilistic, gene-

specific estimates of both mean expression and cell-to-cell transcript variability. Of the 4,578

genes, the algorithm classified 945 genes (∼ 20%) as highly variable, whereas 113 genes (∼ 2%)

showed a significant change in mean expression (Figure 2.2E-F). Bulk RNA-seq measurements of

mean abundances—performed using ERCC spike-ins for normalization—confirmed the scRNA-

seq findings (Figure 2.4). Thus, analyses from two methods (Seurat and BASiCS) show that IdU

induces a significant increase in transcript variability (expression noise) but comparatively little

change in mean expression in mESCs.
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Figure 2.2: Genome-wide amplification of cell-to-cell mRNA variability (i.e., ‘noise’) inde-
pendent of mean.
(A-D) scRNA-seq of mESCs treated with DMSO (black) or 10µM IdU (red) for 24h. 812 and 744
transcriptomes (filtered and normalized with Seurat) from DMSO and IdU treatments, respectively,
were analyzed. (A) Mean expression vs. CV2 and (B) mean vs. variance for 4,578 genes. Four
examples of housekeeping genes (purple) demonstrate how IdU increases expression fluctuations
with minimal change in mean (white arrows). (C) Mean expression and (D) Fano factor of 4,578
genes in DMSO vs. IdU treatments. Overlay of density contours reveals how center of mass lies
on diagonal for mean values while lying above the diagonal for Fano factor measurements. (E-
F) BASiCS analysis of scRNA-seq data for 4,578 genes. (E) Fold change in mean vs. certainty
(posterior probability) that gene is up- or down-regulated. With IdU treatment, 113 genes (red)
were classified as differentially expressed (>2-fold change in mean with >85% probability). (F)
Fold change in over-dispersion vs. certainty (posterior probability) that gene is highly- or lowly-
variable. 945 genes (red) were classified as highly variable (>1.5-fold change in over-dispersion
with >85% probability).

10



0

1

2

3

4

M
ea

n 
Tr

an
sc

rip
t C

ou
nt

s

DMSO IdU

1st Bin 2nd Bin 3rd Bin 4th Bin

Expression Level

n.s. n.s.
n.s.

n.s.

0

1

2

3

4

Fa
no

 F
ac

to
r

DMSO IdU

1st Bin 2nd Bin 3rd Bin 4th Bin

Expression Level

** ** **
*

A

B

Figure 2.3: Noise enhancement occurs for genes across all expression levels.
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expression level in DMSO condition. (A) Comparison of mean expression level for each gene in
IdU and DMSO treatment groups. Boxplots show median ±interquartile range of mean values
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for each gene in IdU and DMSO treatment groups. Boxplots show median ±interquartile range of
Fano factors for genes within each bin. Solid lines connect the same gene in the DMSO and IdU
boxplots. P values were calculated using a two-tailed, paired Student’s t test. **p < 0.001, *p =
0.0016
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Figure 2.4: IdU causes minimal change in mean gene expression levels as measured by bulk
RNA-seq.
Transcript abundances were normalized using ERCC spike-in counts. Differential mean testing
was conducted with a threshold of fold change > 2 and an FDR cutoff of 0.05. Genes considered
differentially expressed are highlighted in red. (A) Mean transcript abundance vs. fold change
(Log2) in mean for 12,502 genes. Comparison is between 10μM IdU and DMSO treatments. 98
genes were identifed as differentially expressed. (B) Mean transcript abundance vs. fold change
(Log2) in mean for 12,054 genes. Comparison is between 5μM IdU and DMSO treatments.
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Methods

Single-Cell RNA Sequencing Preparation and Analysis

Mouse E14 embryonic stem cells (male) were routinely cultured in feeder-free conditions on

gelatin-coated plates with ESGRO-2i medium (Millipore, cat:SF016-200) at 37°C, 5% CO2, in

humidified conditions [45].

1x106 mESCs were seeded in a gelatin-coated, 10cm dish in 2i/LIF media. 24 hours follow-

ing seeding, cultures were replenished with 2i/LIF media containing 10μM IdU or an equivalent

volume of DMSO for 24 hours. After treatment, cells were trypsinized with TrypLE and spun

down for 5 minutes at 200 x g. Single-cell suspensions were prepared in DPBS at a concentra-

tion of 83,000 cells/ml. Approximately 3000 cells from each sample were loaded into a chip and

processed with the Chromium Single Cell Controller (10x Genomics). To generate single-cell gel

beads in emulsion (GEMs), DMSO- and IdU- treated samples were assigned unique indexes using

Single Cell 3′ Library and Gel Bead Kit V2 (10x Genomics, cat:120237). Sequencing was per-

formed on an Illumina HiSeq4000 with a paired-end setup specific for 10x libraries.

Data were aligned to mm10 reference genome using 10x Cell Ranger v2. Quality control, nor-

malization and analysis were carried out using two packages: Seurat and BASiCS. For analysis

in Seurat, gene-barcode matrices were filtered and normalized using the “LogNormalize” method,

resulting in 812 and 744 transcriptomes from DMSO and IdU samples. Transcript variability was

quantified using variance (σ2), coefficient of variation (σ2

µ2 ), and Fano factor (σ2

µ
). During the nor-

malization procedure in Seurat, counts for the ith gene in the jth cell (xi j) are multiplied by the fol-

lowing scaling factor: S = 10000
∑

n
i=1 xi j

, where n is the number of genes in the dataset. The scaling factor

is therefore dependent on the number of UMIs detected per cell. The coefficient of variation is in-

sensitive to this scaling factor as it is a dimensionless quantity (i.e, σ and µ are scaled by the same

factor and thus cancel out when calculating coefficient of variation). However, the Fano factor,
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which has units, must be re-scaled to account for the differential effect that this normalization pro-

cedure has on σ2 vs. µ (i.e., σ2 gets scaled by S2 while µ gets scaled by S). To negate the carryover

of this scaling factor, calculated Fano factors from the Seurat-normalized dataset were multiplied

by 1
S where S is a unique value for the DMSO and IdU samples: 10000

avg. number of UMIs per cell in sample .

On average, 4151.3 and 4191.4 UMIs were detected per cell in DMSO and IdU samples respec-

tively.

For analysis using BASiCS, quality control and filtering was performed using the BASiCS Filter

function resulting in an identical number of transcriptomes (812 and 744) as produced by Seurat.

Posterior estimates of mean and over-dispersion for each gene were computed using a Markov

Chain Monte Carlo (MCMC) simulation with 40,000 iterations and a log-normal prior. For dif-

ferential mean testing, a threshold of fold change >2 with an FDR cutoff of 0.05 was used. Dif-

ferential variability was tested with a threshold of fold change >1.5 with an FDR cutoff of 0.05.

Only genes with no change in mean expression (4,458 of 4,578) were considered for interpreting

changes in variability.

Gene features and sequences from the GRCm38 reference were used for analysis of gene char-

acteristics that potentiate noise enhancement. TAD boundary locations in mESCs were taken from

previously established Hi-C maps [49]. DAVID v6.8 was used to test for gene ontology (GO)

enrichment among highly variable genes. All tested genes (4,458) from BASiCS were used as

background. Bonferroni-corrected p-values (adjusted p-values) were used to visualize GO enrich-

ment. Cell cycle determination was performed using cyclone as implemented in scran [50]. The

default set of cell cycle marker genes for mESCs (mouse cycle markers.rds) was used. Cells were

assigned to G1, S, and G2/M phases using their normalized genes counts produced by Seurat.

Pseudotime analysis was conducted using destiny [51] with the Seurat-normalized cell-gene ma-

trix as input. Gene-gene correlation matrices were assembled by first filtering out genes from the

Seurat-normalized matrix whose mean abundance <1 in each treatment group to avoid spurious
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correlations that may emerge from low expression. 961 genes remained for downstream analysis.

Pearson correlation for each gene pair was calculated. Clustering of gene-pairs based on similarity

in correlation patterns was performed using the hierarchical clustering method within the seriation

package. Change in correlation strength was calculated by subtracting absolute value of gene-pair

correlation in DMSO condition from IdU condition.

Bulk RNA Sequencing Preparation and Analysis

2x105 mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media. 24

hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU, 5μM

IdU or an equivalent volume of DMSO in triplicate for 24 hours. After treatment, cells were

trypsinized with TrypLE and RNA was extracted using a RNeasy minikit (Qiagen) according to

manufacturer’s instructions. ERCC spike-in RNA (2μl diluted at 1:100) was added to each RNA

extraction (Ambion, cat:4456740). A total of 9 cDNA libraries were prepared with an NEBNext

Ultra II RNA Library Prep kit (NEB, cat:E7770S) and sequenced with an Illumina HiSeq4000. Se-

quencing yielded a median of ≈40 million single-end reads per library. Read quality was checked

via FASTQC. Reads were aligned to an edited version of the mm10 reference genome containing

the ERCC spike-in sequences using TopHat with default parameters. Transcript level quantifica-

tion was performed using Cufflinks with default parameters. The quantification matrix was then

imported into R and analyzed via DESeq2. Samples were normalized using ERCC transcripts as

controls for size factor estimation. Differential mean testing was conducted with a threshold of

fold change >2 and an FDR cutoff of 0.05.
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2.2.3 Noise-enhancement occurs through intrinsic mechanism: reciprocal

modulation of burst duration and intensity

To examine if certain characteristics could explain a gene’s potential for noise enhancement

we examined (i) gene length, (ii) promoter and (iii) gene-body AT content, (iv) number of ex-

ons, (v) TATA-box inclusion and (vi) strand orientation. None of these characteristics exhibited

predictive power or correlated with a gene’s potential for noise enhancement (Figures 2.5A-F).

However, genes susceptible to high noise enhancement were preferentially located within the inte-

rior of topologically associated domains (TADs), suggesting gene topology influences potency of

noise enhancement (Figure 2.5G). Ontology analysis of highly variable genes showed enrichment

of house-keeping pathways along with pluripotency maintenance factors, particularly Sox2, Oct4,

Nanog and Klf4 (Figure 2.6). As these pluripotency maintenance factors are key influencers of

cell-fate specification, we next focused on the molecular mechanisms driving their amplified tran-

script noise.

We first tested whether the enhanced variability arose from extrinsic factors, which include

cell-cycle phase and cell-type identity. Cells within the scRNA-seq dataset were computationally

assigned a cycle stage (G1, S, G2/M) [50] which showed that Nanog, Oct4, Sox2 and Klf4 were

highly variable in each cell-cycle phase, indicating that their variability is not cell-cycle dependent

(Figure 2.7). Moreover, pseudo-time analysis showed no bifurcations, indicating transcriptional

variability was not due to a differentiation-induced mixture of cell-types (Figure 2.8).

Extrinsic variability may also arise from the coordinated propagation of noise through gene-

regulatory networks [52, 53] and can be measured by gene-to-gene correlation matrices [54, 55]. If

the increase in global transcript noise is extrinsic, expression correlation between network partners

would increase or remain unchanged. Analysis of gene-to-gene correlation matrices showed that

∼80% of gene-gene pairs lost correlation strength following IdU treatment (Figure 2.9), indicating

that enhanced expression noise is uncorrelated and not consistent with an extrinsic noise source.

16



Exclusion of these extrinsic noise sources suggested that IdU amplifies intrinsic noise arising from

stochastic fluctuations in transcript birth (promoter toggling) or death (degradation).

To test whether a change in promoter toggling could account for IdU-enhanced noise, we

used single-molecule RNA FISH (smRNA-FISH) to count both nascent and mature transcripts

of Nanog, a master regulator of pluripotency. Spot counting was performed on a mESC line in

which both endogenous alleles of Nanog are fused to eGFP. This fusion does not alter mRNA

or protein half-life or impair differentiation potential [56]. To target mature transcripts, smRNA-

FISH probes to eGFP were used, and to minimize extrinsic noise, analyses were limited to cells of

similar sizes (Figure 2.10A). Consistent with scRNA-seq, smRNA-FISH showed a large increase

in cell-to-cell variability of mature Nanog transcripts (∼2-fold increase in Fano) with little change

in mean Nanog levels (Figure 2.10B). Fewer IdU-treated cells exhibited active transcriptional cen-

ters (TCs), but the number of nascent mRNAs at each TC increased (Figures 2.10C-D). Fitting

of the two-state random-telegraph model to smRNA-FISH data revealed that increased variability

was due to a shortened burst duration (increased kOFF) and amplified transcription rate (higher

kTX) (Figure 2.10E). These results represent direct validation of previous predictions [27, 34] that

enhanced noise could arise from reciprocal changes in transcriptional burst duration (1/kOFF) and

intensity (kTX).
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Figure 2.5: Noise-enhanced genes tend to be centrally located within topologically associat-
ing domains.
Comparisons are between 945 genes classified as highly variable and 3,513 genes classified as non-
variable (background) according to BASiCS algorithm. Gene characteristics and sequences were
taken from Ensembl GRCm38 reference genome. (A) Distributions of gene lengths for highly vari-
able and background genes. Length was calculated as distance between Ensembl gene start and end
coordinates which correspond to outermost transcript start and end coordinates. (B) Percentage of
base-pairs in gene body (based on gene start and end coordinates) that are A:T. (C) Percentage of
base-pairs in 200bp region upstream of gene start that are A:T. (D) The number of exons was aver-
aged over all transcripts associated with a gene. Distributions of average exon quantity for genes
in the highly variable and background group were then plotted. (E) Fraction of genes with TATA
sequence in 200bp region upstream of gene start. Data represent mean and SD from bootstrapping
procedure with 10,000 resamplings of 100 genes from each group with replacement. (F) Fraction
of genes whose coding sequence is located on negative and positive strands. Data represent mean
and SD from bootstrapping procedure with 10,000 resamplings of 100 genes from each group with
replacement. (G) Fractional distance of gene within TAD was calculated as (gene start coordinate
- TAD start coordinate)/(TAD end coordinate - TAD start coordinate).
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Figure 2.6: Ontology analysis of variably expressed genes shows enrichment for housekeep-
ing and pluripotency maintenance pathways.
DAVID v6.8 was used to identify enriched ontologies among the 945 genes classified as highly
variable according to BASiCS algorithm.
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Figure 2.7: Noise-enhancement of pluripotency factors occurs in all three phases of the cell
cycle.
A total of 1556 cells in the scRNA-seq dataset were classified into one of three cell-cycle phases.
Differential variability testing was then conducted between cells in the DMSO and IdU treatment
groups with the same cycle classification.
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Figure 2.8: Transcript variability is not caused by bifurcation of mESCs into separate devel-
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Pseudotime analysis of IdU-treated cells shows no differentiation of mESCs into separate devel-
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(A) Pearson correlations of expression for gene pairs in scRNA-seq dataset. Hierarchical cluster-
ing reveals networks of genes (highlighted in black rectangles) sharing similar correlation patterns.
Dashed rectangle highlights network enriched with pluripotency factors like Nanog. IdU treatment
causes a fading of heatmap, indicating weakened expression correlations. (B) The Pearson corre-
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indicate loss of correlation in expression.
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Figure 2.10: Shortened burst duration and increased transcription rate causes enhanced cell-
to-cell variability in Nanog mRNA counts.
(A) Distribution of cell sizes for analyzed cells in DMSO and IdU conditions. Cell size was
calculated as number of pixels within segmented cell boundary. Dashed lines represent means
of each distribution. Data represent pooling of cells from all four biological replicates for each
condition. KS test shows no significant difference between cell size distributions. (B-D) Results of
smRNA-FISH used to count nascent and mature Nanog mRNA in Nanog-GFP mESCs treated with
DMSO or 10µM IdU for 24 hours in 2i/LIF media. Data are from four biological replicates. (B)
(Left) Representative micrograph (maximum intensity projection) in which Nanog transcripts are
labelled with probe-set for eGFP. Bright foci correspond to transcriptional centers as verified by
intron probe set. Scale bar is 5um. (Right) Distributions of mature Nanog transcripts/cell. Dashed
lines represent mean. IdU treatment increases cell-to-cell variability of transcript abundance as
reported by averaged Fano factors (± SD), *p =0.0011 by a two-tailed, unpaired Student’s t test.
(C) Fraction of possible transcriptional centers that are active as detected by overlap of signal in
exon and intron probe channels. Each cell is assumed to have 2 possible transcriptional centers
(TCs). Data represent mean and SD. With IdU, the fraction of possible of TCs that are active
decreases, **p =6.9 x 10-5 by a two-tailed, unpaired Student’s t test. (D) Distributions of nascent
Nanog mRNA per TC. With IdU, active TCs have more nascent mRNAs, **p =1.0 x 10-4 by a two-
tailed, unpaired Student’s t test. (E) Inference of parameters for 2-state model of transcription. P
values were calculated using a two-tailed, unpaired Student’s t test. *p = 0.0017, **p = 0.0001
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Methods

Single Molecule RNA FISH

Probes for detection of nascent and mature Nanog transcripts were developed using the de-

signer tool from Stellaris (LGC Biosearch Technologies). 30 probes (TAMRA conjugated) for

mature Nanog mRNA were targeted towards the 3′ GFP segment of transcripts. 48 probes (Quasar

670 conjugated) for nascent Nanog mRNA were targeted towards the first intronic sequence as

taken from the mm10 genome reference. Probes were designed using a masking level of 5, and at

least 2 base pair spacing between single probes.

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish

(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replaced

with 2i/LIF containing 10μM IdU or equivalent volume DMSO. After 24 hours of treatment, cells

were then fixed with DPBS in 4% paraformaldehyde for 10 minutes. Fixed cells were washed with

DPBS and stored in 70% EtOH at 4°C for one hour to permeabilize the cell membranes. Probes

were diluted 200-fold and allowed to hybridize at 37°C overnight. Wash steps and DAPI (Thermo)

staining were performed as described (https://www.biosearchtech.com/support/resources/stellaris-

protocols).

To minimize photo-bleaching, cells were imaged in a buffer containing 50% glycerol (Thermo),

75 μg/mL glucose oxidase (Sigma Aldrich), 520 μg/mL catalase (Sigma Aldrich), and 0.5 mg/mL

Trolox (Sigma Aldrich). Images were taken on a Zeiss Axio Observer Z1 microscope equipped

with a Yokogawa CSU-X1 spinning disk unit and 100x/1.4 oil objective. Approximately 20 xy

locations were randomly selected for each condition. For each xy location, Nyquist sampling was

performed by taking 30, 0.4μM steps along the z-plane.

Image analysis and spot counting was performed using FISH-quant [57]. Cells were manually
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segmented and analysis was conducted on cells of a similar size to minimize extrinsic noise. Tran-

scriptional centers (TCs) were identified by signal overlap in exon, intron and DAPI channels. The

amount of nascent mRNA at TCs was quantified through a weighted superposition of point spread

functions.

Rate calculations for random-telegraph model

From smRNA-FISH data for Nanog, the kinetic parameters of the random-telegraph model

were inferred using the empirically derived values of mRNA mean (µ), mRNA Fano factor (Fano),

transcriptional center frequency ( fON) and transcriptional center size (TCmRNA) [45]. The transcrip-

tion rate (ktx) is calculated as:

ktx = TCmRNA
kelongation

L
(2.1)

where kelongation is the elongation rate of RNAPII (1.9 kb/min) [58] and L is the length of the

transcribed region of Nanog. The degradation rate (kdecay) is calculated as:

kdecay =
fON · ktx

µ
(2.2)

The rate of promoter activation (kON) is given by:

kON = kdecay

(
−µ( fON−1)+ fON(Fano−1)

Fano−1

)
(2.3)
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The rate of promoter inactivation (kOFF ) is given by:

kOFF =−kdecay

(
−µ( fON−1)+ fON(Fano−1)

Fano−1

)
·
(

1
fON
−1
)

(2.4)

2.2.4 Enhancement of transcriptional variability propagates to the protein

level

To test if enhanced transcript variability transmitted to the protein level, we performed flow-

cytometric analysis of Nanog-GFP reporter protein. In IdU-treated cells, the Nanog protein Fano

factor increased by 3-fold, with little change in mean, indicating that mRNA variability from al-

tered promoter toggling indeed resulted in changes to protein noise (Figure 2.11A). The increase

in protein noise showed no dependency on cell-cycle (Figure 2.11D-E) despite G1-to-S cell-cycle

progression being slightly slowed by IdU treatment (Figure 2.11B-C). Consistent with the extrin-

sic noise analysis above, there was no evidence of aneuploidy following IdU treatment (Figure

2.11B), precluding the possibility that increased noise results from a sub-population of cells with

non-physiologic gene-copy numbers.

Given that Nanog noise was intrinsic and transmitted to the protein level, we next tested a pre-

vious theoretical prediction about Nanog. When cultured in 2i/LIF, mESCs exhibit Nanog protein

expression that is unimodal and high, but when cultured in serum/LIF, mESCs exhibit bimodal

Nanog expression with both a low Nanog state and a high Nanog state (Figure 2.12) [59]. Theories

predicted that increased transcriptional noise would drive greater excursions from the high Nanog

state into the low Nanog state [60]. We found that in mESCs cultured in serum/LIF, IdU-induced

amplification of Nanog noise did indeed generate greater excursions into the low Nanog state (Fig-

ure 2.12), verifying theoretical predictions. This result demonstrates how promoter toggling can

drive Nanog state-switching thereby altering differentiation potential.
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To verify that enhanced noise is not a population-level phenomenon brought on by differen-

tial responses to IdU in distinct cellular subpopulations (i.e., verify ‘ergodicity’ and that individual

cells exhibit increased fluctuations), we used live-cell time-lapse imaging to quantify both the mag-

nitude (intrinsic-CV2) and frequency content (1/half-autocorrelation time) of Nanog fluctuations.

Single-cell tracking of individual cells showed that IdU induced a 2-fold increase in the magnitude

(intrinsic-CV2) of fluctuations (Figure 2.13A-B), and auto-correlation analysis of detrended tra-

jectories showed a broadening of the frequency distribution to higher spectra, indicating reduced

memory of protein state (Figure 2.13C). These higher frequency fluctuations are consistent with

amplification of a non-genetic, intrinsic source of noise [61, 62] because genetic sources of cel-

lular heterogeneity, such as promoter mutations, would lead to longer retention of protein states

(increased memory) [63]. In silico sorting of cells based on starting Nanog expression verified that

noise enhancement was not dependent on memory of initial state (Figure 2.14). Fluctuations in

promoter toggling therefore drive individual cells to dynamically explore a larger state-space of

Nanog expression. To further validate that IdU perturbs an intrinsic source of noise, we used a

mESC line in which the two endogenous alleles of Sox2 are tagged with P2A-mClover and P2A-

tdTomato, respectively, to enable quantification of the intrinsic and extrinsic components of noise.

Treatment with IdU increased Sox2 intrinsic noise greater than 2-fold across all expression levels

(Figure 2.15) further validating that IdU enhances intrinsic noise.

To test if a generalized stress response could explain the noise enhancement induced by IdU,

we subjected Nanog-GFP mESCs to UV radiation for 15, 30, or 60 minutes. Both the mean and

Fano factor of Nanog expression decreased for all timepoints, which markedly differs from IdU

treatment (Figure 2.16). This result further indicates that IdU does not perturb an extrinsic or

global noise source; rather, it perturbs an intrinsic source of noise (i.e., promoter toggling).
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Figure 2.11: Noise-enhancement of Nanog protein expression is independent of cell-cycle
state.
(A) Representative flow cytometry distribution of Nanog-GFP expression in mESCs treated with
DMSO or 10µM IdU for 24h in 2i/LIF. Dashed lines represent mean. Fold change in Fano factor
(± SD) obtained from three biological replicates. IdU increases cell-to-cell variability in Nanog
protein expression. Inset: Representative flow cytometry dot-plot showing conservative gating on
forward and side scatter to filter extrinsic noise arising from cell size heterogeneity. (B) Repre-
sentative flow cytometry distributions of propidium iodide staining for Nanog-GFP mESCs treated
with either DMSO or 10μM IdU for 24 hours. No signs of aneuploidy are visible, indicating tran-
scriptional variability is not due to cell-to-cell variability in gene copy numbers. (C) Percent of
cells in each phase of the cell cycle for DMSO and IdU treatments based on propidium iodide
staining. IdU treatment slightly slows entry into S phase. Data represent mean and SD of three
biological replicates. P values were calculated using a two-tailed, unpaired Student’s t test. *p
< 0.01 (D) Representative flow cytometry distributions of Nanog-GFP for mESCs within the G1,
S and G2 phases of the cell cycle. mESCs were treated with 10μM IdU or equivalent volume
DMSO for 24h followed by propidium iodide staining. (E) IdU-induced noise-enhancement of
Nanog-GFP protein levels is unchanged across all three phases of the cell cycle. Nanog-GFP Fano
factor with IdU treatment was normalized to DMSO control for calculation of fold change. Data
represent mean and SD of three biological replicates. P values were calculated using a two-tailed,
unpaired Student’s t test.
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Figure 2.12: Increased transcriptional noise drives a greater number of mESCs into the low-
Nanog state while cultured in serum/LIF.
Flow cytometry distribution of Nanog-GFP expression for mESCs cultured in serum/LIF and
treated with 10μM IdU or equivalent volume DMSO for 24h. Data is pooled from three biological
replicates.

32



33



Figure 2.13: Time-lapse imaging demonstrates that altered kinetics of promoter toggling
cause individual cells to experience larger fluctuations in Nanog protein expression.
(A) Time-lapse imaging of Nanog-GFP mESCs treated with either DMSO (n = 1513) or 10µM IdU
(n = 1414) in 2i/LIF. Image acquisition began immediately after addition of compounds. Trajec-
tories from two replicates of each condition are pooled, with solid and dashed lines representing
mean and standard deviation of trajectories respectively. Distributions of Nanog-GFP represent
expression at final time-point. Intrinsic-CV2 of each detrended trajectory was calculated, with the
average (± SD) of all trajectories reported. (B) Each point represents a single-cell fluorescence
trajectory (DMSO on left, n = 1513; IdU on right, n = 1414). Single-cell fluorescence trajectories
were detrended by subtracting time-dependent population average for Nanog-GFP fluorescence.
The mean Nanog-GFP fluorescence for each raw trajectory is then plotted versus the CV2 of the
detrended version of the trajectory to isolate intrinsic noise. The dashed lines represent the av-
erage intrinsic CV2 of all trajectories for each treatment group. Time-lapse imaging shows that
for individual cells the magnitude of Nanog protein fluctuations increases with IdU treatment.
(C) Distributions of noise frequencies from autocorrelation functions of each detrended trajectory.
Noise frequency is calculated as the inverse of the autocorrelation time (τ1/2). Shorter but more
productive transcriptional bursts with IdU treatment pushes the frequency content of Nanog-GFP
fluctuations to higher spectra.
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Figure 2.14: Amplification of expression fluctuations occurs independently of starting Nanog
level.
Single-cell trajectories whose starting fluorescence value was below 500 a.u. or above 700 a.u.
were binned into low and high groups respectively. Only trajectories whose starting point coin-
cided with addition of DMSO or IdU at time zero were used. Distributions of trajectory fluores-
cence values at zero, seven, and 14 hours into treatment conditions are shown. By 14 hours into
IdU treatment, there is visible interconversion of cells between the low and high Nanog states, in-
dicating that memory of initial Nanog expression level is erased. This precludes the possibility that
noise enhancement is due to promoter mutations that create sub-populations of cells with stable
expression of Nanog at low and high levels.
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Figure 2.15: IdU treatment increases intrinsic noise of Sox2 expression.
(A) Flow cytometry dot-plot of mESCs with Sox2 dual color tags. Dashed red line has slope of one.
mCLover and tdTomato fluorescence values were normalized to population average. Data shown is
pooled from three biological replicates. (B) Cells were binned according to total Sox2 expression
from both alleles. Each point represents the intrinsic noise (Fano factor) of Sox2 expression for
cells within a particular bin. Grey shadings represent 95% confidence intervals as determined by
bootstrapping. Smooth lines are produced from loess regression. IdU increases Sox2 intrinsic
noise across all expression levels.
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Figure 2.16: UV-stress reduces Nanog mean and Fano factor.
(A) Representative flow cytometry distributions of Nanog-GFP expression from UV-exposed
(green) and control (grey) cell populations. Cells were analyzed one, two, four, eight, and 12
hours post exposure. (B) For each exposure group (15, 30, and 60 minutes), the fold change in
Fano factor is calculated as the Fano factor for Nanog in the UV-exposed population normalized
to the Fano factor of its respective control population. Data points represent mean and SD of two
biological replicates. Across all time points (except 4 hour point in 15 minute exposure group) UV
stress reduces the Fano factor of Nanog.
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Methods

Extrinsic Noise Filtering on Flow Cytometry Data

All flow cytometry data were collected on BD FACSCalibur, LSRII or LSRFortessa X-20 with

488-nm laser used to detect GFP. For all measurements of Nanog-GFP mean and variability, >50k

cells are collected per sample. Gating of cytometry data was performed with FlowJo. Prior to

quantification of Nanog-GFP mean and variability, the smallest possible forward- and side-scatter

region containing at least 3k cells was used to isolate cells of similar size and shape. This fil-

ters out gene expression variability arising from cell-size heterogeneity as previously established

[30, 34, 45].

Cell-cycle Analysis by Propidium-Iodide Staining

2x105 Nanog-GFP mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF

media. 24 hours following seeding, media was replaced with 2i/LIF media containing 10μM IdU

or an equivalent volume of DMSO in triplicate for 24 hours. After treatment, cells were washed

with DPBS, dissociated with TrypLE, pelleted, washed with DPBS, and resuspended in ice-cold

70% ethanol. Samples were stored overnight at -20°C and pelleted the following day at 200g for

5 minutes at 4°C. Cells were washed twice with DPBS supplemented with 0.5% BSA to prevent

cell loss. Pellets were resuspended in 150μL of DPBS supplemented with 0.1mg/ml RNAse A

(Thermo) and 30 μg/ml Propidium Iodide (Thermo). After overnight incubation at 4°C, cells were

directly analyzed on a BD LSRII cytometer.

Noise Enhancer Testing in Serum/LIF culture

Serum/LIF media was prepared with 85% DMEM (supplemented with 2mM of L-glutamine),

15% FBS, 0.1mM 2-mercaptoethanol, and 1000U/ml of LIF (Sigma Aldrich). Nanog-GFP mESCs
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grown feeder-free in 2i/LIF were passaged and seeded onto gelatin-coated 10cm dishes in serum/LIF

media. Cells were passaged twice in serum/LIF media prior to noise enhancer testing. 4x105

Nanog-GFP mESCs were seeded into each well of a gelatin-coated 6-well plate in serum/LIF me-

dia. 24 hours following seeding, media was replaced with serum/LIF supplemented with either

10μM IdU or equivalent volume DMSO in triplicate. After 24 hours of treatment, cells were run

unfixed and live on BD LSRII flow cytometer.

Sox2 two-color reporter assay

The endogenous alleles of Sox2 are tagged with P2A-mClover and P2A-tdTomato. Both flu-

orophores have a PEST tag, thus shortening their half-lives to approximately 2.5 hours. 2x105

Sox2-dual-tag mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media.

24 hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU

or an equivalent volume of DMSO in triplicate for 24 hours. Cells were run unfixed and live on

BD LSRII flow cytometer. Intrinsic noise was calculated as in Elowitz et. al [64]. Data from all

three replicates were pooled together. No cell-size gating was performed as assay allows for sepa-

ration of extrinsic noise. To align fluorescence values of mClover and tdTomato on the same scale,

each cell’s fluorescence intensity was normalized to the mean expression level of that fluorophore

for the population. Since Sox2 expression spans several orders of magnitude, cells were binned

according to their total Sox2 expression (mClover + tdTomato). Bins with fewer than 100 cells

were discarded. Intrinsic noise (CV2) of Sox2 expression for each bin was calculated using the

following formula:

η
2
intrinsic =

〈(tdTomatoi−mCloveri)
2〉

2〈tdTomato〉〈mClover〉
(2.5)

This value was then multiplied by the mean Sox2 expression for each bin to obtain the Fano
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factor. Given that the number of cells in each bin differs and variance estimates are affected by

sample size, we calculated 95% confidence intervals around the Fano factor for each bin through

bootstrapping. Bin populations were resampled 10,000 times with replacement.

UV stress assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF

media. 24 hours following seeding, cultures were exposed to 3kJ of 365nM light (Fotodyne UV

Transilluminator 3-3000 with 15W bulbs) for 15, 30 or 60 minutes at room temperature in the

dark. Control plates were left at room temperature in the dark for equivalent periods of time. Cells

from UV-exposed and control plates were run unfixed and live on BD FACS Calibur cytometer

1,2,4,8, and 12 hours post-exposure in replicate. Extrinsic noise filtering via cell-size gating was

performed prior to calculation of Nanog Fano factor.

Live-cell time-lapse microscopy

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish

(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replenished

with 2i/LIF containing 10μM IdU or equivalent volume DMSO in replicate. Time-lapse imaging

commenced immediately after addition of compounds with IdU- and DMSO- treated cells imaged

in the same experiment (neighboring wells). Imaging was performed on a Zeiss Axio Observer Z1

microscope equipped with Yokogawa CSU-X1 spinning disk unit and a Cool-SNAP HQ2 14-bit

camera (PhotoMetrics). 488nM laser line (50% laser power, 500-ms excitation) was used for GFP

imaging. Samples were kept in an enclosed stage that maintained humidified conditions at 37°C

and 5% CO2. Images were captured every 20 minutes for 24 hours. For each xy location, three

z-planes were sampled at 4-μm intervals. The objective used was 40x oil, 1.3 N.A.
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Cell segmentation, tracking and GFP quantification were carried out using CellProfiler [65].

Tracking of cells was manually verified. Segmented cells tracked for less than 4 hours were

discarded. Cell division triggered the start of 2 new trajectories. After illumination correction

and background subtraction, the mean GFP fluorescence intensity of a segmented cell was taken

from each z-plane and averaged over the entire z-stack. For each trajectory, noise autocorre-

lation (τ1/2) and noise magnitude (intrinsic-CV2) were calculated as previously described [61].

Fluorescence trajectories were first detrended (normalized) by subtracting the population time-

dependent average fluorescence to isolate intrinsic noise. Distributions of noise frequency ranges

(FN) were extracted from normalized autocorrelation functions (ACFs) of individual trajectories,

where FN = 1
τ1/2

.τ1/2 is the value of τ (lag time) where the normalized ACF reaches a value of 0.5.
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Chapter 3

DNA repair protein, Apex1, homeostatically

enhances transcriptional noise via increased

DNA supercoiling

3.1 Results

3.1.1 5’-bromo-2’-deoxyuridine (BrdU), 5-hydroxymethylcytosine (hmC), and

5-hydroxymethyluridine (hmU) increase Nanog expression noise

To pinpoint the molecular mechanism, 14 additional nucleoside analogs were screened for

noise enhancement effects. 5’-bromo-2’-deoxyuridine (BrdU), 5-hydroxymethylcytosine (hmC),

and 5-hydroxymethyluridine (hmU) also increased Nanog Fano factor to varying degrees (Figure

3.1A). Intriguingly, hmU and hmC are naturally produced by the Ten Eleven Translocation (Tet)

family of enzymes during oxidation of thymine and methylated cytosine respectively [66, 67].

Given that these base modifications are removed via base-excision repair (BER), we surmised that

their incorporation and removal from genomic DNA may be responsible for noise enhancement

(Figure 3.1B) [68, 69].
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Figure 3.1: Screening of additional nucleoside analogs identifies naturally occurring base
modifications that increase gene expression noise.
(A) Screening of 14 additional nucleoside analogs. Nanog-GFP mESCs grown in 2i/LIF were
supplemented with 10µM of nucleoside analog for 24h. Fano factor for Nanog protein expression
was normalized to DMSO. Data represent mean (± SD) of two biological replicates. BrdU, hmC
and hmU increase Nanog expression variability as compared to DMSO, *p ¡ 0.01 by a Kruskal-
Wallis test followed by Tukey’s multiple comparison test. (B) Schematic of nucleoside analog
incorporation into genomic DNA and removal via base excision repair pathway.
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Methods

Nucleoside analog screening

14 nucleoside analogs (compound names and sources listed in Table S3) were resuspended in

DMSO. 1x105 Nanog-GFP mESCs were seeded in gelatin-coated 12-well plates in 2i/LIF media.

24 hours after seeding, media was swapped with 2i/LIF containing 10μM of nucleoside analog or

equivalent volume DMSO in replicate. After 24 hours of treatment, cells were run unfixed and

live on BD LSRII cytometer. Extrinsic noise filtering via cell-size gating was performed prior to

calculation of Nanog Fano factor. Fano factor for Nanog-GFP expression for each treatment was

normalized to DMSO control.

3.1.2 CRISPRi knockdown of Apex1 and Tk1 ablates noise-enhancement

from IdU

To test this, we knocked down 25 genes (3 gRNAs/gene) involved in nucleoside metabolism

and DNA repair using CRISPRi, and quantified how these knockdowns affected IdU’s noise en-

hancement. We identified 2 genes: AP Endonuclease 1 (Apex1) and thymidine kinase 1 (Tk1)

whose knockdown abrogated noise enhancement (Figure 3.2A). Knockdown was confirmed via

RT-qPCR (Figure 3.2B).

Within the base excision repair pathway, Uracil DNA glycosylase (Udg) and Thymine DNA

glycosylase (Tdg) have overlapping roles in removal of modified and mismatched bases [70]. Al-

though, knockdown of each enzyme individually failed to ablate Nanog noise-enhancement, it is

possible that Udg and Tdg compensate for each other. To account for this possibility, dual gRNA

expression cassettes were used to simultaneously express 9 combinations (3x3) of gRNAs for Udg

and Tdg in CRISPRi Nanog-GFP mESCs. Simultaneous knockdown of Tdg and Udg in mESCs
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failed to ablate the noise-enhancing effects of IdU (Figure 3.2C).

Tk1 adds a requisite gamma-phosphate group to diphosphate nucleotides prior to genomic in-

corporation (Figure 3.1B) [71]. Our knockdown results indicated that phosphorylation of IdU

by Tk1 and subsequent incorporation of phosphorylated IdU into the genome may be necessary

for noise enhancement. To validate this, we tested the effect of treatment with 10µM IdU com-

bined with excess thymidine, a competitive substrate of Tk1. Competitive inclusion of thymidine

returned Nanog noise to baseline levels (Figure 3.3), indicating that noise enhancement is depen-

dent on IdU incorporation. The reduction in Nanog noise with addition of exogenous thymidine

also suggests that IdU-induced noise amplification is not a generic effect of nucleotide imbalances

within the cell.

Apex1 (a.k.a., Ref-1, Ape1) plays a pivotal role in the BER pathway as it incises DNA at

apurinic/apyrimidinic sites via an endonuclease domain, allowing for subsequent removal of the

sugar backbone and patching of the gap [70, 72]. To confirm the knockdown results, we attempted

to knockout Apex1 in mESCs. However, the knockout was lethal, in agreement with previous re-

ports [73]. As an alternative, we used a small-molecule inhibitor (CRT0044876) specific for the

Apex1 endonuclease domain [74]. Unexpectedly, the combination of CRT0044876 with IdU syn-

ergistically increased Nanog protein variability, without significantly changing the mean (Figure

3.4).
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Figure 3.2: Noise amplification independent of mean is dependent on Apex1 and Tk1.
(A) (Left) CRISPRi screening for genetic dependencies of IdU noise enhancement. Nanog-GFP
mESCs stably expressing dCas9-KRAB-p2A-mCherry were transduced with a single gRNA ex-
pression vector with BFP reporter. 75 gRNAs (25 genes, 3 gRNAs/gene) were tested in addition to
3 non-targeting control gRNAs. Two days following transduction, each gRNA-expressing popula-
tion of mESCs was treated with DMSO or 10µM IdU for 24h in 2i/LIF media. Nanog-GFP protein
expression was measured for mCherry/BFP double positive cells. Nanog Fano factor for DMSO
and IdU treatment of each gRNA population was normalized to Nanog Fano factor of non-targeting
gRNA+DMSO population. Each point represents a gRNA. Dashed horizontal line represents aver-
age noise enhancement of Nanog from IdU in the background of non-targeting gRNA expression
(black squares). Knockdown of Apex1 and Tk1 diminishes noise enhancement of Nanog from
IdU. (Right) Representative flow cytometry distributions of Nanog expression for mESCs express-
ing non-targeting (top-right), Apex1 (middle-right), or Tk1 (bottom-right) gRNAs and treated with
DMSO or 10µM IdU. (B) Validation of CRISPRi knockdown of Apex1 and Tk1 via qPCR mea-
surements. ∆∆Ct method was used with the empty-vector cell population as the control. Levels
of Apex1 and Tk1 repression are relative to the non-targeting (scrambled) population. Data rep-
resent mean and SD of two biological replicates. (C) Simultaneous knockdown of Udg and Tdg
fails to ablate Nanog noise enhancement with IdU treatment. Two days following transduction
with dual gRNA lentiviral vectors, each gRNA-expressing population of mESCs was treated with
DMSO or 10µM IdU for 24h in 2i/LIF media. Nanog-GFP protein expression was measured for
mCherry/BFP double positive cells. Nanog Fano factor for IdU treatment of each gRNA popula-
tion was normalized to Nanog Fano factor of non-targeting gRNA (2x scram)+DMSO population.
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Figure 3.3: Thymidine competition ablates Nanog noise-enhancement from IdU.
The Fano factor of Nanog for each concentration combination is normalized to DMSO control.
For all treatment combinations, IdU concentration is held constant at 10μM. Concentration of
thymidine (red) and uridine (blue) is reported on the x-axis. Combination of 100μM thymidine
and 10μM IdU returns Nanog Fano factor to baseline level (DMSO control). Uridine, which is not
a substrate of Tk1, fails to ablate IdU-induced noise-enhancement. Data points represent mean and
SD of three biological replicates.
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Figure 3.4: Small-molecule inhibition of Apex1 endonuclease domain synergistically in-
creases cell-to-cell variability when combined with IdU.
(Left) mESCs were treated with DMSO, 100µM CRT0044876, 10µM IdU or 10µM IdU + 100µM
CRT0044876 for 24h in 2i/LIF. Nanog Fano factor for each treatment was normalized to DMSO
control. Data represent mean (± SD) of three biological replicates. Inhibition of Apex1 endonu-
clease domain in combination with IdU synergistically increases cell-to-cell variability of Nanog
expression, *p = 0.0028 by a two-tailed, unpaired Student’s t test. (Right) Representative flow cy-
tometry distributions of Nanog expression for mESCs treated with DMSO or 10µM IdU + 100µM
CRT0044876.
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Methods

Generation of stable CRISPRi Nanog-GFP mESC line

To stably integrate the CRISPRi machinery into the ROSA26 locus of Nanog-GFP mESCs,

AAVS1 homology arms of the CRISPRi knockin construct (krab-dCas9-p2a-mCherry, Addgene:73497)

were swapped with ROSA26 homology arms. The dox-inducible promoter of this construct was

replaced with a constitutive CAGGS promoter and the kanamycin resistance cassette was replaced

with puromycin resistance. Two million Nanog-GFP mESCs were nucleofected with the CRISPRi

knockin construct and left to recover for 48 hours. Puromycin (1µg/ml) selection was run until sin-

gle colonies could be picked. Clonal CRISPRi Nanog-GFP mESC lines were assessed for mCherry

expression and ability to knockdown Nanog. We selected the clone with the highest percentage of

mCherry-positive cells.

CRISPRi gRNA design and cloning

gRNA sequences were were taken from the mCRISPRi-v2 library [75]. gRNA oligos were an-

nealed and cloned into the pU6-sgRNA EF1Alpha-puro-T2A-BFP lentiviral vector (Addgene:60955)

using the BstXI/BlpI ligation strategy [75].

CRISPRi screening for genetic dependencies of noise enhancer

25 genes involved in nucleotide metabolism, DNA repair, and chromatin remodeling were

screened for their potential role in noise enhancement from IdU. Three gRNAs were designed per

gene. Three non-targeting controls (scrambled gRNAs) were taken from the mCRISPRi-v2 library

[75]. Each gRNA expression plasmid was separately packaged into lentivirus in HEK293T cells

as previously described [75]. For each gRNA lentivirus, 1.5x105 CRISPRi Nanog-GFP mESCs

were spinoculated with filtered viral supernatant for 90 minutes at 200 x g in replicate. Following
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spinoculation, infected cells were seeded into gelatin-coated, 6-well plates in 2i/LIF media. 48

hours following seeding, media was swapped with 2i/LIF supplemented with either 10μM IdU or

equivalent volume DMSO. Consequently, for every knockdown there is a DMSO and IdU treat-

ment group. After 24 hours of treatment, cells were run unfixed and live on a BD LSRII flow

cytometer. To minimize technical variability, analysis was restricted to cells with homogeneous

levels of dCas9-KRAB and gRNA expression through stringent gating on mCherry/BFP double-

positive cells. Extrinsic noise filtering through cell-size gating was then applied. For each gRNA,

Nanog Fano factor for the DMSO and IdU treatments were normalized to the Nanog Fano factor

of the non-targeting controls treated with DMSO.

qPCR verification of CRISPRi knockdown

To verify CRISPRi knockdown of Apex1 and Tk1, each of the six gRNA-expression plasmids

targeting these two genes along with a non-targeting control and empty vector were packaged

into lentivirus. 1.5x105 CRISPRi Nanog-GFP mESCs were spinoculated with filtered viral su-

pernatant for 90 minutes at 200 x g in replicate. Following spinoculation, infected cells were

seeded into gelatin-coated, 6-well plates in 2i/LIF media. 72 hours following seeding, 1x106

mCherry/BFP double-positive cells from each infected cell population were sorted on a FAC-

SAria II. Total RNA was extracted using an RNeasy Mini Kit (QIAGEN cat:74104) and reverse-

transcribed using a QuantiTect Reverse Transcription Kit (QIAGEN cat:205311). cDNA from each

independent biological replicate was plated in triplicate and run on a 7900HT Fast Real-Time PCR

System (Thermo) using designed primers and Fast SYBR Green Master Mix (Applied Biosystems,

cat:4385612). Expression of GAPDH was used for normalization. Relative mRNA levels of Apex1

and Tk1 were calculated by the ∆∆Ct method using the empty-vector populations as the control.

All reported levels of repression are relative to the non-targeting control.
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Tk1 competition assay

1x105 Nanog-GFP mESCs were seeded in each well of gelatin-coated, 12-well plates in 2i/LIF

media. 24 hours following seeding, media was replaced with 2i/LIF supplemented with 10μM IdU

in combination with thymidine (Sigma cat:T1895) or uridine (Sigma cat:U3003) at concentrations

ranging from 0 to 100μM. Concentration combinations were done in triplicate. After 24 hours of

treatment, cells were run unfixed and live on BD FACS Calibur cytometer. Extrinsic noise filtering

via cell-size gating was performed prior to calculation of Nanog Fano factor.

3.1.3 Homeostatic noise-amplification by Apex1 is mediated by DNA super-

coiling

The contrasting effects of Apex1 knockdown and catalytic inhibition implied that a physi-

cal rather than enzymatic quality of the protein is responsible for modulation of transcriptional

bursting. In support of this, Apex1 induces helical distortions and local supercoiling to identify

mismatched bases [76]. Furthermore, catalytically inactive Apex1 binds DNA with higher affinity

[77]. Therefore, CRT0044876 may lengthen Apex1 residence times on DNA, thus synergistically

amplifying topological reformations. Taken together with evidence that supercoiling sets mechan-

ical bounds on transcriptional bursting [23, 78, 38], we next asked whether Apex1 recruitment

impacts supercoiling levels.

To assay supercoiling, we used a psoralen-crosslinking assay in which mESCs are incubated

with biotinylated-trimethylpsoralen (bTMP), which preferentially intercalates into negatively su-

percoiled DNA [79, 80]. To eliminate DNA replication as a contributor of supercoiling, aphidicolin

is added to inhibit DNA polymerases prior to bTMP incubation [81]. IdU treatment significantly

increased genomic supercoiling as demonstrated by a∼2-fold increase in bTMP intercalation (Fig-

ure 3.3A). The combination of IdU and CRT0044876 further increased intercalation, suggesting
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that supercoiling levels are correlated with noise enhancement through increased Apex1-DNA in-

teractions (Figure 3.5A). IdU treatment followed by a short incubation with bleomycin (which

decreases supercoiling through double-stranded breaks) reduced bTMP intercalation below the

DMSO control level, indicating IdU alone in uncoiled DNA does not increase intercalation (Figure

3.5B).

If DNA topology influences transcriptional bursting, additional modifiers of supercoiling should

also affect Nanog noise. Topoisomerase 1 and 2a (Top1 and Top2a, respectively) relax coiled DNA

through the introduction of single- and double-stranded breaks, respectively. Knockdown of Top1

and Top2a via CRISPRi, increased Nanog protein variability (Figure 3.6A). Furthermore, inhibi-

tion of topoisomerase activity with the small-molecule inhibitors topotecan and etoposide recapit-

ulated these effects (Figure 3.6B).

To further test whether increased DNA supercoiling is responsible for noise-enhancement, we

hypothesized that overexpression of topoisomerases should help alleviate Apex1-induced super-

coiling and thus reduce noise-enhancement from IdU. To test this hypothesis, a Topoisomerase

1 expression vector under a weak CMV promoter was lentivirally integrated into Nanog-GFP

mESCs. Overexpression of Topoisomerase 1 reduced IdU-mediated noise-enhancement of Nanog

by 31% as compared to the wildtype population of Nanog-GFP mESCs treated with IdU (Figure

3.7). Taken together with psoralen-crosslinking and topoisomerase inhibition data, these results

suggest that Apex1-induced supercoiling tunes gene-expression fluctuations without altering mean

expression levels.
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Figure 3.5: Apex1 recruitment to DNA increases negative-supercoiling levels.
(A) Single-cell quantification of negative supercoiling levels using psoralen-crosslinking assay.
mESCs were treated with DMSO, 10µM IdU or 10µM + 100µM CRT0044876 for 24h in 2i/LIF.
1µM aphidicolin was added to cultures 2h prior to incubation with biotinylated-trimethylpsoralen
(bTMP). Following UV-crosslinking, cells were stained with streptavidin-Alexa594 conjugate and
DAPI. Distributions for nuclear intensities of bTMP staining are shown. Data are pooled from
two biological replicates of each treatment. IdU treatment increases negative supercoiling as com-
pared to DMSO control, **p < 0.0001. IdU in combination with CRT0044876 further increases
supercoiling levels as compared to DMSO (**p < 0.0001) and IdU alone (**p < 0.0001). P val-
ues were calculated using Kruskal-Wallis test followed by Tukey’s multiple comparison test. (B)
Bleomycin treatment reduces bTMP intercalation into DNA, validating assay sensitivity for nega-
tive supercoiling levels. Boxplots show median ±interquartile range of single-cell bTMP staining
intensities. Treatment of mESCs with 100μM bleomycin was performed for 1 hour just prior to
bTMP incubation. Bleomycin reduces the mean bTMP staining intensity for cells treated with
DMSO or 10μM IdU as compared to DMSO control with no bleomycin treatment (**p < 0.0001).
The reduction in bTMP staining when IdU is coupled with bleomycin indicates that IdU alone in
uncoiled DNA does not increase bTMP intercalation. Data shown are pooled from two biologi-
cal replicates. P values were calculated using Kruskal-Wallis test followed by Tukey’s multiple
comparison test.
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Figure 3.6: Loss of Topoisomerase activity increases Nanog expression variability.
(A) CRISPRi Knockdown of Topoisomerases involved in relaxation of DNA supercoiling. Nanog
Fano factor was normalized to scrambled gRNA population. Data represent mean (± SD) of three
biological replicates. Knockdown of Top1 (*p = 0.002) and Top2a (*p = 0.003) increases Nanog
expression variability. P values were calculated by two-tailed, unpaired Student’s t test. (B) Small-
molecule inhibition of Topoisomerase I and II increases Nanog expression variability. Representa-
tive flow cytometry distributions of Nanog-GFP expression in mESCs treated with DMSO, 500nM
topotecan or 500nM etoposide for 24 hours in 2i/Lif media. Extrinsic noise filtering via cell-size
gating was performed prior to calculation of Nanog Fano factor. Table inset shows mean and Fano
factor (±SD) of Nanog expression averaged over three biological replicates of each treatment.
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Figure 3.7: Overexpression of Topoisomerase 1 partially ablates noise-enhancement of Nanog
expression.
Wildtype (WT) and topoisomerase 1 (Top1) overexpressiong Nanog-GFP mESCs were treated
with DMSO or 10µM IdU for 24h in 2i/LIF media. Nanog Fano factor was normalized to wild-
type population of Nanog-GFP mESCs treated with DMSO. Data represent mean (± SD) of three
biological replicates. Overexpression of Top1 (*p = 0.0036) reduces IdU-mediated enhancement
of Nanog variability by 31%. P values were calculated by two-tailed, unpaired Student’s t test.
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Methods

Biotinylated-trimethylpsoralen (bTMP) supercoiling assay

1x105 Nanog-GFP mESCs were seeded into each well of a gelatin-coated, 35mm Ibidi dish

(quad-chambered, cat:80416) in 2i/LIF media. 24 hours following seeding, media was replaced

with 2i/LIF supplemented with 10μM IdU , 10μM IdU & 100μM CRT0044876, or equivalent

volume DMSO in replicate. After 24 hours of treatment, media was replaced with 2i/LIF supple-

mented with 1μM aphidicolin for two hours. For control experiments, Nanog-GFP mESCs were

cultured with or without 10μM IdU for 24 hours followed by treatment with 100μM bleomycin

for one hour. Cells were then washed 1xDPBS and then permeabilized with 0.1% Tween-20 in

DPBS for 15 minutes. Cells were then incubated with 0.3mg/ml EZ-Link Psoarlen-PEG3-Biotin

(Thermo cat:29986) for 15 minutes. Cultures were then exposed to 365nM light (AlphaImager

HP with 15W bulbs, ProteinSimple) for 15 minutes at room temperature. Cells were then washed

2xDPBS, fixed with cold 70% ethanol for 30 minutes at 4°C, and then washed 2xDPBS. Cells

were then incubated with Alexa Fluor 594 Streptavidin (Thermo cat:S32356) for one hour at room

temperature in the dark, washed 2xDPBS, and stained with DAPI for 10 minutes at room temper-

ature in the dark. Cells were imaged in a buffer containing 50% glycerol (Thermo), 75 μg/mL

glucose oxidase (Sigma Aldrich), 520 μg/mL catalase (Sigma Aldrich), and 0.5 mg/mL Trolox

(Sigma Aldrich). Images were taken on a Zeiss Axio Observer Z1 microscope equipped with a

Yokogawa CSU-X1 spinning disk unit and 63x/1.4 oil objective. Approximately 20 xy locations

were randomly selected for each condition. For each xy location, three z-planes were sampled at

4-μm intervals. Nuclear segmentation using DAPI signal and quantification of psoralen staining

intensity were carried out using CellProfiler. After illumination correction and background sub-

traction, the mean psoralen fluorescence intensity of a segmented nucleus was taken from each

z-plane and averaged over the entire z-stack.
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Topoisomerase 1 overexpression assay

Topoisomerase 1 (NM 009408) expression vector (Origene, MR218547L3) with puromycin

selection marker was packaged into lentivirus using HEK293T cells. Nanog-GFP mESCs were

spinoculated with lentiviral supernatant. Three days following transduction, infected cells were

subjected to seven days of puromycin (1ug/ml) selection to isolate cells stably overexpressing

Topoisomerase 1.

1x105 wildtype and Topoisomerase 1 overexpressing Nanog-GFP mESCs were seeded in gelatin-

coated 12-well plates in 2i/LIF media. 24 hours after seeding, media was swapped with 2i/LIF

containing 10μM of IdU or equivalent volume DMSO in triplicate. After 24 hours of treatment,

cells were run unfixed and live on BD LSRII cytometer. Extrinsic noise filtering via cell-size gating

was performed prior to calculation of Nanog Fano factor. Fano factor for Nanog-GFP expression

for each treatment was normalized to the DMSO control for wildtype Nanog-GFP mESCs.

3.1.4 Noise amplification is correlated with increased promoter nucleosome

occupancy

In addition to examining DNA supercoiling levels, we wanted to investigate the effects that

IdU treatment has on nucleosome positioning. In both yeast and human contexts, transcriptional

variability is correlated with the level of nucleosome occupancy in the proximal promoter region

(ppr, 200 base pairs upstream of TSS) [82]. High noise genes tend to have greater nucleosome oc-

cupancy within the ppr. It is believed that the additional chromatin-remodeling required for gene

activation increases transcriptional noise.

To test whether IdU treatment is perturbing nucleosome positioning within promoter regions, I

performed ATAC-seq on mESCs treated with DMSO or 10μM IdU for 24 hours in 2i/LIF media.

Analysis revealed that IdU treatment increases nucleosome occupancy and decreases the peak-to-
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trough ratio for the Nanog promoter region which is classified as a depleted proximal nucleosome

gene in the DMSO condition (Figure 3.8B). Examination of the average nucleosome occupancy

profile for all DPN genes shows a similar pattern: IdU treatment causes a decrease in the peak-to-

trough ratio with increased nucleosome occupancy within the proximal promoter region (Figure

3.8C). Integration of the single-cell RNA-seq and ATAC-seq datasets revealed a strong positive

correlation between the level of IdU-mediated noise enhancement for a gene and the increase in

nucleosome occupancy for the promoter region (Figure 3.8D).

The correlation between strength of noise-enhancement and increased nucleosome occupancy

may be related to chromatin remodeling that occurs during DNA repair or it is a direct consequence

of Apex1-induced supercoiling which is known to cause shifting of nucleosomes [79]. If this is the

case, the level of nucleosome remodeling within a promoter may be indicative of the supercoiling

level within that region.
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Figure 3.8: Noise amplification is correlated with increased promoter nucleosome occupancy.
(A) ATAC-seq results demonstrate presence of two gene classes based on promoter nucleosome oc-
cupancy. ATAC-seq analysis was performed on mESCs treated with DMSO or 10μM IdU for 24
hours. Heatmaps display nucleosome occupancy scores for 13,345 promoter regions. Data for 2
replicates are shown. Genes are classified as having an occupied (OPN) or depleted (DPN) prox-
imal nucleosome based on the nucleosome occupancy score of the 200 base pair region directly
upstream of the transcript TSS. (B) IdU treatment causes increased nucleosome occupancy for the
promoter region of Nanog. Data represent average of two replicates. (C) The average promoter
nucleosome occupancy profile for all DPN genes shows a decreased peak-to-trough ratio in the IdU
condition. IdU treatment minimizes the distance between valley peaks and troughs indicating that
nucleosome positioning has been destabilized. (D) Strength of IdU-mediated noise enhancement
for a gene is positively correlated with change in nucleosome occupancy of the promoter region.
Using single-cell RNA-seq data, genes are ranked in ascending order according to the ratio of their
Fano factor in the IdU and DMSO conditions. The cumulative nucleosome occupancy score of
the 400bp region directly upstream of the TSS is calculated for the IdU and DMSO conditions.
The change in nucleosome occupancy for each gene is then plotted against its Fano factor ratio.
A smoothing average of the data points was then performed. Genes with the greatest increase in
Fano factor also experienced the greatest increase in nucleosome occupancy within their promoter
region.
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Methods

ATAC-seq analysis of nucleosome positioning.

2x105 mESCs were seeded in each well of a gelatin-coated, 6-well plate in 2i/LIF media. 24

hours following seeding, cultures were replenished with 2i/LIF media containing 10μM IdU or an

equivalent volume of DMSO in replicate for 24 hours. After treatment, cells were trypsinized with

TrypLE and ATAC-seq libraries were prepared according to Buenrostro et. al. [83].

Libraries were sequenced in a paired-end fashion on an Illumina HiSeq4000. Sequencing

yielded a median of ∼50 million paired-end reads per library. Read quality was checked via

FASTQC. Adaptor sequences were then trimmed from each read using atactk. Trimeed reads were

then aligned to the mm9 reference genome using the burroughs-wheeler algorithm. Duplicate reads

were removed using Picard. Reads aligning to the sex chromosomes and mitochondrial genome

were also removed. MACS callpeak function was then used to identify euchromatic regions based

on read density. Nucleoatac was then used to compute nucleosome occupancy scores for promoter

regions of annotated transcripts in the mm9 genome.
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Chapter 4

Mathematical modeling and simulations of

Apex1 activity reveals a

transcription-coupled repair mechanism

4.1 Introduction

To delineate how Apex1 alters transcriptional dynamics of Nanog gene expression in a way

that increases noise without changing mean, we developed a series of models that allow for Apex1

interaction at different stages of the transcription process. Through stochastic simulation of these

models and comparison to experimental data, the aim is to develop greater mechanistic insight into

what stages of the transcription process Apex1 affects. The tested models listed in Figure 4.2 are

adapted from the two-state random telegraph model. We assume in each of the models that IdU

incorporation into the genome leads to recruitment of Apex1 (kincorpo). The resulting interaction

results in a transcriptionally non-productive state. Unbinding of Apex1 is triggered by completion

of repair (krepair).
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4.2 Detailed mathematics and derivation of parameter constraints

We derive here some relations, at equilibrium, between the kinetic rates of the diverse models.

These relationships are then used to constrain the parameter phase space for a given set of data.

4.2.1 Model 0

This is the null model and consists of only the canonical two-state random-telegraph. This

model is used as a null hypothesis, in particular for log-likelihood and AIC- based model selection.

4.2.2 Model 1

We assume that IdU incorporation and subsequent interaction of Apex1 with the chromatin,

occurs only in the OFF state of the promoter. Biologically, this may occur if control mechanisms

inhibit DNA repair during active transcription.

The differential equations governing the gene fractions in the different states and the mRNA

counts are as follows:



dOFF
dt = kON ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF− kOFF ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dRNA
dt = kRNA ·ON− kdecay ·RNA
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Using the fact that:

KON

KON +KOFF
≡ ON

ON +OFF +OFF∗
(4.1)

we derive the following constraint between krepair and kincorpo, where KOFF represents the

transition rate to the macroscopic OFF state consisting of the OFF (kOFF ) and OFF*(kincorpo)

states in Model 1:

krepair =
KON +KOFF

KON
· kON

kON + kOFF + kincorpo
− kincorpo (4.2)

4.2.3 Model 2

In this model, Apex1 can interact with chromatin in both the ON and OFF states of the pro-

moter. If Apex1 interacts with the chromatin in the ON state, this leads to a turning off of the

system. Molecularly this may be seen as a strong inhibitory effect mediated by Apex1: the in-

teraction may recruit chromatin modifiers (e.g. histone deacetylases, histone methyltransferases)

that silence gene expression. In the same way, stalled polymerases, at both the promoter proximal

region and further in the gene, may unbind DNA.
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This model can be described by the following set of ODEs:



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF− (kOFF + kincorpo) ·ON

dOFF∗
dt = kincorpo ·OFF + kincorpo ·ON− krepair ·OFF∗

dRNA
dt = kRNA ·ON− kdecay ·RNA

Using equation (4.1) we derive the following constraint between krepair and kincorpo:

kincorpo

krepair
=

KOFF

KON
· kON

kOFF
−1 (4.3)

4.2.4 Model 3

Here we assume that Apex1 can still interact in the ON state but that does not alter the

”primed” characteristic of the gene expression system. The system is thus in a transcriptionally

non-productive ON* state. In other words transcription can not be achieved when Apex1 interacts

with the chromatin but the transcriptionally permissive chromatin and molecular context is not al-

tered: primed polymerases remain, transcription enhancing epigenetic marks are not erased, etc.

67



This model can be described by the following set of ODEs:



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kOFF + kincorpo) ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = kRNA ·ON− kdecay ·RNA

We can thus derive the following constraint:

kincorpo

krepair
=

1
kON + kOFF

· [kON ·
KOFF

KON
− kOFF ] (4.4)

The details of this derivation are described below for Model 4.

4.2.5 Model 4

Model 4 is based on Model 3, but an amplification step was added. When the system tran-

sitions from ON* to ON, the basal transcription rate (k0
RNA) increased by a multiplicative factor:

kRNA2 = coop · k0
RNA . Thus we assume that there is molecular memory of the repair event. This

may be rooted in a modification of supercoiling, polymerase accumulation, or chromatin remodel-
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ing.

This model can be described by the following set of ODEs :



dOFF
dt = kOFF ·ON + krepair ·OFF∗− (kincorpo + kON) ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dOFF∗
dt = kincorpo ·OFF− krepair ·OFF∗

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = 〈kRNA〉 ·ON− kdecay ·RNA

Where kincorpo = [IdU ] ·k0
incorpo. We assume that IdU is in excess and thus [IdU] remains constant.

At equilibrium :

dOFF
dt

=
dON

dt
=

dOFF∗

dt
=

dON∗

dt
=

dRNA
dt

= 0
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=⇒



OFFeq =
kOFF
kON
·ONeq

ONeq =
kON

kOFF
·OFFeq

OFF∗eq =
kincorpo
krepair

·OFFeq

ON∗eq =
kincorpo
krepair

·ONeq

RNAeq =
〈kRNA〉
kdecay

·ONeq

(4.5)

By definition:

KON

KON +KOFF
≡ ON

ON +OFF +ON∗+OFF∗
(4.6)

where KOFF represents the transition rate to the macroscopic OFF state (defined by no transcrip-

tion) consisting of the OFF, OFF*, and ON* states. Using the set of equations in (4.5) and (4.6)

we obtain:

KON

KON +KOFF
=

krepair

krepair + kincorpo
· kON

kON + kOFF
(4.7)
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Equation (4.7) can be seen as :

P(ONmacro) = P(”Repaired state”) ·P(ONmicro)

Because P(ONmacro) ≡ P(”Repaired state”∩ONmicro) we can deduce that ”Repaired state” and

ONmicro are independent probabilistic events.

Equation (4.7) can be rewritten as:

KON

KOFF
=

krepair · kON

kOFF · (krepair + kincorpo)+ kON · kincorpo
(4.8)

Which gives us:

kincorpo

krepair
=

1
kON + kOFF

· [kON ·
KOFF

KON
− kOFF ] (4.9)

Let us define 〈kRNA〉 and k0
RNA as the mean transcription rate in the presence of IdU and the

transcription rate in the control condition (DMSO), respectively. By construction of the model:

〈kRNA〉= P(ON | OFF) · k0
RNA +P(ON | ON∗) · coop · k0

RNA (4.10)

The coop term represents the amplification of the transcription rate following completion of repair.
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P(ON |OFF) and P(ON |ON∗) represent the probability that the gene transitioned to the ON state

from the OFF and ON* states respectively.

Or : 
P(ON | OFF) = kON ·OFF

kON ·OFF+krepair·ON∗

P(ON | ON∗) = krepair·ON∗

kON ·OFF+krepair·ON∗

(4.11)

Combining equations (4.9) and (4.11) we get:


P(ON | OFF) = kOFF

kOFF+kincorpo

P(ON | ON∗) = kincorpo
kOFF+kincorpo

(4.12)

Rewriting (4.10) using (4.12) we obtain :

〈kRNA〉
k0

RNA
=

1
kOFF + kincorpo

· (kOFF + coop · kincorpo) (4.13)

=⇒ coop =
kOFF + kincorpo

kincorpo
· 〈kRNA〉

k0
RNA

− kOFF

kincorpo
(4.14)
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Equation (4.14) can be rewritten to explicitly take into account [IdU] :

coop =
kOFF + k0

incorpo · [IdU ]

k0
incorpo · [IdU ]

· 〈kRNA〉
k0

RNA
− kOFF

k0
incorpo · [IdU ]

(4.15)

4.2.6 Model 5

In this last model we make the same assumptions as in model 4 except that Apex1 interaction

with chromatin occurs only in the ON state. This does not imply that IdU incorporation and subse-

quent Apex1 interaction only occurs in the ON state. Our assumption supposes that the interaction

of Apex1 in the OFF state is negligible quantitatively speaking compared to that in the ON state.

The ODEs describing this model are as follows:



dOFF
dt = kOFF ·ON− kON ·OFF

dON
dt = kON ·OFF + krepair ·ON∗− (kincorpo + kOFF) ·ON

dON∗
dt = kincorpo ·ON− krepair ·ON∗

dRNA
dt = 〈kRNA〉 ·ON− kdecay ·RNA
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The coop expression remains unchanged from Model 4 but the ratio between krepair and kincorpo

changes as follows:

KON

KOFF
≡ ON

OFF +ON∗
(4.16)

Thus we obtain:

KON

KOFF
=

krepair · kON

kOFF · krepair + kincorpo · kON
(4.17)

And :

kincorpo

krepair
=

KOFF

KON
− kOFF

kON
(4.18)
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4.3 Chemical Master Equation

For all models we constructed an associated stochastic scheme. As an example, Model 5 can

be rewritten using the following scheme:



OFF
kON−−→ ON1

ON1
kOFF−−−→ OFF

ON1
kRNA1−−−→ RNA

ON1
kincorpo−−−−→ ON∗

ON∗
krepair−−−→ ON2

ON2
kincorpo−−−−→ ON∗

ON2
kOFF−−−→ OFF

ON2
kRNA2−−−→ RNA

RNA
kdecay−−−→∅

(4.19)

OFF ON1
RNA

O

kOFF

kOFF

kON

kRNA1

k
decay

RNA

O

kRNA2

k
decay

kincorpo

kincorpokrepair

ON*

ON2
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ON2 represents the repaired state of the gene, which results in a higher transcription rate

(kRNA2). Using this scheme, we can construct the chemical master equation (CME) describing

the time dependent distributions of mRNA copy number:

dP(m, t)
dt

= A ·P(m, t)+δ (E− I)[mP(m, t)]+∆(E−1− I)[P(m, t)] (4.20)

Where A, ∆, and δ are the transition, transcription, and degradation matrices respectively:

A =



−kON 0 −kOFF −kOFF

0 −krepair kincorpo kincorpo

kON 0 −(kOFF + kincorpo) 0

0 krepair 0 −(kincorpo + kOFF)



∆ =



0 0 0 0

0 0 0 0

0 0 kRNA1 0

0 0 0 kRNA2
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δ =



kdecay 0 0 0

0 kdecay 0 0

0 0 kdecay 0

0 0 0 kdecay


P(m, t) is a four-element column vector consisting of the time-dependent mRNA probability

distributions while in the OFF,ON∗,ON1,andON2 states respectively. E and E−1 are the forward

and backward shift operators while I is the identity matrix.

At steady-state, the mRNA probability distribution can be reconstructed as a sum of the bino-

mial moments [84]

P(m) = ∑
k≥m

(−1)m−k
(

k
m

)
bk,m = 0,1,2, ... (4.21)

Where bk is the kth binomial moment of the distribution given by:

bk =
1

∏
k
i=1 det(iδ −A)

·
1

∏
i=k

[uN(iδ −A)∗∆] ·b0,k = 1,2, ... (4.22)

where uN = [1,1,1,1]. (iδ −A)∗ and det(iδ −A) are the adjugate and the determinant of matrix

(iδ −A) respectively. b1 is equivalent to the mean mRNA abundance of the system at equilibrium.

b0 is the corresponding eigenvector for the zero eigenvalue of A. The 4 elements of b0 therefore
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represent the fraction of time spent in the OFF,ON∗,ON1,and ON2 states at equilibrium. The nth

component of b0 is given by:

b(n)0 =
3

∏
i=1

β
(n)
i
αi

,1≤ n≤ 4 (4.23)

where α1,α2,α3 are the three non-zero eigenvalues of A. β
(n)
1 ,β

(n)
2 ,β

(n)
3 are the three eigen-

values of the sub-matrix Mn which is constructed by removing the nth row and nth column of A.

The Fano factor for mRNA counts at equilibrium is then given by:

FF =
2b2 +b1−b2

1
b1

(4.24)

An exact simulation of such a stochastic process is given by the Gillespie algorithm. We im-

plemented the algorithm using a homemade script in Julia 1.1.1. For each model, 1500 simulations

were run for a virtual duration of 200 hours. Since the time is not discrete we used a ”parsing”

algorithm, based on recursive binary search, to align all the traces on a common time scale of 2000

intervals. For each interval of the discretized time we computed the average and variance of the

number of mRNAs, taking into account all traces. The analytic relationships described above are

used to verify the inferred kinetic rates from stochastic simulations.
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4.4 Estimation of model parameters from experimental data

From the smRNA FISH data, we can infer the macroscopic kinetic rates. The kinetic rates

computed in the control condition are at the basis of the simulations and have to be considered as

constant for all the models and associated results.

Use of these macroscopic rates along with the relationships developed in section 2 results in

one remaining degree of freedom for our models: krepair (or kincorpo for Model 1).

The confrontation between experimental data and the results of stochastic simulations for each

of the models should allow us to define the consistency of our models and thus gain mechanistic

insight into how Apex1 affects transcriptional dynamics.
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4.5 Model selection: Comparison of simulation results to ex-

perimental data

4.5.1 Information theory-based approach: MLE and Akaike’s criterion

Workflow

Model Data

Structural constraints

krepair = unique degree of freedom
krepair1 krepair2 krepair3

Stochastic 
simulations

Infered krepair

Log-likelihood
computation

max(LLE)

Figure 4.1: Workflow for information theory-based approach of model selection.
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Method of Log-likelihood and AIC computation

For each of the 500 chosen values (logarithmically spaced) of our unique degree of freedom

(krepair), we ran 50,000 simulations for a total duration of 200h. Only the last point of each simula-

tion was stored. Then the steady-state distribution of RNA was computed using the same binning

as in the experimental data. The computation of the log-likelihood is as follows:

Let X be the vector of n empirical observations and let X∆ : {x∆,x∆ ∈ [x,x+∆]}, where ∆ is

the size of a bin and X∆ is the set of bins. We define p̂(x∆) as the probability of observing an

experimental value within a particular bin (x∆). P(x∆) is the probability of a given x∆ ∈ [x,x+∆]

for a given model. The likelihood function L is defined as :

L ≡ ∏
xi∈X

P(xi,xi ∈ [x,x+∆]) = ∏
x∆∈X∆

P(x∆)n·p̂(x∆) (4.25)

The log-likelihood is then given as:

log(L ) = ∑
x∆∈X∆

np̂(x∆) · log(P(x∆)) (4.26)

L is a function of krepair. We then try to find the value of krepair that maximizes log(L ):

k̂repair,LLE = argmaxk(log(L (k))) (4.27)

With krepair ∈ [10−4,10], by assumption. After computing log(L (k)) for each of the 500 val-

ues of krepair, we apply a smoothing (moving average) to the data, take the derivative, smooth the

derivative, find the two points on each side of the abscissa, and then interpolate the point for which

the derivative is equal to zero using a linear interpolation. The maximum log(L ) is computed after
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the first smoothing. Then, we compute the macroscopic behavior of the system using the inferred

value of krepair.

The model selection is based on the AIC and the resulting measures ∆iAIC and wi [85]. Because

k̂repair,LLE is dependent on the empirical distribution, we can assume that it is only an estimate of

the true value, which we’ll call k0
repair. Thus we want to reduce as much as possible the distance be-

tween k̂repair,LLE and k0
repair. This optimization problem allows us to derive the so-called Akaike’s

information criterion (AIC) as a measure to compare models. AIC is an estimate of the expected

relative distance between the fitted model and the unknown true mechanism that actually generated

the observed data:

AIC =−2log(L (k̂repair,LLE))+2K (4.28)

with K the number of degrees of freedom of the system.

Results

As shown in Figures 4.2A-B, Model 5 is selected on the basis of AIC. Model 4 is second-best.

Model 5 qualitatively and quantitatively matches experimental data with its inferred krepair.

We used bootstrapping to assess the quality of the inference of krepair for Model 5 using

MLE estimator. This method allows the computation of the confidence/credible interval (CI) for

krepair, and, in the framework of Bayesianism, a posterior distribution P(Data|krepair) using a non-

informative prior [85]. The distribution of the MLE is peaked around a particular value, suggesting

parameter identifiability (Figure 4.2C).
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Figure 4.2: MLE-based approach for model selection reveals transcription-coupled repair
mechanism best recapitulates experimental data.
(A) (First Column) Schematic of simulated models incorporating Apex1 into standard 2-state
model of transcription. (Second Column) For each model, 500 logarithmically-spaced values of
krepair ∈ [10−4,10] were simulated. For each simulated value of krepair, log-likelihood is calculated
as described in supplementary text 5.1.2 and plotted. Dashed vertical line in each plot denotes
value of krepair that maximizes log-likelihood estimate. (Third Column) Comparison of exper-
imental Nanog mRNA distribution (red) to simulated distributions of Nanog mRNA (blue) for
each model using value of krepair that maximizes log-likelihood. (Fourth Column) Macroscopic
behavior of simulation results (using value of krepair that maximizes log-likelihood estimate) are
compared to experimental data. Bars represent simulation values of Nanog gene expression system
while red points with vertical line represent experimental data on Nanog expression from smRNA-
FISH of mESCs treated with 10μM IdU. (B) For each tested model, the maximum log-likelihood
value is listed along with the associated ∆iAIC. Model 5 (transcription-coupled repair) best de-
scribes experimental data based on these metrics. (C) Distribution and confidence interval (CI) of
inferred krepair values (based on MLE) for Model 5 using bootstrapping method in which the em-
pirical distribution of Nanog mRNA counts from smRNA-FISH data was re-sampled 1000 times
with replacement (supplementary text 5.1.4). Bootstrapping results show a well peaked distribution
indicating practical parameter identifiability for krepair.
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4.5.2 APE-based approach

Workflow

The second approach for model selection that we employed involves comparison of the macro-

scopic behavior of simulation results to experimental data. After deriving constraints on the phase

space spanned by krepair we simulate each of the models over a range of krepair values. From these

stochastic simulations, we then extract the macroscopic behavior of the system for a given model.

We computed the mean number of mRNA and the Fano factor at equilibrium, on the last 100 time

points of the traces. ko f f and kon were computed using a non-linear curve fitting assuming expo-

nentially distributed residence times (Poisson process). Both νon and the burst size were computed

using their basic definitions. The density of mRNA population was computed using the last points

of the simulations. A classic kernel density was used to represent the data.

For each model, we then infer the best value of krepair based on the minimization of a loss

function (absolute percentage error, a.k.a. APE). This quantitative approach is coupled with visual

comparison of model behavior to experimental data. The model whose inferred krepair value min-

imizes divergence between model and data behavior is thus chosen. A graphical representation of

such a process is given in Figure 4.3.
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Model Data

Structural constraints

krepair = unique degree of freedom
krepair1 krepair2 krepair3

Stochastic 
simulations

Macroscopic
behaviour

min(APE) computation

Infered krepair

Figure 4.3: Workflow for APE-based approach of model selection.

Method of APE calculation

To discriminate between models based on their macroscopic behavior, we need a measure

that quantifies the discrepancy between model-derived results and experimental data. Because the

macroscopic observations (Fano factor, kON , etc.) are of different orders of magnitude, we need a

relative measure to avoid the largest parameters carrying the highest weight on the error. We chose

to use the absolute percentage error (APE). The procedure is as follows:

Consider the vector M≡ (〈RNA〉,νON ,BS,FF,kON ,kOFF). Thus, Mmodel and Mexp contain all
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the macroscopic observations from modeling and experiment respectively. Mmodel is a function of

krepair or kincorpo equivalently. k̂repair,APE is the best inferred value of the degree of freedom for a

particular model. It is given by:

k̂repair,APE = argmink

∣∣∣∣Mexp−Mmodel(k)
Mexp

∣∣∣∣ (4.29)

With k ∈ [10−4,10], by assumption. This notation implies that we are minimizing the `1 norm

(sum of the vector components). In an operative manner, we simulated each model for 250 loga-

rithmic distributed values of krepair using the previously described Gillespie algorithm.

To validate our approach, we devised an alternative loss function where the `1 norm is com-

puted using a non-biased (i.e symmetric) measure of relative prediction accuracy: the absolute log

accuracy (ALA). The procedure is as follows:

k̂repair,ALA = argmink

∣∣∣∣log
(

Mmodel(k)
Mexp

)∣∣∣∣ (4.30)

With k ∈ [10−4,10], by assumption.

Results

Using both the APE and ALA approaches, we obtained exactly the same results for parameter

inference (except for model 1 for which k̂incorpo,ALA = 0.39) and model selection. According to the

APE-based approach for parameter inference and model selection, model 5 best recapitulates the

macroscopic behavior observed in the data (Figure 4.4).
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Figure 4.4: APE-based approach for model selection concurs with MLE-based approach,
identifying TCR model as best match to experimental data.
(A) (First Column) Schematic of simulated models incorporating Apex1 into standard 2-state
model of transcription. (Second Column) Comparison of experimental Nanog mRNA distribu-
tion (red) to simulated distributions of Nanog mRNA (blue) for each model using value of krepair
that minimizes absolute percentage error. (Third Column) Macroscopic behavior of simulation
results (using value of krepair that minimizes absolute percentage error) are compared to experi-
mental data (supplementary text 5.2). Bars represent simulation values of Nanog gene expression
system while red points with vertical line represent experimental data on Nanog expression from
smRNA-FISH of mESCs treated with 10μM IdU. (B) Values of krepair that minimize the absolute
percentage error for each model are listed. Model 5 (TCR model) yields the smallest APE and the
largest log-likelihood.
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4.5.3 Selection of Model 5

Based on both the MLE- and APE-based approaches, model 5 best matches experimental FISH

data and scRNA-seq data for Nanog. Model 5 is most similar to a transcription-coupled repair

(TCR) mechanism in which repair events only occur while the gene is transcriptionally permissive.

The key adjustment we make is the introduction of a higher transcription rate upon completion of

repair. This modification is justified by our model selection process, as we find that the second-best

model (model 4) also has an amplified transcription rate following Apex1 interaction and subse-

quent DNA repair. Interestingly, for the same value of krepair, transcription-coupled repair (model

5) leads to a less significant increase in noise and better maintenance of mean as compared to

model 4 in which repair can also take place in the OFF state (model 4). This implies that coupling

of repair to transcription is the most efficient method of DNA repair in terms of minimizing excess

transcriptional variability.

Several molecular mechanisms can lead to the amplified transcription rate that we have in-

corporated into model 5. Apex1 binding may both momentarily silence RNA transcription while

also inducing increased chromatin supercoiling and chromatin remodelling. This could lead to a

subsequent increase in transcription efficiency through increased initiation and/or RNApol II pro-

cessivity. This feedback mechanism may be perceived as a homeostatic process, allowing mainte-

nance of the mean mRNA production despite a perturbation in template integrity. It is important

to note that the dynamic binding and unbinding of Apex1 triggers noise enhancement and mean

maintenance more than the repair per-se. One implication of this is that other protein-DNA dy-

namic interactions may lead to unavoidable noise modulation through structural constraints like

supercoiling. The strength of such modulation will depend on the kinetic rates of interaction.
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4.6 Sensitivity analysis of TCR model (Model 5)

We have seen that a model incorporating Apex1 interaction with chromatin and an associated

transcriptional amplification, can recapitulate an increase in noise without alteration of the mean

number of mRNA produced by the Nanog gene expression system. We next asked how this be-

havior - increase in noise without dramatic modification of mean expression - is related to the

dynamics of Apex1 binding and unbinding with chromatin. krepair and kincorpo are the kinetic rates

describing such interaction.

We conducted a phase plane analysis of the system mean and Fano factor for both krepair and

kincorpo (Figure 4.5A-B). We assume that the cooperativity is fixed and equal to the deduced co-

operativity from the previous analysis using Nanog FISH data for 10µM IdU. As expected, the

Fano factor increases as kincorpo increases (for kincorpo lower than ≈ 1). This suggests a positive

dose-dependent relationship between IdU and noise (Figure 4.5B).

We observe an inverse relation for krepair, where noise increases as krepair decreases. Experi-

mentally, we use a small-molecule inhibitor of the Apex1 endonuclease domain (CRT0044876) to

decrease krepair. It is interesting to highlight that when kincorpo is higher than ≈ 1 the Fano factor

starts to decrease. These observations can be understood looking at equation (4.31) for the Fano

factor. For kincorpo > 1, νon decreases slowly and the effective 〈kRNA〉 starts to increase slowly as

compared to when kincorpo ∈ [0.1,1] (Figure 4.5C-D). These changes are counteracted by a larger

increase in KOFF . The behavior for the mean number of RNA produced with increasing kincorpo > 1

can also be understood using the previous considerations: the decrease in mean corresponds to a

decrease of the frequency in the ON state that is not counteracted by a strong enough cooperativity.

All the results can be understood using the following formula for the Fano factor:

90



FF = 1+
(1−νon) · kRNA

KON +KOFF + kdecay
(4.31)

We next wanted to define the parameter regime for kON and kOFF in which homeostatic mainte-

nance of mean expression is possible with transcription-coupled repair (model 5). For this analysis,

simulations were run with values of kON ,kOFF ∈ [10−3,10] for both the null model (standard 2-

state model, DMSO condition) and model 5. For the same values of kON ,kOFF , the fold change

in mean of mRNA counts was calculated by comparing results of model 5 to the null model. This

provides insight into how IdU treatment may impact expression of genes with different bursting

kinetics. When kOFF >> kON , the addition of IdU in Model 5 increases the average number of

mRNA produced as compared to the null model (Figure 4.5E). This can be explained by a com-

petition between the OFF and ON∗ states and by the fact that in this portion of the phase space

kON < kOFF < kincorpo (and kincorpo < krepair ). Therefore, the probability of presence in the ON2

state (transcriptionally more productive state), increases. This implies that IdU treatment would

increase the mean of very lowly expressed genes. This was seen experimentally in bulk RNA-seq

measurements of transcript abundance in mESCs as the ≈ 100 genes that showed an increase in

mean with IdU treatment were from the lowest expression regime (Figure 2.3). The exact inverse

effect is observed in the upper left corner of the heatmap, where kON > kOFF > kincorpo. Thus for

highly expressed genes, the effect of IdU on mean expression is minimal as seen experimentally.

When all the kinetics rates of the system are fixed, increasing the cooperativity, and thus the

effective transcription rate, leads both to an increase in mean and Fano factor (Figure 4.5F).

Sensitivity analysis of the Apex1 TCR model revealed that orthogonal modulation of Nanog

mean and noise is possible within a large portion of the parameter space (Figures 4.5A-B). As

validation, we tested the effect of 96 concentration combinations of IdU and CRT0044876 to per-

turb the rates of Apex1 binding and unbinding respectively. The experimental results confirmed
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model predictions, showing that Nanog noise could be tuned independently of the mean (Figure

4.6A). Testing of BrdU and hmU further validated that parameter regimes exist where noise can

be regulated independent of mean (Figures 4.6B-C). The hmU data in particular showed that the

BER pathway can amplify noise while maintaining mean expression when removing a naturally

occurring base modification.
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Figure 4.5: Sensitivity analysis of model parameters reveals phase-space for modulation of
Nanog variability independently of mean.
(A) Heatmaps displaying mean (left) and Fano factor (right) of Nanog mRNA from simulation
results of TCR model as a function of krepair and kincorpo values spanning four orders of magnitude.
Dashed horizontal and vertical lines represent inferred values of krepair and kincorpo that match
experimental Nanog gene expression system in the presence of 10μM IdU. Multiple regions of the
parameter phase-space exhibit constant mean output with unique levels of variability (Fano factor)
demonstrating how mean and variability are tuned independently. (B) Simulated distributions of
Nanog mRNA with increasing concentration of IdU which increases kincorpo. Simulation results
demonstrate how TCR model allows for maintenance of mean output with increasing variability
as concentration of IdU is increased. (C) Effective transcription rate of Nanog gene expression
system as a function of kincorpo. As IdU incorporation and subsequent Apex1 recruitment increases,
the effective transcription rate increases as well. This represents the compensatory mechanism
of model 5 allowing for maintenance of mean output with increasing incorporation of IdU. (D)
Heatmap displaying fraction of time that the Nanog gene expression is in the macroscopic ON
state as a function of krepair and kincorpo values. (E) Heatmap displaying fold change in mean as a
function of microscopic ko f f and kon values (supplementary text 6.2). Fold change is calculated as
the output of Model 5 relative to model 0 (canonical 2-state model) for the same set of ko f f and kon
values. For a gene whose ko f f >> kon, addition of IdU to the system increases the mean output.
(F) Mean mRNA and Fano factor of Model 5 output as a function of the cooperativity term which
describes how strongly the transcription rate is amplified following completion of repair.
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Figure 4.6: Treatment with IdU, BrdU or HmU in combination with CRT0044876 allows for
tuning of Nanog variability independently of the mean.
(A) Testing of 96 concentration combinations of IdU and CRT0044876 (apex1 endonuclease do-
main inhibitor) to validate tunability of Nanog variability. IdU and CRT0044876 were used to
increase binding and decrease unbinding of Apex1 respectively. Nanog-GFP mESCs grown in
96-well plates were treated with 12 concentrations of CRT0044876 ranging from 0 to 150µM in
combination with 8 concentrations of IdU ranging from 0 to 50µM. Data represent average of two
biological replicates. (Leftmost and Center Panels) 96-well heatmaps displaying fold change in
Nanog mean and Fano factor for each drug combination as compared to DMSO (top-leftmost well).
Insufficient number of cells (¡50,000) for extrinsic noise filtering were recorded from white wells.
(Rightmost Panel) Representative flow cytometry distributions from highlighted wells (black rect-
angles). Nanog variability increases independently of the mean. (B) Testing of 96 concentration
combinations of BrdU and CRT0044876. Nanog-GFP mESCs grown in 96-well plates were treated
with 12 concentrations of CRT0044876 ranging from 0 to 150uM in combination with 8 concen-
trations of BrdU ranging from 0 to 50uM. Data represent average of two biological replicates.
(Top left and top right panels) 96-well heatmaps displaying fold change in Nanog mean and Fano
factor for each drug combination as compared to DMSO (top-leftmost well). Insufficient num-
ber of cells (<50,000) for extrinsic noise filtering were recorded from white wells. (Bottom Panel)
Representative flow cytometry distributions from highlighted wells (black rectangles). Nanog vari-
ability increases independently of the mean. (C) Testing of 96 concentration combinations of HmU
and CRT0044876. HmU is a naturally found, Tet-induced oxidation product of thymine. Nanog-
GFP mESCs grown in 96-well plates were treated with 12 concentrations of CRT0044876 ranging
from 0 to 150uM in combination with 8 concentrations of HmU ranging from 0 to 10uM. Data
represent average of two biological replicates. (Top left and top right panels) 96-well heatmaps
displaying fold change in Nanog mean and Fano factor for each drug combination as compared to
DMSO (top-leftmost well). Insufficient number of cells (¡50,000) for extrinsic noise filtering were
recorded from white wells. (Bottom Panel) Representative flow cytometry distributions from high-
lighted wells (black rectangles). As with IdU and BrdU, Nanog variability increases independently
of the mean.
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Methods

96 dose combination for testing of noise phase space

Compound plates containing 96 concentration combinations of IdU, BrdU, or HmU with CRT0044876

were prepared by the Gladstone Assay Development and Drug Discovery Core using an Agilent

Bravo liquid handling system. All wells contained equivalent volumes of DMSO. Compound mix-

tures were suspended in 200μL of 2i/LIF media. 1x104 Nanog-GFP mESCs were seeded into each

well of a gelatin-coated, 96-well dish in 200μL of 2i/LIF media. 24 hours after seeding, 100μL

of media was removed from each well and 100μL of compound-containing 2i/LIF was added in

replicate. IdU and BrdU concentrations ranged from 0 to 50μM while HmU concentrations ranged

from 0 to 10μM. CRT0044876 ranged from 0 to 150μM. After 24 hours of treatment, cells were

detached using TrypLE and plates were run on BD LSRFortessa high-throughput system. After

extrinsic noise filtering via cell-size gating, Nanog mean and Fano factor for each treatment were

normalized to DMSO control well. Reported fold changes in mean and Fano factor are the average

of two replicates.

4.7 TCR model provides unifying mechanism for noise-enhancement

of genes with different bursting kinetics.

In analyzing the Nanog gene expression we have found that IdU treatment leads to recruit-

ment of DNA repair machinery while a gene is transcriptionally permissive (TCR model). This

repair activity makes a second ON state accessible to the system. This state is characterized by an

increased kRNA which is sufficient to recapitulate the experimental observations of mean mainte-

nance with increased noise strength (Fano factor). We next asked whether the inferred TCR model

can explain the experimental data collected for other noise-enhanced genes within the scRNA-seq
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dataset of mESCs treated with 10µM IdU for 24 hours.

To simulate the TCR model for additional genes, estimates for the following parameters are

needed: kON ,kOFF ,kRNA1(basal transcription rate in DMSO),kdecay,and〈kRNA〉 (effective transcrip-

tion rate in IdU). To derive estimates of kON ,kOFF ,kRNA1,and〈kRNA〉we used a moments-matching

technique described in [86, 87], where the first, second, and third exponential moments of the

mRNA distributions in the DMSO and IdU conditions are used to calculate the parameters of

a Poisson-beta distribution (describes 2-state model) that best fits experimental count data. The

parameter estimates are derived in proportion to kdecay. Values of kdecay were retrieved from an

existing dataset of mRNA degradation rates in mESCs [88].

Of the 945 genes classified as highly variable with IdU treatment, 314 genes remained for

downstream analysis based on availability of mRNA degradation rates and high confidence param-

eter estimates (Figure 4.7A). A consistent pattern emerged for genes classified as highly variable:

80% exhibited increased rates of promoter inactivation (KOFF ) and 84% had increased transcrip-

tion rates (KT X ) (Figures 4.7B-C).

With the above parameter estimates, we next computed the constraints on the cooperativity

term and kincorpo as a function of krepair using the relationships derived in section 4.2. There

is again one remaining degree of freedom in our model system: krepair. Using the MLE-based

approach outlined in section 4.5, simulation results for a range of krepair values were compared

against scRNA-seq data to identify k̂repair,LLE for each of the 314 genes.

Once k̂repair,LLE was identified, the macroscopic values of KON and KOFF from simulation re-

sults were compared to experimentally derived estimates of KON and KOFF from scRNA-seq data

for each gene (Figure 4.8). Overall, simulated values for macroscopic rates of promoter toggling

in the IdU condition align with experimental results, indicating that the TCR model holds explana-
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tory power for noise-enhanced genes beyond just Nanog. The use of a second, transcriptionally-

enhanced ON state appears to be a unifying mechanism for maintenance of transcriptional home-

ostasis during DNA repair across a broad range of genes with different bursting kinetics. This

suggests that the TCR mechanism for mean maintenance is robust to the initial bursting character-

istics of a gene.
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Figure 4.7: Highly variable genes exhibit shorter but more intense transcriptional bursts.
(A) Of the 945 genes classified as highly variable with IdU treatment, we were able to estimate
parameters of the 2-state model for 314 of these genes. (B) Boxplots show median ±interquartile
range of parameter estimates with each point representing a gene. (C) Distributions of fold change
in bursting kinetics between IdU and DMSO conditions for 314 highly variable genes. Dashed
blue line signifies mean of distribution. Majority of highly variable genes exhibit increased KOFF
and Ktx, which is consistent with TCR model. (D) Base-excision repair orchestrates shorter but
more intense transcriptional bursts to maintain mean expression for genes with diverse bursting
kinetics.
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Figure 4.8: TCR model provides unifying mechanism for noise-enhancement of genes with
different bursting kinetics.
(A) Experimental values (exp) of macroscopic KON and KOFF , as derived from a moments-
matching technique applied to scRNA-seq data, are compared to predicted values (simul) de-
rived from simulations of TCR model. Each point represents a gene. Boxplots show median
±interquartile range of parameter values. (B) Experimental values of mean, Fano factor, KON , and
KOFF (based on scRNA-seq data) are compared to simulated values derived from TCR model.
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Methods

Estimation of promoter toggling kinetics from scRNA-seq data

Gene expression data from the scRNA-seq dataset were fit to the 2-state model using the D3E

algorithm, allowing for estimation of kON ,kOFF ,andktx in proportion to the rate of mRNA degra-

dation which is the lone parameter that is not estimable from this dataset alone [87]. Parameter

estimation was conducted using the methods of moments approach with the normalise and re-

moveZeros options. Analysis was run for the 945 genes classified as highly variable according to

the BASiCS algorithm. The Cramer-von Mises test was used for goodness-of-fit testing. Values

of kdecay were then retrieved from an existing dataset of mRNA degradation rates in mESCs [88],

with the assumption that degradation rates are unchanged between DMSO and IdU conditions. Pa-

rameter estimates were then verified against experimental values of mean mRNA counts using the

following relationship: 〈RNA〉 = kON
kON+kOFF

· kRNA
kdecay

. Genes whose predicted mean was within 10%

of experimental value were used for downstream analysis. 314 genes passed this filtering process

based on availability of mRNA degradation rates and alignment of parameter estimates with ex-

pected mean mRNA counts.
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Chapter 5

Homeostatic noise-amplification potentiates

responsiveness to cell-fate signals

5.1 Results

5.1.1 Amplification of transcriptional fluctuations destabilizes cellular iden-

tity resulting in greater cellular plasticity.

We next asked if this amplification of transcriptional variability acted to enhance cellular

plasticity as previously suggested [89]. Using a neural-network approach, we reconstructed the

Waddington landscape based on a predictive model of gene-gene interactions inferred from the

scRNA-seq data [90]. In this approach, each cell has a characteristic energy determined by its

proximity to an attractor state, with lower energy values corresponding to greater stability. The

analysis indicated that cells exposed to IdU lie at a higher altitude on this landscape, indicating

destabilization of cellular identity and greater developmental plasticity (Figure 5.1).

Numerical simulations of the TCR model then verified that IdU-mediated amplification of tran-

scriptional noise has the potential to increase responsiveness to activation stimuli (Figure 5.2). The
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complementary abilities of IdU-mediated noise amplification to destabilize cellular identity and

potentiate responsiveness to fate signals suggested that IdU might facilitate cellular reprogram-

ming.
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Figure 5.1: Amplification of transcriptional fluctuations destabilizes cellular identity result-
ing in greater cellular plasticity.
(A) Reconstruction of Waddington’s landscape using scRNA-seq data of mESCs treated with
DMSO (left) or IdU (right). Each point represents a cell. A Gaussian process latent variable
model (GP-LVM) was used for dimensionality reduction to create a 2-D map of cell clustering,
represented by component 1 (y-axis) and component 2 (x-axis). The z-axis represents the cal-
culated potential energy (distance from an attractor) of a cell’s gene expression state with lower
values indicating greater proximity to an attractor and thus lower developmental potential. Cells
are colored according to their height (developmental potential energy, z-axis value) on the land-
scape as denoted by the associated color bar. Underlying shading of landscape represents density
of points with purple being the least dense and yellow being the most dense. (B) Distributions of
developmental potential energy (z-axis values from Waddington landscape in panel A) for mESCs
treated with DMSO or 10μM IdU for 24 hours. Dashed vertical lines signify the mean of each
distribution, with IdU-treated cells demonstrating greater potential energies.
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Figure 5.2: Homeostatic noise-amplification synergizes with canonical activators of gene ex-
pression to increase threshold crossing.
Simulations of the TCR model for Nanog gene expression in the presence of DMSO (top left),
IdU (top right), an activator (increased KON, decreased KOFF) of promoter activity (bottom left)
and an activator combined with IdU (bottom right). Homeostatic noise amplification potentiates
responsiveness to an activator of gene expression as demonstrated by increased threshold crossing
(14% to 28%).
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Methods

Estimation of cellular developmental potential and Waddington Landscape reconstruction

The HopLand algorithm (continuous Hopfield network) was used to create a predictive model

of gene-gene interactions from scRNA-seq data [90]. As input, raw count data for a total of 800

randomly chosen cells (400 from DMSO and 400 from IdU treatment groups) were used. Each

neuron of the network corresponds to a gene. Genes whose variance fell within in the top 10%

were used for construction of a neural network resulting in 512 nodes. The weight matrix describ-

ing pair-wise interactions between nodes was initialized using the gene-gene Pearson correlation

matrix. A Gaussian process latent variable model (GP-LVM) was used for dimensionality reduc-

tion to create a 2-D map of cell clustering (x and y coordinates on Waddington Landscape). Energy

values (z coordinate on landscape) were calculated using the Lyapunov function which is a mea-

sure of stability. Lower energy values indicate greater proximity to an equilibrium point (attractor

state) and thus less developmental potential.

5.1.2 IdU treatment potentiates reprogramming of mouse embryonic fibrob-

lasts into pluripotent stem cells

To experimentally verify these predictions, we tested if IdU could potentiate conversion of dif-

ferentiated cells into pluripotent stem cells using two cellular reprogramming systems. The first

assay utilized mouse embryonic fibroblasts (MEFs) that express GFP from the endogenous Nanog

locus and harbor stably integrated, doxycycline-inducible cassettes for three of the Yamanaka fac-

tors: Oct4, Sox2, and Klf4 (OSK). As confirmation that IdU acts as a noise-enhancer in this system,

treatment of secondary MEFs with IdU for 48 hours in standard MEF media caused increased vari-

ability in Nanog protein expression (Figure 5.3A) with no changes in cell-cycle progression (Figure

5.3B). Strikingly, IdU supplementation for the first 48 hours of a 10-day reprogramming course
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enhanced the formation of pluripotent colonies as measured by alkaline phosphatase staining (Fig-

ure 5.4A). Bulk RNA-seq at days 2 and 5 of reprogramming (Figure 5.4B) and flow-cytometric

analysis at day 10 (Figure 5.4C) demonstrate that early-stage noise-enhancement accelerates acti-

vation of the pluripotency program. To confirm the results in an orthogonal reprogramming assay,

Oct4-GFP primary MEFs were transduced with retroviral vectors expressing Oct4, Sox2, Klf4,

and c-Myc. IdU supplementation for the 48 hours immediately following transduction caused a

2.4-fold increase in the number of Oct4-GFP(+) colonies (Figure 5.4D), further demonstrating how

amplification of intrinsic gene expression fluctuations can potentiate cell-fate conversion.
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Figure 5.3: IdU treatment enhances Nanog expression noise in mouse embryonic fibroblasts
(MEFs).
(A) Secondary MEFs with the endogenous Nanog locus tagged with GFP were treated with 4μM
IdU or equivalent volume DMSO for 48 hours in MEF media. (Right) Representative flow cytom-
etry distributions of Nanog-GFP expression in secondary MEFs after 48 hour treatment with IdU
or DMSO. (Left) Quantification of Nanog Fano factor demonstrates that IdU treatment increases
expression variability as compared to DMSO control (*p = 0.003, by a two-tailed, unpaired Stu-
dent’s t test). Data represent mean and SD of three biological replicates. (B) (Top) Representative
flow cytometry distributions of propidium iodide staining for Nanog-GFP secondary MEFs treated
with either DMSO or 4μM IdU for 48 hours in MEF media. No signs of aneuploidy are visible,
indicating Nanog expression variability is not due to cell-to-cell variability in gene copy numbers.
(Bottom) Percent of cells in each phase of the cell cycle for DMSO and IdU treatments based
on propidium iodide staining. IdU treatment does not alter cell-cycle progression, indicating en-
hanced reprogramming is not due to accelerated cellular division. Data represent mean and SD of
three biological replicates. P values were calculated using a two-tailed, unpaired Student’s t test.
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Figure 5.4: IdU treatment enhances conversion of MEFs into induced pluripotent stem cells
(iPSCs).
(A) Nanog-GFP secondary MEFs (seeded at 10,000 cells/cm2) harboring stably-integrated,
doxycycline-inducible cassettes for Oct4, Sox2, and Klf4 (OSK) were subjected to 10 days of
doxycycline treatment in combination with DMSO (first well), 1µM IdU (second well), or 4µM IdU
(third well) for the first 48 hours of reprogramming. Alkaline phosphatase staining for pluripotent
colonies of cells demonstrates how IdU treatment potentiates pluripotency induction. (B) Bulk
RNA-seq was conducted on days 2 and 5 of doxycycline-induced reprogramming of secondary
MEFs supplemented with 4μM IdU or equivalent volume DMSO for the first 48 hours. Distribu-
tions of fold change in expression for 129 pluripotency genes (taken from Mouse Genome Infor-
matics, gene ontology term: 0019827) in the IdU condition as compared to the DMSO control are
shown. Dashed blue line represents mean of distribution. 81% and 66% of the pluripotency factors
show increased expression with the addition of IdU as compared to DMSO control at days 2 and 5
of reprogramming, respectively. Noise amplification during early stages of reprogramming accel-
erates activation of pluripotency network. (C) (Top) Micrographs of Nanog-GFP secondary MEFs
at day 10 of doxycycline-induced reprogramming (scale bar = 100 µm). (Bottom) Flow cytometric
analysis of Nanog-GFP activation at day 10 of reprogramming. Data are pooled from two repli-
cates. (D) Oct4-GFP primary MEFs (seeded at 10,000 cells/cm2) were retrovirally transduced with
cDNAs encoding Oct4, Sox2, Klf4, and c-Myc. 24 hours after transduction, infected cells were
treated with DMSO (continuously), 1mM valproic acid (VPA, continuously), 10µM forskolin (con-
tinuously), or 4µM IdU (first 48 hours). VPA and forskolin are established enhancers of cellular
reprogramming. The number of Oct4-GFP(+) stem cell colonies were counted 8, 10, and 12 days
from the start of drug treatment. Data represent mean and SD of 2 biological replicates. Treat-
ment of transduced MEFs with IdU during early stages of reprogramming increases the number of
Oct4-GFP(+) colonies that form as compared to DMSO control, *p =0.039 by one-way ANOVA
with Bonferroni post hoc test.
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Methods

Cellular reprogramming assays

Two cellular reprogramming systems were tested in this study: (1) Nanog-GFP secondary

mouse embryonic fibroblasts (MEFs) harboring stably integrated, doxycycline-inducible cassettes

for Oct4, Sox2, and Klf4. GFP is expressed from the endogenous Nanog locus. (2) Oct4-GFP

primary MEFs that express GFP from the endogenous Oct4 locus.

Secondary MEFs were seeded onto gelatin-coated, 12-well plates at a density of 10,000 cells/cm2

in MEF medium (DMEM supplemented with 10% FBS and 0.1mM non-essential amino acid, and

2mM Glutamax). 24 hours after seeding, wells were washed with DPBS and media was switched

to ESC media (knockout DMEM, 10% FBS, 10% KSR, 2mM Glutamax, 0.1mM non-essential

amino acid, 0.1mM 2-mercaptoethanol, 103 units/ml leukemia inhibitory factor) supplemented

with 1μg/ml doxycycline. Additionally, IdU (1uM or 4uM) or equivalent volume DMSO (Day 0)

were added to media. 48 hours after the start of IdU treatment, wells were washed with DPBS

and media was replaced with ESC media supplemented with 1μg/ml doxycycline alone. Media

was refreshed every other day until day 10 of reprogramming. Alkaline phosphatase staining was

performed according to manufacturer’s instructions using the Alkaline Phosphatase Detected Kit

(Millipore). For flow cytometric analysis of Nanog-GFP expression, cells were dissociated with

TrypLE and run unfixed on BD FACS Calibur cytometer.

Oct4-GFP primary MEFs were transduced with lentiviral vectors encoding Oct4, Sox2, Klf4,

and c-Myc. Lentiviruses encoding these factors were individually packaged in PLAT-E cells

(ATCC) using pMX-based vectors. 48 hours after transfection of lentiviral vectors, viral super-

natant was collected and filtered. For infection, Oct4-GFP primary MEFs were seeded on gelatin-

coated, 6-well plates at a density of 10,000 cells/cm2 in MEF medium 24 hours prior to transduc-

tion (Day -2). Oct4, Sox2, Klf4, and c-Myc viruses were mixed in equal volume along with 5μg/ml
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polybrene and incubated with primary MEFs for 24 hours in MEF medium (Day -1). Following

infection, wells were washed with ESC media and cells were incubated with ESC media supple-

mented with 10μM Forskolin, 1mM Valproic Acid, 4μM IdU or equivalent volume DMSO (Day

0). ESC media was refreshed every other day. IdU supplementation was discontinued after 48

hours while Forskolin and Valproic Acid were kept in media continuously. Oct4-GFP(+) colonies

were counted on days 8, 10 and 12.

Bulk RNA-seq of secondary MEFs undergoing reprogramming

Secondary MEFs were seeded onto gelatin-coated, 6-well plates at a density of 10,000 cells/cm2

in MEF medium. For each timepoint (2- and 5-day), 4 wells were seeded (2 replicates for standard

reprogramming and 2 replicates for IdU-assisted reprogramming). 24 hours after seeding, wells

were washed with DPBS and media was switched to ESC media supplemented with 1μg/ml doxy-

cycline. Additionally, 4μM IdU or equivalent volume DMSO (Day 0) were added to media. 48

hours after the start of reprogramming, cells for the 2-day timepoint in DMSO and IdU conditions

were dissociated with TrypLE, pelleted, and snap frozen with liquid nitrogen. Media in the wells

for the 5-day timepoint was refreshed with ESC media supplemented with 1μg/ml doxycycline

alone. This was repeated on day 4. On day 5, remaining cells were dissociated and frozen identi-

cally to that of the 2-day timepoint.

RNA was extracted from each cell pellet using a RNeasy minikit (Qiagen) according to man-

ufacturer’s instructions. A total of 8 cDNA libraries were prepared with an NEBNext Ultra II

RNA Library Prep kit (NEB, cat:E7770S) and sequenced with an Illumina HiSeq4000. Sequenc-

ing yielded a median of ∼50 million single-end reads per library. Read quality was checked via

FASTQC. Reads were aligned to the mm10 reference genome using TopHat with default parame-

ters. Transcript level quantification was performed using Cufflinks with default parameters.
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5.2 Conclusions

Overall, these data reveal that a DNA-surveillance pathway exploits the biomechanical link

between supercoiling and transcription to homeostatically enhance noise without altering mean-

expression levels. This homeostatic noise-without-mean amplification appears to increase cellular

plasticity, thus facilitating reprogramming of cellular identity. This raises intriguing implications

for the role of naturally occurring oxidized nucleobases (e.g., hmU) in cell-fate determination,

particularly since these base modifications are found at higher frequencies in embryonic stem-cell

DNA [66]. Mechanistic insight from modeling and experimental perturbation of Apex1 suggest

that homeostatic (i.e., orthogonal) noise amplification may also apply to other DNA-processing

activities that interrupt transcription. It is important to note that homeostatic noise amplification

cannot occur for all promoters (i.e., promoters with KOFF >> KON are precluded as they will

exhibit increased mean) and propagation of transcriptional variability to the protein level likely

depends on protein half-lives and thus may not occur for a large swath of proteins. The proteins

monitored in this study either have naturally short half-lives (Nanog) or PEST tags (e.g. d2GFP)

which minimizes the buffering of transcriptional bursts conferred by longer protein half-lives [91].

The ability to independently control the mean and variance of gene expression may indicate that

cells have the ability to amplify transcriptional noise for fate exploration and specification.
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